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Abstract

Automated testing is a basic principle of agile development. Its benefits include
early defect detection, defect cause localization and removal of fear to apply changes
in the code. Therefore, maintaining high quality test code is essential. This study in-
troduces a model that assesses test code quality by combining source code metrics that
reflect three main aspects of test code quality: completeness, effectiveness and main-
tainability. The model is inspired by the SIG Software Quality model which aggregates
source code metrics into quality ratings based on benchmarking. To validate the model
we assess the relation between test code quality, as measured by the model, and is-
sue handling performance. An experiment is conducted in which the test code quality
model is applied on 18 open source systems. The correlation is tested between the
ratings of test code quality and issue handling indicators, which are obtained by min-
ing issue repositories. The results indicate a significant positive correlation between
test code quality and issue handling performance. Furthermore, three case studies are
performed on commercial systems and the model’s outcome is compared to experts’
evaluations.
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Chapter 1

Introduction

This chapter defines and motivates the problem in question of this study, formulates the re-
search questions and outlines the approach followed to provide the corresponding answers.

1.1 Problem Statement

Software testing is well established as an essential part of the software development pro-
cess and as a quality assurance technique widely used in industry [14]. Developer testing (a
developer test is “a codified unit or integration test written by developers” [95]) in partic-
ular, has risen to be an efficient method to detect defects in a software system early in the
development process. In the form of unit testing, its popularity has been increasing as more
programming languages are supported by testing frameworks (e.g. JUnit for Java, NUnit
for C#, etc.). A significant research effort is put on various aspects of unit testing. Literature
suggests that 30 to 50% of a project’s effort is consumed by testing [28].

One of the main goals of testing is the successful detection of defects. Developer testing
adds to this the ability to point out where the defect occurs [59]. The extent to which detec-
tion of the cause of defects is possible depends on the quality of the test suite. In addition,
Kent Beck in his book “Test-Driven Development” [10] explains how developer testing can
be used to increase confidence in applying changes to the code without causing parts of the
system to break. This extends the benefits of testing to include faster implementation of
new features. Consequently, it is reasonable to expect that there is a relation between the
quality of the test code of a software system and the developer team’s performance in fixing
defects and implementing new features.

In order to assess the aforementioned relation, we first need to be able to assess test code
quality. The assessment of test code quality is an open challenge in the field [14]. Moni-
toring the quality of a system’s test code can provide valuable feedback to the developers’
effort to maintain high quality assurance standards. Several test adequacy criteria have been
suggested for this purpose. Zhu et al. summarize a rich set of test adequacy criteria and
compare them [98]. The applicability of some of these criteria is limited since, for instance,
some of them are computationally too expensive. A combination of criteria that provides a
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1. INTRODUCTION

model for measuring test code quality is desirable and the target of exploration within the
scope of this thesis.

After developing a way of measuring test code quality, it is necessary to quantify a
team’s performance in fixing defects and implementing new features. Defects and feature
requests, among others, are considered as issues. The process of analysing the issues, as-
sessing their validity, managing when and by whom they should be resolved is called issue
handling. To facilitate this process, special systems have been developed in order to en-
able developers to track the issues of the system they build. These systems are called Issue
Tracking Systems (ITSs) and they contain lists with the issues and the information that forms
the issues’ life-cycle as we will see in Section 2.2. The use of ITSs in order to track issues
and coordinate the effort of the developers has become a standard in a modern software
development environment.

In order to measure the performance of the issue handling process of software develop-
ment teams, ITSs can be mined. We expect that defect resolution time for a software system
is reflected in its associated ITS as previous work suggests [51, 88, 30, 45, 4]. In addition,
further indicators of issue handling performance, such as throughput and productivity, can
be derived by studying ITSs data as shown in [16].

Intuitively, issues in software systems that are accompanied by high quality test suites
are resolved more quickly compared to systems of lower quality test suites. The reasoning
behind this is that when a high quality test suite is in place, it is easier to apply changes
without worrying about affecting parts of the code that are already correct. Moreover, teams
working on systems with high test code quality are able to resolve more issues than teams
working on systems with lower test code quality. The purpose of this thesis is to investigate
and assess the existence of such relations in order to provide empirical evidence of the value
of testing and of the proposed test code quality model.

1.2 Research Questions

This study attempts to define a test code quality model. The existing test adequacy cri-
teria are explored towards the goal of selecting among them a combination that provides
a feasible, applicable quality indicating model for assessing developer tests’ effectiveness.
This aims at achieving the main goal of the study, namely the construction of a model that
reflects the quality of the main aspects of test code. Furthermore, the study attempts to pro-
vide validation of the usefulness of the proposed test code quality model as an indicator of
issue handling performance.

Our research is driven by the following research questions:

• RQ1 : How can we evaluate the quality of test code?

• RQ2 : How effective is the developed test code quality model as an indicator of issue
handling performance?

• RQ3 : How useful is the test code quality model?

In order to answer these questions, it is necessary to refine them by breaking them down
to subsidiary questions. To answer RQ1 we need to answer the following questions:

2
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• RQ1.1 : What makes a codified test suite effective?

• RQ1.2 : Can we define a set of feasible and applicable metrics that reflects the quality
of codified testing?

To answer RQ2, hypotheses are formulated about the benefits of automated testing in
the issue handling process. In particular, we expect that compared to systems of lower test
code quality, in systems of higher test code quality:

• defect resolution times are shorter because of the ability of the test suite to trace the
root of defects.

• throughput1 and productivity2 of resolved issues are higher because automated tests
remove the fear of change and at the same time, test code serves as documentation
that facilitates the comprehension of the code to be modified.

Therefore, we can formulate the following research questions:

• RQ2.1 : Is there a correlation between the test code quality ratings and the defect
resolution time?

• RQ2.2 : Is there a correlation between the test code quality ratings and the throughput
of issue handling?

• RQ2.3 : Is there a correlation between the test code quality ratings and the produc-
tivity of issue handling?

Finally, in order to assess the usefulness of applying the test code quality model, its
strengths and its limitations, the study of the results of applying the model to particular
cases and the comparison of the model’s ratings with the opinion of an expert would answer
the question:

• RQ3.1 : How is the test code quality model aligned to experts’ assessment of partic-
ular systems?

The answers to these questions will provide a deeper understanding of codified testing
and its importance in software engineering. Results can reveal an insight about unit test
economics and add empirical evidence to the understanding of the impact of test quality to
software engineering.

1.3 Approach

The first step towards addressing the research questions regarding the construction of the test
code quality model (RQ1.1, RQ1.2) is the exploration of the test adequacy criteria proposed
in the literature. Next, we use the GQM approach [91] to define metrics that measure

1number of resolved issues in a time period for the whole project
2number of resolved issues in a time period per developer
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Figure 1.1: Research Context

test code quality. We then build the model, inspired from SIG’s software maintainability
model [34, 72, 8]. SIG has developed a software assessment model that aggregates software
quality metrics in order to rate software’s maintainability according to the maintainability
characteristics as they are defined in the ISO 9126 [1] software quality standard.

The approach to provide answers to the rest of the research questions is empirical in
nature. An empirical study is simply “just a test that compares what we believe to what we
observe” [75]. In the context of this study, we seek to study the relation between test code
quality and issue handling performance (RQ2.1, RQ2.2, RQ2.3). As explained earlier, the
benefits of automated testing, such as the ability to localise the root cause of a defect and the
removal of the fear of change, lead to the expectation that higher test code quality results in
better issue handling performance. In this study, we conduct an experiment in order to test
the aforementioned expectation against empirical data from several open source projects.

An overview of the research context of the experiment in this study is shown in Figure
1.1. The coloured frame focuses on the objective of this study while what is out of the frame
is related work performed by Luijten et al. [51] and Bijlsma [16] that forms the basis for
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this study.
Production code is the actual source code that implements the system. Test code con-

tains test cases, which represent possible execution scenarios, exercises these cases on the
production code and asserts whether the behaviour is as expected. When tests fail, which
means a defect occurred, they should detect where the cause of the defect lies. During the
life-cycle of the system various defects are detected either automatically or manually. In ad-
dition, new features are requested. Some of these defects and feature requests are reported
as issues to the ITS.

Luijten et al. [51] studied and established the correlation between software maintain-
ability and defect resolution time. Software maintainability was determined based on SIG’s
software quality model. SIG’s SAT (Software Assessment Tool) implements and applies
software metrics on a software system in order to provide a rating for the system’s main-
tainability. Defect resolution time was acquired by applying data mining to the ITS of a
system. A negative correlation was found, a fact which suggests that defects are resolved
more efficiently in systems with higher maintainability.

Bijlsma [16] extended the study of Luijten et al. by studying the correlation between
software maintainability and enhancement resolution time. Furthermore, he proposes three
more issue handling performance indicators, namely throughput, productivity and effi-
ciency. In his study, an experiment is conducted demonstrating significant correlation be-
tween software maintainability and these three indicators.

This study focuses on the impact of test code quality to the issue handling performance.
A Test Quality Model is proposed as a set of test effectiveness indicators that can be ap-
plied on the test code of a software system in order to obtain a rating of its quality. The
primary goal of the study is to discover the relation between the quality of the test code and
defect resolution time, throughput and productivity. An opportunity to address a secondary
research question exists: Is there a relation between the maintainability rating and the test
quality rating?

Last, but not least, we address RQ3.1 using the case study methodology [80]. In particu-
lar, we apply the test code quality model on certain industry systems. Finally, we interview
experts that have studied the system’s technical quality in order to explore whether their
opinion is aligned to the information that is derived from the model’s results.

1.4 Outline

The thesis is structured as follows. Chapter 2 discusses background information as well
as related work. In Chapter 3 we illustrate the approach we followed in order to develop
a test code quality model. Chapter 4 discusses the design of the study which is split into
an experiment and a series of case studies. Chapter 5 presents and discusses the results
of the experiment with which we attempt to assess the relation between test code quality
and issue handling performance. Chapter 6 presents the results of three case studies which
illustrate the usefulness of the application of the test code quality model. Finally, Chapter
7 summarises the findings of the study, lists the contributions of the study and discusses
topics for future research.
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Chapter 2

Background and Related Work

Providing answers to the study’s research questions requires knowledge foundations on the
topics involved, namely: test code quality, issue handling and the SIG software maintain-
ability model. This chapter summarizes the existing literature related to these topics. In
addition, related work that is not covered by these topics is discussed in the final section of
the chapter.

2.1 Test Code Quality

What makes a good test? How can we measure the quality of a test suite? Which are the in-
dicators of the test effectiveness? Answers to these questions have been sought by software
and reliability engineering researchers for decades. However, defining test effectiveness re-
mains an open challenge in the field [14]. Zhu et al. [98] provide a deep look into existing
test adequacy criteria up to 1997. Based on that work and complementing it with more
recent research work, a taxonomy of the test adequacy criteria will be constructed in order
to provide a clear picture of the state of the art in test effectiveness assessment.

The main role of test adequacy criteria is to assist software testers to monitor the quality
of the software in a better way by ensuring that sufficient testing is performed. In addition,
redundant and unnecessary tests are avoided, thus contributing in controlling the cost of
testing [98, 89].

Various classifications can be applied to test adequacy criteria. The classification
schemes proposed by Zhu et al. [98] are adopted in this study. First, we can distinguish
program-based criteria, which assess testing of the production code, and specification-based
criteria, which assess testing of the specifications of a software project. Specifications test-
ing is not in the scope of this study because it depends on specification languages while
we aim at assessing the quality of test code. Thus, we focus on program-based test ad-
equacy criteria. Furthermore, according to the testing approach, criteria can be classified
into categories for:

• structural testing : test criteria that focus on measuring the coverage of the test suite
upon the structural elements of the program.

7



2. BACKGROUND AND RELATED WORK

• fault-based testing : test criteria that focus on measuring the defect detecting ability
of a test suite.

• error-based testing : test criteria that focus on measuring to what extent the error-
prone points of a program (as derived from the current knowledge level) are tested.

After presenting the criteria that fall into the above categories, other techniques (e.g.
assertions, test smells, etc.) that can be used to measure test code quality will be discussed.

2.1.1 Structural Testing Adequacy Criteria

Criteria that fall in this class can be further split between control-flow criteria and data-flow
criteria. They are mostly based on analysis of the flow graph model of program struc-
ture. Control-flow criteria are concerned with increasing the coverage of the elements of
the graph as much as possible. Different criteria assess coverage in a different scope: state-
ment coverage, branch coverage or path coverage. Data-flow criteria are concerned with
analysing whether paths associating definitions of variables to their uses are tested. Finally,
we will see efforts that combine both of the aforementioned criteria.

Control-flow Test Adequacy Criteria

A synopsis of the control-flow adequacy criteria is shown in Table 2.1.
Hetzel [36] formalizes basic criteria that concern coverage. The simplest criterion is

called statement coverage and it requires every statement to be exercised by the test code.
Nevertheless, this is frequently impossible because of the existence of dead code. A stronger
criterion is branch coverage. The requirement for branch coverage is that the tests must
exercise all control transfers. Branch coverage subsumes statement coverage since if all
control transfers are exercised, all statements are exercised as well. In order to achieve
complete coverage of all possible combinations of control transfers, we have to assess if the
tests exercise every possible execution path in the flow graph of the system. This is the path
coverage criterion. However, infinite test code has to be written to achieve path coverage
and therefore, it is not finitely applicable.

In fact, neither the statement coverage nor branch coverage criteria can be applied
finitely. As it was already mentioned, there may be dead statements or dead branches,
meaning code that cannot be executed. However, these criteria can be restated so that they
become feasible by only requiring the coverage of feasible code. Still, it is possible that they
will not be finitely applicable. For example, it is not always possible to decide if a piece of
code is dead or not. In order to work around such problems, criteria with specified restric-
tions on the selection of execution paths to be considered under testing have been defined.
The elementary path coverage criterion requires that only elementary paths, paths where
no node occurs more than once, have to be covered. Similarly, the simple path coverage
criterion requires that only simple paths, paths where no edge occurs more than once, have
to be covered [98].

Some more flexible criteria towards the same direction exist. Gourlay’s [31] length-
n path coverage criterion requires that all subpaths of length at most n should be covered.
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Note that the length of a path is measured by counting the nodes of the flow graph which are
covered by the path. Any node in the flow graph contains a single statement. Paige [73, 74]
proposed the level-i path coverage criterion. According to this criterion, at level 0 all the
elementary paths from the start to the end of the program’s flow graph are checked against
whether they are covered. As the level i increases, the remaining, uncovered, elementary
subpaths whose entry and exit nodes belong in the paths covered at level i−1 are tested.

In order to provide finitely applicable approaches that handle loops, corresponding test
adequacy criteria were sought. Bently et al. [13] proposed a set of loop count criteria.
Howden’s [37] loop count-K criterion requires that the execution of every loop takes place
0,1,2, ...,K times. Moreover, there is the cycle combination criterion [98] according to
which all execution paths that do not contain a cycle more than once should be exercised.

The well known McCabe cyclomatic complexity metric [56] was used to derive the
cyclomatic-number criterion [87]. McCabe’s complexity metric counts the linearly inde-
pendent paths and consequently, the cyclomatic-number criterion requires that the test suite
covers all of these independent execution paths. McCabe’s cyclomatic complexity is also
used as a rule of thumb to indicate a lower bound for the number of test cases necessary to
cover a piece of code.

A set of criteria that are based on textual analysis follow. In particular, Myers [63] pro-
posed a series of three criteria that focus on condition exploration in conditional or loop
structures. Decision coverage criterion requires the existence of at least one test that satis-
fies a given condition and at least one test that that falsifies it. Condition coverage criterion
requires that test cases exist for both truth values of each atomic predicate of a condition,
where atomic predicates are the lowest level conditions that form a higher level condi-
tion with the use of logical operators. Finally, multiple condition coverage criterion, the
strongest among the three, demands that all possible combinations of the atomic predicates
of every condition are tested.

Control-flow adequacy criteria are concluded by presenting the linear code sequence
and jump (LCSAJ) coverage criterion proposed by Woodward et al. [93]. According to this
criterion, test cases are modified execution orders of the production code in the sense that a
code block is executed and then a jump is performed. Criteria that take advantage of textual
analysis of the code are easy to calculate. Nevertheless, they depend on language details
which limits their application.

Based on the aforementioned criteria, metrics can be derived in order to control the
quality of testing code. Though the criteria are defined as requirements, the fulfilment of
the requirements can be measured (e.g. in percentage), thus providing an indicator of test
code quality. All of the aforementioned criteria are applicable only after redefining them to
require the coverage of feasible elements, except from the path coverage criteria which is
not applicable.

Data-flow Test Adequacy Criteria

A synopsis of the data-flow adequacy criteria is shown in Table 2.2.
Before the criteria are presented, some terminology should be discussed. Data-flow ad-

equacy criteria focus on the analysis of the associations between definitions of variables and
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Table 2.1: Control-flow Test Adequacy Criteria

Criterion Proposed by Description

Statement Coverage Hetzel [36] All statements in the program are exer-
cised by testing.

Branch Coverage Hetzel [36] All control transfers are exercised.
Path Coverage Hetzel [36] All combinations of branches are exer-

cised.
Simple Path Coverage Zhu et al. [98] All simple paths are exercised.
Elementary Path Cover-
age

Zhu et al. [98] All elementary paths are exercised.

Length-n Path Coverage Gourlay [31] All subpaths of length ≤ n are exer-
cised.

Level-i Path Coverage Paige [73, 74] At level 0 all elementary paths from the
start to the end are exercised. Level in-
creases up to i and in each level sub-
paths whose entry and start nodes were
in level i− 1 path set, but not other
nodes or edges, are exercised.

Loop Count Bently et al. [13] A set of criteria dealing with loops.
Loop Count-K Howden [37] Every loop is executed 0,1,2, ...,K

times.
Cycle Combination Zhu et al. [98] All execution paths that do not contain

a cycle more than once are exercised.
Cyclomatic-Number McCabe et al. [87] Test cases exercise at least as many

paths as the cyclomatic complexity of
the corresponding piece of code.

Decision Coverage Myers [63] For every condition there is at least one
test case that satisfies it and one that
falsifies it.

Condition Coverage Myers [63] For every atomic predicate of every
condition there is at least one test case
that satisfies it and one that falsifies it.

Multiple Condition Cov-
erage

Myers [63] Test suite covers all combinations of
the truth values of atomic predicates of
all conditions.

Linear Code Sequence
And Jump (LCSAJ)

Woodward et
al. [93]

Measuring different levels of coverage
by applying tests that execute a block
and then a jump.
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the uses of these variables. A definition is a statement in the code that sets a new value in a
variable. Uses can be either computational, when a variable is used in a mathematical com-
putation of some kind, or predicate, when the content of the variable is used in a condition
that is checked to define the control-flow of the program.

Frankl and Weyuker [29] redefined a set of criteria initially proposed by Rapps and
Weyuker [78] in order to make them applicable. The all definitions criterion requires the
test suite to exercise at least one subpath connecting each definition of a variable to one
of its uses. A particular definition of a variable may be used more than once. The all
uses criterion, also proposed by Herman [35] as the reach-coverage criterion, demands that
subpaths between each definition of a variable to all of its uses are exercised.

A set of four criteria proposed by Rapps and Weyuker [78] follow. The all-c-uses/some-
p-uses criterion requires the coverage of the subpaths that connect a definition to all its
computational uses and at least to one of its predicate uses. The all-p-uses/some-c-uses
criterion is the opposite; all predicate uses should be reached by the tested subpaths plus at
least one computational use. The all-predicate-uses and all-computation-uses criteria are
similar but they ignore completely the computational and the predicate uses respectively.

Due to the fact that between a definition of a variable and a use there may be more than
one path, a stronger criterion would be to exercise all possible paths from each definition to
each of its uses. Such a criterion, though, lacks applicability. Frankl and Weyuker [29] and
Clarke et al. [23] attempted to limit the number of paths by introducing the all definition-use-
paths criterion so that it only requires paths that are cycle-free or contain only simple cycles
to be exercised. Yet, there is still a probability that such a path does not exist, maintaining
the applicability problem of such a criterion.

Ntafos [66, 67] studied the interactions of different variables. He defined as k− dr in-
teractions the chains of k alternating definitions and uses of variables. In particular, each
definition reaches its paired use at the same node where the next definition in the chain
occurs. He proposed the required k-tuples criterion according to which for all j−dr inter-
actions, where j = 2,3, ...,k, there is at least one path that contains a subpath which is an
interaction path for the corresponding j−dr interaction.

Further work performed by Laski and Korel [48] focuses on studying how the variables
used for computation at a node are affected by definitions that reach that node from other
nodes. They defined the notion of the context of a node v as a set of the definitions of
variables at different nodes that may possibly reach the uses of the variables in v. Hence,
this excludes definitions that will be definitely overwritten before they reach the node. In
addition, the set of ordered contexts contains all the possible definitions sequences by which
that node can be reached. The ordered-context coverage criterion requires that there is at
least one path exercised for each ordered context path, where an ordered context path is an
execution path between ordered context elements so that after a node is considered as the
definition of a variable, there will be no other node that contains a definition of that same
variable. The context coverage criterion is a bit weaker since it ignores the ordering between
the nodes.

Finally, the Dependence-Coverage criteria that combine control-flow and data-flow test-
ing were proposed by Podgurski and Clarke [76, 77]. These criteria are derived by replacing
the definition-use association relation with various dependence relations, such as semantic
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dependence.
As well as the control-flow adequacy criteria, data-flow criteria can be converted into

metrics that indicate the quality of a test suite by quantifying the extent of the fulfilment of
the tests’ requirements.

2.1.2 Fault-based Testing Adequacy Criteria

Error seeding and mutation analysis are the main approaches to fault-based test adequacy
criteria. Other techniques include variations of mutation testing and perturbation testing.
An overview of how these techniques can be applied to acquire test effectiveness indicators
is presented in this section. A synopsis of the techniques is shown in Table 2.3.

Error seeding, proposed by Mills [60], is the technique of planting artificial errors in
a software system. The system is then tested against these artificial errors and the ones
that have been successfully detected are counted. The ratio of the detected errors to the
total number of the planted errors is an indicator of the ability of a system’s test suite to
detect defects. The planting of the errors can be done either manually or automatically, by
random modifications of the source code. However, the approach has certain downsides
[57]. When the planting of the errors is done manually, the process is labour intensive.
When the planting is automatic, the artificial errors are usually easier to detect than true
errors, thus introducing bias in the measurement of the effectiveness of the tests. Another
negative issue is the fact that the errors are not reproducible, making comparisons between
different applications of the measurement on the same program unreliable.

DeMillo et al. [26] and Hamlet [33] introduced mutation analysis, a systematic way
of performing error seeding. In mutation analysis modifications are applied to the source
code according to rules that describe simple changes, such as swapping the comparison
operators in conditions or removing statements. These rules are called mutation operators
and finding an effective set of those has been the goal of several research works [20, 46,
53, 69]. Mutation operators are applied one at a time to the original program, creating the
so-called mutants. The mutants are tested against the test suite. The mutants that cause a
test to fail, are considered killed. Some of the mutants have the same output as the original
program. In that case, they are considered equivalent to the original program. The number
of killed mutants divided by the total number of mutants minus the number of equivalent
mutants is called Mutation adequacy score. This technique is also known as the strong or
traditional mutation testing.

The mutation adequacy score is an indicator of the effectiveness of the test suite and it
is supported by literature [54, 52] that it should be used in combination with test coverage
criteria. Test coverage criteria count how thoroughly the source code is covered, but not
how effectively it is covered. Mutation analysis compensates for that part.

The applicability of mutation analysis to real software projects is based on two assump-
tions, the competent programmer assumption and the coupling effect assumption [26]. Ac-
cording to the competent programmer assumption, an experienced programmer introduces
only small faults when working on an application. Coupling effect assumes that complex
faults are a result of a series of smaller, simpler faults. These assumptions lead to the hy-
potheses that every test case that detects a simple fault, will also detect a complex fault
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Table 2.2: Data-flow Test Adequacy Criteria

Criterion Proposed by Description

All Definitions Frankl and Weyuker
[29]

At least one subpath connecting each
definition of a variable x to one if its
uses is exercised.

All Uses/Reach-
Coverage

Frankl and Weyuker
[29]/Herman [35]

At least one subpath connecting each
definition of a variable x to each of its
uses is exercised.

All-c-uses/some-p-
uses

Rapps and Weyuker
[78]

At least one subpath connecting each
definition of a variable x to each of its
computational uses and to at least one
of its predicate uses is exercised.

All-p-uses/some-c-
uses

Rapps and Weyuker
[78]

At least one subpath connecting each
definition of a variable x to each of its
predicate uses and to at least one of its
computational uses is exercised.

All-predicate-uses Rapps and Weyuker
[78]

At least one subpath connecting each
definition of a variable x to each of its
predicate uses is exercised.

All-computation-uses Rapps and Weyuker
[78]

At least one subpath connecting each
definition of a variable x to each of its
computational uses is exercised.

All Definition-Use-
Paths

Frankl and Weyuker
[29], Clarke et al. [23]

For all definitions and all of their uses,
all possible paths that connect a defini-
tion to each of its uses are exercised as
long as the paths are cycle-free or con-
tain only simple cycles.

Required k-tuples Ntafos [66, 67] At least one path is exercised, for all
j = 2,3, ...,k , that includes a subpath
which is a j−dr interaction.

Ordered-Context Cov-
erage

Laski-Korel [48] At least one path is exercised for all or-
dered contexts of all nodes of the flow
graph of a program so that a subpath
that is an ordered context path is con-
tained.

Context-Coverage Laski-Korel [48] At least one path is exercised that cov-
ers all definition context paths for all
nodes of the flow graph of a program.
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Table 2.3: Fault-based Test Adequacy Criteria

Criterion Proposed by Description

Error Seeding Mills [60] Planting artificial errors in the program
and testing it to calculate the percentage of
detected errors by the test suite as a quality
indicator.

Mutation Adequacy
Score

DeMillo et al. [26]
and Hamlet [33]

After systematically creating mutated ver-
sions of the original program (mutants),
the tests are run and mutation score is
calculated as the number of mutants that
caused a test to fail divided by the total
number of non-equivalent mutants.

Neighborhood Ade-
quacy

Budd and Angluin
[21]

Local correctness of a program in respect
to its neighbourhood Φ requires that all
programs in Φ are either equivalent to p or
they cause at least one of the tests to fail.

Perturbation Testing Zeil [96] Possible alternative expressions in the pro-
gram that produce the same output on the
tests indicate weakness of the tests to dis-
tinguish between the correct expression
and its alternatives.

which is composed of that simple fault. Since experienced programmers tend to introduce
simple faults, simulation of these faults should be sufficient by applying a single mutation
operator. Consequently, combinations of multiple mutation operators can be avoided and
hence, the exploding increase of the number of the mutants and the corresponding comput-
ing cost are also avoided [32].

A different fault-based testing criterion was proposed by Budd and Angluin [21]. In
their work, neighbourhood Φ of a program p is defined as the set of all the programs that
depend on p, meaning that they were derived by small modifications of p. It should be noted
that Φ includes p itself. In order for p to be locally correct in respect with Φ, the neigh-
bourhood adequacy criterion requires that for any program q in Φ, either q is equivalent to
p or there exists a test which fails when it is run on q.

The advantages of mutation analysis include the high possibility of automating the pro-
cess and the ability to spot the cause of a defect by observing the mutation operator that has
been applied in combination with the specific location in the code where the mutation took
place. In addition, mutation analysis can be used for benchmarking testing strategies [32].

However, mutation analysis is a computationally expensive method. There have been
continuous efforts to reduce the cost of mutation testing by introducing variations. These
efforts can be split into those that reduce the execution cost of creating or testing the mutants
and those that reduce the number of mutants. Table 2.4 shows an overview of the most
important mutation analysis cost reduction techniques as discussed by Zhu et al. [98] and
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Table 2.4: Mutation Analysis Cost Reduction Approaches

Technique Proposed by Description

Strong or Tradi-
tional Mutation

DeMillo et al. [26] Full cost approach.

Weak Mutation Howden [39] Testing performed only on the component that
contains the change that derived the mutant.

Firm Mutation Woodward et
al. [92]

Parametrized approach, providing an interme-
diate solution, faster than strong mutation and
more effective than weak mutation.

Mutant Schema
Generation

Untch [84] A meta-program representing all the muta-
tions is created reducing the cost to one-time
compilation.

Bytecode Transla-
tion

Ma et al. [70] Mutations occur at the bytecode level.

Mutant Sampling Acree [2] and Budd
[19]

After all mutants are created, a random per-
centage is selected to participate in the test-
ing.

Mutant Clustering Hussain [42] Mutants are clustered according to the type of
the test case that kills them. Only some of the
mutants of each cluster are used for testing.

Selective Mutation Mathur [55] and
Offutt et al. [71]

A small set of mutation operators is sought
and applied trying to minimize the loss of test
effectiveness.

Higher Ordered
Mutation

Jia et al. [43] Combining more than one mutation operator
to create higher ordered mutants (HOMs) that
are harder to kill than the first order mutants
(FOMs) from which they were derived. Cost
is reduced by testing these HOMs instead of
the corresponding FOMs.

Jia et al. [44] and points to the corresponding literature.

Perturbation testing, proposed by Zeil [96], is an approach similar to mutation testing.
It focuses on finding the possible alternative expressions (predicates or computations) that
may produce the same output on the tests. The existence of these alternative expressions,
called perturbations, can be interpreted as points in the code where faults cannot be detected,
given the current test suite. Therefore, new tests have to be added in order to distinguish
between the correct expression and its possible perturbations. The set of the perturbations
is called error space of the program. The effectiveness of the tests is measured by its ability
to limit the error space of the program [98]. However, perturbation testing has limited
applicability due to the assumption that the error space of the program is a vector space.
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2.1.3 Error-based Testing Adequacy Criteria

As it was previously mentioned, error-based test adequacy criteria focus on testing pro-
grams on error-prone points. In order to identify error-prone points, a domain analysis of a
program’s input space is necessary [98].

The input space can be divided in subdomains so that in each subdomain the behaviour
of the program is the same. Consequently, subdomains in programs coincide with the pos-
sible execution paths. For different sets of inputs that lead to the execution of a certain path,
exactly the same computations will be applied. Thus, subdomains are separated according
to the set of the control-flow conditions that are required to activate each of the execution
paths. After partitioning the domain into subdomains, test adequacy criteria propose in
which way test cases should be chosen.

For example, the input space of an integer x includes all the possible integers. Suppose
the variable x is used in an if statement where the condition demands x to be greater than
zero and at most 100. The input space can then be split in three subdomains: (1) the integers
that are less or equal than 0, (2) the integers that are greater than zero and less or equal than
100 and (3) the integers that are greater than 100. The error-prone points are the borders
between the subdomains, in this case the values around 0 (e.g. −1, 0, 1) and around 100
(e.g. 99, 100, 101).

In case only a single test case for each subdomain is required, the criterion is equivalent
to path coverage. However, points that are closer to the boundaries between the subdomains
are known to be critical. Therefore, error-based adequacy criteria fall into two categories:
those that focus on the boundaries between the subdomains and those that concern the com-
putations within the subdomains. Boundary errors occur because of faults in the transfer
control predicates. Computation errors occur because of faults in the implementation of
the computation statements. Table 2.5 summarizes the criteria. A brief presentation of the
criteria follows.

White and Cohen [90] proposed the N×1 domain testing strategy. This requires N test
cases, where N is the number of the input variables of the program, on each border of each
subdomain. An additional test case close to the border is also required. In particular, the
additional test case should be out of the subdomain if the border belongs to the sub domain
or in otherwise.

Clarke et al. [22] proposed a stricter criterion. The N×N criterion is similar to the N×1
domain testing strategy, except that it requires N linearly independent test cases close to the
borders instead of just one.

Taking into consideration that the vertices of the subdomains are the intersections of
their borders, Clarke et al. [22] proposed the V ×V domain adequacy criterion. The re-
quirement in this case is that there is a test case for every vertex of the subdomain and for
each vertex, there is also a test case for a point close to the vertex. Again, the additional
point should be out of the subdomain if its corresponding vertex is in the subdomain or in
otherwise.

The aforementioned criteria are effective for domains whose subdomains’ borders are
linear functions. When this is not the case, the N+2 domain adequacy criterion proposed by
Afifi et al. [3] is suitable. In particular, the criterion requires that there are N +2 test cases
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Table 2.5: Error-based Test Adequacy Criteria

Criterion Proposed by Description

N × 1 domain testing
strategy

White and Cohen
[90]

Requires N test cases on each border
of each subdomain and another test case
close to the border.

N × N domain ade-
quacy

Clarke et al. [22] Requires N test cases on each border of
each subdomain and N test cases close to
the border.

V × V domain ade-
quacy

Clarke et al. [22] Requires a test case for each intersection
of the borders of the subdomains paired
with a test case close to the intersection.

N + 2 domain ade-
quacy

Afifi et al. [3] Requires N test cases on each border of
each subdomain and two test cases close
to the border, one in each side of the bor-
der. Effective for non-linear domains.

Functional adequacy Howden [38, 40] Required test cases derived from the anal-
ysis of the functions of each subdomain.

for each border of each subdomain, where N is the number of the input variables of the
program. From these, N test cases should be on the border and from the additional two test
cases, one should be close to the border and outside of the subdomain and the other should
be close to the border and inside the subdomain. The criterion has more requirements that
are analytically explained in [3] .

Howden’s functional adequacy criterion [38, 40] focuses on the possible computation
errors. The correctness of the computation is checked by requiring a number of appropriate
test cases, according to the analysis of the functions of each subdomain, supposing that each
function is a multinomial.

Error-based testing should be performed by using criteria focused on boundary errors
and computation errors at the same time. Unfortunately, its application is limited when the
complexity of the input space is high or when the input space is non-numerical [98].

2.1.4 Assertions and Test Code Smells

In the previous subsections well-defined criteria were presented and discussed. There is
further research work performed on techniques that indicate the quality of test code.

Empirical research on the use of assertions in the code reports that software systems
with extended use of assertions have less faults compared to systems that make less use of
assertions. In particular, Kudrjavets et al. [47] defined assertion density as the number of
assertions per thousand lines of code and showed that there is a negative correlation between
assertion density and fault density. Voas [86] researched how assertions can increase the test
effectiveness by increasing the error propagation between the components of object oriented
systems, so that the errors are detected more easily. Assertions are also the key points of
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test cases at which something is actually tested. According to some practices, each test
case should contain a single assertion. In that case, assertions and test cases are associated.
Therefore, it is reasonable to expect assertion density of testing code to be an indicator of
the effectiveness of the tests.

Test code has the same requirements for maintenance as production code. It is impor-
tant to ensure that it is clear to read and understand, so that its modification is possible.
Moreover, integrating the execution of the tests in the development process requires that
the tests are run efficiently. Thus, the need for test code refactoring is obvious. In order to
detect possible points of low quality in the test code that require refactoring, van Deursen et
al. [27] introduced test smells. Test smells adapt the notion of code smells in testing. Fur-
ther research followed, either towards defining more test smells and appropriate refactorings
[59] or towards automated detection of the test smells [85, 79].

2.2 Issue Handling

2.2.1 Issue Tracking Systems and the Life-Cycle of an Issue

ITSs are software systems used to track defects as well as enhancements or other types of
issues, such as patches or tasks. ITSs are commonly used in the development process [41].
They enable developers to organise the issues of their projects. In the context of this study,
we focus on defects and enhancements, although the process is relatively similar for the
other types.

When defects are discovered or new features are requested, they are reported to the ITS.
Naturally, not all issues which arise follow this procedure. Some of them are handled infor-
mally and no information exists in order to assess the properties of their resolution. Those
that are reported follow a specific life-cycle. Even though there is a variety of implementa-
tions of ITSs (e.g. BugZilla1, Jira2, SourceForge3, Google Code4), essentially they all adapt
the same process.

Figure 2.1 shows the life-cycle of an issue report. Initially, the report is formed and
submitted as an unconfirmed issue. After it is checked whether the issue has already been
reported or if the report is not valid, the issue status is changed to new. The next step is
to assign the issue to an appropriate developer, an action which results in the issue state
assigned. Next, the developer will examine the issue in order to resolve it. The possible
resolutions are:

• Invalid : The issue report is not valid (e.g. not described well enough to be repro-
duced, etc.).

• Duplicate : The issue has already been reported.

• Fixed : The issue is fixed.
1http://www.bugzilla.org/
2http://www.atlassian.com/software/jira/
3http://sourceforge.net/
4http://code.google.com/
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Figure 2. JBoss issue JBAS-3054 in the Jira Web interface.

2. A Bug’s Life

Most development teams organize their work around a
bug database. Essentially, a bug database acts as a big list
of issues—keeping track of all the bugs, feature requests,
and tasks that have to be addressed during the project. Bug
databases scale up to a large number of developers, users—
and issues.

An individual record in a bug database is called a issue
report; it is also known as problem report or ticket. An is-
sue report provides fields for the description (what causes
the issue, and how can one reproduce it), a title or summary
(a one-line abstract of the description), as well as a sever-
ity (how strongly is the user affected by the issue?). The
severity can range from “enhancement” (i.e. a feature re-
quest) over “normal” and “critical” to “blocker” (an issue
that halts further development). These fields are normally
provided by the original submitter.

At the moment an issue report is submitted, it gets a
unique identifier by which it can be referred to in further
communication. Figure 2 shows the JBoss issue report
JBAS-3054 from the JBAS subproject in the Jira Web in-
terface.2 At the top, we see the title “Use of isUserInRole
from jsp does not work for JACC”; at the bottom, the de-
tailed description.

Let us assume that someone has just entered this very
issue report into the bug database. While the issue is being
processed, the report runs through a life cycle (Figure 3).
The position in the life cycle is determined by the state of
the issue report. Initially, every single issue report has a
state of UNCONFIRMED. It is then checked for validity and
uniqueness; if it passes these checks, it becomes NEW. At

2http://www.atlassian.com/software/jira/
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Figure 3. The life cycle of an issue report [14].

this point, the issue report is also assigned a priority—the
higher the priority, the sooner it is going to be addressed.
Typically, the priority reflects the risk and/or damage of the
issue/bug. In Figure 2, priority and state are shown in the
details column on the left.

At the time of the initial assessment, the staff may also
include an estimate of the time it will take to fix the issue.
For JBAS-3054, this original estimate was 4 hours; it is also
shown in the Web interface (Figure 2). Both priority and
estimate are crucial in scheduling fixes—and in estimating
when a stable state will be reached.

Eventually, the issue report is assigned to an individ-
ual developer—its state is then changed to ASSIGNED.
The developer now works on the issue, sometimes resulting
in additional comments, questions, and re-assignments, all
stored in the bug database. Eventually, the developer comes
up with a resolution. This resolution can be FIXED, mean-
ing that the problem is solved, but also WONTFIX (meaning
the problem is not considered as such) or WORKSFORME
(meaning that the problem could not be reproduced). With
this resolution, the state becomes RESOLVED.

At this stage, the lead developer may record the effort it
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Figure 2.1: Issue Report Life-cycle (adapted from [97] )

• Won’t fix : The issue will not be fixed (e.g. what the reporter thought of as a defect
is actually a desired feature, etc.).

• Works for me : The issue could not be reproduced in the environment of the devel-
oper.

The issue is marked as resolved and then it is closed, unless it was a fixed issue. In
that case, the correctness of the fix is checked and if it is confirmed the issue is marked as
verified and then it is deployed, resulting the status change to closed. It is possible that the
issue will emerge again in the future. If this occurs, the issue’s state is set to reopened and
a new assignment of the issue to a developer has to take place for the resolution process to
start over.

2.2.2 Defect Resolution Time

Defect resolution time is of great interest in empirical software engineering. Quality-driven
software development is motivated by the expectation of the decrease of the effort needed to
maintain the system, both in the context of adding new features or resolving defects. Defect
resolution time is an indicator of the time that is necessary to resolve a defect and thus, an
indirect indicator of the effort that was invested. As it has been discussed previously, high
quality testing is translated into better detection of the cause of defects and consequently,
it is expected to result in the reduction of the necessary time to resolve a defect. However,
before this claim can be evaluated, a representative measurement of the defect resolution
time has to be defined. Such a measurement can be derived from the data stored in ITSs.

As shown in 2.2.1, issue resolution is tracked by logging a series of possible actions.
Whenever there is an action in the ITS that changes the status of an issue, the date and
time are recorded among other kind of data. An arguably straightforward measurement of
the defect resolution time would be to measure the interval between the moment when the
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defect was assigned to a developer and the moment it was marked as resolved. Complicated
situations where the issue is reopened, reassigned and marked as resolved again can be dealt
with by aggregating the intervals between each assignment and its corresponding resolution.

In fact, this practice has been followed in most of the empirical studies that involved
defect resolution time. In particular, Luijten [49] mined defect resolution time from several
projects and showed that there exists negative correlation with the software’s maintainabil-
ity. Giger et al. [30] worked on a prediction model of the fix time of bugs, acquiring the fix
time from ITSs in the same way as described above. In addition, Nugroho [68] investigated
the correlation between the fixing effort of defects related to modelled behaviours of func-
tionalities and defects related to non-modelled behaviours of functionalities. Fixing effort
was again measured similarly.

Ahsan et al. [4] also proposed a bug fix effort estimation model. They obtained the
defect resolution time as described above, but they further normalized the time by taking
into account the total number of assignments of a developer to defects at a given time. For
instance, a developer that worked 20 days for a month and worked on the resolution of 4
defects for 10 days each in this particular month, could not have worked 40 days in total.
Thus, they normalize the fix times by multiplying them with the multiplication factor which
is obtained by dividing the total actual working days of a month with the sum of all the
assigned working days for all the assigned bugs.

Different approaches towards measuring the defect resolution time follow. Weiss et
al. [88] predict the defect fixing time based on the exact duration of the fix as it was reported
by developers in Jira, one of the few ITSs that allow the specification of the time spent on
fixing a defect. Unfortunately, this has a restricted application either because of the fact that
many projects use a different ITS or because even if they use Jira, few developers fill this
information in (e.g. In JBoss, which was used in [88], only 786 out of the 11,185 reported
issues contained effort data).

Finally, Kim et al. [45] obtained the defect-fix time by calculating the difference be-
tween the commit to the Version Control System (VCS) that solved the defect and the com-
mit that introduced it. Specifically, they spot the commit that solved the defect by mining
logs in the VCS for keywords such as “fixed” or “bug” or references to the identification
number of the defect report. They spot the commit that introduced the defect by applying
the fix-inducing change identification algorithms proposed by Sliwerski et al. [82]. This
approach is based on linking the VCS to the ITS. Bird et al. [18] investigated the bias in
such approaches concluding that they pose a serious problem for the validity of the results.

There are many threats to the validity of such a measurement. ITSs are operated by hu-
mans and hence, the information that can be acquired is prone to inaccuracies. For instance,
defects that have been practically resolved, remain open for a long time. Furthermore, even
though a defect seems that it was being fixed for a certain time interval, it does not mean
that a developer was working on that continuously for the whole duration of the interval.
Even worse, there is no information on whether more than one developer was working on
the defect, increasing the actual fixing effort. Nevertheless, data retrieved from an ITS are
as accurate as possible for usage in empirical analyses and even though not completely
accurate, useful results can be derived in order to comprehend and improve software engi-
neering.
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2.2.3 Throughput and Productivity

Bijlsma [16] introduced additional indicators of issue handling performance. Among the
indicators, measurements of throughput and productivity were defined5.

Throughput is measuring the total productivity of a team working on a system in terms
of issue resolution. It is defined as follows:

throughput =
# resolved issues per month

KLOC

The number of resolved issues is normalised per month so that fluctuations of productivity
because of events such as vacation periods, etc. have less impact. Moreover, in order to
enable comparison between systems of different size, the number of resolved issues per
month is divided by the volume of the system in lines of code.

Throughput measures how productive the whole team that works on a system is. How-
ever, many other parameters could be affecting that productivity. One of the parameters is
the number of developers within the team. This is solved by calculating productivity, the
number of resolved issues per developer. Productivity is defined as follows:

productivity =
# resolved issues per month

# developers

When the indicator is used in the context of open source systems, as intended in this study,
the challenge in calculating productivity is to obtain the number of developers of the team.
In [16] this is performed by mining the VCS of the system and applying data mining to
obtain the number of different users that committed code at least once. However, Mockus
et al. [61] in their study of open source software development, formulate their concern
that in open source teams, the Pareto principle applies: 80% of the work is performed by
20% of the members of the team. This 20% comprises the core team of the system. This
suggests the investigation of the difference of the productivity indicator when the number
of developers includes the whole team or just the core team.

2.3 The SIG Quality Model

SIG has developed a model for assessing the maintainability of software. A description of
the model is provided in [8]. A summary follows in this section.

The quality model has a layered structure for measuring technical quality of software
as it is suggested by the quality characteristics of ISO/IEC 9126 [34]. Figure 2.2 presents
the structure of the model. The ISO/IEC 9126 defines analysability, changeability, stability
and testability as the main sub-characteristics of software maintainability. The SIG quality
model defines source code metrics and maps these metrics to the sub-characteristics in order
to make the ISO/IEC 9126 standard operational. The metrics are calculated based on source

5In the initial work these names correspond to project productivity, developer productivity and enhancement
ratio. They were later renamed to throughput, productivity and efficiency respectively in unpublished research
work.
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ISO/IEC 9126

system propertiessource code measurements

Figure 2.2: The SIG Quality Model maps source code measurements onto ISO/IEC 9126
quality characteristics (image taken from [50]).

code analysis and they are converted to ratings that reflect system level properties. After-
wards, the system level properties are mapped to the ISO/IEC 9126 sub-characteristics,
which are in turn aggregated into an overall maintainability rating. The ratings are pre-
sented using a star rating system, ranging from 1 star to 5 stars. More stars always mean
better quality.

2.3.1 Source code metrics

The source code metrics are the following:

Estimated rebuild value The size of the system’s production code is measured in lines of
code. Based on the lines of code, the rebuild value of the system is estimated in man-
years using language productivity numbers found in the Programming Languages
Table of the Software Productivity Research6. The system property volume is based
on this metric.

Percentage of redundant code This metric is calculated as the number of lines of code
that are considered to be redundant. Duplication is detected when a code fragment of
more than 6 lines of code is repeated at least once in the system. The system property
duplication is based on this metric.

Lines of code per unit Unit is the smallest piece of invokable code in a language (e.g. a
method for Java). The metric is calculated by counting the lines of code in a unit. The
system property unit size is based on this metric.

Cyclomatic complexity per unit For each unit the metric is equal to McCabe’s cyclomatic
complexity [56]. The system property unit complexity is based on this metric.

Number of parameters per unit The metric represents the number of parameters that are
declared in the interface of a unit. The system property unit interfacing is based on
this metric.

6http://www.spr.com/programming-languages-table.html
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Number of incoming calls per module For a module (e.g. a class or a file) the metric is
calculated by counting the number of invocations of the module (e.g. calling one of
the module’s units). The system property module coupling is based on this metric.

2.3.2 Converting the source code metrics to system properties ratings

After the measurements are obtained from the source code, they are converted in ratings that
correspond to system level properties. This is performed through the use of benchmarking.
SIG possesses and curates a database with hundreds of systems that were built using various
technologies [6]. The model is calibrated based on the benchmark so that the metrics can
be converted into star ratings that reflect the system’s performance in comparison with the
benchmark.

In particular, the levels of quality are defined so that they correspond to a 〈5,30,30,30,5〉
percentage-wise distribution of the systems in the benchmark. This means that a system that
is rated 5 stars in a property performs similarly with the best 5% of the systems in the bench-
mark. At the same time, a 2 star rating means the system performs better than the 5% worst
systems and worse than the 65% best systems in the benchmark.

Based on the aforementioned calibration technique, thresholds are calculated that serve
as the values that separate the different quality levels. There are two types of system prop-
erties: the ones that are calculated on the system level (volume and duplication) and the
ones that are calculated on the unit or module level (the rest). The calibration is performed
differently for each of these types of properties.

Volume and duplication are based on measurements that correspond to the entire sys-
tem, a number of man-years for Volume or a percentage of redundant lines of code for
duplication. The calibration technique will be illustrated using an example. Repeating the
example that is shown in [8], to acquire the rating of the property duplication, thresholds are
calculated based on the percentage of redundant lines of code. The mapping of thresholds
to the star ratings is shown in Table 2.6.

Table 2.6: Thresholds for Duplication

Rating Duplication

? ? ? ? ? 3%
? ? ? ? 5%
? ? ? 10%
? ? 20%
? -

The thresholds are interpreted as the maximum allowed value that a system may have in
order to receive the corresponding rating. A system with 8% redundant code will be rated as
a 3-star system with regard to duplication, since the percentage of redundant lines of code
is greater than the thresholds for 5- and 4-star systems and lower than the threshold for a
3-star system.
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At this point, it is important to observe that a system with 10.1% duplicated code and
another with 19% would both score 2 stars in the duplication property. This would reduce
a lot of the flexibility of the model to compare different systems to each other. Therefore,
linear interpolation is used in order to convert the metric to a rating in a continuous scale in
the interval [0.5,5.5].

The system properties that are calculated in a more fine-grained level than volume and
duplication are aggregated using the quality profiles technique. The metrics upon which
these properties are based are calculated for each unit/module. Borrowing again an ex-
ample from [8], the technique will be explained for unit complexity. First, the cyclomatic
complexity metric is calculated for every unit in the benchmarking set. This enables us to
study the distribution of the metric and detect the points where the behaviour of the metric
changes. This method is illustrated in detail by Alves et al. [6]. Based on the distribution
of the metric, thresholds are derived in order to classify units in four risk categories: low,
moderate, high and very high. For cyclomatic complexity this results in the thresholds that
can be seen in Table 2.7. It should be noted that the calibration of the SIG model is a con-
tinuous process so that the state-of-the-art of industrial software development is reflected.
Therefore, the values of the thresholds that are presented in this study may not be up-to-date.

Table 2.7: Risk categories for cyclomatic complexity [6]

McCabe cyclomatic complexity risk category

1-6 low
7-8 moderate

9-14 high
> 14 very high

After assessing the risk level for each unit in a system, the percentage of the volume of
the system that falls in each category is calculated. For instance, a unit of 10 lines of code
that has a cyclomatic complexity of 3 is in the low risk category, thus 10 lines of code of the
system are in the low risk category. From the benchmark, thresholds are derived that enable
mapping the 5 quality levels to the percentages of code that are allowed to be in each risk
category.

As with the properties that are calculated on the system level, the thresholds are derived
so that the quality levels represent the 〈5,30,30,30,5〉 percentage-wise distribution of the
systems in the benchmark. The quality profiles for unit complexity are shown in Table 2.8.
The low risk category is missing because it is the complement of the sum of the other three
adding up to 100%.

The thresholds are the maximum percentages of code that a system may have in each
risk category in order to receive the corresponding rating. It is important to mention that the
percentages are accumulated from the higher risk categories to the lower ones. For example,
given the thresholds in Table 2.8, a system with 3% of code in the very high risk category
and 14% of code in the high risk category is not eligible for a 2-star rating because the value
that is checked against the threshold for the high risk category is 17%.
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Table 2.8: Profile thresholds for cyclomatic complexity (taken from [8])

maximum relative volume
rating moderate high very high

? ? ? ? ? 25% 0% 0%
? ? ? ? 30% 5% 0%
? ? ? 40% 10% 0%
? ? 50% 15% 5%
? - - -

The interpolation method that was previously discussed is applied here as well. Linear
interpolation according to the percentage in each of the risk categories (moderate, high and
very high) is applied. As a final rating, the minimum of the three ratings is chosen.

2.3.3 Mapping the system properties to the ISO/IEC 9126
sub-characteristics of maintainability

Finally, the last step for creating the model was to map the system properties to the sub-
characteristics of the ISO/IEC 9126. This was performed by selecting the most important
properties that affect each sub-characteristic. The selection was based on expert opinion. A
survey was later performed [25] in order to validate the selection. The mapping can be seen
in Figure 2.3. For each sub-characteristic a × is placed in the columns that correspond to
the system properties that are considered the most influential factors.

The rating for each sub-characteristic is calculated by averaging the ratings of the system
properties that are mapped to it. Finally, the overall maintainability rating is the average of
the four sub-characteristics. The layered structure of the model enables answering questions
at different levels of granularity. For example, starting from the overall maintainability, one
can go to the sub-characteristics level to identify which main aspects of the system do not
satisfy the desired quality. One additional step down to the properties level, the system
level properties indicate what in particular has to be improved in the source code in order to
improve the system’s technical quality.

2.4 Related Work

In this section, previous work that aimed at a systematic way of assessing test code quality
is discussed.

To our knowledge the efforts of assessing test code quality are limited to individual
metrics and criteria such as the ones that were presented in Section 2.1. In this study we
aim at constructing a test code quality model in which a set of source code metrics are
combined. There is one more research group with similar work. Nagappan et al. proposed
and assessed a suite of test code related metrics that resulted to a series of studies that are
summarised in a PhD thesis [64].

The Software Testing and Reliability Early Warning (STREW) static metric suite is
composed of nine metrics which are separated in three categories: test quantification, com-
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Testability × ×

Figure 2.3: Mapping of system properties to ISO/IEC 9126 sub-characteristics (taken from
[8])

plexity and object-orientation (O-O) metrics, and size adjustment. The group of the test
quantification metrics contains four metrics: (1) number of assertions per line of produc-
tion code, (2) number of test cases per line of production code, (3) the ratio of number of
assertions to the number of test cases and (4) the ratio of testing lines of code to production
lines of code divided by the ratio of the number of test classes to the number of production
classes. These four metrics are intended to cross-check each other to compensate for dif-
ferent programming styles. For example, some programmers tend to have one assertion per
test case but some others have a lot of different assertions in single test cases. The group of
the complexity and O-O metrics examines the relative ratio of test to source code for con-
trol flow complexity and for a subset of the CK metrics. Finally, a relative size adjustment
metric is used [65].

In order to validate STREW as a method to assess test code quality and software quality
a controlled experiment was performed [65]. Students developed an open source Eclipse7

plug-in in Java that automated the collection of the STREW metrics. The student groups
were composed by four or five junior or senior undergraduates. The duration of the exper-
iment was six weeks. Students were required to achieve at least 80% code coverage and to
perform a set of given acceptance tests.

The STREW metrics of 22 projects were the independent variables. The dependent
variables were the results of 45 black-box tests that were applied on the projects. Multi-
ple regression analysis was performed assessing the STREW metrics as predictors of the
number of failed black-box tests per KLOC (1 KLOC is 1000 lines of code). The result of
the study revealed a strong, significant correlation (ρ = 0.512 and p-value� 0.01). On that
basis they concluded that a STREW-based multiple regression model is a practical approach
to assess software reliability and quality.

Several limitations in their study are discussed in [65]. The generalisation of the results
beyond students is difficult. Furthermore, the developed Eclipse plug-ins were small rela-

7http://www.eclipse.org/
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tive to industry applications. The set of black-box tests is relatively small and doubtful as to
whether it is representative of problems that would have been found by the customers. In ad-
dition, there is no effort to control confounding factors such as the quality of the production
code or the variance of the experience between the students.

As mentioned previously, in our study we also aim at selecting a set of metrics in order
to assess test code quality. The STREW metrics provide the basis for selecting suitable
metrics. However, our goal is to go a step further and develop a model which is based on
the metrics. In addition, we identify some weak points of the STREW metrics. Coverage-
related metrics are completely left out of the suite. The complexity and O-O metrics are
always taking into consideration the ratio of these metrics between test and production code
(e.g. ratio of cyclomatic complexity of test code to cyclomatic complexity of production
code). These ratios are hard to interpret. Last but not least, it is difficult to compare systems
based on the raw metrics’ values and that provides our motivation to build upon the SIG
quality model and the benchmarking technique that is used there.
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Chapter 3

Constructing a Test Code
Quality Model

In this chapter RQ1 is addressed: How can we evaluate the quality of test code? First, we
investigate how test code quality can be measured and what information is needed in order
to assess the various aspects of test code. In particular, the main aspects of test code quality
are identified and the motivation for their importance is provided. Afterwards, metrics that
are related to each of the identified aspects are being presented. By mapping the metrics to
the main aspects of test code quality, a test code quality model is created and presented. The
model combines the metrics and aggregates them in a way that extracts useful information
for the technical quality of test code. Finally, the benchmarking technique is applied in
order to calibrate the model and convert its metrics into quality ratings.

3.1 Assessing Test Code Quality: A GQM Approach

The Goal, Question, Metric approach (GQM), developed by Basili [9], is an approach for
selecting metrics to quantify a concept. Goals are capturing the concepts to be measured.
Questions capture a goal’s different aspects to be assessed. Finally, metrics are associated
with each question providing an answer in a measurable way.

Using the GQM template [91], we define our main goal in this section as follows:

Analyze test code
for the purpose of developing an assessment method
with respect to test code quality
from the perspective of the researcher, developer

In order to achieve this goal, we refine it into several subsidiary goals.

3.1.1 Goals

To answer the question “how can we evaluate the quality of a system’s test code” we can
generate the following questions:
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Q1 How completely is the system tested?

Context: The test code is exercising parts of the production code in order to check
that functionality works as expected. The more parts of the production code
are tested, the more complete the test suite. Between systems where all other
aspects of test code quality are the same, a system that is tested more completely,
is better tested.

Interpretation: The more parts of code are exercised by a test suite, the higher the
confidence that defects can be detected throughout the entire system.

Q2 How effectively is the system tested?

Context: Test code is executing parts of the production code. At the same time, it
can test whether the system behaves as expected. This can happen at different
granularity levels (unit testing to integration testing). Between systems where
all other aspects of test code quality are the same, a system that is tested more
effectively, is better tested.

Interpretation: Exercising the production code is essential but not sufficient. Higher
effectiveness improves the ability of the test suite to detect a defect and trace its
cause.

Q3 How maintainable is the system’s test code?

Context: Test code is above all code. Nowadays, systems contain an increasing
amount of test code. In many cases there is more test code than production code
[95]. Software metrics for maintainability can be applied on test code as well.
A system with maintainable test code is more likely to sustain its quality as the
system evolves.

Interpretation: The higher the maintainability of the test code, the more easily it
can be adapted to the changes of the production code.

These three questions form the measurable sub-goals that we need to achieve in order
to accomplish the main goal, which is measuring the quality of test code.

3.1.2 Questions

To answer Q1 we can consider different ways to measure how completely a system is tested.
As shown in Section 2.1, there are various code coverage criteria. In fact, An and Zhu [7]
tried to address this issue by proposing a way to integrate different coverage metrics in
one overall metric. However, their approach is complicated . For example, it requires an
arbitrary definition of weights that reflect the criticality of the modules of the system and
the importance of each of the coverage metrics. In order to increase simplicity, applicability
and understandability of the model, we will answer Q1 by refining it in the following sub-
questions:
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Q1.1 How much of the code is covered by the tests?

Refines: Q1.

Context: A covered part of code is code that is executed when the tests are run.

Metrics involved: Code coverage.

Interpretation: The higher the percentage of the code that is covered, the higher the
completeness of the test code.

Q1.2 How many of the decision points in the code are tested?

Refines: Q1.

Context: A decision point (e.g. IF statements, FOR loops) is covered when during
tests there is at least one test that targets each of the possible decisions that
can be taken. The number of decision points can be measured using McCabe’s
cyclomatic complexity [56]. The number of tests can be approximated by the
number of assertions (or test cases, depending on the programming style). This
measurement is similar to the cyclomatic-number criterion [87] as seen in Sec-
tion 2.1.

Metrics involved: Assertions-McCabe ratio.

Interpretation: The higher the Assertions-McCabe ratio, the higher the complete-
ness of the test code.

To answer Q2, we have to consider what makes test code effective. When test code
covers a part of production code, it can be considered effective when it enables the develop-
ers to detect defects and after they detect them, it enables them to locate the cause of these
defects in order to facilitate the fixing process. Consequently, the following sub-questions
refine Q2:

Q2.1 How able is the test code to detect defects in the production code that it covers?

Refines: Q2.

Context: Defects are detected in a covered part of code by providing tests that assert
that the behaviour and the outcome of the code were as expected. Testing value
is delivered through the assert statements.

Metrics involved: Assertion density.

Interpretation: The higher the assertion density, the higher the effectiveness of the
test code.

Q2.2 How able is the test code to locate the cause of a defect after it detected it?

Refines: Q2.
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Context: When a test fails, the developer starts tracking the cause of the defect in
the part of the code that is covered by that test. Figure 3.1 illustrates a test
testFor() that exercises foo() directly and bar() indirectly, since foo() is calling
bar(). Imagine a change in the code introduces a defect in method bar(). After
running testFoo() the test fails. The developer will first think that the problem is
in foo() when the problem is actually in bar(), for which there is no unit test.

Metrics involved: Directness.

Interpretation: The higher the directness, the higher the effectiveness of the test
code.

foo()

Class	  A

bar()

Class	  B

testFoo()

Class	  ATest

direct

indirect

Figure 3.1: Direct and indirect code coverage

To answer Q3, we base our approach on the already established maintainability model
that was developed by SIG [34, 8].

3.1.3 Metrics

The metrics that were selected as indicators of test code quality are defined and described
as follows.

Code Coverage

Code coverage is the most used metric for test code quality assessment. Most of the times
it is the only metric that is used in order to monitor testing. As mentioned previously, there
are various ways to calculate code coverage. There is a variety of dynamic code coverage
estimation tools (e.g. Clover1 and Cobertura2 for Java, Testwell CTC++3 for C++, NCover4

for C#, etc.). Any of these tools can be used to obtain a code coverage estimation.

1http://www.atlassian.com/software/clover/
2http://cobertura.sourceforge.net/
3http://www.testwell.fi/ctcdesc.html
4http://www.ncover.com/
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The aforementioned tools use a dynamic analysis approach in order to estimate code
coverage. Dynamic analysis has two main disadvantages. First, the analyser must be able
to compile the source code. This is an important drawback both in the context of this study
and in the intended context of application. In this study an experiment is performed where
the model is applied to a number of open source projects. Compiling the source code of
open source systems can be very hard due to missing libraries or because a special version
of a compiler is necessary. Furthermore, application in the context of industrial systems’
evaluation by an independent third party would be difficult because a working installation
of the assessed system is rarely available [5]. Second, dynamic analysis requires execution
of the test suite, a task that is possibly time consuming.

Alves and Visser [5] developed a code coverage estimation tool that is based only on
the static analysis of the source code. In summary, the tool is based on slicing the static call
graphs of Java source code and tracking the calls from methods in the test code to methods
in the production code. A production code method that is called directly or indirectly (the
method is called by another production code method, which in turn is called directly or
indirectly by some test code method) is considered covered. The final coverage percentage
is calculated by measuring the percentage of covered lines of code, where it is assumed that
in a covered method all of its lines are covered. Validation of the technique was performed
in [5] by assessing the correlation of the static estimation of code coverage with the dynamic
coverage (using Clover), revealing significant strong correlation at the system level. This
approach is used to obtain a code coverage metric in the proposed test code quality model.

Assertions-McCabe Ratio

The Assertions-McCabe ratio metric indicates the ratio between the number of the actual
points of testing in the test code and of the decision points in the production code. The
metric is defined as follows:

Assertions-McCabe Ratio =
#assertions

cyclomatic complexity

where #assertions is the number of assertion statements in the test code and cyclomatic
complexity is the aggregated McCabe’s cyclomatic complexity metric [56] for the whole
production code.

Assertion Density

Assertion density aims at measuring the ability of the test code to detect defects in the parts
of the production code that it covers. This could be measured as the actual testing value that
is delivered given a certain testing effort. The actual points where testing is delivered are
the assertion statements. At the same time, an indicator for the testing effort is the lines of
test code. Combining these we define assertion density as follows:

Assertion Density =
#assertions

LOCtest
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where #assertions is the number of assertion statements in the test code and LOCtest is lines
of test code.

Directness

As explained in 3.1, when effective test code detects a defect it should also be providing the
developers with the location of that defect in order to facilitate the fixing process. Towards
that purpose, adequate unit testing is desired. When each unit is tested individually by the
test code, a broken test that corresponds to a unit immediately makes the developers aware
that a defect exists in the functionality of that particular unit. Directness measures the extent
to which the production code is covered directly, i.e. the percentage of code that is being
called directly by the test code.

In order to measure directness, the static code coverage estimation tool of Alves and
Visser [5] was modified so that it can provide the percentage of the code that is directly
called from within the test code.

Maintainability

As a measurement of the maintainability of test code, various metrics are used and combined
in a model which is based on the SIG quality model (see Section 2.3). The SIG quality
model is an operational implementation of the maintainability characteristic of the software
quality model that is defined in the ISO/IEC 9126 [1]. The SIG quality model was designed
to take into consideration the maintainability of production code. For convenience, the SIG
quality model is presented again in Figure 3.2.

IS
O

91
26

m
ai

nt
ai

na
bi

lit
y

properties

Vo
lu

m
e

D
up

lic
at

io
n

U
ni

ts
iz

e

U
ni

tc
om

pl
ex

ity

U
ni

ti
nt

er
fa

ci
ng

M
od

ul
e

co
up

lin
g

Analysability × × ×
Changeability × × ×
Stability × ×
Testability × ×

Figure 3.2: The SIG quality model

However, there are certain differences between production and test code in the context
of maintenance. In order to better assess the maintainability of test code, the SIG quality
model was modified into the test code maintainability model which is presented in Figure
3.3. In the rest of this section, we discuss the design decisions that were considered while
modifying the maintainability model. The relevance of each one of the sub-characteristics
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and the system properties of the model to test code quality is evaluated. Furthermore, test
code smells [59] are considered during the process of adjusting the maintainability model
so that the metrics of the model capture some of the essence of the main code smells.
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Figure 3.3: The test code maintainability model as adjusted from the SIG quality model [8]

As explained in detail in Section 2.3, the model has 4 sub-characteristics: analysability,
changeability, stability and testability. Within the context of test code, each of the sub-
characteristics has to be re-evaluated in terms of its meaningfulness.

Analysability is “the capability of the software product to be diagnosed for deficiencies
or causes of failures in the software, or for the parts to be modified to be identified” [1].
Test code is also analysed when necessary both for verifying that it performs the desired
functionality and for comprehending what should be modified when the tests have to be
adjusted to changes in the system.

Changeability is “the capability of the software product to enable a specified modifica-
tion to be implemented” [1]. Changes in the test code are often necessary when changes in
the requirements lead to changes in the system [62, 58].

Stability is “the capability of the software product to avoid unexpected effects from
modifications in the software” [1]. Tests can start failing because of modifications in utility
test code or because of changes in parts of the production code on which the tests depend.

Testability is “the capability of the software product to enable modified software to be
validated” [1]. This would mean that it should be easy to verify that test code is correctly
implemented.

Analysability, changeability and stability are clearly aspects of test code maintainability.
On the other hand, testability, although applicable, implies that a new step of verification
exists for testing the test code. This could create an infinite recursion. Therefore, for prac-
tical reasons it was chosen to omit testability as a sub-characteristic of the maintainability
model for test code.

After the sub-characteristics of the model have been defined, the system properties have
to be re-evaluated and mapped to the sub-characteristics. The system properties used in the
SIG quality model are volume, duplication, unit size, unit interfacing, unit complexity and
module coupling.
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Volume in production code influences the analysability because the effort that a main-
tainer has to spend to comprehend a system increases as the volume of the system increases.
There is an important difference between the maintenance of test code and production code:
maintenance of test code is performed locally, on the piece of test code that is currently un-
der a maintenance task. This is happening because of the very low coupling that exists
among test code. In practice, most of the times, in test code written using xUnit frame-
works a test is self-contained in a method or function. Understanding the test might re-
quire analysing the production code that is being tested, but this is covered by assessing
the analysability of the production code. Therefore, the volume of the test code does not
directly influence its analysability. In addition, the volume of test code is depending on the
volume of the production code. This means that bigger systems require more test code to be
tested adequately. For these reasons, we chose not to use volume of test code as an indicator
of its maintainability.

Test code duplication occurs when copy-paste is used as a way to reuse logic. This
results in many copies of the same code, a fact that may significantly increase the test
maintenance cost. Test code duplication is identified as a code smell by Meszaros in [59].
Duplication affects changeability, since it increases the effort that is required when changes
need to be applied to all code clones. It also affects stability, since the existence of un-
managed code clones can lead to partially applying a change to the clones, thus introducing
logical errors in the test code.

As unit size increases, it becomes harder to analyse. Unit size could be a warning for
the Obscure Test code smell [59]. An obscure test is hard to understand. The consequences
are that such a test is harder to maintain and it does not serve as documentation. One of the
causes of the smell is that a test is eager to test too much functionality. Unit size can be an
indication of this.

Unit interfacing seems to be irrelevant in the context of test code. Most of the test code
units have no parameters at all. Utility type methods or functions exist, but are the minority
of the test code.

Unit complexity on the other hand, is something that should be kept as low as possible.
As mentioned above, in order to avoid writing tests for the test code, the verification of
the test code should be so simple that tests are not necessary. This is also underlined in
the description of the Conditional Test Logic code smell in [59]. High unit complexity is
therefore affecting both the analysability and the changeability of the test code.

Module coupling measures the coupling between modules in the production code. In the
context of test code, the coupling is minimal as it was previously discussed. Nevertheless,
there is a different kind of coupling that is interesting to measure. That is the coupling
between the test code and the production code that is tested.

Of course, in integration tests it is expected that the coupling is high, since a lot of
parts of the system are involved in the tests. In unit testing, ideally every test unit tests one
production unit in isolation. In many cases, additional units of the production code must be
called in order to bring the system in an appropriate state for testing something in particular.
In object oriented programming for instance, collaborative objects need to be instantiated
in order to test a method that interacts with them. A solution to avoid this coupling is the
use of test doubles, such as stubs and mock testing (see [59] for more details).
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In order to measure the dependence of a test code unit to production code, a new metric
is proposed: the number of unique outgoing calls from a test code unit to production code
units. This metric is mapped to a new system property which is named unit dependency.
Unit dependency affects the changeability and the stability of the test code. Changeability
is affected because changes in a highly coupled test are harder to be applied since all the
dependencies to the production code have to be considered. At the same time, stability is
affected because changes in the production code can propagate more easily to the test code
and cause tests to brake (fragile test code smell [59]), increasing the test code’s maintenance
effort.

3.2 The Test Code Quality Model

After selecting the metrics, the test code quality model is presented.
Based on the GQM approach, the sub-characteristics of the model are derived from the

questions Q1, Q2 and Q3. Thus, the three sub-characteristics of test code quality are com-
pleteness, effectiveness and maintainability. The metrics’ mapping to the sub-characteristics
is done as follows: code coverage and assertions-McCabe density are mapped to complete-
ness, assertion density and directness are mapped to effectiveness and finally, the adjusted
SIG quality model combines duplication, unit size, unit complexity and unit dependency
into a maintainability rating. Table 3.4 depicts the test code quality model and the map-
pings of the metrics to the sub-characteristics.
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Figure 3.4: The test code quality model and the mapping of the system properties to its
sub-characteristics

The aggregation of the properties per sub-characteristic is performed by obtaining the
mean. For maintainability, this is done separately in the adjusted maintainability model (see
Section 3.1.3).
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The aggregation of the sub-characteristics into a final, overall rating for test code quality
is done differently. The overall assessment of test code quality requires that all three of the
sub-characteristics are of high quality. For example, a test suite that has high completeness
but low effectiveness is not delivering high quality testing. Another example would be a
test suite of high maintainability but low completeness and effectiveness. Therefore, the
three sub-characteristics are not substituting each other. In order for test code to be of
high quality, all three of them have to be of high quality. For this reason, a conjunctive
aggregation function has to be used [12].

There are several conjunctive aggregation functions from which to choose. However,
another criterion for choosing such a function is the ability to communicate it. Based on
these criteria, the geometric mean was selected. The formula that is used to calculate the
overall test code quality rating is as follows:

TestCodeQuality = 3
√

Completeness ·E f f ectiveness ·Maintainability

3.3 Calibration

The metrics on which the test code quality model is based were calibrated in order to derive
thresholds for risk categories and quality ratings. Calibration was done using benchmarking
as shown in Section 2.3. The set of systems in the benchmark includes 86 commercial and
open source Java systems that contained at least one JUnit test file. From the 86 systems,
14 are open source and the rest are commercial.

Table 3.1: The open source systems in the benchmark. Volume of production and test code
is provided in lines of code (pLOC and tLOC respectively).

System Version Snapshot Date pLOC tLOC

Apache Commons Beanutils 1.8.3 2010-03-28 11375 21032
Apache Commons DBCP 1.3 2010-02-14 8301 6440
Apache Commons FileUpload 1.2.1 2008-02-16 1967 1685
Apache Commons IO 1.4 2008-01-21 5284 9324
Apache Commons Lang 2.5 2010-04-07 19794 32920
Apache Commons Logging 1.1.1 2007-11-22 2680 2746
Apache Log4j 1.2.16 2010-03-31 30542 3019
Crawljax 2.1 2011-05-01 7476 3524
Easymock 3.0 2009-05-09 4243 8887
Hibernate core 3.3.2.ga 2009-06-24 104112 67785
HSQLDB 1.8.0.8 2007-08-30 64842 8770
iBatis 3.0.0.b5 2009-10-12 30179 17502
Overture IDE 0.3.0 2010-08-31 138815 4105
Spring Framework 2.5.6 2008-10-31 118833 129521
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Table 3.1 provides some general information on the open source systems in the bench-
mark. We observe that the systems production Java code volume ranges from ∼ 2 KLOC
to ∼ 140 KLOC. For the commercial systems the range is entirely different: from ∼ 1.5
KLOC to ∼ 1 MLOC with several systems having more code than the largest open source
system. For test code, the range for open source systems is from ∼ 1.7 KLOC to ∼ 130
KLOC lines of code. For the commercial systems test code ranges from 20 LOC to ∼ 455
KLOC. For both production code and test code we observe that commercial systems have a
significantly wider range with several systems being in a different order of magnitude than
the largest open source system. Further information about the commercial systems cannot
be published due to confidentiality agreements.

Table 3.2 summarizes descriptive statistics for the metrics. For the system level met-
rics, we observe that they cover a large range starting from values that are close to zero.
In combination with Figure 3.5, where histograms and box-plots are used to illustrate the
distributions of the system level metrics, we see that there are systems whose metrics have
very small values. This is the reason that the 2-star rating threshold for some of the metrics
is low, as shown in Table 3.3. For example, 0.6% code coverage is enough for a system to
be rated 2-stars, even though intuitively such levels of code coverage are very low. This re-
flects the quality of the systems in the benchmark, indicating that at least 5% of the systems
are tested inadequately.

Table 3.2: Metrics and their summary statistics

Metric Scope Min Q1 Median Mean Q3 Max STDV

Code Coverage System 0.1% 29.8% 45.9% 44.1% 60.8% 91.8% 22.3%

Assertions-McCabe Ratio System 0.001 0.086 0.270 0.372 0.511 1.965 0.371

Assertion Density System 0.0% 5.9% 8.4% 9.1% 12.0% 36.4% 5.8%

Directness System 0.06% 8.0% 21.0% 23.6% 36.6% 71.0% 18.6%

Duplication System 0.0% 9.6% 12.2% 13.3% 18.6% 23.9% 5.7%

Unit Size Unit 1 8 15 23.3 27 631 30.8

Unit Complexity Unit 1 1 1 1.9 2 131 3.07

Unit Dependency Unit 1 1 2 3.05 4 157 3.70

Table 3.3: Thresholds for system level metrics

Metric ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Code Coverage 73.6% 55.2% 40.5% 0.6% -

Assertions-McCabe Ratio 1.025 0.427 0.187 0.007 -

Assertion Density 18.9% 10% 7.2% 1.5% -

Directness 57.4% 28.5% 12.3% 0.29% -

Duplication 05.5% 10.3% 16.4% 21.6% -
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Table 3.4: Thresholds for unit level metrics

Metric Low Risk Moderate Risk High Risk Very High Risk

Unit Size 24 31 48 > 48

Unit Complexity 1 2 4 > 4

Unit Dependency 3 4 6 > 6

Table 3.5: Profile thresholds for Unit Size, Unit Complexity and Unit Dependency
(a) Profile thresholds for Unit Size

maximum relative volume
rating moderate high very high

? ? ? ? ? 12.3% 6.1% 0.8%
? ? ? ? 27.6% 16.1% 7.0%
? ? ? 35.4% 25.0% 14.0%
? ? 54.0% 43.0% 24.2%
? - - -

(b) Profile thresholds for Unit Complexity

maximum relative volume
rating moderate high very high

? ? ? ? ? 11.2% 1.3% 0.3%
? ? ? ? 21.6% 8.1% 2.5%
? ? ? 39.7% 22.4% 9.9%
? ? 62.3% 38.4% 22.1%
? - - -

(c) Profile thresholds for Unit Dependency

maximum relative volume
rating moderate high very high

? ? ? ? ? 10.0% 4.3% 1.2%
? ? ? ? 19.3% 13.9% 7.8%
? ? ? 33.5% 24.1% 14.6%
? ? 52.1% 38.9% 24.1%
? - - -

Code coverage ranges up to ∼ 92%, with a large group of systems ranging between
40% and 70%. The median is only∼ 46%, which means that only half of the systems in the
benchmark have test code that covers at least 46% of the system. Assertions related metrics
as well as directness appear to be skewed with most of the systems having a very low value
in both of the metrics.

The unit level metrics resemble a power-law-like distribution. The summary statistics
in Table 3.2 as well as the quantile plots in Figure 3.5 show that most of the values of
these metrics are low but there is a long tail of much higher values towards the right. This
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confirms the behaviour of software metrics that has been seen in previous studies [24, 6].
We can also observe that there is higher variation in unit size and unit complexity than unit
dependency.

An interesting observation about the behaviour of cyclomatic complexity in test code
can be seen in Table 3.4. The thresholds are 1 for low risk, 2 for moderate and 4 for
high risk, with units that have complexity higher than 4 being already in very high risk.
The thresholds lie considerably lower than the corresponding ones for production code (see
Table 2.7, Section 2.3), confirming the lower leniency against complexity in test code.

The thresholds for the system level metrics are shown in Table 3.3. For the unit level
metrics, Table 3.4 summarizes the thresholds for the risk categories and Tables 3.5 (a), (b)
and (c) present the thresholds for their quality profiles. The interpretation of the model’s
thresholds is the same as in the SIG quality model and it is explained in Section 2.3. Further-
more, linear interpolation is used in the same way, in order to be able to compare systems
within the same quality level.

42



Chapter 4

Design of Study

In this chapter, the design of the study is discussed. In order to answer RQ2, an experiment
is conducted. In the first part of the chapter, the experiment’s goal, subjects and materials,
hypotheses formulation, measured variables, and methods used are described in order to
provide an insight into the approach followed in the study. Furthermore, RQ3 is addressed
by performing a series of case studies. The design of the case studies is analysed in the
second part of the chapter.

4.1 Design of the Experiment

Based on the GQM template [91], the goal of the experiment is formulated as follows:

Analyse the quality of codified testing
for the purpose of investigating its relation
with respect to issue handling performance indicators
from the perspective of the researcher
in the context of a set of open source Java projects

As stated in RQ2 in chapter 1, the main goal of the study is to assess the relation be-
tween test code quality and issue handling performance. In order to answer that question,
subsidiary questions were formed. The questions are repeated below:

• RQ2.1 : Is there a correlation between the test code quality ratings and the defect
resolution time?

• RQ2.2 : Is there a correlation between the test code quality ratings and the throughput
of issue handling?

• RQ2.3 : Is there a correlation between the test code quality ratings and the produc-
tivity of issue handling?

The design of the experiment with which we attempt to answer these questions is dis-
cussed in the following sections.
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4.2 Hypotheses Formulation

In RQ2.1, RQ2.2 and RQ2.3, we aim at investigating the relation between test code quality
and defect resolution time, throughput and productivity. We use the test code quality model
that was presented in Chapter 3 as a measurement of test code quality. We extract data from
ITSs of several open source Java projects in order to retrieve measurements for the three
issue handling indicators.

As seen in Section 1.2, we assume that systems of higher test code quality will have
faster defect resolution times, and higher throughput and productivity. In order to investigate
whether these assumptions hold, we assess whether there are correlations between the test
code quality rating of systems and the three issue handling indicators.

We translate the three questions into three hypotheses:

Hypothesis 1

• Null hypothesis (H1null) : There is no significant correlation between test code qual-
ity and defect resolution time.

• Alternative hypothesis (H1alt) : Higher test code quality decreases defect resolution
time.

Hypothesis 2

• Null hypothesis (H2null) : There is no significant correlation between test code qual-
ity and throughput.

• Alternative hypothesis (H2alt) : Higher test code quality increases throughput.

Hypothesis 3

• Null hypothesis (H3null) : There is no significant correlation between test code qual-
ity and productivity.

• Alternative hypothesis (H3alt) : Higher test code quality increases productivity.

All three hypotheses are formulated as one-tailed hypotheses because we have a specific
expectation about the direction of the cause-effect relationship between the independent and
the dependent variables: higher test code quality increases issue handling performance.

4.3 Measured Variables

The measured variables are summarised in Table 4.1.
The independent variable in all three hypotheses is the test code quality. In order to

measure the quality of test code, we apply the test code quality model that was presented in
Chapter 3. The outcome of the model is a rating that reflects the quality of the test code of
the system. The ratings are in ordinal scale and the values are in the range of [0.5,5.5].
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Table 4.1: Measured Variables

Hypothesis Independent Variable Dependent Variable

H1 Test code quality Defect resolution speed rating
H2 Test code quality Throughput
H3 Test code quality Productivity

The dependent variables are defect resolution speed rating, throughput and productivity
for hypotheses 1, 2 and 3 respectively. Starting from the last two, throughput and produc-
tivity are measured as shown in Section 2.2. Possible approaches in deriving the resolution
time of a defect based on its life-cycle were also discussed in the aforementioned section.
However, the approach that is used in this study was introduced and analysed in previous
studies that explore the relation of the maintainability of production code with defect reso-
lution [17, 50]. The summary of the approach follows.

Defect Resolution Speed Rating

The dependent variable of Hypothesis 1 is the resolution time of defects in a system, which
is measured by calculating a rating that reflects the defect resolution speed.

As discussed in Section 2.2 of Chapter 2, to measure the resolution time of a defect, the
time during which the defect was in an open state in the ITS is measured. This means that
all the intervals between the moment that the status of the defect was new and the moment
it was marked as resolved or closed are taken into consideration. Furthermore, if a defect
was closed and later reopened, the intervals during which the defect’s status was resolved
or closed are excluded.

In order to acquire a measurement of the defect resolution speed of a system’s snapshot
during a particular period of time, all the defects that were resolved during that period are
mapped to the snapshot. The individual resolution times of the defects need to be aggregated
in a measurement that represents the defect resolution speed. The distribution of defect
resolution times resemble a power-law-like distribution as illustrated by Bijlsma et al. [17].
In their study, Bijlsma et al. observed that the resolution times of most of the defects were
at most four weeks, but at the same time there were defects with resolution times of more
than six months. Thus, aggregating the resolution times by taking the mean or the median
would not be representative of the actual central tendency of the distribution.

The technique of benchmarking that was used for the construction of the SIG quality
model and the test code quality model is also used in this case. This way defect resolution
times can be converted into a rating that reflects resolution speed. The thresholds for the
risk categories and the quality profiles that are used in this study are the ones that were
acquired by the calibration that was performed in [17]. The thresholds of the risk categories
are shown in Table 4.2 and the thresholds for the quality ratings are shown in Table 4.3.

As with the test code quality model, the thresholds for the risk categories are applied on
the measurement of a defect’s resolution time in order to classify it in a risk category. After-
wards, the percentage of defects in each risk category is calculated. Finally, the thresholds
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Table 4.2: Thresholds for risk categories of defect resolution time

Category Thresholds

Low 0 - 28 days (4 weeks)
Moderate 28 - 70 days (10 weeks)
High 70 - 182 days (6 months)
Very high 182 days or more

Table 4.3: Thresholds for quality ratings of defect resolution time

Rating Moderate High Very High

***** 8.3% 1.0% 0.0%
**** 14% 11% 2.2%
*** 35% 19% 12%
** 77% 23% 34%

for the quality ratings are used in order to derive a quality rating for the defect resolution
speed. Interpolation is used once again in order to provide a quality rating in the range of
[0.5,5.5] and to enable comparisons between systems of the same quality level. This rating
is used in order to measure the dependent variable for Hypothesis 1. It should be noted that
higher rating means faster defect resolution times.

4.3.1 Confounding Factors

In this experiment we aim at assessing the relation of test code quality to issue handling
and we expect test code quality to have a positive impact. Of course, test code quality
is not the only parameter that influences the performance of issue handling. There are
other factors that possibly affect issue handling. The observations of the experiment can
be misleading if these co-factors are not controlled. Identification and control of all the
co-factors is practically impossible. However, several co-factors and confounding factors
were identified and they are discussed below.

• Production code maintainability : While issues are being resolved, the maintainer
analyses and modifies both the test code and the production code. Therefore, issue
handling is affected by the maintainability of the production code.

• Team size : The number of developers working on a project can have a positive or
negative effect on the issue handling efficiency.

• Maintainer’s experience : The experience of the person or persons who work on an
issue is critical for their performance on resolving it.

• Issue granularity : The issues that are reported in an ITS can be of different gran-
ularity. For example, an issue might be a bug that is caused by a mistake in a single
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statement and another issue might require the restructuring of a whole module in the
system. Therefore, the effort that is necessary to resolve an issue may vary signifi-
cantly from issue to issue.

• System’s popularity : High popularity of a project may lead to a larger active com-
munity that reports many issues. The issues could create pressure to the developers,
making them resolve more of them.

In order to control these factors we have to be able to measure them. The maintain-
ability of the production code is measured by applying the SIG quality model to the subject
systems. Team size is measured by obtaining the number of developers that were actively
committing code in a system during a period of time.

Measuring the experience of the maintainer, the granularity of issues and the system’s
popularity is difficult. The maintainers of open source systems are many times anonymous
and there is no reliable data in order to assess their experience at the time of their contri-
butions to the projects. As far as the granularity of issues is concerned, most ITSs offer a
field of severity for each issue. However, this field is often misused making it an unreliable
measurement for the granularity of the issues [15]. For the project’s popularity, the poten-
tial of obtaining the number of downloads was explored but the lack of data for all subject
systems was discouraging. Thus, these three factors are not controlled and will be discussed
in Chapter 5 as threats to validity for the outcome of the experiment.

4.4 Data Collection and Preprocessing

In order to investigate the relation between test code quality and issue handling two kinds
of data are necessary: source code and issue tracking data of systems. For this reason, open
source systems were selected as the experiment’s subjects. Open source systems provide
their source code publicly and in some of them, the ITS data is also publicly available.
Therefore, they are suitable candidates as subjects for the experiment of this study.

In order to compare the technical quality of a system with the performance in issue
handling it is necessary to map the quality of the source code of a specific snapshot of
the system to the issue handling that occurred in that period. For this reason we perform
snapshot-based analysis. Snapshots of systems were downloaded and analysed in order to
acquire quality ratings. We consider each snapshot’s technical quality influential on the
issue handling that occurred between that snapshot and the next one.

Certain criteria were defined and applied during the search for appropriate systems. The
criteria are summarised as follows:

• The system has a publicly available source code repository and ITS.

• Systems have to be developed in Java due to limitations of the tooling infrastructure.

• More than 1000 issues were registered in the ITS within the period of the selected
snapshots.
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Further selection was applied in order to omit irrelevant data from the dataset. All
the issues that were marked as duplicates, wontfix or invalid were discarded. Furthermore,
issues of type task and patch were omitted. Finally, the issues that were resolved (resolution
field set to fixed and status field set to resolved or closed were selected for participation in
the experiment.

Some additional selection criteria were applied in order to mitigate the fact that snap-
shots of the same system are not independent. For this reason, snapshots were taken so
that (1) there is a certain period of time and (2) there is a certain percentage of code churn
(added and modified lines of code) between two consecutive snapshots.

4.5 Data Measurement and Analysis

This section discusses the tools that were used in order to obtain the experiment’s data as
well as the methods that were used in order to analyse the data.

Source code was downloaded from the repositories of the subject open source systems.
The necessary metrics were calculated by using SIG’s Software Analysis Tool (SAT). The
test code quality model ratings were calculated by processing the metrics with the use of R
scripts.

In order to obtain the issue handling performance indicators the ITSs of the subject
systems were mined. In particular, the tool that was created by Luijten and was used for
the studies of Luijten [51] and Bijlsma [16] was updated and used for this study. The
tool supports four ITSs, namely Bugzilla, Issuezilla, Jira and Sourceforge. The data is
extracted from the ITSs into XML form. In addition, the VCS history log is being extracted.
Afterwards, the issue tracking data, the VCS log and the metrics of the source code are read
and mapped to a unified repository database object model. Finally, the data is persisted in
a database from which it can be used for further analyses. The repository database object
model is shown in Figure 4.1.

Correlation tests were performed in order to test the formulated hypotheses. The ratings
for test code quality and for defect resolution time are ordinal measurements. Therefore, a
non-parametric correlation test is suitable. In particular, Spearman’s rank-correlation coef-
ficient [83] was chosen for the correlation tests of the study. Based on the expectation that
higher test code quality decreases the defect resolution time, the hypotheses are directional
and thus one-tailed tests are performed.

In addition, in order to assess the influence of the confounding factors to the issue han-
dling indicators we performed multiple regression analyses. The multiple regression analy-
sis indicates the amount of variance in the dependent variable that is uniquely accounted for
by each of the independent variables that are combined in a linear model. We want to select
the independent variables that have significant influence on the dependent variable. For that
reason we use stepwise selection. In particular, we apply the backward elimination model,
according to which one starts assessing the significance of all the independent variables and
iteratively removes the least significant until all the remaining variables are significant [68].

An overview of the experiment’s procedure is shown in Table 4.2.
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Figure 4.1: Repository database object model (taken from [49])
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Figure 4.2: Procedure Overview

4.6 Design of the Case Studies

After developing the test code quality mode, it is important to assess the usefulness of
its application. Ideally, the model provides an overview of the strengths and weaknesses
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of the test code of a system and enables the monitoring of the test code quality during
development. RQ3 is addressing this matter. In particular, we chose to approach RQ3 by
studying the alignment of the model’s results to experts’ evaluations. For this reason, three
case studies are performed. The design of the case studies is discussed in the section.

Each case study is performed in three steps. First, the system’s source code is anal-
ysed and the test code quality model is applied. Afterwards, the results of the model are
interpreted in order to summarise the knowledge that was derived from the model about
the quality of the system’s test code. Finally, an expert on the system’s technical aspects is
interviewed and the alignment of the expert’s evaluation with the model’s results is assessed.

Three systems were selected as subjects of the case studies based on the availability of
the source code and the expert. All of the systems are commercial and thus, they are kept
anonymous, as well as the experts that were interviewed.

The interview with the expert for each system follows the focused interview paradigm
[94]. The interviews aim at asking questions to the expert in order to obtain a solid evalu-
ation of the test code quality of the systems under study. The first questions were system
specific and their goal was to acquire some general information about the system. Af-
terwards, the interviewee was asked to answer to a structured stream of questions during
approximately one hour. The questions are presented below in the order they were asked:

• How completely is the system tested?

• How effectively is the system tested?

• How maintainable is the system’s test code?

• To which extent is the test code targeting unitary or integration testing?

• How would you rate the aspects of the test code quality of the system?

The last question was asking the experts to provide ratings for the sub-characteristics
of the test code quality model as well as the overall test code quality. The ratings were
explicitly asked to be provided in the range from 0.5 to 5.5 with the unit of measurement
being 0.5. Therefore, the next higher rating of 4.0 is 4.5.

It is important to note the order in which the parts of the interview took place. In order
to avoid introducing bias in the experts’ evaluations, the experts had no knowledge about
the test code quality model while they were answering the questions. After the questions
were answered the model’s results were presented to the interviewee together with the logic
behind the model. Finally, there was an open discussion on the results and the reasons
behind the discrepancies between the model’s ratings and the expert’s evaluation.

The interviews were not recorded and the interviewer kept track of them by taking
personal notes.
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Chapter 5

The Relation between Test Code
Quality and Issue Handling

Performance

In order to address RQ2 an experiment was conducted aiming at assessing the relation be-
tween test code quality and issue handling performance. This chapter presents the results of
the experiment. Furthermore, the interpretation of the results and the threats to their validity
are discussed.

5.1 Data

In Section 4.4, criteria were defined to guide the search of suitable systems as well as se-
lection and cleaning criteria for preprocessing the data. The search for suitable systems led
to 18 open source systems. Among the selected systems there are very well-known and re-
searched ones (notably ArgoUML and Checkstyle), and also systems that were in the list of
the top-100 most popular projects in SourceForge, even though they are not so well known.

The total number of snapshots that were collected is 75. All systems have non-trivial
size, with Stripes Framework being the smallest (17 KLOC in the most recent snapshot) and
ArgoUML being the largest (163 KLOC). The total number of collected issues for the 18
systems is almost 160,000, where about 110,000 are defects and 49,000 are enhancements.
An overview of the dataset is shown in Table 5.1.

5.1.1 Data Selection and Cleaning

Data were selected and cleaned based on the criteria that were previously defined (see Sec-
tion 4.4). The selection criteria included the existence of a sufficient time interval and a per-
centage of code churn between two consecutive snapshots. The actual thresholds for these
criteria were defined by experimenting in order to find the balance between the austerity
for snapshot independence and the preservation of sufficient amount of data. This resulted
in selecting snapshots so that between two consecutive snapshots (1) the time interval is at
least one year and (2) code churn is at least 30%.
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PERFORMANCE

Project Snap-
shots

Earliest
Snapshot
Date

Latest
Snapshot
Date

KLOC
(latest)

Devel-
opers
(max)

Issues Defects Enhanc-
ements

pCode
Main-
tain-
ability
(latest)

tCode
Quality
(latest)

Apache Ant 7 18/07/2000 13/03/2008 100 17 25,474 17,647 7,827 3.201 2.693
Apache Ivy 3 17/12/2006 26/09/2009 37 6 3,688 2,064 1,624 3.022 3.330
Apache Lucene 4 02/08/2004 06/11/2009 82 19 36,874 32,287 4,587 2.795 2.917
Apache Tomcat 3 21/10/2006 07/03/2009 159 13 2,160 1,851 309 2.531 1.595
ArgoUML 7 12/03/2003 19/01/2010 163 19 10,462 8,093 2,369 2.915 2.733
Checkstyle 6 05/02/2002 18/04/2009 47 6 5,109 2,676 2,433 3.677 2.413
Hibernate code 3 18/04/2005 15/08/2008 105 14 10,547 6,850 3,697 2.934 2.484
HSQLDB 6 06/10/2002 09/09/2009 69 8 6,347 5,029 1,318 2.390 2.039
iBatis 4 16/05/2005 12/10/2009 30 4 2,620 1,544 1,076 2.999 2.868
JabRef 4 28/11/2004 02/09/2009 83 17 4,500 3,151 1,349 2.574 2.727
jMol 2 06/06/2006 10/12/2007 92 9 1,213 923 290 2.208 1.814
log4j 4 17/05/2002 05/09/2007 21 6 3,592 2,949 643 3.966 2.365
OmegaT 3 20/06/2006 12/02/2010 112 6 3,433 1,530 1,903 3.278 2.448
PMD 5 14/07/2004 09/02/2009 35 15 6,457 3,863 2,594 3.865 2.975
Spring framework 4 13/05/2005 16/12/2009 145 23 28,492 13,870 14,622 3.758 3.152
Stripes framework 3 29/09/2006 28/10/2009 17 6 2,364 1,208 1,156 3.704 3.123
Subclipse 4 11/04/2006 11/08/2009 93 10 3,370 2,502 868 2.348 2.449
TripleA 3 21/07/2007 06/03/2010 99 4 2,808 2,261 547 2.493 2.449

18 75 1489 159,510 110,298 49,212

Table 5.1: General information about the data set and the number of snapshots and issues
per system before selection and cleaning. The issues’ numbers are the total reported issues
during the period that is covered by the snapshots.

In addition, data cleaning was necessary in order to remove inconsistencies in the way
the ITSs were used. Manual inspection of a sample of the data revealed that there are
occasions where large numbers of issues are closed within a short period of time. This
happens because the developers decide to clean the ITS by removing issues whose actual
status changed but it was not updated accordingly in the system. For instance, an issue was
resolved but the corresponding entry in the ITS was not updated to resolved. We remove
such issues automatically by identifying groups of 50 or more of them that were closed on
the same day and with the same comment.

A final step of data cleaning occurred by removing snapshots with less than 5 resolved
defects for the hypothesis related to defect resolution speed, and with less than 5 resolved
issues for the hypotheses related to throughput and productivity. This cleaning step leaves
us with two different datasets: one for defect resolution speed and another for throughput
and productivity.

The reduction was significant and is shown in Table 5.2.

5.2 Descriptive Statistics

Before the results are presented, descriptive statistics of the measured variables are pre-
sented. Test code and ITSs of 75 snapshots belonging to 18 open source systems were
analysed. Figure 5.1 shows the distributions of the properties of the test code quality model.

It is interesting to observe that for code coverage, assertions-McCabe ratio, assertion
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Descriptive Statistics

Project Data for Defect Resolution Speed Data for Throughput & Productivity
Snapshots Issues Defects Enhancements Snapshots Issues Defects Enhancements

Apache Ant 6 2,275 1,680 595 5 1,944 1,467 477
Apache Ivy 2 331 228 103 2 467 309 158
Apache Lucene 3 2,222 1,547 675 4 4,092 3,274 818
Apache Tomcat 2 295 268 27 2 275 244 31
ArgoUML 7 758 635 123 6 621 508 113
Checkstyle 6 251 248 3 4 203 200 3
Hibernate code 2 270 166 104 3 999 620 379
HSQLDB 4 295 295 0 3 356 354 2
iBatis 3 266 150 116 3 266 150 116
JabRef 4 480 480 0 4 480 480 0
jMol 2 64 63 1 2 64 63 1
log4j 4 384 323 61 2 101 86 15
OmegaT 3 353 192 161 3 353 192 161
PMD 4 176 153 23 3 98 77 21
Spring framework 3 5,942 2,947 2,995 1 3,829 1,923 1,906
Stripes framework 3 340 197 143 2 317 179 138
Subclipse 3 156 95 61 3 190 113 77
TripleA 2 204 204 0 2 187 187 0

18 63 15,062 9,871 5,191 54 14,842 10,426 4,416

Table 5.2: Snapshots and issues per system after selection and cleaning
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Figure 5.1: Boxplots of the ratings of the test code quality model’s properties

density and directness the vast majority of the systems is rated below 4.0. This does not
apply for the properties that are related to the test code maintainability where we can see the
ranges of the ratings to be wider. The subject systems seem to perform well in duplication.
Half of the snapshots were rated approximately 4.0 and above. On the other hand, the
systems do not perform well in assertions-McCabe ratio and directness, where more than
75% of the snapshots received a rating that was less than 3.0. In particular, the median in
these two properties is approximately 2.0, when within the systems of the benchmark the
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PERFORMANCE

median is by definition greater than 2.5. Finally, it is interesting to observe that there are a
few snapshots that are rated very low in code coverage, revealing that some of the snapshots
have almost zero code coverage.

Figure 5.2 shows the distributions of the ratings of the model’s sub-characteristics and
the overall test code quality. Overall, test code quality was rated from∼ 1.5 to∼ 3.5, which
means that the spread between the test code quality of the snapshots was rather small. This
is a potential limitation for our study because we cannot generalise our findings for systems
that would receive a higher rating than 3.5. We observe that none of the snapshots was rated
higher than 4.0 for completeness and effectiveness. In contrast, there are snapshots of very
high quality with regard to maintainability.
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Figure 5.2: Boxplots of the ratings of the test code quality model’s sub-characteristics and
overall test code quality

Next, descriptive statistics about the dependent variables are presented. Figure 5.3 show
the distribution of the ratings for defect resolution speed and Table 5.3 summarises statistics
for throughput and productivity.

The ratings for defect resolution speed cover the whole range of the model’s scale.
However, at least 75% of the snapshots is rated less than 3.0.

Throughput has a median of 0.13 and a mean of 0.39. We observe that the maximum
value (5.53) is in a different order of magnitude. Further investigation reveals that the
highest values in throughput belong to snapshots of different systems (i.e. Apache Ant
1.1, Apache Lucene 1.4.1 and Spring Framework 3.0). Manual inspection of a sample of
their issues did not reveal any peculiarity that would justify considering these snapshots as
outliers.

The median for productivity is 0.99, meaning that half of the developers are resolving
at least one issue per month. In the fourth quartile we observe that, similarly to throughput,
productivity is in a different order of magnitude. Again, no justification for considering the
snapshots as outliers could be found.
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Figure 5.3: Boxplot of the defect resolution speed ratings

Table 5.3: Descriptive statistics for the dependent variables throughput and productivity

Metric Min Q1 Median Mean Q3 Max STDV

Throughput 0.02 0.06 0.13 0.39 0.42 5.53 0.81
Productivity 0.12 0.50 0.99 1.77 1.68 14.54 2.72

5.3 Results of the Experiment

As discussed in Chapter 4, the relation between test code quality and issue handling perfor-
mance is assessed by testing three hypotheses. In particular, we test whether there is cor-
relation between test code quality and three issue handling performance indicators, namely
defect resolution speed, throughput and productivity. For each of these tests, a Spearman
correlation test was performed. In addition, correlation results between test code quality and
production code maintainability are presented in order to investigate the relation between
them as mentioned in Chapter 1. Table 5.4 shows the results of the correlation tests.

ρ p-value N

Defect Resolution Speed 0.06 0.330 63
Throughput 0.50 0.000 54
Productivity 0.51 0.000 54
pCode Maintainability 0.42 0.000 75

Table 5.4: Summary of correlations with the test code quality rating of the systems

All the correlations are significant in the 99% confidence level except from the correla-
tion between test code quality and defect resolution speed. No significant correlation was
found in that case. Therefore we cannot reject the hypothesis H1null: there is no significant
correlation between test code quality and defect resolution speed. Throughput and produc-
tivity have significant strong correlations with test code quality. The correlation coefficient
is 0.50 and 0.51 for throughput and productivity respectively in the 99% confidence level.
This enables us to reject H2null and H3null and maintain the alternative hypotheses: there
are significant positive correlations between test code quality and throughput, and test code
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quality and productivity. With regard to the correlation between test code quality and pro-
duction code maintainability, significant correlation of moderate strength was revealed in
the 99% confidence level.

Even though only the correlations between the overall test code quality rating and each
of the issue handling performance indicators are required to test the formulated hypotheses,
we present the correlations between all the underlying levels of the test code quality model
and the issue handling indicators in order to acquire an indication of which aspects of test
code are particularly influential on issue handling performance.

5.3.1 Hypothesis 1 : The relation between test code quality and defect
resolution speed

Table 5.5 presents the correlation between the test code quality model’s ratings and the de-
fect resolution speed rating for the subject snapshots. None of the correlations is significant
except from the correlation between code coverage and defect resolution speed. However,
code coverage is weakly correlated with defect resolution speed (ρ = 0.28).

Defect Resolution Speed (N=63)
ρ p-value

Code Coverage 0.28 0.013
Assertions-McCabe Ratio 0.01 0.480
Assertion Density 0.02 0.427
Directness 0.08 0.260
Duplication −0.45 0.999
Unit Size −0.11 0.800
Unit Complexity −0.09 0.747
Unit Dependency −0.17 0.905

Completeness 0.12 0.182
Effectiveness 0.07 0.282
Maintainability −0.29 0.989

Test Code Quality 0.06 0.330

Table 5.5: Correlation results for defect resolution speed.

5.3.2 Hypothesis 2 : The relation between test code quality and throughput

Table 5.6 presents the correlation between the test code quality model’s ratings and through-
put for the subject snapshots. On the level of the model’s properties, we can differentiate
the results between the properties that relate to completeness and effectiveness, and the
properties that relate to maintainability. Code coverage, assertions-McCabe ratio, assertion
density and directness are all significantly correlated with throughput. The higher corre-
lation is between throughput and the assertions-McCabe property (ρ = 0.48 and p-value
� 0.01).
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Throughput (N=54)
ρ p-value

Code Coverage 0.28 0.021
Assertions-McCabe Ratio 0.48 0.000
Assertion Density 0.29 0.017
Directness 0.31 0.012
Duplication 0.10 0.246
Unit Size 0.06 0.330
Unit Complexity 0.06 0.321
Unit Dependency 0.10 0.236

Completeness 0.42 0.001
Effectiveness 0.41 0.001
Maintainability 0.10 0.244

Test Code Quality 0.50 0.000

Table 5.6: Correlation results for throughput

On the sub-characteristics level, completeness and effectiveness have similar, significant
correlations with throughput. Maintainability is not significantly correlated with through-
put. Finally, overall test code quality is significantly correlated with throughput in the 99%
confidence level. In fact, it has the highest correlation coefficient (ρ = 0.50).

5.3.3 Hypothesis 3 : The relation between test code quality and productivity

Table 5.7 presents the correlation between the test code quality model’s ratings and pro-
ductivity for the subject snapshots. We observe that the correlations behave similarly to
those with throughput. Code coverage, assertions-McCabe ratio, assertion density and di-
rectness are significantly correlated with productivity. The completeness related properties
appear to have a stronger correlation with productivity than the effectiveness related ones.
The properties that are related to test code maintainability are not significantly correlated to
productivity.

On the sub-characteristics level of the model, completeness’s correlation with produc-
tivity is the highest (ρ = 0.56 and p-value� 0.01). Effectiveness is also significantly corre-
lated with productivity. Once again, maintainability lacks correlation with productivity. The
overall rating of test code quality has a significant correlation with productivity (ρ = 0.51
and p-value� 0.01).

5.4 Interpretation of the Results

Contrary to our expectations, test code quality was not found to be significantly correlated
with defect resolution speed in the conducted experiment. None of the model’s properties
was correlated with defect resolution speed except for code coverage, which was weakly
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Productivity (N=54)
ρ p-value

Code Coverage 0.49 0.000
Assertions-McCabe Ratio 0.53 0.000
Assertion Density 0.33 0.007
Directness 0.36 0.004
Duplication −0.13 0.827
Unit Size −0.09 0.747
Unit Complexity −0.08 0.719
Unit Dependency −0.20 0.927

Completeness 0.56 0.000
Effectiveness 0.49 0.000
Maintainability −0.24 0.957

Test Code Quality 0.51 0.000

Table 5.7: Correlation results for productivity

correlated. Of course, absence of significant correlation in the experiment we performed
does not mean that there is no correlation. Further replications of the experiment have to be
conducted in order to be able to draw a reliable conclusion. However, a close examination
of the process of software development might provide a hint in order to explain this result.

During development changes are applied to the production code in order to implement
new features, fix defects or refactor the current code. One of the main ideas behind au-
tomated tests is that after a change the tests are executed, in order to make sure that the
change did not cause any test to fail. In the scenario where the execution of the tests results
in a failed test, the developer will realise that his change introduced some problem in the
system. Thus, the developer will re-work on the source code, in order to make sure that his
change does not make any test to fail. This is how automated tests prevent defects to appear
in the system.

At the same time, we observe that a defect that is reported in an ITS is probably a defect
that was not detected by the test code. Therefore, the resolution speed of defects that lie
in ITSs should not be expected to be influenced by the test code of the system. This is
one possible reason why no significant correlation was found between test code quality and
defect resolution speed. Another reason would be the limited reliability of the ITS data. As
it is discussed in Section 5.6, issues may be have been resolved earlier than the moment
they were marked as closed, or not marked as closed at all [15].

On the other hand, throughput and productivity confirm our expectation that they are
related to the quality of test code. Figures 5.4 and 5.5 compare throughput and productivity
with the different levels of test code quality. In particular, the snapshots were grouped in
star ratings according to their test code quality rating. Snapshots with ratings between 0.5
and 1.5 are one star, 1.5 and 2.5 two star, and so on. Unfortunately, our dataset has no
snapshots with test code quality that is above 3 stars (> 3.5). The extreme values depicted
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in Figures 5.4 and 5.5 as circles are not considered outliers due to the lack of evidence after
manual inspection as discussed in Section 5.2.
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Figure 5.4: Comparison between throughput and different test code quality levels
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Figure 5.5: Comparison between productivity and different test code quality levels

For throughput we observe that there is a significant increase between 3-star snapshots
and 1- and 2- star snapshots. However, the difference between 1 and 2 star snapshots is very
small, with the 2 star snapshots having a median that is lower than the median for 1-star
snapshots. This can be explained by examining the thresholds of most of the properties as
shown in Section 3.3. There we saw that the thresholds of several properties that separate 1
and 2-star systems are very low, thus significantly decreasing the difference between 1 and
2 star systems.

The same observations apply for productivity. Even though the median of 2-star snap-
shots is this time a bit higher than the median of 1-star snapshots, the difference is small.

59



5. THE RELATION BETWEEN TEST CODE QUALITY AND ISSUE HANDLING

PERFORMANCE

Productivity significantly improves for 3-star systems.

As far as the influence of each of the sub-characteristics is concerned, we observe that
completeness and effectiveness are both significantly correlated to throughput and produc-
tivity. On the other hand, maintainability is not significantly correlated with either one.
Completeness and effectiveness have a direct relation to the benefits of automated testing
during development. Completeness reflects the amount of the system that is searched for
defects, while effectiveness reflects the ability of the system to detect defects and locate
their causes. Maintainability’s role is different. Maintainability has nothing to do with the
testing capability of the system. It rather focuses on the effort that is necessary in order to
maintain the test code so that it remains as complete and as effective as it is. Thus, the lack
of correlation between maintainability and issue handling performance indicators is not a
surprise.

In addition, it is interesting to note that assertions-McCabe ratio has the highest cor-
relation among the properties of the model both for throughput and productivity. This is
an important finding that implies that assertions per decision point are potentially a better
indicator of test code quality than simply measuring the percentage of lines that are covered.

A final remark concerns the correlation between test code quality and production code
maintainability. In Section 1.3 we noted the opportunity to explore the relation between test
code quality and production code maintainability. The correlation that was found is signifi-
cant positive correlation of medium strength (ρ = 0.42 and p-value� 0.01). However, it is
hard to draw any conclusion. The reason behind this finding could be either of the following
three: (1) better production code makes it easier to develop better test code, (2) better test
code facilitates writing better production code or (3) the skill of the development team is
reflected both in test code and production code quality.

5.5 Controlling the confounding factors

In Section 4.1 we identified several factors that could be influencing issue handling perfor-
mance. In this section we are assessing the influence of the confounding factors which we
can measure on issue handling. There are two factors which we measure, namely produc-
tion code maintainability and team size. Production code maintainability is measured by
applying the SIG quality model on the source code of the systems. Team size is measured
by counting the users that committed code at least once in the VCS of the systems.

In the case of the correlation between test code quality and defect resolution speed,
no significant correlation was found. However, it could be that the correlation could not
be observed because of the effect of confounding factors. In the cases of throughput and
productivity, confounding factors might be the reason correlation was found. In order to
establish a clearer view on the relations between test code quality and issue handling indi-
cators, we will use the method of multiple regression analysis.

In particular, we apply stepwise multiple regression analysis. The linear models under
analysis are the following:
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Def. Res. Speed Rating = tCode Quality Rating + pCode Maintainability Rating + Team Size + c

Throughput = tCode Quality Rating + pCode Maintainability Rating + Team Size + c

Productivity = tCode Quality Rating + pCode Maintainability Rating + Team Size + c

The results of applying the multiple regression analysis for defect resolution speed did
not qualify any of the independent variables as significant predictors of defect resolution
speed. The results for throughput and productivity are shown in Table 5.8 and Table 5.9
respectively.

Model Coefficient Std. Error t p-value

(Constant) -1.512 0.598 -2.529 0.015
Test Code Quality Rating 0.614 0.229 2.682 0.010
Team Size 0.040 0.019 2.120 0.039

Model Summary: R2 = 0.193; p≤ 0.01

Table 5.8: Results of multiple regression analysis for throughput

Model Coefficient Std. Error t p-value

(Constant) -3.406 2.004 -1.699 0.095
Test Code Quality Rating 2.081 0.793 2.624 0.011

Model Summary: R2 = 0.117; p = 0.011

Table 5.9: Results of multiple regression analysis for productivity

The results of the multiple regression analysis for throughput qualify test code quality
and team size as significant predictors of throughput. Production code maintainability was
eliminated from the selection after the first step of the regression analysis as it was not a
significant predictor (for an explanation of stepwise multiple regression analysis see Section
4.5). The results of the same analysis for productivity indicate test code quality alone as a
significant predictor of productivity.

These results increase our confidence that the results that were presented in Section
5.3 hold after we control for the influence of production code maintainability and team
size. The fact that test code quality appears to have a stronger influence on throughput
and productivity than production code maintainability is an interesting finding and intrigues
future research.

5.6 Threats to Validity

In this section factors that may pose a threat to the validity of the experiment’s results are
identified. We follow the guidelines that were proposed by Perry et al. [75] and Wholin
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et al. [91], and organize the factors in four categories: construct, internal, external and
conclusion validity.

5.6.1 Construct Validity

Do the variables and hypotheses of our study accurately model the research questions?
Test code quality measurement: The test code quality model was developed by follow-

ing the GQM approach [91]. The most important aspects of test code quality were identified
and metrics that were considered suitable were selected after studying the literature. How-
ever, more metrics can be used. For example, mutation testing (see Section 2.1.2) could
be used as a metric that indicates the effectiveness of test code. Thus, the model is not
complete, but it is our belief that the metrics that were used in combination with the layered
structure and the benchmark-based calibration of the metrics provide a fair assessment of
test code quality.

Indicators of issue handling performance: In order to measure different aspects of is-
sue handling performance, a set of three indicators was used. Nevertheless, more aspects
of issue handling can be captured. For example, the number of issues that are being re-
opened would indicate inefficiency in the resolution process. In addition, the used indica-
tors are focusing on quantitative aspects of issue handling, but qualitative analysis could
provide further insights. For example, the difficulty of resolving each issue could be as-
sessed. However, such qualitative analysis is not trivial to perform. It is clear that the set
of issue handling indicators that is used in this study is not complete, but it captures some
important aspects of issue handling performance.

Quality of data: Our dependent variables are calculated based on data that are extracted
from ITSs. The data in these repositories are not sufficiently accurate [15]. Issues may be
registered as closed later than the time when the actual work on the issues has stopped.
Some others may have been resolved despite the fact that it has not been registered in the
ITS. More reasons like the above can lead to unreliable measurements. An additional case
is when a clean-up is performed on the ITS and issues are closed massively after realising
that they have been resolved but not marked as such in the issue tracker. We tried to mitigate
this problem by applying extensive data cleaning in order to reduce the noise in the ITSs
data.

Number of developers: The number of developers was measured both in order to cal-
culate productivity and to measure the influence of team size as a confounding factor. The
number of developers was calculated by counting the number of users that committed code
at least once in the VCS of each system. This is an indication of how many people were
active in the project, but it is not guaranteed to be a fair representation of the amount of
effort that was put in the project. This is because (1) commits can vary significantly with
regard to the effort that they represent, (2) new members of open source development teams
often do not have the rights to commit code and instead, they send code changes to a se-
nior member who performs the commit on their behalf and (3) it has been demonstrated
by Mockus et al. [61] that in open source projects there is a core team that performs the
majority of the effort. The first two problems remain threats to the validity of our study. For
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the third problem we performed a similar analysis as done in [61] in order to calculate the
number of developers in the core team.

In [61] the Pareto principle seems to apply since 20% of the developers perform 80% of
the effort (measured in code churn). In our study, we applied the Pareto principle in order
to calculate the number of developers that are accounted for the 80% of the commits. The
commits per developer were calculated and sorted in a decreasing order. The commits were
iteratively added until the number of commits reached the 80% of the total commits. Every
time the commits of a developer were successfully added, the developer was considered
member of the core team.

In our dataset the Pareto principle does not seem apparent. In fact, the core team is
20± 5% of the total number of developers in only 18.5% of the snapshots. Again, the
granularity of commits is a threat to the measurements. However, the exploration of the
core team concept was interesting.

After calculating productivity as number of resolved issues per month divided by the
number of core team developers, we rerun the correlation test between test code quality
and team core productivity. The results revealed no radical change in the correlation in
comparison with the whole team productivity (ρ = 0.44 and p-value� 0.01).

5.6.2 Internal Validity

Can changes in the dependent variables be safely attributed to changes in the independent
variables?

Establishing causality: The experiment’s results are a strong indication that there is a
relation between the test code quality model’s ratings and throughput and productivity of
issue handling. However, this is not establishing causality between the two. Many factors
exist that could be the underlying reasons for the observed relation, factors which we did
not account for.

Confounding factors: In Section 4.3.1 a subset of possible confounding factors was
identified. We did not control for the granularity of the issues, the experience of the de-
velopers or the project’s popularity. Additional factors possibly exist as it is impossible to
identify and control all of them. However, we attempted to measure and control for the
effect of production code maintainability and team size, and established that they do not
influence the relation of test code quality with throughput and productivity.

Unequal representation and dependence of the subject systems: In the dataset, each
snapshot is considered as a system. The systems are represented with unequal numbers
of snapshots. The number of snapshots ranges from 2 for jMol to 7 for ArgoUML and
Ant. Therefore the contribution of each system to the result is not equal. In addition, the
snapshots of the same system are not independent with each other. We address these threats
by establishing strict criteria for snapshot selection. A period of at least one year and at
least 30% code churn exist between two consecutive snapshots of the same system.

5.6.3 External Validity

Can the studies results be generalised to settings outside of the study?
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Generalisation to commercial systems: The data used in the experiment were ob-
tained from open source systems. The development process in open source systems differs
from that in commercial systems. Therefore, strong claims about the generalisability of the
study’s results for commercial systems cannot be made. Nevertheless, practices that were
first adopted in open source systems, such as unit testing, the use of ITSs, continuous in-
tegration and globally distributed development appear to be applied in some commercial
systems as well. Therefore, the results can be generalised to systems that are being devel-
oped using such “modern” practices according to our belief.

Technology of development: All the systems that participated as subjects in the experi-
ment were developed in Java. It is therefore necessary to do further experiments in order to
generalise the results for other technologies, especially when it comes to other programming
approaches such as procedural or functional programming. On the other hand, programming
languages that share common characteristics (i.e. object oriented programming, unit testing
frameworks) with Java (e.g. C++, C#) follow similar development processes and therefore
the results are believed to be valid for them.

The bias of systems that use ITSs: In order to collect the necessary data the existence of
a systematically used ITS was established as a criterion for the selection of subject systems.
The development teams of such systems appear to be concerned about the good organiza-
tion of their projects and they embrace mature software engineering processes. Therefore,
the relation between test code quality and issue handling cannot be generalised to systems
whose teams are at lower maturity levels.

Absence of systems whose test code quality is rated 4 and 5 stars: Unfortunately, none
of the snapshots in the dataset was rated above 3.5 for test code quality. Thus, we cannot
claim that the correlation between test code quality, and throughput and productivity will
remain positive for such systems. Future replication of the experiment with a broader range
of ratings in the dataset is necessary to generalise our results for the whole scale of the test
code quality rating.

5.6.4 Conclusion Validity

To which degree conclusions reached about relationships between variables are justified?
Amount of data: The correlation tests run for the three hypotheses of the experiment

contained 63, 54 and 54 data points for the correlations between test code quality and defect
resolution speed, throughput and productivity respectively. The number of data points is
considered sufficient for performing non-parametric correlation tests, such as Spearman’s
ranked correlation test. The statistical power of the results for throughput and productivity
can be considered highly significant, since the p-values were lower that 0.01. In addition,
the correlation coefficient in both cases was approximately 0.50, an indication of a medium
to strong correlation. However, it would be desirable to have a larger dataset, with snapshots
of solely different systems in order to increase the strength of the results.

64



Chapter 6

Case Studies

Studying the application of the test code quality model on actual industrial software systems
will provide valuable insight on the model’s ability to provide useful information about the
system’s test code, as well as the strengths and limitations of the model. In this chapter three
case studies are being reported. The model was applied to three different industrial systems
and the ratings were compared with the opinion of an expert who has deep knowledge of
the system’s testing process.

For each case study, first some general information about the system under study is pro-
vided. The results of the application of the model follows. Finally, the expert’s evaluation of
the system’s test code quality is reported and the discrepancies between the expert’s opinion
and the model’s ratings are discussed. In the end of the chapter, the results are summarised
together with the model’s limitations that were revealed during the case studies.

6.1 Case Study: System A

6.1.1 General Information

The first system under study is an internal support system of an international company
based in the Netherlands. The system’s development started in 2002. It is programmed in
Java. The system has been in maintenance since 2005. We could distinguish two phases of
maintenance: 1) from 2005 to 2008, when the effort put on the system was three FTEs1 and
2) from 2008 to 2011, when the effort was five FTEs.

The system’s production code volume at the moment of the case study was ∼ 190
KLOC. At the same time, there were ∼ 230 KLOC of JUnit code. Additional testing code
was used, mainly shell scripting code for integration and regression testing as well as tests
written in Selenium2, a suite of testing tools appropriate for testing web applications. How-
ever, JUnit code contributes to more than 95% of the system’s test code since the scripts
together with the Selenium code are ∼ 10 KLOC.

1Full-time equivalent (FTE) is a way to measure workers’ involvement in a project. One FTE means that
the effort is equivalent to the work performed by a full-time employee.

2http://seleniumhq.org/
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It is worth mentioning that the system’s development followed a strict Test-Driven
Development (TDD) approach. Hudson3 has been used for continuous integration and JU-
nit test reporting. Finally, the system’s production code maintainability was assessed using
SIG’s software quality model and the SAT resulting in a final score of 4.1 stars.

6.1.2 Test Code Quality Model Ratings

The test code quality model was applied on System A. Table 6.1 shows the results.

Table 6.1: Test Code Quality Model Ratings for System A.

Properties Value Rating Sub-characteristics Rating Test Code Quality
Coverage 66.3% 4.1

Completeness 4.3

3.6

Assert-McCabe Ratio 1.04 4.5
Assertion Density 0.15 4.1

Effectiveness 3.7
Directness 25.4% 3.3
Duplication 19% 2.0

Maintainability 2.8
Unit Size - 2.3
Unit Complexity - 4.3
Unit Dependency - 2.4

The model rates completeness at 4.3. This informs us that a large part of the system is
tested. The lower level properties of completeness can provide more fine-grained informa-
tion. In particular, code coverage was statically estimated to be 66.3%. This corresponds
to the two thirds of the system. However, one third of the system is not covered by the test
code. This is a considerable part of the system that is exposed to the possibility of introduc-
ing defects during code changes. Assertion-McCabe ratio is rated at 4.5. In absolute values,
the ratio is greater than 1, meaning that more assertions exist than the decision points in the
code. This increases the confidence that the part of the system that is covered, is covered
thoroughly.

Effectiveness is rated 3.7. Assertion density is rated 4.1, indicating that the test code
has an adequate number of assertions. The reason effectiveness is lower, is directness. With
a direct coverage of 25.4%, it is obvious that there are a lot of parts of the system that are
only covered indirectly. This possibly reduces the effectiveness of the test code in terms of
facilitating the location of the cause of defects.

The third aspect of the test code quality model, maintainability, was rated at 2.8. All
the metrics that are related to maintainability except unit complexity are at mediocre levels,
alerting us about the need to raise the quality of the test code. Duplication is at high levels
in the test code: 19% for a rating of 2.0. A very common reason for duplication in the
test code is copying the fixtures. On the one hand, this makes the tests self-contained. On
the other hand, a change in the code might lead to the necessity of applying the change to
every single test that is related. Unit size and unit dependency are rated 2.3 and 2.4 respec-
tively, indicating that test methods could be smaller and less dependent on collaborative

3http://hudson-ci.org/
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objects. On the bright side, unit complexity is rated 4.3, confirming that the good practice
of inserting as few decision points in the test code as possible is followed.

The overall test code quality was rated 3.6. The system would have received a higher
rating if maintainability was at the same levels as completeness and effectiveness. In fact,
the test code’s current ability to detect defects that are introduced during code changes in
most parts of the system is adequate. Nevertheless, maintaining the code to sustain this
ability seems hard and expensive due to the low maintainability.

6.1.3 Test Code Quality Assessment by the Expert

For system A, an experienced developer of the system was interviewed in order to provide
an evaluation of the test code from the perspective of an expert.

How completely is the system tested?

The system’s code coverage is being monitored on a regular basis by the team. In particular,
code coverage of 70% is being reported, as calculated by using the tool Cobertura4. The
expert estimated that the rest of the test code adds roughly 5% of code coverage.

The expert noted that this code coverage level is not considered high enough. However,
most of the critical parts of the system are covered. The defects that are found in the parts
of the system that are not covered are easy to fix. In addition, it was noted that the system
is developed and used only by the developers themselves. This means that the impact of the
defects on the business is quite limited. Furthermore, spotted defects can be fixed and de-
ployed quickly since there is no need to ship a patch that fixes the problem to the customers.
Consequently, the expert stated that ignoring testing part of the system is an affordable risk.

How effectively is the system tested?

To answer this question, the expert combined information that is relevant to the nature
of the defects that are usually reported to the ITS and to defect fixing. In particular, the
majority of the defects being reported are trivial to fix. No structure related defects are
detected. Therefore, defect resolution time is kept at low levels. Moreover, the test code
helps substantially in the development process by pointing out defects during programming
and before they reach a production release.

How maintainable is the system’s test code?

After the expert put emphasis on the high commitment of the team in writing highly main-
tainable production code, he made clear that these high standards are not followed as strictly
while writing test code. Thus, the maintainability of the test code is not at the same levels
as the maintainability of the production code.

In more detail, the volume of the test code is mentioned as a significant drawback for
its maintainability. There is even more test code than production code. In addition, it is
often that the same piece of functionality is tested multiple times by different parts of the

4http://cobertura.sourceforge.net/
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Table 6.2: Expert’s ratings on system A’s test code quality aspects.

Aspects Completeness Effectiveness Maintainability Overall Test Code Quality

Rating 4.0 4.0 3.0 3.5

test code. This means that some parts of the test code could be removed without an impact
on the completeness and the effectiveness of the test code.

Another issue that makes maintaining the test code harder is duplication. Functional
duplication is high in the system’s test code, reports the expert. However, many times that
was a deliberate choice, since duplication was preferred as a way to keep the test code self-
contained at the test method level. This way, the expert claims, readability of the test code
improves.

Finally, the expert reported that code changes lead to expensive test code adjustments.
In fact, the ratio of time spent working on adjusting the test code compared to the time
working on the production code that implemented a change is roughly estimated to be 3 : 1.

To which extent is the test code targeting unitary or integration testing?

The expert clarifies that the intention of using JUnit was to apply unit testing to the system.
In order to isolate tested parts of the system, mocking frameworks (EasyMock and jMock)
are being used partially. However, he recognizes that not all of the JUnit code is unit testing.
Collaborating objects are being used often in order to serve the testing of a particular object.
Thus, the tests are partly integration tests as well.

In addition, a particular characteristic of the system makes it harder to keep the tests’
directness high. A large module (∼ 125 KLOC) of the system has a single entry point.
Therefore, whenever something in that module or an external object that communicates
with that module needs to be tested, calling that entry point is required in order to set up the
fixture of the test.

How would the expert rate the aspects of the test code quality of the system?

The expert’s ratings of the aspects of the test code quality of the system are shown in Table
6.2.

6.1.4 Comparison between the expert’s evaluation and the model’s ratings

A comparison between the expert’s estimations and the test code quality model’s ratings for
System A reveals small discrepancies. In particular, the discrepancies range from 0.1 to 0.3.

Completeness was rated by the model at 4.3 while the expert estimated it to be 4.0. In
more depth, the model’s code coverage metric was 66.3%. The model only analysed the
test code that was written in Java in the system. The expert reported a coverage of 70% for
the Java test code. This coverage measurement was obtained by using a dynamic coverage
estimation tool. The percentages are in the same order of magnitude. The fact that the static
estimation is lower than the dynamic one could be explained by the extensive use of the
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Visitor pattern in the system. The use of interfaces and abstractions makes it harder for a
static analysis to resolve the actual methods that are being called. When the tracking of a
method call reaches an abstract method it is possible that this method is implemented by
several others. The tracking is then stopped, since it cannot resolve which implementation
method in particular is called, a disadvantage that does not exist in a dynamic code coverage
tool.

However, the static estimate is very close to the dynamic one. Another point of interest
here is the complexity of the tested system. System A has a rating of 4.4 in unit complexity
in SIG’s software maintainability model. This means that McCabe’s cyclomatic complexity
metric is relatively low throughout the system. Consequently, static estimation of code
coverage becomes easier to be accurate. When complexity in a method is high, it means
that there are a lot of different possible paths of execution within the method. Thus, the
call of a method from the tests by its own does not guarantee that all of the paths are being
covered by the tests. On the other hand, lower complexity means less paths of execution
exist in the method. Ideally, there is just one path and the call of the method from the test
code leads to the complete coverage of the code in the method. To sum up, it is expected
that the accuracy of the static estimation is affected by the unit complexity of the system
in such a way that the lower the unit complexity, the more accurate the static estimation of
code coverage. Assert-McCabe ratio was chosen as a supplementary coverage metric. Its
suitability in the model is to compensate for the aforementioned disadvantage of the static
estimation of code coverage.

Regarding effectiveness, it was rated by the model at 3.7 while the expert estimated
the rating to be 4.0. In particular, high assertion density combined with high completeness
explains the expert’s comment that the test code contributes significantly in detecting de-
fects before they reach the production phase. The other metric that concerns effectiveness,
namely directness, was rated lower. Only 25.4% of the system is being tested directly from
the test code. This confirms the expectation created by the existence of a large module with
extensive use of the Visitor design pattern.

The maintainability of the test code was rated 2.8. The expert estimated maintainability
to be 3.0, relatively close to the rating of the model. The model’s rating reflects the ex-
pert’s opinion about the maintainability of the system’s test code. The rating indicates that
maintenance is not a trivial task in the system, something that is confirmed by the expert’s
comment that the ratio of time spent working on adjusting the test code compared to the
time working on the production code that implemented a change is 3 : 1. Furthermore, du-
plication of 19% shows indeed the extensive use of copying parts of the code. However, the
score obtained after the benchmarking is 2.0, possibly indicating that even if duplication is
a deliberate choice, 19% is too high.

Finally, the model calculated the overall test code quality as 3.6, by aggregating the sub-
characteristics. This rating is very close to the experts estimation of the test code quality of
system A. The expert’s estimation was 3.5. Overall, this case study shows that the test code
quality model was aligned with the expert’s opinion on the system. Several insights about
the system’s test code created expectations which were reflected by the model’s ratings.
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6.2 Case Study: System B

6.2.1 General Information

System B is a logistics system developed by a Dutch company. The system has been in
maintenance since 2006. No new functionality has been added to the system. However,
since 2010 a re-structuring of the system has been performed. The programming language
used is Java. In addition, the system makes heavy use of database technologies. Thus, SQL
code is part of the Java code.

The system’s production code volume at the moment of the case study was ∼ 700
KLOC. This code is automatically tested by ∼ 280 KLOC of JUnit code. During the re-
structuring of the system extensive modularization was performed. A lot of testing code
was added during this period in order to guarantee that the changes would not cause the
system to break. In addition, integration testing is performed by scripting code that was not
available for analysis. The testing process is completed by extensive manual testing.

Hudson was used for continuous integration in this case as well. Nevertheless, its use
has not been disciplined. The principle that code in the repository should never cause tests
to fail [11] has been violated for short periods of time. The system’s production code main-
tainability was assessed using SIG’s software quality model and the SAT resulting to a final
score of 3.0 stars.

6.2.2 Test Code Quality Model Ratings

The test code quality model was applied to System B. Table 6.3 shows the results.

Table 6.3: Test Code Quality Model Ratings for System B.

Properties Value Rating Sub-characteristics Rating Test Code Quality
Coverage 50% 3.1

Completeness 2.8

2.5

Assert-McCabe Ratio 0.16 2.4
Assertion Density 0.08 2.7

Effectiveness 2.8
Directness 17.5% 2.8
Duplication 16% 2.6

Maintainability 2.1
Unit Size - 2.0
Unit Complexity - 2.5
Unit Dependency - 1.5

Completeness is assessed at 2.8. This indicates that a big part of the system is not
covered. The metrics that comprise completeness can provide more information about the
weaknesses of the test code. In particular, coverage is 50%. Half of the system is tested.
This leads to a rating of 3.1, intuitively higher than a system with 50% coverage should
get. However, since the ratings only reveal how the system scores in comparison with
the benchmarking systems, low standards can lead to these counter-intuitive ratings. The
assertions-McCabe ratio is even lower (2.4).
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Effectiveness is also rated at 2.8. Assertion density and directness are at the same levels
(2.7 and 2.8 respectively) suggesting that the ability of the system to detect defects and
locate their causes is limited.

The test code’s maintainability is 2.1 according to the model. High duplication, large
test methods and existence of complexity indicate that the system’s test code is hard to
maintain. The most important warning though is derived from the unit dependency metric.
With a rating of 1.5, this implies that most of the test methods heavily use production
methods that are not the ones that are being tested. This increases the dependency of the
tests to many parts of the production code, thus making changes in the production code to
propagate in the test code much more than in systems that avoid this kind of coupling.

With an overall rating of 2.5, the model indicates many weaknesses of the system’s test
code.

6.2.3 Test Code Quality Assessment by the Expert

For system B, an expert technical consultant with experience on the system was interviewed.

How completely is the system tested?

The expert reported that the code coverage in System B is poor. Initially, the system’s
architecture was based on Enterprise JavaBean (EJB) 2.x, a fact that made the system harder
to be tested according to the expert. Only lower layers of the system’s architecture are
being covered by test code. The expert had in his possession available coverage data for
one module of the system. However, this module comprises 86% of the whole system.
The reported code coverage (dynamic estimate) of this module is ∼ 43%. Taking into
consideration the size of the module, one can calculate that the possible range of the code
coverage for the whole system is between 37% (when the other modules of the system are
not covered at all) to 51% (when the other modules are fully covered).

How effectively is the system tested?

The expert reported that the system’s testing effort is “immense and costly”. Testing effort
could potentially be reduced by developing more automated tests. However, defects are de-
tected with satisfactory effectiveness. The expert estimates that 50% of the detected defects
are due to the unit testing. Integration and manual testing adds 30% to the defect detection
ability.

How maintainable is the system’s test code?

Focus on test code’s maintainability was not a high priority for the development team ac-
cording to the expert. His own perception of the system’s test code is that maintainability is
hindered by high complexity and coupling between the test code and the production code.
The expert further explained that, given the current maturity of average software systems,
one should be satisfied if automated testing exists in the first place. He added that quality of
test code is the next step for software projects’ maturity.
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Table 6.4: Expert’s ratings on system B’s test code quality aspects. Both the ratings accord-
ing to the expert’s ideal standards and the ones according to his evaluation of the system in
comparison to the average industry standards are shown, with the latter written in parenthe-
ses.

Aspects Completeness Effectiveness Maintainability Overall Test Code Quality

Rating 2.0 (3.0) 1.0 (2.0) 2.0 (3.0) 2.0 (3.0)

To which extent is the test code targeting unitary or integration testing?

Even though the intention of the use of JUnit code was to perform unit testing, the expert
reported high coupling of the tests and the production code, implying that a significant part
of the test code is integration testing.

How would the expert rate the aspects of the test code quality of the system?

The expert’s ratings of the aspects of the test code quality of the system are shown in Table
6.4. The expert claimed to have had significant experience in analysing systems’ code.
This was the reason he preferred to provide two estimations: one based on his own ideal
standards for testing and one that compares the system to his perception of the average
standards in the industry. In Table 6.4 both estimations are shown with the ones that take
into consideration the industry average being in parentheses.

6.2.4 Comparison between the expert’s evaluation and the model’s ratings

Comparing the expert’s ratings with the ones derived from the model, we have to consider if
we expect the model’s ratings to be closer to the expert’s ideal rating or his rating compared
to the industry average. As the model was calibrated on industrial and open source systems,
we would expect the model’s ratings to be closer to the expert’s estimations that were based
on his experience with industrial systems. However, we observe that there is no consistent
alignment with either one of them.

In particular, completeness was calculated as 2.8 by the model. This rating is closer
to the expert’s estimation of the system’s completeness in comparison with the industry
average. Static estimation of code coverage for system B is 50%. This value is closer to the
optimistic estimation of the system’s code coverage, where the modules for which the expert
had no available data about code coverage are fully covered. As this is highly improbable,
it implies that in this case the static estimation is higher than the dynamic coverage that the
expert reported, in contrast to what we have seen in System A. This could be explained by
the rating of the production code’s unit complexity. System B’s production code scores 2.5
for unit complexity, an indication that the system has a considerable amount of methods that
have relatively high complexity, a fact also pointed out by the expert. This makes the static
estimation of code coverage less accurate.

The asserts per McCabe ratio metric is 0.16 resulting in a rating of 2.4, significantly
lower than the system’s coverage rating (3.1). This suggests that more assertions should be
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added to the test code in order to cover more of the decision points of the system. At the
same time, this case demonstrates the complementary behaviour of the two metrics: code
coverage and assert-McCabe ratio. Code coverage is overestimated because of the system’s
high unit complexity, but assert-McCabe ratio serves as a correction for this fact by lowering
the completeness rating to 2.8.

As far as effectiveness is concerned, the model rates it at 2.8, quite far from either
of the expert’s estimation. There are approximately 8 assertions per 100 lines of testing
code in system B, leading to a rating of 2.7 for assertion density. Direct code coverage
is 17.5%, leading to a rating of 2.8 for directness. The high discrepancy between these
ratings and the expert’s estimation owes its existence to the benchmarking nature of the
model. The absolute values for the metrics assertion density and directness are indeed low.
However, the system still scores ratings close to 3.0 indicating that most of the systems in
the calibration set score very low in these metrics. It is important to have in mind that the
ratings only reflect the system’s quality in comparison with the calibration systems during
the interpretation of the model’s ratings.

Maintainability, on the other hand, is rated at 2.1 by the model, in the same magnitude
as the expert’s ideal estimation. With 16% of the system’s test code being duplicated, long
methods (unit size 2.0), high complexity (unit complexity 2.5) and a high unit dependency
(1.5), the system’s test code appears to be against the principles of clean and maintainable
code.

Finally, the system’s overall test code quality is rated at 2.5, a value that lies exactly
between the expert’s ideal estimation and his placement of the system in comparison to the
industry average.

6.3 Case Study: System C

6.3.1 General Information

The last case study involves a designing system for engineers. The company that develops
it is also based in the Netherlands. The system was in the maintenance phase when the case
study was performed. However, implementation of new features still takes place during the
maintenance of the system. The size of the development team is approximately 15 people.

The system’s production code volume at the moment of the case study was ∼ 243
KLOC. Another ∼ 120 KLOC of JUnit code implement tests for the system. The devel-
opment team adopted TDD during the past 18 months. It has to be noted that most of the
testing effort came during the last two years. In addition to the automated tests, acceptance
tests are performed annually directly by the customers of the system.

The architecture of the system has undergone some major changes. In particular, the
system’s main modules were rewritten, although the system is still using the old, legacy
modules. This coexistence of the old and the new modules separate the system in two parts
of different characteristics and quality since the two parts were developed with different
processes and quality criteria. This can be reflected on the maintainability ratings of the
system. SIG’s quality model gave a rating of 3.3 stars for the whole system. However,
applying the analysis only to the newly written modules, the maintainability score rises to
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Table 6.5: Test Code Quality Model Ratings for System C.

Properties Value Rating Sub-characteristics Rating Test Code Quality
Coverage 52.5% 3.3

Completeness 3.1

3.5

Assert-McCabe Ratio 0.29 2.9
Assertion Density 0.12 3.7

Effectiveness 3.6
Directness 27% 3.4
Duplication 5.8% 4.5

Maintainability 3.7
Unit Size - 3.7
Unit Complexity - 3.3
Unit Dependency - 3.5

4.0 stars, reflecting the improvement of the processes and the team’s focus to increase the
quality of the new modules.

6.3.2 Test Code Quality Model Ratings

The test code quality model was applied on System C. Table 6.5 shows the results.
The completeness of the test code was rated at 3.1 with coverage and assertions-McCabe

ratio being relatively close (3.3 and 2.9 respectively). Coverage of 52.5% reveals that almost
half of the system is not covered by the tests, a significant drawback for the defect detection
ability throughout the system. Assertions-McCabe ratio suggests that additional assertions
are necessary to test the various decision points in the code.

Effectiveness was rated at 3.6. This rating is higher than the completeness and indicates
that the parts that are tested, are tested fairly effectively. In particular, assertion density (3.7)
indicates that the system’s defect detection ability in the parts that are tested is adequate.
Directness falls a bit lower (3.4), with only 27% of the system being tested directly. This
indicates that locating the cause of the defects could be significantly easier by increasing
the percentage of directly tested code.

Maintainability of 3.7 is the highest maintainability rating met in the case studies and
indicates that the system’s test code is written carefully. Duplication is kept at low levels
(5.8%) and unit size and unit dependency are higher than average. Unit complexity (3.3),
although not too low, reveals possible space for improvement of the test code’s maintain-
ability.

Overall, the system’s test code quality is assessed as 3.5. The model reveals that the
system’s test code is effective and maintainable, but not enough to cover the system. There-
fore, adding code of similar or better quality to cover the rest of the system would lead to a
system that is very well tested automatically.

6.3.3 Test Code Quality Assessment by the Expert

For system C, an expert technical consultant with experience on the system was interviewed.
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How completely is the system tested?

As we saw, the system’s separation in the legacy modules and the new ones has a strong im-
pact on the system’s quality. According to the expert, the legacy modules are tested weakly.
Code coverage is around 15%. Moreover, the development team has stopped writing test
code to cover these modules.

On the other hand, the newly developed modules are reported to have much higher code
coverage: 75%. To get an overall image of the system’s code coverage it is important to
know the size of the legacy modules compared to the rest of the system. Legacy modules
are ∼ 135 KLOC of the system’s total of ∼ 243 KLOC. Thus, the fact that more than half
of the system is poorly covered leads to the expectation of the system’s overall coverage at
∼ 40−45%.

How effectively is the system tested?

The expert reported that since the development team adopted TDD a decrease in the number
of incoming defect reports was noticed. In fact, during the last year the number of defects
was the smallest compared to the previous years.

How maintainable is the system’s test code?

The expert reported that he has no insight on the system’s test code maintainability.

To which extent is the test code targeting unitary or integration testing?

The test code was developed mainly to perform unit testing. Mock testing was also used.
However, the expert reports that parts of the test code serve as integration testing, calling
several parts of the system apart from the one tested directly.

How would the expert rate the aspects of the test code quality of the system?

The expert’s ratings of the aspects of the test code quality of the system are shown in Table
6.6.

Table 6.6: Expert’s ratings on system C’s test code quality aspects.

Aspects Completeness Effectiveness Maintainability Overall Test Code Quality

Rating 3.5 4.0 - 4.0

6.3.4 Comparison between the expert’s evaluation and the model’s ratings

The model’s ratings for System C are consistently lower than the expert’s opinion (where
available). The difference is in the magnitude of 0.5 for each sub-characteristic and the
overall test code quality.
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Completeness was rated 3.1 by the model in contrast to the expert’s estimation of 3.5.
The static estimation of code coverage was 52.5%, higher than the expectation of 40−45%.
The other metric concerning completeness though, was not at the same level. The existence
of 0.29 assertions per decision point in the system assigns the system’s assert-McCabe ratio
a rating of 2.9. In this regard, a weakness of the analysis tool might have interfered with the
accuracy of the measurements: the system’s test code contains extensive use of user-defined
assertions. These customised assertions were not being detected, thus underestimating the
metrics that contain the number of assertions as a parameter.

Effectiveness was assigned the rating of 4.0 by the expert, while the model’s rating was
3.6. The percentage of directly covered code was 27%, a number that surprised the expert
because it was significantly lower than his expectation.

An estimation for maintainability was not given by the expert due to the lack of focus
on that aspect during his assessment of the system.

Finally, overall test code quality was rated 3.5 by the model, half a unit lower than the
expert’s estimation. One possible explanation for the discrepancies in this case would be the
role of benchmarking in the ratings of the model. The expert evaluated the system based on
his own knowledge and experience. The benchmarking seems to cause the model to assign
stricter ratings than the expert in a consistent way in this case.

Another possibility would be that the expert’s opinion was biased towards evaluating
the system according to the quality of the new modules of the system. It is interesting to
see that applying the model only to the new modules the ratings converge to those of the
experts. Completeness, effectiveness, maintainability and overall test code quality are 4.1,
3.9, 3.9 and 4.0 respectively.

6.4 Conclusion

In this chapter three case studies to which the test code quality model was applied were
reported. The results of the model were compared to the opinion of an expert’s evaluation
of the system’s test code quality. The case studies contribute to assessing the usefulness
of the application of the model (RQ3, RQ3.1). In addition, the case studies enabled the
detection of several limitations of the model, details that have to be carefully considered
during the interpretation of the model’s results, and suggested areas that can be improved
by future work.

The application of the model revealed significant information about the systems that
were aligned with the experts’ opinions. Table 6.7 summarizes the comparison between the
experts’ evaluation and the model’s ratings for each system. The goal of the model was
achieved since in all cases we were able to receive a clear overview of the main aspects
of the test code. In addition, the model enables developers and evaluators to understand
points where the system’s testing process is not adequate and take the corresponding actions
to improve it. For example, System B lacks in completeness and it would be strongly
suggested to write test code in order to cover more parts of the system, while at the same
time the development team should be alerted of the test code’s maintainability in order to
avoid reaching a point where applying changes to the test code is consuming most of the
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development effort. Finally, the model’s directness metric provided a new perspective to the
experts, who welcomed the insight provided by such a metric.

Table 6.7: Overview of the comparison between the experts’ evaluations and the test code
quality model’s ratings for systems A, B and C.

System Completeness Effectiveness Maintainability Overall Test Code Quality
Expert Model Expert Model Expert Model Expert Model

A 4.0 4.3 4.0 3.7 3.0 2.8 3.5 3.6
B 2.0 (3.0) 2.8 1.0 (2.0) 2.8 2.0 (3.0) 2.1 2.0 (3.0) 2.5
C 3.5 3.1 4.0 3.6 - 3.7 4.0 3.5

Even though the lack of data does not enable us to draw strong conclusions from a
quantitative analysis of the comparison between the experts’ evaluations and the model’s
estimates, it is still useful to perform such an analysis. When there is lack of expertise on a
system, the model can be used in order to obtain an assessment of the quality of test code.
Therefore, it is important to know how close to the experts’ evaluations the estimates of the
model are.

The experts’ evaluations were given in an ordinal scale from 0.5 to 5.5 with a step of
0.5. The model’s estimates are in a continuous scale from 0.5 to 5.5. To calculate the
error of the model’s estimates compared to the experts’ evaluations, the model’s estimates
are converted to the same ordinal scale as the experts’ evaluations. This is performed by
rounding the values to the closest unit of the ordinal scale. The values and the errors can be
seen in Table 6.8.

Table 6.8: Experts’ evaluations, the model’s estimates converted in ordinal scale and the
error for systems A, B and C

System Characteristic Expert Model Error

A

Completeness 4.0 4.5 0.5
Effectiveness 4.0 3.5 0.5
Maintainability 3.0 3.0 0
Test Code Quality 3.5 3.5 0

B

Completeness 3.0 3.0 0
Effectiveness 2.0 3.0 1.0
Maintainability 3.0 2.0 1.0
Test Code Quality 3.0 2.5 0.5

C

Completeness 3.5 3.0 0.5
Effectiveness 4.0 3.5 0.5
Maintainability - 3.5 -
Test Code Quality 4.0 3.5 0.5

Because of the ordinal scale of the data, the median reveals the central tendency of the
errors. The median is 0.5, which is exactly one unit of the ordinal scale. In particular, 9 out

77



6. CASE STUDIES

of 11 comparisons have an error less or equal to 0.5. This means that in∼ 82% of the cases,
the model’s estimate is at most 1 unit of the scale different than the experts’ evaluations. In
the rest of the cases, the error is 2 units of the scale. Although 11 data points are too few
to enable us draw a strong conclusion, the results of the analysis of the errors are indicating
that the model’s accuracy is promising. The model’s estimates provide estimates that are
very close to the ones that an expert would provide.

At the same time, several limitations are identified. These limitations are listed below:

• Extensive use of abstractions and complex methods can hinder the accuracy static
estimation of code coverage.

• Interpretation of the model’s results should take into consideration that the model
is based on benchmarking. Therefore, several ratings can be counter-intuitive, e.g.
directness rated at 2.8 when direct coverage is 17.5%, a value that should not satisfy
any development team that intends to apply adequate unit testing on its system.

• Custom assertion methods are not detected by the tool leading to underestimation
of the metrics that involve measuring the assertions in the test code (assert-McCabe
ratio, assertion density).

• The current implementation of the model takes into consideration only jUnit test code.
Other xUnit frameworks as well as integration tests should be included in the scope
of the model in order to reflect the total test code of the system under study.
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Chapter 7

Conclusions and Future Work

Developer testing has become an important part of software development. Automated tests
provide the ability for the early detection of defects in software, and facilitate the compre-
hension of the system. We constructed a model in order to assess the quality of test code.
Based on the model, we explored the relation of test code quality and issue handling perfor-
mance. Furthermore, we applied the model to three commercial systems and compared the
results of the model with that of experts’ evaluations. In this chapter, we revisit and sum-
marise the findings of this study. In addition, we indicate possible areas for future research
that would provide answers to questions that emerged during this study.

7.1 Summary of Findings and Conclusions

In this section, we summarise the findings of the study which enable us to provide answers
to the research questions.

7.1.1 RQ1: How can we evaluate the quality of test code?

The first goal of the study was to establish a method to assess the quality of test code.
Towards this end, we reviewed test code quality criteria in the literature. Finally, we applied
the GQM approach [91] in order to identify the main aspects of test code quality and to
select a set of metrics that would provide measurements that enable the assessment of these
aspects.

The results of the approach led to identifying three aspects as the main aspects of test
code quality: completeness, effectiveness and maintainability. Completeness concerns the
complete coverage of the production code by the tests. Effectiveness concerns the ability
of the test code to detect defects and locate their causes. Finally, maintainability concerns
the ability of the test code to be adjusted to changes of the production code, as well as the
extent to which test code serves as documentation.

Suitable metrics were chosen based on literature and their applicability. Code cover-
age and assertions-McCabe ratio are used to assess completeness. Assertion density and
directness are indicators of effectiveness. For maintainability, the SIG quality model was
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adjusted in order to be reflective of test code maintainability. The metrics are aggregated us-
ing a benchmarking technique in order to provide quality ratings that inform the user of the
quality of the system in comparison with the set of systems that was used in the benchmark.

The main aspects of test code quality were used to define corresponding sub-characteristics
as a layer of the test code quality model. In the next layer, the metrics are mapped to each
of the sub-characteristics. The model aggregates the metrics into sub-characteristics, and
the sub-characteristics into an overall test code quality rating.

7.1.2 RQ2: How effective is the developed test code quality model as an
indicator of issue handling performance?

In order to validate the usefulness of the test code quality model, we formulated and tested
hypotheses based on the expected benefits of developer testing. The benefits include the
localization of the cause of the defects and the removal of fear of modifying the code,
since the tests serve as safety nets that will detect defects that are introduced by applying
changes. Therefore, we tested whether there is positive correlation between test code quality
and three issue handling performance indicators: defect resolution speed, throughput and
productivity.

In order to test the aforementioned hypotheses, an experiment was conducted. Data
from 75 snapshots belonging to 18 open source systems was collected, including source
code, VCSs logs and ITSs data. After controlling for the effects of the maintainability of
the production code and the size of the development team, we have found that test code
quality is positively correlated with throughput and productivity. In other words, the higher
the quality of test code, the more issues are being resolved both per team and per developer.
This result provides an empirically derived indication that developer testing is beneficial for
software development.

At the same time, no significant correlation was found between test code quality and
defect resolution speed, a result that contrasts our expectations. However, possible expla-
nations for this observation exist, such as the fact that the defects that are being reported
in ITSs are the ones that the test code failed to detect. In addition, the ability to obtain
an accurate estimation of the resolution time of an issue from ITS data is limited. Further
experimentation is necessary in order to draw conclusions about the relation between test
code quality and defect resolution speed.

The findings of the experiment suggest that test code quality, as measured by the pro-
posed model, is positively related to some aspects of issue handling performance. This
result increases our confidence in the assessment capability of the proposed test code qual-
ity model. We believe that the model can be used by a development team in order to monitor
the quality of the test code in a system. This way, a team can maximise the benefits that
developer testing offers.
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7.1.3 RQ3: How can we assess the usefulness of applying the test code
quality model?

Having confirmed the existence of a positive relation between test code quality and issue
handling performance, we performed three case studies where we studied the usefulness
of applying the model to commercial systems. The systems’ source code was analysed in
order to derive the ratings of the test code quality model. Based on the model’s ratings,
we obtained an insight about the quality of the systems’ test code. Interviews with experts
who were aware of the systems’ test code quality were conducted, in order to assess the
alignment of the model’s ratings with the experts’ evaluations.

The result of the case studies illustrated that the model can capture significant informa-
tion about the main aspects of test code quality. The experts’ evaluations were aligned to
the model’s ratings, with 82% of the model’s ratings differing at most one unit of the rating
scale from the experts’ evaluations. Furthermore, the model was able to pinpoint weak as-
pects of the systems and indicate what further actions should be taken in order to improve
the quality of test code.

Of course the model is not perfect. The case studies enabled us to identify certain
limitations that hinder the accuracy of the test code quality model. However, once the limi-
tations (see Section 6.4) are taken into consideration during the interpretation of the model’s
outcome, we believe that the model provides reliable assessment of test code quality.

7.2 Contributions

The contributions of this thesis are summarised as follows:

• Constructing a model that combines metrics in order to provide a measure of
test code quality. We have proposed a model which combines metrics that can be
statically obtained directly from the source code into meaningful ratings of the quality
of test code. The model was calibrated based on 86 open source and commercial Java
systems so that the ratings of a system’s test code reflect its quality in comparison
with those systems.

• Enriching the software engineering body of knowledge concerning the relation
of test code quality to issue handling performance. Through conducting empirical
research on open source systems we have provided evidence that supports the com-
mon belief that developer testing facilitates software development. In particular, our
study demonstrated a significant positive correlation between test code quality and
throughput and productivity of issue handling.

• Performing three case studies to study the model’s usefulness. By performing case
studies where the model was applied to three commercial systems, we demonstrated
that the model provides useful insights into the quality of the test code. Furthermore,
the case studies showed that our model is aligned with expert’s opinion. Thus, incor-
porating the model as part of the development process so that the model’s ratings can
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be systematically consulted can be used in order to facilitate the development of high
quality test code.

7.3 Future Work

During the study several questions emerged. In this section we identify interesting topics
for future research.

Enlarging the data set. The dataset used in the experiment has several limitations that
reduce the ability to generalise the results. In particular, only Java systems are analysed.
The application of the model to systems of other languages will reduce the dependency of
the results to the technology of development. In addition, none of the snapshots that were
analysed received a test code quality rating of more than 3.5. Expanding the dataset with
further systems so that representatives of all the quality levels are included will enable us to
answer whether the results are consistent through all quality levels.

Validation of the test code quality model against mutation testing. In Section 2.1.2 we
presented mutation testing as a test effectiveness evaluation method. An experiment where
the dependent variable would be mutation testing score would provide further validation of
the test code quality model. In fact, such an experiment was attempted to be conducted.
However, several difficulties made it impossible to perform the experiment within the avail-
able time. Some of the difficulties are listed below to raise awareness for future attempts:

• Older snapshots of the used open source systems contain code that is not valid for the
newest Java compilers. For example, the reserved word enum was used as a variable
name.

• Mutation testing is performed using dynamic analysis. Thus, the source code has to
be to compilable. Even though most of the open source systems make use of modern
build tools (such as Apache Ant and Maven), there are still missing libraries that make
the process of compiling the code non-trivial.

• A precondition of mutation testing is that all the tests should pass. However, several
snapshots contain tests that fail. The intervention of the researcher by either removing
the tests, fixing them or the code, has to be carefully done to avoid the introduction
of bias.

• Mutation testing requires that equivalent mutants are detected. Manual inspection of
each mutants to validate it is not equivalent to the initial program would be impossi-
ble in the scale of such an experiment. Mutation testing tools were explored and it
was found that only Javalanche [81] features automatic detection of equivalent mu-
tants. However, enabling this option significantly increases the execution time of the
analysis, which is already significant even without enabling the option.

Replication with independent data points. As discussed in Section 5.6.2, snapshots of
the same system share some dependencies. Despite our efforts to mitigate this problem,
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ideally all the snapshots would belong to different systems. Once data is abundant, repli-
cation of the experiment with completely independent snapshots will enable drawing more
reliable conclusions.

Assessing the relation between test code quality and further indicators of issue handling
performance. In order to assess the relation between test code quality and issue handling
performance we used three issue handling indicators. However, there can be indicators that
reflect different aspects of issue handling. For example the percentage of reopened issues
could provide an indication of issue resolution efficiency. Future research that includes
additional indicators will contribute to the knowledge of which aspects of issue handling
are related to test code quality in particular.

Quantification of the benefits of higher test code quality. In our study, significant posi-
tive correlation was found between test code quality, and throughput and productivity. This
is an indication that higher test code quality leads to higher throughput and productivity.
However, it would be interesting to quantify the magnitude of the improvement, as well
as the costs that are involved. This would facilitate managers in taking decisions, such as
whether investments in improving test code quality will have an adequate return on invest-
ment.
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