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Abstract

Cross-cutting concerns are pieces of functionality that are not captured into a separate module.
They form a problem as they hinder program comprehension and maintainability. Solving this prob-
lem requires first identifying these cross-cutting concerns in pieces of software. Several methods
for doing this have been proposed, but the option of using software repository mining has largely
been left unexplored. That technique can uncover relationships between modules that may not be
present in the source code, and thereby provide a different perspective on the cross-cutting concerns
in a software system. We perform software repository mining on the repositories of two software
systems for which the cross-cutting concerns are known: JHotDraw and Tomcat. We evaluate the
results we get from our technique by comparing them with those known concerns. Based on the
results of the evaluation, we do some suggestions for future directions in the area of identifying
cross-cutting concerns using software repository mining.
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Chapter 1

Introduction

In software development, programmers try to achieve a separation of concerns: the imple-
mentation of each piece of functionality should reside in its own distinct module. Object-
oriented programming facilitates this separation by providing a system of classes but re-
search has shown that even when design principles are consciously applied, some concerns
do not fit in the existing modularization. They cut through the whole system and are called
cross-cutting concerns [8]. This results in two problems: first, they hinder program com-
prehension because programmers have to keep track of various concerns while inspecting a
piece of code. Second, they decrease maintainability of software since modifying one piece
of functionality requires changing code in many places. To be able to solve this problem,
we should first find those cross-cutting concerns.

1.1 Problem Statement

Many methods have been proposed for finding cross-cutting concerns in software systems.
Most of these involve finding patterns in source code, while others use dynamic techniques
to reveal cross-cutting concerns. Another option, which has largely been left unexplored, is
to use software repository mining for this purpose.

Software repository mining deals with extracting implicit information from software
repositories with the help of data mining techniques. Examples of software repositories
include version control systems such as CVS and Subversion and defect tracking systems
such as Bugzilla. The research presented in this thesis focuses on mining version control
systems (VCS).

Version control systems are commonly used in software development, to facilitate work-
ing in teams. They store the files related to a software system in a central place and allow
developers to commit changes to them. Although the purpose of version control systems is
‘merely’ to simplify working in teams on a project, we can exploit hidden relationships in
those repositories to support the maintenance of software systems.

In particular, the fact that certain files are often changed simultaneously may provide a
clue to where cross-cutting concerns are present in the system. This is because developers
have to change many entities if the elements of a concern are scattered throughout a system.
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1. INTRODUCTION

If developers commit files that are related to a particular concern in a self-contained trans-
action, we can use this fact to detect cross-cutting concerns. Doing so is generally accepted
as good practice; for example, the KDE project prescribes the following in its SVN commit
policy: “Please commit all related changes in multiple files [. . . ] in the same commit” and
“Every bugfix, feature, refactoring or reformatting should go into an own commit”1. Many
projects, however, do not have such an official commit policy and even if they have one
developers are not forced to adhere to it. Therefore, deviations from this rule should be
expected and taken into account when mining cross-cutting concerns from a version control
system.

One advantage of using a version control system to mine cross-cutting concerns com-
pared to other techniques is that we can find relations that may not be present in the source
code. Traditional techniques rely on things like consistently applied naming conventions
or structural relations in source code (such as methods calling other methods). Using the
history of software (as recorded in the VCS), on the other hand, can reveal logical cou-
pling: “implicit and evolutionary dependencies between the artifacts of a software system
which, although potentially not structurally related, evolve together and are therefore linked
to each other from an evolutionary point of view” [15]. Exploiting this logical coupling
may provide a new perspective on finding cross-cutting concerns in a software system.

This co-change information can be extracted using data mining techniques. As we are
mining for items that are frequently changed together, it seems natural to use the technique
called ‘frequent itemset mining’. This leads us to the central research question of this thesis:

Can we apply frequent itemset mining on version control system data to find
cross-cutting concerns in a software system?

Answering this question requires developing a tool that outputs frequent itemsets for
a given version control system. Those itemsets are cross-cutting concern candidates and
should be checked to see if they actually represent cross-cutting concerns. During the liter-
ature study preceding this thesis project, we found that many techniques were evaluated in
an insufficient way. Mens et al. [29] concluded the same by saying: “Most of the approaches
we studied do not provide an empirical validation of their results but rather provide a more
incidental validation of their work.” Many evaluations are of a subjective nature and there is
a persistent lack of quantitative information, which makes comparing techniques difficult.
Therefore, particular attention is paid to the evaluation of the results: manual assessment is
avoided in favour of automatic evaluation against known cross-cutting concerns in bench-
mark systems.

Mining a version history can be done on various levels of granularity: we can consider
the names of the files which have been changed in each transaction, but we can also mine
on a finer-grained level and investigate which lines in a file have been changed. By mapping
source code changes to entities, we can also mine changes to entities such as methods (as in
the case of source code written in an object-oriented language).

The research described in this thesis focuses on file-level mining (which only considers
file names) and method-level mining (which accounts for additions and modifications of

1http://techbase.kde.org/Policies/SVN Commit Policy#Commit complete changesets
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Paper structure

methods). It will describe how well both techniques perform in terms of speed, memory
usage and result accuracy.

1.2 Paper structure

This paper is structured as follows: we start with introducing some concepts related to the
area of research of this thesis in Chapter 2, along with an overview of previous research in
this area. Next, the design and implementation of our tool-chain is described in Chapter 3.
Chapter 4 then discusses the results of the experiments done with this tool-chain on two
different software systems. Finally, in Chapter 5 we draw some conclusions from these
results and suggest directions for future work.
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Chapter 2

Background and Related Work

The topic of this thesis can be divided into two main fields of research: finding cross-cutting
concerns (often called ‘aspect mining’) and software repository mining. This chapter gives
some background information on these subjects, and discusses the research that has already
been done in that area.

2.1 Aspect Mining

2.1.1 Definition

The term aspect mining stems from aspect-oriented programming [22], a technique that
enables us to isolate concerns from the rest of the system in the form of aspects: separate
modules that implement the functionality of a certain concern.

We prefer to define aspect mining as “the search for cross-cutting concerns in software”.
Nevertheless, many papers use a slight variation on this definition. For example, some au-
thors have started to distinguish between aspects and ‘cross-cuttingness’ [29]. Apparently,
they use the term ‘aspect’ to signify the special construct with which concerns are imple-
mented, whereas it appears that originally cross-cutting concerns meant the same as aspects
[31].

Some people think that aspect-oriented programming is needed to solve the problem of
cross-cutting concerns. They implicitly define cross-cutting concerns as “those things in a
software system that should be implemented using aspect-oriented programming (AOP)”.
Then using the term ‘aspect mining’ may contribute to the confusion, as it suggests that
cross-cutting concerns should indeed be refactored into aspects. We believe that finding
cross-cutting concerns is useful, but that not all of them need refactoring into aspects. Some
concerns may be eliminated by employing object-oriented refactoring, and others might not
be a problem as long as we document them well. To prevent confusion about the meaning
of the term ‘aspect’, we speak of “identifying cross-cutting concerns” rather than “aspect
mining” in the title of this thesis.

Other variables in the definition are:

5
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Degree of automation Most techniques mine cross-cutting concerns semi-automatically:
a user “has to pre-process the tool’s input and/or post-process and analyse its output”
(i.e. there is some manual work involved) [29]. However, completely automated or
even completely manual techniques aimed at finding cross-cutting concerns may also
be considered to be forms of aspect mining.

Stage of development Instead of looking for cross-cutting concerns in source code (i.e. in
the implementation phase), we can also do that in deliverables from earlier stages of
development, such as in the requirements or in the architecture description [4].

Legacy systems Some papers state that aspect mining deals with “legacy systems” [6, 14]
(“large systems that we do not know how to deal with but that are vital to [an] orga-
nization” [5]). However, aspect mining may also deal with systems that are actually
well designed but for which we still want to identify cross-cutting concerns. As-
pect mining can even support software evolution when applied correctly, by noticing
cross-cutting concerns just as they are introduced in a system.

Object-orientation Most aspect mining solutions target object-oriented systems, but some
non-object-oriented systems have been researched as well [1, 9].

In this thesis, we talk about finding cross-cutting concerns semi-automatically in source
code written in an object-oriented language (in particular Java).

2.1.2 Techniques

As indicated in the introduction, there are several techniques for finding cross-cutting con-
cerns; many of them operate on static data, others operate on dynamic data, and some work
with software repository data. Some examples of static techniques follow:

Identifier analysis A few techniques exist which analyse the identifiers present in source
code. They are “based on the assumption that cross-cutting concerns are often im-
plemented by the rigorous use of naming and coding conventions” [21]. It groups
identifiers together which have similar names, or which have a similar meaning. The
grouping can be done using, for example, formal concept analysis [37], natural lan-
guage processing [35] or hierarchical clustering [34].

Fan-in analysis This technique is based on the notion that cross-cutting concerns are of-
ten implemented using one method that is called from many different places [28].
The number of distinct method bodies that can invoke a certain method is called the
fan-in. For each method, the fan-in metric is computed, after which utility methods
and methods with a low fan-in are discarded. The remaining set of methods is then
manually analysed to find cross-cutting concern candidates.

Clone detection Cross-cutting concerns often manifest themselves as code clones: when it
is not possible to restrict a concern to one module, developers are “forced to write the
same code over and over again” [9]. Therefore, code clone detection can be helpful
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in finding cross-cutting concerns, and various techniques have successfully put this
idea into practice [9, 33].

An example of a dynamic technique is using program traces to find recurring execution
patterns [6]. For a more detailed description of aspect mining techniques, see the survey by
Kellens et al. [21].

Before discussing how software repositories can be used to find cross-cutting concerns,
the following section discusses how those repositories can be mined, and what we can
achieve by doing so.

2.2 Software Repository Mining

Software repositories contain a wealth of hidden information. As said in the introduction,
extracting this information is called ‘software repository mining’. A selection of software
repository mining applications follow.

Mining co-change This concerns the question “which entities are commonly changed to-
gether?” It can be used to detect logical coupling between modules, which in turn
helps to identify architectural weaknesses [17]. It can also be used to predict which
entity will be changed after changing another entity, thereby guiding programmers in
software development [45].

Co-evolution of testing and production code This helps to assess the testing process fol-
lowed thus far, and to monitor if the current testing process matches the intended
process [24, 42].

Project management Using a software repository, we can for example study the roles of
developers, their contributions and their expertise. Also, it can help to find out why
people join or leave a development team [3, 23, 41].

Bug prediction This involves predicting bugs and the time needed to fix them [30, 32].

Figure 2.1 shows how software repository mining works in general. It starts with ac-
quiring data from a repository, which can be a version control system but also another type
of repository such as a defect tracking system or a discussion archive. In data acquisition,
the raw data from the repository are transformed into a format that can be processed easily.
The processing module then typically performs some mining algorithm on the data it gets,
after which the results are presented to the user.

If the repository being mined is a version control system, it can be modelled as a set of
transactions, where each transaction consists of entities that have been added, modified or
deleted in the same commit. As said in the introduction, these entities can be files but also
finer-grained elements such as lines or words, or syntactic components such as methods.

Data acquisition involves pre-processing the repository data for the next step. For exam-
ple, CVS does not record which files were committed together, so if we need this informa-
tion, we will have to reconstruct it. Data acquisition can also comprise “mapping changes

7



2. BACKGROUND AND RELATED WORK

Figure 2.1: The generic software repository mining process

to entities”, which is needed if we want to analyse entities which are finer-grained than files.
Typically, a tool like diff is used to find out which parts of a file have changed, after which
these are mapped to syntactic components such as methods [44].

The processing step fetches the implicit information contained in the data. To this end,
several mining algorithms can be used, such as formal concept analysis and association
rule mining. In plain words, formal concept analysis is a technique for clustering objects
having the same attributes, and clustering attributes corresponding to the same objects (for
a more complete explanation, see the paper by Ganter et al. [18]). As for association rule
mining, most people are familiar with this technique in the context of online stores, where
recommendations such as “customers who bought product x also bought product y” are
given [16]. It consists of two parts: frequent itemset mining and rule extraction. The first
part finds sets of items that frequently occur together (such as {Bread,Peanutbutter}) and
the second part creates association rules out of those (such as Bread ⇒ Peanutbutter). We
will see in Chapter 3 that in our tool we will only use the first part, frequent itemset mining.

Finally, there are several ways to present the processed data to the user. For some
purposes statistical summaries may be enough, and others may require more sophisticated
visualisations such as graphs. Another option is to use an IDE plug-in that lists cross-cutting
concern candidates and can highlight related code; this is useful when the mining results
should be tightly integrated with the development process. This presentation technique was
used in history-based aspect mining, which is discussed in the next section.

2.3 History-Based Aspect Mining

Not much research has yet been done on using software repository mining to find cross-
cutting concerns. Actually, only one research group has done a research in which they
actually found cross-cutting concerns using a software repository. That group consists of
Breu, Zimmermann and Lindig; they coined the term HAM: History-Based Aspect Min-
ing. Another relevant study has been done by Canfora, Cerulo and Di Penta, in which the
evolution of cross-cutting concerns in the application JHotDraw was investigated.

2.3.1 Breu et al.

HAM operates on CVS repositories, and uses a tool called APFEL to restore transactions
and to find out at which locations method calls have been inserted. Transactions are then
defined as sets of pairs (l,m), which represent the insertion of a call to method m in the
body of the method l.

8
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From this, cross-cutting concern candidates are identified by finding so-called maximal
blocks. When considering the insertion of calls to one single method, a maximal block
simply consists of all the locations at which those calls were added. However, a cross-
cutting concern may also consist of calls to multiple methods. For example, a call to lock
will often be followed by a call to unlock. This requires a more general definition of a
maximal block. Given that a transaction T is a relation between locations L and methods
M (i.e. T ⊆L×M ), a maximal block is defined as a pair (L,M) where the following holds:

L = {l ∈ L |(l,m) ∈ T for all m ∈M}
M = {m ∈M |(l,m) ∈ T for all l ∈ L}

Breu et al. only consider blocks with |L| ≥ 7 (i.e. in which at least 7 method calls
were added). These blocks are efficiently found using formal concept analysis (as briefly
explained in Section 2.2). Next, they are ranked using an attribute called ‘compactness’,
which is the ratio between the number of locations where calls to one or more methods
occurred and the total number of locations where calls to those methods occurred in the
history.

The problem with this ranking is that when the introduction of a cross-cutting concern
is spread over several transactions, it will be recognised as multiple smaller cross-cutting
concern candidates, which will be ranked low. Therefore, Breu et al. exploit locality to rein-
force aspect candidates (i.e. to merge them into one aspect candidate, which will be ranked
higher). They recognise two types of locality: temporal locality (aspect candidates may
appear in transactions that are close in time) and possessional locality (aspect candidates
may be created by one developer but committed in different transactions). By merging the
locations at which the calls for a certain method are inserted, they obtain a reinforced aspect
candidate.

Finally, they combine (or reinforce, as they call it) simple candidates to form com-
plex candidates if two candidates cross-cut exactly the same locations. The resulting cross-
cutting concern candidates are presented by means of an Eclipse plug-in, in which a list of
candidates is given that is linked to the source code; that way, the various candidates can be
easily explored.

As Breu et al. tried to achieve the same goal as we do (that is, finding cross-cutting
concerns using a software repository) one might wonder: what distinguishes their technique
from ours? One important thing to notice is that their technique is very similar to what Marin
et al. did with fan-in analysis: both consider the number of calls to certain methods (i.e. the
fan-in). Fan-in analysis considers the fan-in values of the methods a certain snapshot of the
source code, whereas HAM looks at additions of methods calls (i.e. increases in fan-in). It is
unclear whether this historical perspective adds anything to ‘plain’ fan-in analysis. In fact,
HAM fails to exploit the logical coupling information that a software repository provides.
The technique we describe in this paper does use this information, by considering frequent
additions and modifications of files and methods (not the calls to them).

Another thing is that their technique falls into the same trap as many other techniques:
their evaluation is subjective and makes it difficult compare the performance of their tech-
nique to other techniques. This is something that we address in our research as well.
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2.3.2 Canfora et al.

The work of Canfora et al. is particularly interesting because they wrote a paper titled “On
the Use of Line Co-change for Identifying Crosscutting Concern Code” [11]. At first, this
sounds like they did the same as we are trying to do in this thesis: exploit co-change infor-
mation from a software repository to find cross-cutting concerns. The title is a bit mislead-
ing, however, as their technique does not identify any cross-cutting concerns at all. Instead,
their technique is based on an already known set of cross-cutting concerns in JHotDraw,
for which they try to find corresponding transactions from the version control system af-
terwards. The fact whether a specific set of transactions represents a cross-cutting concern
is based on the lines that were changed in those transactions. The union of those lines is
compared with the known lines of a cross-cutting concern to see how well they match.

As this technique relies on a known set of concerns, it cannot identify them on its own.
However, this research provides some nice insights into how cross-cutting concerns evolve
over time (on which they wrote another paper [10]). It appears that cross-cutting concerns
are often introduced in one transaction and then extended in later transactions (an observa-
tion that was also made by Breu et al. [7]). However, this was based on a specific selection
of concerns (most of which are related to design patterns) so it remains unclear whether this
holds for all types of concerns.

The known set of cross-cutting concerns they used is actually based on the results of
fan-in analysis as performed by Marin et al. [28], which they annotated with line numbers.
Luigi Cerulo (who is part of the research group that did the research we just described)
kindly provided us with these data, which we used to evaluate our own approach.

10



Chapter 3

Tool-chain Structure and
Implementation

This chapter describes the tool-chain with which we identify cross-cutting concern candi-
dates. As indicated in the introduction, the tool should be able to mine frequent itemsets
from a version control system. It should also have the ability to handle large systems with
long histories and to evaluate the resulting itemsets in a systematic way.

First, our technique is described in terms of a common framework. Next, we discuss the
various modules in our tool-chain, including design decisions and implementation details.

3.1 Fitting in a Common Framework

Marin et al. [27] propose a common framework for aspect mining, which “allows for con-
sistent assessment, comparison and combination of aspect mining techniques”. It requires
one to define various parts of a technique to be defined in a consistent way. First of all,
the search goal defines what kinds of cross-cutting concerns the technique aims to identify;
a classification of cross-cutting concern sorts to choose from has been made by the same
authors [26]. Their framework also prescribes that the format in which the results of the
aspect mining process are presented should be defined. Furthermore, we should define the
relation between the mining results and the targeted concerns; this mapping also describes
how we should understand and reason about those results. Finally, we should define the
metrics to assess the mining technique and the results. Our technique can be explained in
the terms of that framework with the following definitions:

Search goal Those concerns that exhibit frequent co-change behaviour. One may think
of concern sorts such as Consistent Behaviour and Contract Enforcement, but these
will only be identified when the method implementing the desired functionality is
renamed. The Expose Context and Exception Propagation concerns may very well
be identified by our technique, as both require changes of every method in a call
stack. At this point, however, we do not know exactly whether such changes are
frequently made in practice. That is, a concern may be cross-cutting, but as long as it

11
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Figure 3.1: Tool-chain structure.

is not changed, we will not detect it. To be able to find out which concerns are often
modified, we do not limit our technique to specific concern sorts.

Presentation Itemsets, consisting of the names of entities (files or methods) that were fre-
quently changed simultaneously.

Mapping The entities in the itemsets principally match the cross-cut elements, but entities
implementing cross-cutting functionality may show up in there as well.

Metrics Starting from a known set of cross-cutting concerns for the subjects we analyse,
we use the so-called F1 measure to determine how well an itemset represents a cross-
cutting concern. This measure will be explained in detail in Section 3.5.2. For each
itemset we determine the best matching concern, i.e. the one with the maximal F1. To
give an overall score of how well the complete set of itemsets matches the concerns in
the analysed subject we take the average of these values, which gives us the average
maximal F1.

3.2 Tool-chain Structure

Section 2.2 explained how software repository mining tool-chains work in general. Our
tool-chain contains the same elements of data acquisition, processing and presentation. Fig-
ure 3.1 shows more specifically what steps are taken in the process. It acquires data from
a Subversion repository using the SVNKit library1, and outputs changesets (which consist
of the names of entities added or modified in each transaction). These are then processed
using frequent itemset mining, and the resulting itemsets are analysed to get cross-cutting
concern candidates. Finally, the user is presented with a list of itemsets, although we will
also use graphs to visualise the results.

The tool-chain has been implemented in Java, with each module implemented as a sep-
arate class (which gets input data and a configuration, and transforms it to produce data
which serves as input for the next module), facilitating extension and modification of the
tool-chain. However, frequent itemset mining algorithms are usually implemented in C++,
so we call them externally (still, we implemented it such that various algorithms can easily
be incorporated in the tool-chain).

Our tool-chain is limited to analysing systems written in Java. As indicated in Chapter 1,
we perform the mining process on two levels of granularity: on file-level and on method-
level. Both are in a certain way tied to a specific source language. When using Java,

1http://svnkit.com
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file-level mining practically means class-level mining as that language forces one to write
each class in a separate file (except for inner and anonymous classes). Strictly speaking,
file-level mining is not bound to be used with Java but when mining source code written
in a language that does not impose these conventions we cannot speak about class-level
mining any more. On the other hand, method-level mining is tied more strictly to a given
source language, as the parser analysing the source files is made for a specific language. In
particular, when we speak of “method-level mining”, we restrict ourselves to source code
written in an object-oriented language. However, we could extend our method-level miner
by allowing different parsers to be used, thereby allowing source code written in different
object-oriented languages to be analysed. With that said, we limit ourselves to analysing
Java code for the scope of this research, but we expect that a modified version of our tool-
chain could be used to analyse other systems as well.

The two levels of granularity we just mentioned each have their own pros and cons:

File-level mining This only deals with the names of files that were frequently changed to-
gether. Advantages of this are that it requires little effort to extract the data we want
from the repository, and the number of entities to analyse will be relatively small
(compared to method-level mining), with short execution times as a result. Another
advantage is that non-source code files (such as configuration files) can also be iden-
tified as being part of a concern. A disadvantage is formed by the fact that file-level
mining is not very precise, possibly making the results of the analysis less useful than
more precise methods (largely due to false positives in the result set).

Method-level mining On this level, a syntactic analysis of the source files is performed,
such that additions and modifications of methods can be recorded. An obvious disad-
vantage is that we need to download the contents of files in order to be able to analyse
their contents. The syntactic analysis that is needed to find out which methods have
been modified also takes time. As files typically contain more than one method, the
resulting data set will be larger than the one we got at file-level mining. The data min-
ing algorithm that analyses these data will therefore take longer to execute and will
also have larger memory requirements. However, the results of method-level mining
are more precise than those found with file-level mining, probably making them more
useful as cross-cutting concern candidates.

We clearly have to make a trade-off between the time and memory requirements of the
technique and the result accuracy. We will shed more light on this when discussing the
results of our experiments. But first, the next sections discuss each module of the tool-chain
in more detail.

3.3 Data Acquisition

As indicated in the previous section, our tool-chain operates on a Subversion repository.
Subversion was designed as the successor to CVS, another popular version control sys-
tem. One important advantage of Subversion over CVS for data miners is that it stores files
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that were committed simultaneously in one transaction, whereas CVS creates one separate
transaction for each file that is committed. This is important because we rely on the knowl-
edge that files belong to the same transaction. Also, CVS repositories can be converted
to a Subversion repository by using cvs2svn2, a tool that restores transaction information
and “deals with many CVS quirks”. This practically means that we can analyse both CVS
and Subversion repositories; in fact, the repositories of many projects have already been
converted to Subversion using cvs2svn, so this decision is expected to result in a wide
applicability of our tool-chain.

We use SVNKit, a Java Subversion library, to fetch log entries from a Subversion repos-
itory. A log entry consists of the revision number, time-stamp, author and log message for
each transaction, along with the changeset: the files that were added, modified or deleted.
Similar to what Breu et al. [7] did, we reinforce (combine) two changesets if they come
from transactions that have been committed by the same author within a certain period of
time. This compensates for the behaviour of some programmers to frequently commit small
transactions which are actually related. Formally, the entities of transactions T1 and T2 are
combined if

|time(T2)− time(T1)| ≤ interval

and author(T1) = author(T2).

Some of the changesets are filtered to avoid noise: for example, a file may be committed
both to a branch and to the trunk, making it appear twice in the output. Filtering may also
help in avoiding uninteresting data at an early stage: we can filter out changesets containing
very few or very many items if they produce itemsets that are not likely to be valid cross-
cutting concern candidates.

As the frequent itemset mining module expects to have only integer values as input,
the entity names are mapped to unique identifiers. These are stored in a bi-directional hash
map, so the identifiers can be translated back to entity names later on.

In addition, we keep track of files that have been renamed, moved or copied using
Subversion’s copy command. We do this by reusing the identifier of the copied path for the
new path.

Some more work has to be done when performing method-level mining. In order to find
out which methods have been added or modified in a certain transaction, we have to find out
which parts of a file have been changed. This is done using a modified version of DiffJ3,
which is like the Unix program diff, but specifically for Java code. We had to modify
the source code of this program because it only reports changes in the highest node in an
abstract syntax tree; for example, if a new class was added, it would not report the methods
inside it as being added. Some additional modifications were needed to make sure it would
output the changes in a format usable by our tool-chain, outputting the full name of each
method, including the package name and the names of the enclosing class and any inner
classes. In this case, the change sets contain the full names of each method (as opposed

2http://cvs2svn.tigris.org
3http://www.incava.org/projects/java/diffj/
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to file-level mining, where they consist of file names). As soon as we have collected these
change sets, we can analyse them. This is explained in the next section.

3.4 Frequent Itemset Mining

A common way to mine patterns in a database is frequent itemset mining (FIM)4. Informally,
this means that we search for sets of items of which the number of occurrences is above
a certain threshold. Frequent itemsets are typically used as the first step in association
rule mining, to generate association rules in the second step. Many people are familiar
with association rule mining in the context of online stores, where recommendations such
as “customers who bought product x also bought product y” are given. For example, the
frequent itemset {Bread,PeanutButter} may have been found (meaning that these products
were often bought together), and from this, the rule Bread ⇒ PeanutButter is generated,
generalising the previous statement by not only noting that they are often bought together,
but also concluding that there is a relation between these two.

For our purpose, we only need the frequent itemset mining part: we are just looking for
sets of entities that are commonly changed together, and it is not needed to generate rules
from that, although we do assume that the frequent occurrence of sets of entities implies that
there is a correlation between them. Note that this module can be used without modification
for both file-level and method-level mining, although the latter will probably have to handle
a larger set of input data, increasing time and space requirements. What follows is a formal
definition of frequent itemsets.

3.4.1 Definition

Let I = {I1, I2, . . . , Im} be a set of items, and call X ⊆ I an itemset. Further, define database
D as a set of transactions: D = {t1, t2, . . . , tn}, where ti = {Ii1, Ii2, . . . , Iik} and Ii j ∈ I. Also,
let t(X) be the set of transactions that contain itemset X , formally t(X) = {Y ∈ D|Y ⊇ X}.
Finally, the support of an itemset X is the fraction of transactions in the database that contain
X : support(X) = |t(X)|

|D| [2, 16].5

Then X is called a frequent itemset6 when its support is higher than a given minimum
support: support(X) ≥ minsupport. The set of all frequent itemsets is denoted by FI; it
is a subset of the power set of I (all possible itemsets that could be generated using I), i.e.
FI⊆ 2I .

4This seems the right moment to acknowledge the fact that ‘itemset’ is not an actual English word. It obvi-
ously just means a “set of items” and could be written as ‘item set’ but we have chosen to maintain consistency
with FIM literature and to write it as one word (for a similar reason we also used ‘changeset’ in the previous
section).

5Sometimes, the support of X is (implicitly) defined as the number of transactions that contain X (i.e.
|t(X)|), and not as the fraction. In this paper we will stick to using the fraction, and use “number of occurrences”
when we mean |t(X)|.

6Sometimes, the term large itemset is used, but we will avoid to use this term, as the word ‘large’ might be
mistaken to refer to the cardinality of the set, whereas it refers to the number of occurrences.
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Table 3.1: Example database with 4 transactions.

Transaction Items

t1 {a}
t2 {a,b,c}
t3 {b,c,d}
t4 {b,c,d}

Table 3.2: Support of all itemsets that can be generated using the items in the database of
Table 3.1.

Itemset Support Itemset Support

{} 1 {b,c} 0.75
{a} 0.5 {b,d} 0.5
{b} 0.75 {c,d} 0.5
{c} 0.75 {a,b,c} 0.25
{d} 0.5 {a,b,d} 0
{a,b} 0.25 {a,c,d} 0
{a,c} 0.25 {b,c,d} 0.5
{a,d} 0 {a,b,c,d} 0

3.4.2 Example

To see how frequent itemset mining works, consider the example database in Table 3.1. The
database contains 4 transactions, which are subsets of I = {a,b,c,d}.

Table 3.2 lists the items in the power set of I together with their support. First, note that
the support of the empty set is 1; this is obviously because the empty set always is a subset
of any other set (therefore, this information is not very interesting, and sometimes omitted
by FIM algorithms). Four other sets have a support of 0; this is because the items in those
sets do not occur simultaneously in any transaction. These will normally not appear in the
output of an FIM algorithm, as they are not frequent at all. Of the other sets, only those with
a support equal to or greater than the given minimum support will appear in the result. It
depends one the purpose we have with mining itemsets which of these are interesting. This
again poses requirements on the algorithm we choose to perform the itemset mining; those
are discussed in the next section.

3.4.3 Algorithm requirements

In association rule mining, the most interesting itemsets are those with a large support and
confidence. Support was defined in Section 3.4.1 and confidence is defined as follows:
con f (X ⇒ Y ) = supp(X ∪Y )/supp(X). In association rule mining these values are used
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to determine whether an association rule is valid or not. This means that if a frequent
itemset mining algorithm is used as part of association rule mining, its running time can be
reduced by setting a high minimum support or confidence. However, confidence cannot be
used in our case, as frequent itemsets do not have a direction (whereas association rules do
have that: X ⇒ Y is not the same as Y ⇒ X ; hence the corresponding confidence values
will be different). And even while a higher support also means a more interesting itemset
in association rule mining, this may not be the case for our technique. The cardinality of
itemsets could be at least as important when identifying cross-cutting concerns, as changing
one concern can lead to changes in many files.

Therefore, we would like to analyse itemsets with a low support as well (even as low as
2). This means that an algorithm should be able to complete within a reasonable time even
when run with a low minimum support.

Also, it should be able to deal with the characteristics of change history data. In a study
of the nature of commits in various software systems, it appeared that 80% of the commits
were tiny (which in this case means that less than 5 files were changed in these commits)
[20]. However, there were also commits in which a relatively huge number of files were
changed. Thus, we notice a mix of dense and sparse input data. In the most well-known
FIM algorithm, Apriori, the potential number of database scans is 2m [16], where m is the
size of the largest transaction in the database, so the occasional dense data tremendously
hampers the performance of this algorithm.

What does this mean in practice? We tested an implementation7 of the algorithm us-
ing 436 changesets (on file-level) from the Subversion repository of JHotDraw. With the
minimum number of occurrences set to 8, the algorithm already took almost 9 minutes to
execute, while using more than 1500 MB of RAM at a certain moment.8 With a minimum
number of occurrences of 7, the program filled the entire 16 gigabytes of RAM that were
available and was killed by the operating system, so it could not complete. As we also want
to investigate itemsets with low support values, using Apriori is not an option for us.

There are lots of other frequent itemset mining algorithms, but before we consider them,
we may wonder: do we actually need all the output we got from performing frequent itemset
mining? For our purpose, we are not interested in itemsets which are subsets of itemsets
which have the same support. For example, take a look at Table 3.2: when we know that
there is an itemset {b,c} with support 0.75, then the information that the itemsets {b}
and {c} exist (with the same support) is not interesting and could be left out. It appears
that generating only these interesting itemsets can be done a lot faster than generating all
frequent itemsets. The itemsets we are looking for are called frequent closed itemsets, and
are discussed next.

3.4.4 Frequent Closed Itemsets

A frequent itemset is called closed when no supersets with the same support exist (i.e. if
its support is different from the supports of its supersets) [19]. Formally, an itemset X is

7The implementation of Bart Goethals, to be found at http://www.adrem.ua.ac.be/∼goethals/
software/.

8The tests were performed on a 2.33 GHz CPU core.
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Table 3.3: Result of frequent closed itemset mining on the data of Table 3.1 for a minimum
support of 0.5.

Itemset Support

{} 1
{a} 0.5
{b,c} 0.75
{b,c,d} 0.5

closed if it satisfies I(t(X)) = X , where I(S) =
T

T∈S T , S ⊆ D (recall that t(X) means
the transactions that contain X , and D is the set of all transactions) [38]. Call the set of
frequent closed itemsets FCI, then it holds that FCI ⊆ FI (in practice, FCI is orders of
magnitude smaller than FI). When performing frequent itemset mining on our example
database (Table 3.1), it will produce the output shown in Table 3.3. Compared to the result
of frequent itemset mining on the same data with the same minimum support, the items
{b} and {c} are left out because they have the same support as their superset {b,c}; the
same holds for {d}, {b,d} and {c,d}, because their superset {b,c,d} has the same support.
However, {a} is not left out because it has no frequent superset, and {b,c} remains because
it has a higher support than its superset {b,c,d}.

We tested the performance of several open source frequent closed itemset mining im-
plementations, by running them on 1523 changesets of the repository of ArgoUML (on
file-level), with the minimum number of occurrences set to 2. The results are shown in Ta-
ble 3.4. As can be seen, the fastest implementation completes in only 3 seconds. Compare
this to Apriori, which could not complete even though a much higher minimum support had
been set. Clearly, it is worthwhile to use frequent closed itemset mining, and in particular
the LCM algorithm seems to perform quite well for our input data (we also considered to
evaluate other algorithms like CHARM and CLOSET, but there were no publicly available
implementations of them).

LCM stands for Linear time Closed itemset Miner. It has been designed in such a
way that it only generates frequent closed itemsets, in contrast to other algorithms, which
basically enumerate frequent itemsets and then prune away unnecessary sets. This means
that the algorithm is linear in the number of frequent closed itemsets; hence the name.
Also, several techniques are used to speed up computation, in particular a technique which
adjusts to parts of the input being dense or sparse. This is probably very worthwhile since
our input data is also very mixed in this respect, as discussed in Section 3.4.3. For a more
detailed explanation of the algorithm, the reader is referred to the various papers on LCM
[38, 39, 40].

Apart from frequent closed itemset mining, one might also consider maximal frequent
itemset mining. The set of maximal frequent itemsets is orders of magnitude smaller than
the set of frequent closed itemsets and can be generated much faster. A set is called max-
imally frequent if it has no frequent supersets (in contrast to closed sets, no restriction is
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Table 3.4: Running times of various frequent closed itemset mining implementations

Implementation Running time (seconds)

MAFIAa 21770
Yasuo Tabei’s LCMb 558
FPclosec 11
LCM version 1d 10
LCM version 4d 3

a Run with the -fci option; available from http://himalaya-tools.sourceforge.net/Mafia/.
b Available from http://www.cb.k.u-tokyo.ac.jp/asailab/tabei/Lcm/lcm.html.
c Retrieved from http://fimi.cs.helsinki.fi/src/.
d Two different versions of the implementation by the original authors of the LCM algorithm, both

available at http://research.nii.ac.jp/∼uno/codes.htm.

imposed on the support of those supersets). This means that a maximal frequent itemset
mining algorithm would generate all but one of the sets shown in Table 3.3 when run on our
example database: the set {b,c} would be left out, as it has the frequent superset {b,c,d}
(even though its support is lower). As we said in Section 3.4.3, we are interested in itemsets
with a large cardinality, even when their support is lower, so maximal FIM does not do
what we want. Thus, frequent closed itemset mining appears to be the right choice for our
purpose.

3.5 Itemset Analysis

The goal of itemset analysis is to mark certain itemsets (from the previous step) as cross-
cutting concern candidates. To this end, we need to specify parameters based on which we
can select those itemsets, and we should determine criteria to evaluate whether a candidate
does indeed represent a cross-cutting concern.

3.5.1 Selecting Cross-Cutting Concern Candidates

We have got the following criteria at our disposal for selecting itemsets as cross-cutting
concern candidates:

Support Itemsets which occur frequently may be more interesting; if so, we can discard
itemsets with a low support.

Cardinality Itemsets containing very few items may be irrelevant, as well as itemsets con-
taining very many items.

Lift The lift measure (sometimes called ‘interest’) divides the actual support by the support
that would be expected by chance (i.e. if the files were committed independently):
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li f t(X ∪Y ) = supp(X ∪Y )/(supp(X) ∗ supp(Y )). This might give a more accurate
impression of how interesting an itemset is.

Changeset size As said in Section 3.3, we can discard very small and/or very large change-
sets to limit the input of the mining module, in order to limit the production of irrele-
vant itemsets.

Reinforcement interval The reinforcement interval influences how many changesets are
combined and consequently influences the resulting frequent itemsets.

Note that the two latter criteria are not selected in the itemset analysis step, but earlier
in the tool-chain (in the data acquisition step).

To find out what constraints should be posed on the above criteria to get as many relevant
itemsets as possible (compared to the total collection of itemsets found), we should first
determine what makes an itemset relevant; this is what the next section is about.

3.5.2 Evaluation Criteria

For evaluating our technique, we should define a way to determine how well a certain
itemset matches a cross-cutting concern. To make sure our results are reproducible and
to facilitate comparison with other techniques, we decided to avoid manual assessment and
to do an automated evaluation (as stated in Section 1.1). Therefore, in order to find out
which candidates actually represent cross-cutting concerns, we evaluate against known sets
of cross-cutting concerns. Those sets describe for each concern which methods take part in
it. For file-level mining, we discard the method information, keeping only the names of the
files belonging to each concern. Using that data, we can determine for each itemset how
much it covers a cross-cutting concern (i.e. the recall) and how many of the file names in the
itemset do actually belong to that concern (i.e. the precision). Maximising either one does
not really make sense; for example, we could always achieve a high precision by selecting
sets with very few items (as all items in the set will then belong to a concern), but the recall
would be very low. Therefore we use a combination of precision and recall: the F1 score, a
measure which is commonly used in information retrieval and which is the harmonic mean
of precision and recall [25]. This can formally be defined as follows:

precision =
|Relevant∩Retrieved|

|Retrieved|

recall =
|Relevant∩Retrieved|

|Relevant|

F1 =
2 · (precision · recall)
(precision+ recall)

Here ‘Relevant’ is the set of those items that appear in the cross-cutting concern, and
‘Retrieved’ means those items that appear in the itemset. The F1 score is a value between 0
and 1, where 1 is the best score.
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For each itemset we calculate the maximum F1, i.e. the score for the cross-cutting con-
cern that best matches this itemset. This value then determines how interesting an itemset
is. It makes sense to use this value because this is also how one would evaluate an itemset
manually: one would try and see which concern it matches best and then determine how
well it matches that concern. To get an overall score for the itemsets, we take the average
of these values: the average maximal F1. This score can be seen as an alternative precision
measure for the set of itemsets.

3.6 Presentation

The presentation of the results is pretty simple: a CSV (comma-separated value) file is
generated, which contains the itemsets along with the transactions they are based on. If
needed, this file can be used to generate graphs to get various views on the itemsets.
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Chapter 4

Experiment Results

This chapter describes the results of running our tool-chain (which was described in Chap-
ter 3) on two different case studies.

4.1 Choice of Subjects

Finding good subjects for testing our tool-chain is quite a challenge: as we decided to do
an automated evaluation, there needs to be a known list of cross-cutting concerns for the
systems we are going to analyse. Developers usually do not document the concerns in their
system, so we have to rely on results from existing aspect mining research. Even those
results are usually not publicly available. Marin et al. [28] have put effort into “setting up
a web forum1 where aspect mining researchers can exchange and discuss aspect candidates
found in (open source) software systems”. Only the results from their fan-in analysis experi-
ments are available there, unfortunately, and contributions from others have failed to appear.
Still, it seems logical to use the results from that web site for evaluating our own technique,
as it is the only one on which a systematic overview of the concerns in various software
systems is given. Especially the results from JHotDraw, a program that is frequently used
as a benchmark in aspect mining research, are of interest. On the same web site, the results
for two other subjects are given: Tomcat and PetStore. We considered PetStore to be too
small to get a relevant evaluation (only 7 concerns are listed) but Tomcat does seem relevant
as a test subject as it is a ‘real’ application (as opposed to JHotDraw, which is more of a
design exercise) with a lot of concerns.

Therefore, we have chosen to run our technique on the repositories of JHotDraw and
Tomcat and to compare the resulting itemsets with all known cross-cutting concerns we
could find for these subjects. The next sections will discuss the results for each application
in detail.

1http://swerl.tudelft.nl/amr/
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4.2 Case Study: JHotDraw

4.2.1 Application Overview

JHotDraw is a Java GUI framework for technical and structural graphics2. It has been devel-
oped as a design exercise, showing good use of design patterns. For this reason, JHotDraw
has frequently been used in aspect mining research: if some part of the system has not been
separated in a module but is somehow scattered over the system or tangled with other code,
we can safely assume that this is not because of sloppy programming and that it forms a
valid cross-cutting concern. On the other hand, this also makes it a somewhat ‘artificial’
subject.

The repository of JHotDraw is currently at revision 544 and its history started on 8
August 2002. 11 different developers have committed transactions and the application is
still being actively developed.

4.2.2 Evaluation Set

In Chapter 2 we indicated that Canfora et al. [11] sent us the list of cross-cutting concerns
they had for JHotDraw. It appeared that this list was identical to the list given on the afore-
mentioned web site, although it contained not only the names of the method implementing
the cross-cutting behaviour, but also the names of the cross-cut elements. As we want to
know the complete scope of a concern, this is very useful for us.

Because JHotDraw is often mentioned as a benchmark in aspect mining literature, we
wondered if other authors had published their results for JHotDraw as well. The results for
the dynamic analysis experiment with the Dynamo tool by Tonella and Ceccato [36] were
publicly available3. The paper by Ceccato et al. [12] also mentions identifier analysis as
one of the techniques tested on JHotDraw. Mariano Ceccato kindly provided us with the
results of this experiment. The results of Zhang’s PRISM Aspect Miner [43] were publicly
available4 but they were not usable as the actual cross-cutting concerns were not reported
(only separate entities that may be part of a concern).

Although we would want to have one list of cross-cutting concerns in JHotDraw, with
the results of the various experiments merged together, such a list does not exist as yet.
Therefore, some concerns that actually belong together are reported as separate concerns
(for example, all three result sets contain a concern called “Undo”). In total, we have a list
of 72 concerns for JHotDraw as reproduced in Appendix A.

The studies from which we use the results were all done on JHotDraw version 5.4b1. In
the meantime, its version number has progressed to 7.0.8. However, the package structure
of JHotDraw has changed a lot during that time, so therefore we decided to only mine the
part of repository corresponding to the history until JHotDraw version 6, which has the
same package structure as version 5.4b1. This part consists of 172 revisions.

2http://www.jhotdraw.org
3http://star.itc.it/dynamo/jhotdraw-detailed-results.html
4http://www.eecg.utoronto.ca/∼czhang/mining/j6.txt
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4.2.3 Results for File-Level Mining

When running our tool on the repository of JHotDraw while only considering file names, we
get 828 itemsets, with an average maximal F1 of 0.36 (running time: 3 seconds5). Before
drawing conclusions about this score, we can try to improve it by tweaking the criteria men-
tioned in Section 3.5.1: support, cardinality, lift, changeset size and reinforcement interval.
For each of these criteria (except for the latter one) we can find appropriate constraints:
minimum and maximum values that lead up to a good average maximal F1, which means
that we have 9 different input parameters for our tool. As these parameters are probably
not independent, it would be best to test all possible combinations of all possible values
for each constraint. This seems not feasible, however, as we are dealing with 9 parameters,
each of which can have many different values. We will therefore change these parameters
separately and try to get good outcomes that way.

We start with the reinforcement interval, as it influences all other criteria: combining
changesets will lead to different changeset sizes and different itemsets. We ran our tool
with reinforcement intervals between 0 and 10000 seconds, with steps of 100 seconds. An
interval of 1700 seconds yielded 682 reinforced changesets and gave the best result: the
average maximal F1 became 0.40, which is a bit more than without reinforcement (i.e. with
the interval set to 0). The results we got with reinforcement were always better than without,
so it seems indeed worthwhile to combine changesets if they have been committed close in
time by the same author.

With the reinforcement interval fixed to 1700, we started investigating the effects of
putting constraints on the changeset size. We set the minimum changeset size between 0
and 40 and the maximum size between 40 and 500, and tried all different combinations
(with steps of 1 for the minimum and steps of 10 for the maximum because there are less
large changesets than small ones). By constraining the changeset size between 9 and 40 we
reached the highest score: 0.53. This would suggest that discarding both the smallest and
the largest changesets improves the final score. However, it is interesting to see that setting
40 as the minimum or maximum changeset size both give the same result. This suggests
that the size of a changeset is not very much related to the fact if it contributes to a concern.
Another thing is that constraining the changeset size too much will leave very few itemsets.
For example, the aforementioned constraints of 9 and 40 lead to 11 changesets, eventually
resulting in 18 itemsets. Although having few itemsets could be a good thing (as it will
take less time for a user to analyse them) it can also mean that much relevant information
has been discarded. Not only do we risk throwing away relevant itemsets, the itemsets that
do appear in the outcome are significantly smaller, consisting of only a few items. As we
want to cover as much elements of a concern as possible, this is not a desirable result. To
make sure we do not lose any useful data, we continue our parameter investigation with the
changeset size unconstrained.

For investigating the relation between the number of occurrences and cardinality of an
itemset and the resulting maximal F1 values, take a look at Figure 4.1. That graph shows for
each number of occurrences and size the maximal F1 score for the itemset that best matched

5All experiments were performed on a machine with 16 gigabytes of RAM and two quad core Intel Xeon
E5345 processors (2.33 GHz) of which at most two cores were actually used by our tool.
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a concern (we have chosen to limit the ‘cardinality’ axis to only show values under 100 as
itemsets with a larger cardinality have low F1 scores and showing more values would make
the graph unreadable; the same holds for the ‘#occurrences’ axis). The F1 is represented by
both the colour intensity and the size of the dot. If this score is higher than or equal to 0.5,
an abbreviation of the concern name is shown next to the dot. The first letter corresponds
to the reference set we got the data about that concern from: I stands for identifier analysis,
D for dynamic analysis and F for fan-in analysis. The complete list of concerns with their
abbreviations can be found in Appendix A. We notice the following things in this graph:

1. No itemsets that occur less than 2 times or that consist of less than 2 items are shown.

2. Itemsets with a large cardinality are relatively less frequent than those with a small
cardinality. Similarly, itemsets that occur frequently usually have a small cardinality.

3. ‘Sweeps’ of similar concerns occur in various places. For example, IB17 can be found
at (#occurrences, cardinality) coordinates (2,20), (3,18), (3,16), (4,15), etc.

4. ‘Interesting’ concerns are not really concentrated in one area.

Especially point 4 is relevant for our research, but let us first discuss the other three
observations. The first point is simply because we instructed the mining algorithm to do so:
itemsets with less than 2 items are not relevant because we want to see files that have been
committed together, not single files that happen to be committed frequently. Itemsets that
occur less than 2 times are not relevant because we want to see which files have frequently
been changed together, not only once or never at all.

The second point is not surprising, albeit a bit disappointing. If we had found large
groups of files that were changed together very frequently, those would be really interesting.
In practice, however, commits consisting of large files are apparently not frequent, and
groups of files that are frequently committed together are usually small (this confirms the
similar observation made by Hattori and Lanza [20] which was mentioned in Section 3.4.3).
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Case Study: JHotDraw

Figure 4.1: Itemsets with maximal F1 for the given cardinality and number of occurrences
(JHotDraw, file-level). Colour intensity and size represent the F1. Itemsets
with F1 > 0.5 are annotated with the corresponding concern identifier.
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Case Study: JHotDraw

To understand the third point, it helps to look at the concerns listed in Table 4.1. For
each itemset, it lists the number of occurrences and the cardinality (which corresponds to
the number of changesets and the number of itemsets, respectively). It also lists the best-
matching concern for each itemset and the corresponding F1 value. The changesets column
indicates in which changesets the items in the itemsets occurred.

In that table we can see multiple itemsets that match the DOD (Manage figures outside
drawing) concern. The attentive reader will have noticed that all of them contain the two
items that the first itemset consists of, and the others add an extra item to it. Also, the
transactions where the items in these sets occur are similar. The reason for this is that we
have chosen to do frequent closed itemset mining (as discussed in Section 3.4.4): it will
output an itemset even if it has frequent supersets, leading to many similar itemsets. It turns
out that it was a good decision not to use maximal frequent itemset mining, as that technique
would not output the currently best-matching itemset (because it has frequent supersets).

One might suggest to discard the supersets of the first itemset as they have a lower F1
score anyway, but how would one know which itemset is the ‘best’ one of a group of similar
itemsets? In this case we could pick the itemset with the highest number of occurrences,
but this will not always work. For example, in Figure 4.1 we can see that IB28 at (2,12)
has a higher F1 than at (3,10). Moreover, the figure shows that a higher support does not
necessarily mean that an itemset is more interesting.

This leads us to the fourth point, as we would like to find a relation between the input
parameters and the resulting ‘interestingness’. However, such a relation does not seem to
exist. Although most interesting itemsets seem to have a low cardinality, this holds for the
itemsets in general. Consequently, restricting the cardinality to low values does not really
help in improving the final score. We tested this again by trying different constraints for the
cardinality, and we got the best result for a minimum of 4 and a maximum of 20, leading to a
final score of 0.42, just a little improvement over the score of 0.4 without these restrictions.

Finally, restricting the support can help a little bit, but this gives the same problem as we
had when restricting the changeset size: if we want to achieve a higher score than before,
we have to restrict the support so much that we throw away a lot of relevant itemsets. For
example, we can achieve a score of 0.5 by setting both the minimum and maximum to 14
but this leaves only 9 itemsets.

There is still one parameter left which we have not explored yet: the ‘lift’, which is
the support divided by the support that would be expected by chance. If some files were
committed much more often together than we would expect, they might form a likely cross-
cutting concern candidate (in other words, if the lift of an itemset is high, it should be more
interesting). By substituting the support for the (supposedly more accurate) lift, we get the
results shown in Figure 4.2.

One striking thing in this figure is that the more ‘interesting’ itemsets (with a high F1)
have a low lift. This is the opposite of the expectation we just formulated. The same figure
can help us in understanding this: it suggests a logarithmic relationship between lift and
cardinality. This is not very surprising as the support of individual items is usually similar
and also very low. Taking the product of these similar values will lead to an exponential
increase of the lift, proportional to the cardinality of the itemset. As we showed that most
interesting itemsets have a low cardinality this explains why most interesting itemsets are
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Figure 4.2: Itemsets with maximal F1 for the given cardinality and lift (the lift axis is log-
arithmic).

on the left side of the figure.
It follows that using this measure instead of the support is not really an improvement.

However, if we could find a better model for the chance that several files are committed
together (instead of assuming that all files are independent), we might be able to create a
measure that is more suitable for discriminating interesting itemsets. This is something that
should still be investigated.

We have tried our best to achieve a high maximal F1 for the given input: with reinforce-
ment enabled, we could reach a score of 0.40. By putting restrictions on other parameters,
we could still somewhat improve this, but we found that many itemsets were discarded this
way. We also found that there was no immediate relation between the parameters (in par-
ticular support and cardinality) and the final score. This means that we cannot rank the
itemsets to put the more interesting ones on top.

Let us take 0.40 as the final score for this particular case study. Now what does this value
actually mean? As the score can take on values between 0 and 1, we can say that this value
is at the low end of the spectrum. For one itemset, an F1 of 0.4 could for example mean
that both the recall and precision are 0.4, meaning that 40% of the items in the matching
concern was retrieved and that 40% of the retrieved items was relevant. Someone who takes
these results as a starting point for finding cross-cutting concerns would thus have to weed
through 60% of irrelevant items, and still only 40% of the concern as we know it would be
reported. Although this suggests that the given score is relatively low, it does not really say
anything until we have some reference point.

As other techniques do not report similar values to compare ours with, we decided to
perform tests with randomly generated itemsets, to provide a kind of lower bound for the
final score. We generated as many itemsets as our tool-chain produced based on the change-
sets of JHotDraw, with a similar average itemset cardinality and with the same set of entities
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(files, in this case). From these itemsets we again calculated the average maximal F1. We
ran this procedure 1000 times and took the average of all scores to get a representative final
score for the random case. This led to the value of 0.1283, which means that the score of
0.40 is about 3 times better than the random case. Let us now see how method-level mining
performs.

4.2.4 Results for Method-Level Mining

Performing method-level analysis of JHotDraw’s repository yields 403 itemsets with an
average maximal F1 of 0.15 (running time: 45 seconds). We can again try to improve this
value by using the parameters we also used when performing file-level mining.

For the reinforcement interval we did a similar test as with file-level mining, but this
time the results were quite different: the best score we could get with reinforcement was
scarcely higher than without (and after rounding the score was again 0.15). Moreover, the
results with reinforcement were almost always lower than without. This suggests that com-
bining changesets is actually not really a good idea; apparently the changesets are already
quite self-contained. The higher score in the file-level case may have been caused by false
positives.

Likewise, constraining the changeset size did not help at all, as the final scores were
always lower than without doing so.

Restricting the itemset cardinality could help somewhat, just like in the case of file-level
mining, but the best scores were achieved by setting the minimum cardinality to 20, which
means again that some relevant itemsets were discarded. This can be seen in Figure 4.3:
only the itemsets representing the FM (Command) concern are left, and some itemsets with
higher F1 values than all of the itemsets with cardinality > 20 are discarded.

Setting the minimum number of occurrences to 8 increases the average maximal F1 to
0.18, but it does not make sense to do so as this score is then based on only 1 itemset. As
the itemsets that occurred twice do not seem to be very relevant, we can set the minimum
number of occurrences to 3, but this only leads to a slight improvement in the final score:
0.16.

We also did a small test with the lift but it turned out again that this measure does not
help us in discriminating relevant itemsets.

Again, we compared the result with the random case, following the same procedure as
with file-level mining. The result for the random case was 0.0590, which means that the
result we got for the changesets of JHotDraw is about 3 times better than that.

4.3 Case Study: Tomcat

4.3.1 Application Overview

Apache Tomcat (abbreviated to ‘Tomcat’ in the rest of this document) is “an open source
software implementation of the Java Servlet and JavaServer Pages technologies”6. It is de-
veloped by the Apache Software Foundation, of which the repository is currently at revision

6http://tomcat.apache.org/
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Figure 4.3: Itemsets with maximal F1 for the given cardinality and number of occurrences
(JHotDraw, method-level). Colour intensity and size represent the F1. Itemsets
with F1 > 0.4 are annotated with the corresponding concern identifier.
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796310. It contains a lot more projects than Tomcat alone and a large part of it consists of
imported CVS repositories, some of which date back to 1994.

4.3.2 Evaluation Set

For Tomcat we only have one list of concerns, i.e. the results from fan-in analysis, consisting
of 48 concerns. That analysis was performed on Tomcat version 5.5, so we decided to mine
the part of their repository that eventually ended up in the 5.5.x branches (taking account
of copied paths, as recorded by both CVS and Subversion); this part consists of 13490
changesets.

4.3.3 Results for File-Level Mining

Mining Tomcat’s repository on file-level resulted in 7261 itemsets with an average maximal
F1 of 0.11 (running time: 65 seconds). This score is significantly lower than the score we
got for JHotDraw but it should be noted that we only have one source of known cross-cutting
concerns for Tomcat. Using only fan-in analysis information for evaluating JHotDraw also
leads to a lower score: we get a score of 0.24 as opposed to 0.40 which we got with the
complete concern set.

As for reinforcing changesets, we got a similar result to what we got when mining
JHotDraw on file-level: the results with reinforcement were always better than without.
However, the gains were pretty low: after rounding we still got 0.11 as the final score.

The results for limiting the changeset size were not much different, as the best score we
could get by doing this was again 0.11. The same holds for limiting the itemset size.

Setting a high minimum support led to higher F1 values, just like in the previous cases,
but again this means that we have to discard many relevant itemsets. This is demonstrated
in Figure 4.4, which shows that many itemsets with a low number of occurrences are still
relevant.

The result for the random case was 0.0454, which means that the performance of the
tool-chain based on Tomcat’s changesets (on file-level) was about 2 times better.

4.3.4 Results for Method-Level Mining

Mining Tomcat’s repository on file-level resulted in 5062 itemsets with an average maximal
F1 of 0.03 (running time: 11 minutes).

For analysing the results of reinforcing changesets, we decided to test the intervals that
gave the highest results in the previous cases because testing as many intervals as we did
before would take a very long time. For these intervals we did not get higher F1 scores than
without reinforcement. This result is the same as what we got when doing method-level
mining on JHotDraw.

This time, however, constraining the changeset size did improve the final score signif-
icantly: from 0.02 to 0.07, for a minimum of 40 and a maximum of 400. Just like in the
file-level mining experiment on JHotDraw, this means that we get less itemsets with less
items in it.
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Threats to Validity

For the other parameters, take a look at Figure 4.5. It is interesting to see that there
are many matches for B9 (an instance of the Consistent Behaviour concern type) in the
upper part of the graph and several matches for other concerns in the lower part which
are separated by a gap. If we choose to focus the itemsets that matched B9 by setting the
minimum cardinality to 50, we can indeed increase the final score up to 0.10. When we
combine this with the previously mentioned constraints on the changeset size, which leave
almost only itemsets matching B9, we can even get a score of 0.40. However, we should
keep in mind that having many itemsets that all match one concern is only of limited use.

The result for the random case was 0.0055, which means that the performance of the
tool-chain based on Tomcat’s changesets with the default parameter values was about 4
times better, and the result with various constraints set was even much better.

4.4 Threats to Validity

Some factors may threaten the validity of the results presented above. First of all, we are
not sure if the cross-cutting concern information we used for evaluating the results is good
enough to be conclusive about the applicability of frequent itemset mining for identifying
cross-cutting concerns. It is probably not complete in the sense that it will not contain
all cross-cutting concerns in the analysed subjects. However, it is based on research that
has previously been done on cross-cutting concerns in those systems, so it is probably the
best we can get. It may also be insufficient because as we said earlier, our method looks for
logical coupling between entities, whereas the given information documents relations which
are present in the source code. Therefore, some itemsets may incorrectly be marked as non-
interesting, reducing the overall precision. Another thing to notice is that we could not take
advantage of the fact that file-level mining can also identify non-source-code files as being
part of a concern, as all items in the evaluation sets we used are source code entities.

Second, the selection criteria we used may not be right: we used the F1 score to de-
termine whether an itemset is interesting, but this may not be the right measure. We could
have used a parametrised version of this score instead (Fβ), which weights recall more than
precision or vice versa. However, weighing recall more than precision will simply give a
bias to larger itemsets, and weighing precision more will give a bias to smaller itemsets. It
is doubtful whether this really makes for a more accurate selection criterion.

Third, we used only two test subjects to evaluate our results. It would be nice to use other
test cases for this as well, but then we should also have cross-cutting concern information on
those subjects. At the time of the experiments such information was not available (except
for some small case studies which did not have enough concerns to be relevant test subjects).
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Figure 4.5: Itemsets with maximal F1 for the given cardinality and number of occurrences
(Tomcat, method-level). Colour intensity and size represent the F1. Itemsets
with F1 > 0.4 are annotated with the corresponding concern identifier.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The central research question of this thesis was “Can we apply frequent itemset mining on
version control system data to find cross-cutting concerns in a software system?”. In order
to answer this question, we developed a tool-chain that can mine a version control system
on two different levels of granularity: file-level and method-level, meaning that for each
transaction in the version control system we considered file names and method signatures,
respectively. This gave us a list of so-called changesets: entities (files or methods) that
were committed simultaneously. We implemented reinforcement, which means that we
could combine changesets if they were committed close in time by the same developer
(to compensate for entities that had been committed separately but were still related). By
running a frequent itemset mining algorithm on these, we got itemsets consisting of the
names of entities (files or methods) that were frequently committed simultaneously. In
order to see whether these itemsets can be used to identify cross-cutting concerns, we ran
our tool-chain on two different systems (JHotDraw and Tomcat) and compared the results
with known sets of cross-cutting concerns. We gave a score to each itemset to indicate how
well it represented a concern; we used a score that is commonly used in data mining: the
‘F1’ metric. In addition, we made it possible to adjust the operation of the tool-chain by
tweaking various parameters: reinforcement interval, minimum and maximum changeset
size, minimum and maximum itemset cardinality, minimum and maximum support and
minimum and maximum lift.

As we cannot be completely sure that the sets of cross-cutting concerns we used for
evaluating our approach are correct (in the sense that they describe all concerns in the sys-
tems and that they do not contain false positives), we cannot answer the research question
with a simple ‘yes’ or ‘no’. Nevertheless, we made the following observations during our
research:

• The itemsets we found exhibited low average F1 scores, but the results were always
about 3 times better than the scores for randomly generated itemsets.
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• Reinforcing (combining) changesets improved the F1 scores for file-level mining but
not for method-level mining.

• Tweaking the other parameters did not improve the final score most of the time.

• There is no direct relation between the input parameters and the resulting final score.
This means that ranking the itemsets is not possible.

Still keeping in mind that no firm conclusions can be drawn, the above observations
(especially that we cannot rank the itemsets and that they have low scores) lead us to believe
that frequent itemset mining alone is probably not very suitable to identify cross-cutting
concerns from a version control system. There are still some points to investigate in this
area of research; we discuss these after listing the contributions we made with our research.

5.2 Contributions

With our research we have made the following contributions:

• We have developed a tool to mine frequent itemsets from version control system data
on both file and method level. The tool very flexible in the sense that it can be adjusted
using various parameters.

• We have performed two case studies and did a thorough evaluation to assess the merits
of our approach.

5.3 Future Work

Based on the research we have done, we can make the following suggestions for future
work:

Evaluate with more systems We have tested our approach with two systems for which
several cross-cutting concerns were known. It would be nice to also test it with other
systems, as soon as the concerns in those systems become known and are publicly
available. This would allow one to be more conclusive about the results.

More specific mining As we could not predict well what concerns would be identified by
our technique, we did not focus on specific concern types. However, making the
analysis more specific may improve the results we get. One way to do this would
be to use the extra information that method level mining gives us with respect to the
types of changes that were done. For example, we can detect when the throws clause
of a method has been changed and use this information to focus on the Exception
Propagation concern sort.

Manual analysis We did an automated evaluation as this would make our tests repeatable
and would facilitate comparison with other techniques. However, some of the item-
sets we found may have been relevant as cross-cutting concern candidates whereas
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Future Work

they were not identified as such. By doing a manual analysis of the itemsets, we can
find out whether our technique has found cross-cutting concerns that have not been
identified by other techniques.

Combining with other techniques Some itemsets contained more items than the itemset it
best matched. Although this meant a decrease in precision in our evaluation, it might
be that these items were actually relevant. If so, it will be worthwhile to combine our
technique with another aspect mining technique: incomplete concern candidates from
another technique can then be expanded automatically by applying our technique. A
similar thing was done with identifier analysis in the research of Ceccato et al. [13]:
identifier analysis alone was not precise enough for the purpose of finding cross-
cutting concerns but combining it with other techniques almost always improved the
results. Therefore, we think it is a very promising idea to do the same with our
technique.

Devise probability of entities being committed together When discussing the results of
changing the lift parameter, we found that the expected probability of entities being
committed together was not accurate enough. Creating a better model than just as-
suming that entities are independent of one another may help us in devising a better
measure to determine how interesting an itemset is.

Different repository types or source languages Our technique focused on Subversion repos-
itories and Java source code. As many software projects are now moving towards
more modern, distributed version control systems such as Mercurial and Git, it will
be interesting to see if those repositories contain extra information that we can use to
identify cross-cutting concerns.
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Appendix A

Concerns in JHotDraw and Tomcat

Here we list the cross-cutting concerns in the subjects that we analysed. In the fan-in analy-
sis results, the numbers between parentheses are instance numbers (which are given because
one concern type can have multiple instances).

A.1 Concerns in JHotDraw

A.1.1 Concerns Identified by Dynamic Analysis

ID Concern name
DAT Add text
DAU Add URL to figure
DBF Bring to front
DCE Command executability
DCF Connect figures
DCT Connect text
DFC Manage figure changed event
DFU Figure update
DGA Get attribute
DMF Move figure
DMH Manage handles
DOD Manage figures outside drawing
DP Persistence
DSA Set attribute
DSB Send to back
DU Undo
DVR Manage view rectangle
DV Visitor

A.1.2 Concerns Identified by Fan-in Analysis
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A. CONCERNS IN JHOTDRAW AND TOMCAT

ID Concern name
FA Adapter(1)
FB1 Consistent Behavior(1)
FB2 Consistent Behavior(2)
FB3 Consistent Behavior(3)
FB4 Consistent Behavior(4)
FB5 Consistent Behavior(5)
FB6 Consistent Behavior(6)
FB7 Consistent Behavior(7)
FB8 Consistent Behavior(8)
FB9 Consistent Behavior(9)
FB10 Consistent Behavior(10)
FB11 Consistent Behavior(11)
FC Composite(1)
FD Decorator(1)
FE Exception Handling(1)
FM Command(1)
FO Observer(1)
FP Persistence(1)
FU Undo(1)

A.1.3 Concerns Identified by Identifier Analysis

ID Concern name
IA01 Activation
IA03 Command Execution
IA04 Producer-Consumer
IA05 Event Handling
IA06 Undo
IA08 Visitor
IA09 File Handling
IA10 Handling Mouse Events
IB01 Area Tracking
IB02 Background Drawing
IB03 Managing Display Boxes
IB04 Chopping Figures
IB05 Clearing Figures
IB06 Finding Figures
IB07 Color Choosing
IB08 Connecting Figures
IB09 Constraining Points
IB10 Figure Inclusion
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IB11 Menu Handling
IB12 Managing Views
IB13 Font Handling
IB14 Image Handling
IB16 Create Drawings
IB17 Desktop Management
IB20 Invocation
IB21 Manipulating Figure Handles
IB22 Finding Connections
IB23 Dealing With Selections
IB24 Inserting Figures
IB25 Layout Calculation
IB26 Locating Figures
IB27 Moving Figures
IB28 Handle and Figure Enumeration
IB29 Resource Management
IC01 Performing Actions
IC02 Iterating Over Collections
IC03 Working With Maps

A.2 Concerns in Tomcat

A.2.1 Concerns Identified by Fan-in Analysis

ID Concern name
B1 Consistent behavior (1) (+ Command (1))
B2 Consistent behavior (2)(Redirector - Facade)
B3 Consistent behavior (3)
B4 Consistent behavior (4) - Consistent mechanism for authentication (security)
B5 Consistent behavior (5)
B6 Consistent behavior (6)
B7 Consistent behavior (7)
B8 Consistent behavior (8)
B9 Consistent behavior (9)
B10 Consistent behavior (10)
B11 Consistent behavior (11)
B12 Consistent behavior (12) (+ Visitor)
B13 Consistent behavior (13)
B14 Consistent behavior (14) (+Visitor)
B15 Consistent behavior (15)
B16 Consistent behavior (16)
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B17 Consistent behavior (17) (+ Visitor)
B18 Consistent behavior (18) - Security check
B19 Consistent behavior (19)
B20 Consistent behavior (20)
B21 Consistent behavior (21)
B22 Consistent behavior (22)
B23 Consistent behavior (23)
B24 Consistent behavior (24)
B25 Consistent behavior (25)
C1 Composite(1)
C2 Composite (2)
CE1 Contract enforcement(1) + Command(1)
CE2 Contract enforcement (2)
CE2 Contract enforcement(2)
CE3 Contract enforcement (3) (+ Redirector-Facade)
CE4 Contract enforcement (4)
CE5 Contract enforcement (5)
CE6 Contract enforcement (6)
CR1 Chain of responsibility (1)
CR2 Chain of responsibility (2)
EW1 Exception wrapping (1)
EW2 Exception wrappping (2)
LC Lifecycle (1)
LO Logging
O1 Observer(1)
O2 Observer(2)
R1 Redirector (1)
R2 Redirector (2)
R3 Redirector (3)
R4 Redirector (4)
V Visitor
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[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules be-
tween sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD international conference on Management of data, pages 207–216,
New York, NY, USA, 1993. ACM.

[3] John Anvik and Gail C. Murphy. Determining implementation expertise from bug re-
ports. In MSR ’07: Proceedings of the 4th international workshop on Mining Software
Repositories, page 2, Washington, DC, USA, 2007. IEEE Computer Society.

[4] Elisa Baniassad, Paul C. Clements, Joao Araujo, Ana Moreira, Awais Rashid, and
Bedir Tekinerdogan. Discovering early aspects. IEEE Software, 23(1):61–70, 2006.

[5] Keith Bennett. Legacy systems: Coping with success. IEEE Software, 12(1):19–23,
1995.

[6] Silvia Breu and Jens Krinke. Aspect mining using event traces. In ASE ’04: Proceed-
ings of the 19th IEEE international conference on Automated Software Engineering,
pages 310–315, Washington, DC, USA, 2004. IEEE Computer Society.

[7] Silvia Breu and Thomas Zimmermann. Mining aspects from version history. In ASE
’06: Proceedings of the 21st IEEE/ACM international conference on Automated Soft-
ware Engineering, pages 221–230, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[8] Silvia Breu, Thomas Zimmermann, and Christian Lindig. Mining Eclipse for cross-
cutting concerns. In MSR ’06: Proceedings of the 3rd international workshop on
Mining Software Repositories, pages 94–97, New York, NY, USA, 2006. ACM.

45



BIBLIOGRAPHY

[9] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé. On the
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