
Managing Clones Using Dynamic
Change Tracking and Resolution

Helping Developers to Cope with Changing Clone Fragments

Michiel de Wit

Managing Clones Using Dynamic
Change Tracking and Resolution

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Michiel de Wit
born in Rotterdam, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2008 Michiel de Wit. All rights reserved.
Document was formatted using MiKTeX 2.6.
Transition diagrams created with GraphViz Dot 2.21.
UML diagrams created with UMLet 9.03.
Charts created with Microsoft Excel 2007.

Managing Clones Using Dynamic
Change Tracking and Resolution

Author: Michiel de Wit
Student id: 1015877
Email: mail@MichieldeWit.nl

Abstract

By many, code cloning is nowadays recognized as a threat to the maintainability of
source code. Many clone detection strategies have been proposed and a considerable
number of removal strategies, mostly based on refactoring techniques, has been shown.
However, recent research has showed that clones can often not be removed easily and
other strategies, based on clone management need to be developed. In this thesis, a
clone management strategy based on dynamic inferring of clone relations based on
monitored clipboard activity is described. A tool is introduced that is able to track live
changes to clones and offers several resolution strategies for inconsistently modified
clones. The adequacy, usability and effectiveness of this Eclipse plug-in have been
studied in an experiment, the results of which show that developers actually do see the
added value of such a tool but have very strict requirements with respect to its usability.

Thesis Committee:

Chair: Prof.dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. S.O. Dulman, Faculty EEMCS, TU Delft

mail@MichieldeWit.nl

To my father, who involuntarily taught me the insignificance of achievements,
but who, I trust, would be very proud of what I achieved.

timber [’timb@] timmerhout o, (ruw) hout o; bomen; bos o; stam; balk; spant o; fig ma-
teriaal; -ed houten; met houten begroeid; line boomgrens; -merchant houtloper;
-yard houtopslagplaats [31]

Preface

This thesis is the product of many, but only one of them is credited for it. That does not seem
fair. In the past eleven months I have worked very hard to finally finish what I started so long
ago. And this thesis would certainly never have got finished without the great care, support
and insights of my dream-come-true girlfriend Judica. She has persistently supported me
and motivated me to go on. And quite frankly, that was often very necessary.

Ever since I received by bachelor degree I experienced this strong cosmic resistance,
holding me back from my master degree. I say ‘cosmic resistance’, but I am quite sure
there were no force fields, clone armies or other intangible powers withholding me. It was
more like a combination of bad cards and a poor poker face.

Nevertheless, after three vain attempts this time I actually made it to the end. Chances
are that I drop dead just before I receive my degree, the certificate might get lost or my hard
disk gets erased before I can get this thesis printed. But I did finish it and honestly, I am
quite proud of it.

To get back to all these people that cooperated to this thesis. First of all, there is Andy,
my daily supervisor. He has been very open minded and motivating and always gave me
the impression that he had faith in me and what I was doing. Really great! Than there
are all other people who voluteered for my experiment. Their input was invaluable for this
thesis. I am very pleased they wanted to trade some of their invaluable time for a precious
chalkboard coffee mug. Not to forget, my professor, Arie van Deursen. He has consistently
supported me in the many attempts I made to graduate. And finally I need to thank my
family, particularly my mother, for all support and trust they gave me.

Michiel de Wit
Delft, the Netherlands

February 4, 2009

ix

Contents

Preface ix

Contents xi

List of Figures xvii

List of Tables xix

List of Listings xxi

1 Introduction 1
1.1 About code cloning . 1

1.1.1 Defining code clones . 2
1.1.2 Clone Typology . 2
1.1.3 Good or Bad? . 4
1.1.4 Managing Clones . 5

1.2 Thesis Project . 6
1.2.1 Research Questions . 6
1.2.2 Project Goals . 7

1.3 Thesis Structure . 7

2 Conceptual Design 9
2.1 About Mann’s Operators . 9

2.1.1 Copy and Paste Scenarios . 10
2.1.2 Replacement Operators . 11

2.2 Prototype Concept . 11
2.2.1 Inferring the Operations . 12

xi

CONTENTS

2.2.2 Clone Change Resolution . 12
2.2.3 Resolutions . 13

2.3 Requirements Analysis . 15
2.3.1 Use Cases . 16
2.3.2 Functional Requirements . 17
2.3.3 Constraints . 19
2.3.4 Non-functional Requirements . 19

2.4 Summary . 20

3 Technical Research and Prototyping 21
3.1 Main Features . 21
3.2 Capturing Clipboard Activity . 22

3.2.1 Option 1: Replace the JavaEditor class 23
3.2.2 Option 2: Subclass the JavaEditor class 23
3.2.3 Final option: Dynamically replace clipboard actions 23

3.3 Hyperlinking Clones . 24
3.3.1 Marker Resolution . 24
3.3.2 Drawback of Technique . 25

3.4 Capturing Clone Changes . 25
3.4.1 Grouping Concerns . 25
3.4.2 Final Grouping Scheme . 26

3.5 Summary . 27

4 CLONEBOARD Implementation 29
4.1 Decomposition . 29
4.2 Bootstrapping . 30

4.2.1 Component Initialization . 31
4.2.2 Logging . 32

4.3 The Clone Model . 32
4.3.1 Wrapping Eclipse’s Marker Model 33
4.3.2 Representing Clones as Markers 34
4.3.3 Clone Interface Hierarchy . 35
4.3.4 Clone Containers . 35

4.4 Interfacing with Text Editors . 36
4.4.1 Managing Information . 36
4.4.2 Reversing Relations . 37
4.4.3 Opening Editors . 38

xii

CONTENTS

4.5 Capturing Copy and Paste Operations . 39
4.5.1 Registering Clones . 39
4.5.2 Normalization and Classification 40
4.5.3 Cutted and External Fragments . 42

4.6 Detecting and Handling Clone Changes 42
4.6.1 Detecting and Grouping Changes 42
4.6.2 Calculate Differences . 44
4.6.3 Resolving Changes . 45
4.6.4 Parameterizing Clones . 46
4.6.5 Applying Changes to Clone Family 46
4.6.6 Determining Clone Change Resolution Applicability 47

4.7 User Interface . 47
4.7.1 Visualizing and Hyperlinking Clones in Code 47
4.7.2 CloneView . 49
4.7.3 Clone Properties Window . 50
4.7.4 Resolution Window . 52

4.8 Considerations . 52
4.8.1 CloneBoard Extension Points . 52
4.8.2 Support for Code Repositories . 52
4.8.3 Alternative Resolution Querying 53

4.9 Summary . 53

5 Experiment 55
5.1 Experimental Design . 55

5.1.1 Variables . 56
5.1.2 Experiment Type . 56
5.1.3 One-group Pretest-posttest Design 57
5.1.4 Selecting a Case . 58
5.1.5 About RoboCode . 59

5.2 Pretest and Posttest . 60
5.2.1 Pretest design . 60
5.2.2 Posttest Design . 61

5.3 Programming Assignments . 63
5.3.1 Initial Design . 63
5.3.2 Final Assignments . 63
5.3.3 Additional Documentation . 64

5.4 Selection of Subjects . 64

xiii

CONTENTS

5.5 Experiment Setup . 65
5.6 Pilot . 65
5.7 Experiment Execution . 66
5.8 Results . 66

5.8.1 Subject Profile . 67
5.8.2 Working with CLONEBOARD . 68
5.8.3 Resolutions . 69
5.8.4 Tool Evaluation . 70
5.8.5 Experiment Rating . 72
5.8.6 Log Data . 73

5.9 Analysis . 74
5.9.1 Adequacy . 74
5.9.2 Usability . 75
5.9.3 Effectiveness . 75
5.9.4 Usefulness of the Resolution Mechanism 76

5.10 Threats to Validity . 76
5.10.1 Internal Validity . 77
5.10.2 External Validity . 77

5.11 Summary . 78

6 Related Work 79
6.1 Linked Editing . 79
6.2 Linking Copied Identifiers . 79
6.3 Tracking Clones . 80
6.4 Dynamic Clone Detection . 80
6.5 Other Work . 81

7 Conclusions and Future Work 83
7.1 Conclusions . 83

7.1.1 Implementing the Mann Operations 83
7.1.2 Change Developer Habits to Better Contain Clones 84
7.1.3 Mann Operations Used to Enforce Clone Consistency 85
7.1.4 Effectiveness of Mann Operations in Reducing Clone-related Prob-

lems . 85
7.2 Contributions . 86
7.3 Future Work . 86

7.3.1 Longitudinal Study . 86

xiv

CONTENTS

7.3.2 Further Development of CLONEBOARD 87
7.3.3 Study Clone Change Patterns . 87
7.3.4 Implement Mann’s Operations . 87

Bibliography 89

A Glossary 95

B Pretest Questionnaire 97
B.1 Personal Background . 97
B.2 Development Experience . 97
B.3 Attitude towards Code Quality . 98
B.4 Attitude towards Cloning . 98
B.5 Expectations for a Tool like CLONEBOARD 98

C Posttest Questionnaire 101
C.1 Assignments Experience . 101
C.2 Development Style . 101
C.3 UI Experience . 102
C.4 Resolution Window Experience . 102
C.5 Resolution Frequency . 102
C.6 Resolution Value . 103
C.7 CLONEBOARD Perception . 103
C.8 UI Problems . 103
C.9 Experiment Rating . 104
C.10 Comments . 104

D Programming Assignments 105
D.1 Exploring your robot . 105
D.2 Extend the Enemy’s toString method . 105
D.3 Implement better targeting routines . 106
D.4 Getting closer to your enemy . 106
D.5 The final round . 107

E Experiment Results 109
E.1 Pretest . 109
E.2 Posttest . 110
E.3 Log Data . 112

xv

CONTENTS

F Experiment Documentation Facsimiles 113
F.1 Introduction . 114
F.2 Pretest Questionnaire . 115
F.3 Case Documentation . 117
F.4 Programming Assignments . 119
F.5 Posttest Questionnaire . 121
F.6 Reference Sheet . 125

Index 127

xvi

List of Figures

1.1 A clone visualization technique using stripes and bars 5

2.1 Use cases for the CLONEBOARD plug-in . 16

3.1 A marker resolution popup used to provide clone navigation options. 24
3.2 State transition diagram of clone change grouping scheme. 26

4.1 Basic decomposition of CLONEBOARD. 30
4.2 Classes and interfaces involved in the CloneBoard component. 31
4.3 Sequence diagram of component bootstrapping process. 32
4.4 CLONEBOARD’s object model and Eclipse’s marker model. 34
4.5 The resource marker types defined by CLONEBOARD. 35
4.6 The IClone interface and its inheritors. 36
4.7 Model of text editor integration entities. 37
4.8 The CloneManager and the interfaces it implements. 38
4.9 Sequence diagram of a text copy operation. 39
4.10 Sequence diagram of a text paste operation. 40
4.11 Determination scheme for heuristic fragment type detection. 41
4.12 The CloneChangeManager and the functionality it implements. 43
4.13 Implementation hierarchy of clone resolution classes. 45
4.14 The CloneBar is used to subtly indicate the presence of clones. 49
4.15 The CloneView gives a quick overview of a source base’s clone fragments. . . . 49
4.16 The Generic Elipse properties dialog is used to show clone properties. 50
4.17 The clone change resolution window. 51

5.1 In RoboCode, artificially intelligent agents struggle for survival. 59

xvii

List of Figures List of Figures

5.2 Personal background of experimental subjects. 67
5.3 Developer profile of experimental subjects. 67
5.4 Subjects’ experiences with CLONEBOARD and the assignments. 68
5.5 Subjects’ experiences with the clone change resolutions. 69
5.6 Subjects’ evaluation of CLONEBOARDas a clone management tool. 71
5.7 Expectations for and perceptions of CLONEBOARD. 72
5.8 The subjects’ rating of the experiment . 73
5.9 CLONEBOARD usage statistics extracted from log files. 73

xviii

List of Tables

2.1 Five common copy and paste scenarios and their intrinsic risks 11

4.1 Heuristics used to determine clone change resolution applicability. 48

5.1 The experimental subjects’ opinions about the 7 clone change resolutions. . . . 70

xix

List of Listings

1.1 Two semantic clones, the result of so called ‘mental macros’ 3
1.2 Two consistently renamed type II clones 4
2.1 Two clones with variable bodies . 13
4.1 Example of log data written by the CloneBoardLogger class. 33
4.2 Production rules used by CLONEBOARD’s Java tokenizer in EBNF. 44

xxi

Chapter 1

Introduction

In the early days, humans used to scribble things down in clay. The invention of ink and
paper made wordy writing a lot less cumbersome. It actually became feasible to spread
knowledge by duplicating larger pieces of text, whole books eventually. Since it was first
written, the Bible has been copied by hand thousands of times. In this copying, errors were
made [37], sometimes leading to substantial semantical differences and inconsistencies.

One characteristic of human beings that clearly sets them apart from other lifeforms, is
their ability to use advanced tools. Although other animals like chimpanzees and crows are
known to use instruments too [9], homo sapiens surely is the only animate being that uses
computers to ease its life.

Using computers, copying is a lot easier. Computers are used to copy books, to copy
pictures and they are used to copy software source code as well. Copying source code is a
practice that is quite common among software developers nowadays [38]. Developers copy
for all sorts of reasons [36], but fact is that they copy quite a lot [5, 52]. And in this copying
there is, just like in copying big books, the risk of unintentionally introducing errors and
inconsistencies. As source code tends to change more often than for instance the Bible,
there is the additional problem of keeping all copied fragments in sync.

Duplicate pieces of source code are often referred to as ‘clones’. This master thesis is
about managing such clones. As the volume of clones in a given source base grows, so will
the complexity of coping with all these duplicates increase. In the following sections, the
context for this master thesis is sketched and the research questions are outlined.

1.1 About code cloning

When ordinary people are asked about ‘cloning’, chances are that a sheep named Dolly1 will
be mentioned [65]. Some other people may relate ‘clones’ to contemporary SF-movies2

1Actually, her real name was 6LL3.
2Those of George Lucas in particular

1

1.1 About code cloning Introduction

whereas a small remainder will probably think of botanical techniques to multiply plants
asexually.

Obviously, code cloning has something to do with duplication. When programmers are
developing new software or revising existing code, they will likely use tools that offer some
sort of clipboard functionality. A developer can put snippets of code on this clipboard,
often by means of the infamous Ctrl-C key combination, and reuse these fragments later on
as often as they see fit [42]. Although most developers will probably not refer to this as
code cloning, this is exactly what they are doing. However, using a clipboard is only one
way in which code clones can be created.

1.1.1 Defining code clones

Definitions for ‘clone’ are as many as there are researchers in the field, some very vague,
others overly specific. One of the most useful definitions is that by Basit and Jarzabek,
stating that “code clones (. . .) are code fragments of considerable length and significant
similarity.” [7] This definition identifies clones as non-trivial fragments (“of considerable
length”) that share sufficiently many traits to consider them similar and related.

It is easiest to see code cloning as a form of duplication, but it can be more convenient
to consider it a form of redundancy [32], as not all cloning is the result of deliberate dupli-
cation. Some clones are the result of what are sometimes called ‘mental macros’ [8]. As
Baxter et al. put it:

“(. . .) many repeated computations (. . .) are simple to the point of being
definitional. As a consequence, even when copying is not used, a program-
mer may use a mental macro to write essentially the same code each time a
definitional operation needs to be carried out.” — [8]

Mental macros, or ‘idioms’ [36] are small, relatively simple pieces of logic that are
used often, but have for some reason never been abstracted into a higher language construct.
Sometimes, it is mainly the language’s lack of expressiveness that causes these idiomatic
duplications [38, 59], but the cause may just as well be laziness or a developer’s reticence
to create a new routine for his mental macro.

An interesting collection of such mental macros is sketched by Van Deursen [21]: in
this article, 21 real life examples of ways to express the calculation to determine leap years
are shown. Two examples from this article are shown in listing 1.1.

1.1.2 Clone Typology

To better capture the differences between clones that are exact copies of previously written
code, possibly created by using a digital clipboard, and clones that are the result of mental
macros, various researchers have proposed clone classification schemes. Some of these
taxonomies mainly define levels of similarity [10, 20, 52], where others aim to differentiate
between different kinds of code fragments that can be cloned [6, 35].

2

Introduction 1.1 About code cloning

Listing 1.1: Two semantic clones, the result of so called ‘mental macros’� �
1 Leap :=
2 (Y mod 4 = 0) xor
3 (Y mod 100 = 0) xor
4 (Y mod 400 = 0) ;
5

6 ...
7

8 if Y mod 400 = 0 then
9 Leap := true

10 else if Y mod 100 = 0 then
11 Leap := false
12 else if Y mod 4 = 0 then
13 Leap := true
14 else Leap := false ;� �

The most commonly used clone classification is that by Bellon and Koschke [10], based
on previous work by Davey et al. [20]. In this taxonomy, three separate types of clones are
distinguished:

• Type 1. Exact copy without modifications, with the possible exception of differences
in lexically trivial tokens (e.g. spaces and comments).

• Type 2. Syntactically identical copy in which only variable, type, or function identifiers
were changed.

• Type 3. Copies with more modifications; statements were changed, added, or removed.

As can be seen in the list, the type number is a direct indication for the amount of
differences allowed between clone instances. Clones of the first type are basically just
identical. Because most programming language grammars include some meaningless token
types (such as spaces, line breaks, and comments), fragments that differ only in trivial
lexemes are still considered identical.

When a code fragment is being copied to serve as a template [38], parts of the fragment
will be changed after duplicating it. Depending on the level of changes, these clones will
either be classified a type 2 or type 3 clone. For type 2 clones, only identifier renamings
are acceptable differences, where type 3 clones can have more elaborate changes. In earlier
literature, type 2 clones are often referred to as ‘parameterized clones’ [5], based on the idea
that for such clones the names of the identifiers used are irrelevant and could be considered
parameters to a clone generating function. An example of two logically identical functions
that are type 2 clones is shown in listing 1.2.

A fourth type of clones is often added that is used to denote clones that are not similar
in any syntactical way, but do describe the same or similar logic. Such clones are often
called ‘semantic clones’. Koschke et al. define semantic clones as a pair (A,B) such that

3

1.1 About code cloning Introduction

Listing 1.2: Two consistently renamed type II clones� �
1 public double square(double x) {
2 double square = x * x;
3 return square;
4 }
5

6 public int pow2(int value)
7 {
8 // Multiply value by itself
9 int result = value * value;

10

11 // Return resulting square
12 return result;
13 }� �

“B subsumes the functionality of A, in other words, they have ‘similar’ pre and post condi-
tions.” [42] The two semantic clones shown in listing 1.1 clearly both implement the same
logic, thus adhering to the same pre and post conditions, but their syntactic differences make
it hard to identify these clones.

1.1.3 Good or Bad?

Knowing about the existence of code clones, one may wonder whether having clones in
source code is a good or a bad thing. Although no clone is the same, it is generally true
that clones have a negative impact on the maintainability of a software corpus [36, 41, 55].
A recent experiment of Lozano and Wermelinger [50] shows that cloning often increases
maintenance effort.

To give an impression of the sorts of problems that cloning may lead to, the following
list shows some of the most common drawbacks:

• Code growth. Being a form a redundancy [32], duplicated code will invariably result
in a larger code base, causing longer compilation times and higher storage costs than
necessary.

• Dead code. Often, code is duplicated to prevent regression [19]. This kind of cloning
can lead to dead code, needlessly complicating comprehension of a software system.

• Increased cost of extension. Code cloning can have a negative effect on the cost of
implementing new features. Extensions will have to be applied consistently, carefully
updating all instances of a clone.

• Introducing bugs. By copying and pasting existing code, bugs can easily be propa-
gated [45, 38]. Furthermore, less competent developers may be altering complicated
code of a coworker, without actually understanding the code, thus possibly introducing
bugs, too.

4

Introduction 1.1 About code cloning

Figure 1.1: A clone visualization technique using stripes and bars to show what parts of
code have been cloned.3.

• Bug camouflaging. Code may become so heavily duplicated, that developers might
start to consider it an idiom [36] and will no longer doubt its correctness, creating perfect
hideouts for persistent bugs and inefficient code.

• Confusion. Developers may get confused by similar implementations of the same al-
gorithm. Although the implementations may be equivalent, developers may still believe
that there is a reason for the existence of multiple implementations that they may just
have overlooked.

• Motivating bad design. High degrees of cloning may tempt developers to lower their
standards, using bad designs instead of higher quality solutions, fearing to put a flag on
a mud barge.

Apart from these drawbacks, cloning may sometimes be helpful, too. In an article
with the captivating title “‘Cloning Considered Harmful’ Considered Harmful”, Kapser and
Godfrey [36] show that cloning has its benefits, too. Often, developers duplicate existing
code as a starting point to develop new code. This technique, dubbed ‘forking’ by Kapser
and Godfrey helps developers write new code more quickly. Forking happens especially
often when drivers for a new model of an existing device are being developed. The practice
of forking relieves developers of their responsibility to alter existing stable code to add
abstractions and as such is a good way to reduce regression risks [19]. Brandt et al. reason
that copy and pasting code helps to ease the task of writing code, as it allows developers to
use rule-based rather than skill-based behavior [12].

1.1.4 Managing Clones

Studies have shown that software corpora tend to contain large amounts of code clones,
ranging from 7% to 23% [40]. In one case, a bug was shown to have been propagated to
twelve different places by copying and pasting before it was finally found and fixed on all
twelve locations [38]. The only reason the developers were able to find all twelve instances

3Illustration taken from [58].

5

1.2 Thesis Project Introduction

of this clone, was because of a rather specific comment included in the fragment. Obviously,
a better clone management scheme could have prevented all this misery easily.

A lot of research effort has been put into detecting clones [4, 8, 34, 42], but the subject
of managing clones has received relatively little attention. One reason for this discrepancy is
probably due to the fact that clone detection is mainly an algorithmic problem, considered a
‘true computer science’ problem by most, whereas clone management is more about change
management and business tactics. In the last few years, however, an increased interest in
the management problem is showing, leading to all sorts of new insights.

Techniques have been proposed for tracking clones [22, 45], visualizing clones [58]
(cf. figure 1.1) and refactoring code to remove clones [24, 15]. However, most of these
techniques focus on either showing cloning or removing cloning. As case study results
suggest that about 50% of clones found in source bases can not be refactored [39], more
effort will be needed to support developers in containing code clones and helping them to
update and maintain cloned fragments.

1.2 Thesis Project

In a recent publication by Zoltán Mann [51], an interesting idea is formulated that might
help to gather clone information while code is written and not just in retrospective as cur-
rently is common [41]. The concept is quite simple: Mann states that by replacing the
copy and paste operations supported by most development environments with a set of well-
defined cloning operations, the developer’s duplication intentions can be better modeled.
The operations proposed by Mann add meaning to copied fragments, stating whether the
copied fragments are meant to remain identical, are subject to minor changes or are copied
for other reasons.

Using the information gathered by such new copy operations, new possibilities for clone
containment arise. If a developer is encouraged to specify the relation between copied frag-
ments, this relation can than later be visualized and enforced by the development environ-
ment, possibly leading to more clone-awareness and less bugs due to inconsistently altered
clone fragments.

1.2.1 Research Questions

Implementing and evaluating a tool based on Mann’s ideas will be the goals for this master
project. Mann is quite convinced his approach will help developers to better cope with
cloning at a minimal cost of having to specify some additional information during the act
of copying and pasting. Based on this conception, the following questions on which to base
research work arose:

• Question #1. Can the copy and paste replacements described by Mann be realistically
implemented in a programmer’s development process and coding environment?

6

Introduction 1.3 Thesis Structure

• Question #2. Are developers willing to alter existing copy and paste habits to help
contain code clones?

• Question #3. In what ways can the relations established by using Mann’s operations be
used to enforce consistent editing of clones?

• Question #4. Will Mann’s operations help reduce cloning related problems?

1.2.2 Project Goals

Starting with the research questions stated above, a plan was conceived to find answers,
stating several project goals. Each of the goals aims to help find the answer to one or more
research questions and at the same time serves as mile stones that determine the project’s
schedule. Based on the proposed plan stated in section 5.2.2 of in the literature study report
that precedes this thesis [66], the following will be the goals for this thesis project:

• Implementation of Mann’s operations. The new operators, replacing the old copy
and paste commands, will have to be implemented in either an existing development
environment or in a prototype environment created for the experiment. Implementation
will have to be such, that it would be sufficiently usable in a real production environ-
ment.

• Implementation of relation visualization and enforcement. Once the clone relations
can be established between code fragments using the new operations, appropriate visu-
alizations and enforcement mechanisms will have to be implemented. Visualizations
can remain quite simple, for instance by adding marks in the margins of the cloned code
fragments. Clone relation enforcement will be more difficult to implement, especially
in the case of clone relations in which small mutations are permitted.

• Experiment. Once a prototype has been constructed, it should be evaluated by means
of an experiment. Actual developers will have to be questioned about their experiences
after a reasonable exposure to the prototype and data about the use of each of the op-
erations needs to be logged for later analysis. A longitudinal study showing possible
benefits to clone management, however, is not likely to be feasible in the scope of a
master thesis project.

• Evaluation of results. The results gathered by means of the experiment will have to
be evaluated and related to the original research questions. New questions are likely to
arise and recommendations for future development of similar tools are to be listed.

1.3 Thesis Structure

The remainder of this thesis will roughly follow the same structure as the project goals
stated above. Each of the following chapters will discuss a separate stage of the project and
will document both the end results of each phase and the steps that led to these outcomes.

In the next chapter, the process of translating Mann’s general ideas into a prototype
tool useful for developers is described. Mann’s operations are explained and investigated in

7

1.3 Thesis Structure Introduction

more detail. Using basic design techniques, a set of design specifications is drawn up to set
the bounds for a prototype tool.

As experience is often a better adviser than dry theory, prototypes were built to explore
the implementation options for some of the pivotal features of the prototype to be build.
Chapter 3 reports on the most important findings.

In chapter 4, the implementation of an Eclipse plug-in that realizes Mann’s operations
will be described. This chapter will both describe how the basic operations were realized
and how additional visualization and enforcement were added. Using common schema
techniques, blue prints of the most interesting parts of the prototype will be given.

Chapter 5 details the experiment that was conducted to evaluate Mann’s operations in
a controlled setting. Both the experiment’s design, including the measurement tools used,
and the actual execution of the experiment are documented. A detailed report of the data
produced as part of the experiment is documented as part of the appendices.

Before drawing any conclusions, chapter 6 relates the work done as part of this project
to recent work by other researchers. By doing so, the relevance of this project’s outcomes
can be better judged and related to the rest of the relevant scientific corpus.

In the final chapter, chapter 7, the outcomes of this research project are evaluated and
conclusions are drawn. The research questions stated earlier in this introduction are recon-
sidered and answered by referring to the outcomes of the conducted experiment.

A number of appendices is added to this thesis. In the extra chapters, the questionnaires
and programming assignments used in the experiment are printed. Furthermore, the data
gathered with the experiment is included in tabular form.

8

Chapter 2

Conceptual Design

In the previous chapter, the operators proposed by Mann [51] to replace existing copy and
paste commands in code editing environments were mentioned briefly. These operations
were proposed to help prevent inconsistencies that are typically caused by sloppy code
duplication. In this chapter the process of designing a prototype tool based on Mann’s
proposed operators is discussed. Prior to a description of the prototype, the Mann operations
are detailed, such as to give a deeper understanding of what the prototype is to realize. In
the next chapter, the actual implementation process is detailed.

2.1 About Mann’s Operators

The first question that needs to be answered about the operators proposed by Mann is: “Why
are they needed?” Mann gives a clear answer to this question in his article:

“Many software developers know the feeling of (. . .) debugging a program
only to discover (. . .) that the error stemmed from copy-pasted code segments
that had become inconsistent in subsequent editing. (. . .) Given the extensive
use of copy-paste operations and their tendency to cause inconsistencies, there
is clearly a pressing need to rethink current editor programs.” — [51]

Surveys by LaToza et al. show that 59% of developers feel that finding all instances
of duplicated code is a serious problem [48]. To aid developers in coping with clones and
fighting bugs introduced by inconsistent clone editing, several solutions come to mind. One
solution often suggested by computer scientists is to remove the code redundancy and thus
prevent inconsistent editing altogether. Actually, this solution resembles the solution that
most database engineers propose when redundancy issues occur: normalization. By normal-
izing such that redundancies are eliminated, the need to keep duplicate entities synchronous
is removed. However, just like in database design, normalization is not always possible or
desirable and techniques to support redundant data have to be introduced.

Mann pleads to do just the same with duplicated code: to implement techniques that help
keep redundant code consistent. As it is generally quite hard to differentiate between code

9

2.1 About Mann’s Operators Conceptual Design

duplication that is due to semantic redundancy and duplication that is inherent to the lan-
guage’s grammar, it is necessary to actively include the developer in the process of guarding
code consistency. Mann proposed to do this as follows:

“One solution is to replace cut, copy, and paste with operations that correspond
directly to the intended semantics behind their use. With these operations, the
user can specify semantic relationships among copied objects, and the editor
program can use that information to help in the long-term support of those
relationships. It would thus avoid the inconsistencies that currently arise from
the use of cut, copy, and paste.” — [51]

2.1.1 Copy and Paste Scenarios

In his article, Mann introduces five typical scenarios involving the clipboard. Some of these
scenarios have the potential to cause later inconsistencies. Furthermore, these five scenarios
help to get a better impression of the reasons developers have for using the clipboard during
their programming work.

• Cut to delete. First of all, developers may be using the clipboard functionality of their
development environment just to delete a specific code fragment. This may just be a
bad habit or a way of assuring the removed code can be easily restored, in case this may
be necessary. Anyhow, this type of clipboard use is harmless with respect to causing
possible inconsistencies.

• Cut and paste to move. The intended use of the cut and paste command sequence is
to move code. The clipboard is used as a generic storing place for code while it is
being moved. Although in its base form this operation is harmless – after all, no redun-
dancy is created – the moved data will stay on the clipboard and can thus potentially be
duplicated later on.

• Copy and paste to duplicate. The riskier scenarios involve the copy and paste com-
mand sequence. Code is placed on the clipboard to be replicated at one or more loca-
tions later on. Ideally, a developer would copy and paste only to duplicate. Identifiers,
like variable names, are likely candidates to be copied and pasted in this manner [38].
Essential to this scenario is, that the developer does intend to duplicate only; the copied
fragment is not to be modified later on, but just serves as a form of inevitable redun-
dancy.

• Copy and paste for templating. When larger code fragments are duplicated, chances
are that they are not meant to be copied literally, but rather serve as a template for a
similar piece of code that needs to be written. Templating is a common reason for code
duplication [36] and has the potential to introduce rather persistent inconsistencies.

• Copy and paste without a logical connection. Other reasons may exist for duplicat-
ing code. As programming languages typically contain a lot of structure elements,
chances are that a developer will be copying and pasting those, too. The logical connec-

10

Conceptual Design 2.2 Prototype Concept

Scenario Risk of inconsistencies
Cut to delete Low
Cut and paste to move Low
Copy and paste to duplicate Medium to high
Copy and paste to create a template High
Copy and paste without logical connection Medium

Table 2.1: Five common copy and paste scenarios and their intrinsic risks

tion between the source and target of a copy and paste operation on such elements may
be weak or even be non-existing. Risks for code inconsistencies are much lower here.

2.1.2 Replacement Operators

The aforementioned five copy and paste scenarios are summarized in table 2.1, indicating
their associated risk of introducing inconsistencies. To counter these risks, Mann introduces
four operations that are to replace the standard cut, copy and paste operations.

• Move. With the move operator, a code fragment can be moved. It is just like the cut
and paste command sequence, without the code fragment remaining on the clipboard.

• Copy-identical. A code fragment is duplicated and kept synchronous with the original
fragment automatically.

• Copy-and-change. Duplication, but with the constraint that the user must change the
fragment after duplication.

• Copy-once. This operator copies a fragment, without adding further constraints. As
such, this operator emulates the original copy and paste commands.

Mann suggests that the relations established by these operations should be maintained
by the development environment automatically. In practice, this means that the copy-
identical and the copy-and-change operations need extra attention, whereas the other two
operations basically emulate conventional clipboard use.

2.2 Prototype Concept

The copy and paste replacement operators by Mann could be implemented straight forward
in a development environment. However, chances are that most developers will not use
them: the copy and paste shortcuts are used so thoughtless by developers, that it will be
hard to alter these ‘instincts’. Therefore, a slightly modified version of Mann’s ideas is
proposed: keep the original copy and paste operations, but infer the intended operation as
soon as the cloned code fragment is modified. When the clone is never modified, the clone-
identical operation is implicitly assumed. In this way, the strain on developers is reduced,
while Mann’s clone relations can still be captured and enforced.

11

2.2 Prototype Concept Conceptual Design

2.2.1 Inferring the Operations

Inferring the Mann clone relations is not quite trivial, but a simple and effective strategy
was conceived. This strategy is based on always inferring the most restrictive operator and
loosen the constraints as required. Furthermore, the move operator can be easily inferred, as
this is indicated by the use of the cut operation instead of copy. This leaves three operations
to infer. Sorted on restrictiveness, this yields the following determination list:

• Copy-identical. Initially, a fragment is not changed after duplication, so the copy-
identical constraint holds.

• Copy-and-change. As soon as the fragment is changed, the constraints can be weak-
ened to copy-and-change.

• Copy-once. If more elaborate changes are performed, all constraints can be removed
completely to emulate the copy-once operator.

2.2.2 Clone Change Resolution

Using this simple scheme to infer the Mann operations significantly reduces the effort re-
quired of the developer, thus enhancing the chance of successful adaptation. To make weak-
ening constraints on cloned code fragments not too easy, a mild barrier was deemed neces-
sary. Without such a noticeable ‘bump’, developers would presumably not have a sense of
being restrained in their cloning behavior at all, thereby effectively eliminating the possible
benefits of Mann’s operators. Although this barrier should obviously not be too obtrusive,
research indicates that cloned code is actually edited less frequent than other code [43], so
that developers will not be likely to get hindered in their daily work too much.

As a solution to this issue, the concept of ‘clone change resolution’ was introduced.
That is, as soon as a clone – created by copy and pasting – is modified, this change has to be
resolved to maintain a consistent clone model. The term ‘resolution’ is used deliberately, as
this suggests the existence of some sort of problem that needs to be resolved.

The clone model, the set of all clone relations in a source base, is defined to be consistent
if all related clones are either equal or contain well defined modifications. To keep the initial
prototype simple, only one type of modification is considered well defined: simple token
replacement. Such replacements, which involve only substitution of single tokens, result in
parameterized clones [4].

More complex modifications might be considered later on, but were deemed too com-
plex to fit within the scope of this project. Among such more complex differences would
be substitutions of one or more tokens by a different number of other tokens and variable
bodies, that is clones of which only a certain prefix and postfix are equal, but that have dif-
ferent contents (cf. listing 2.1, where the bodies on lines 4–5 and 15–17 are variable). Such
modifications are harder to describe and would require advanced clone descriptors, such
as those described by Duala-Ekoko and Robillard [22]. Furthermore, allowing for more
complex differences weakens the cloning relation and may arguably lead to rather arbitrary
clones with insignificant similarity.

12

Conceptual Design 2.2 Prototype Concept

Listing 2.1: Two clones with variable bodies� �
1 public double distance(Point p) {
2 assert p != null;
3

4 double distance = Math.sqrt(Math.pow(this.x - x, 2) +
5 Math.pow(this.y - y, 2));
6

7 return distance;
8 }
9

10 ...
11

12 public double distance(Point p) {
13 assert p != null;
14

15 double dx = thix.x - x;
16 double dy = this.y - y;
17 double distance = Math.sqrt(dx * dx + dy * dy);
18

19 return distance;
20 }� �

2.2.3 Resolutions

Based on the Mann operators and the determination list for inferring the operators described
in section 2.2.1 a basic set of clone change resolutions was compiled. These resolutions are
meant to deal with a clone change, resolving the inconsistency that was created by only
modifying one clone.

2.2.3.1 Unmark Clones

The most basic strategy to cope with inconsistently modified clones is to just forget about the
clone relation1. This rather trivial resolution actually emulates Mann’s copy-once operation.

To deal with the case where a developer would want to keep part of the clone under con-
sistency control, and only remove the clone mark from part of the fragment, two additional
resolutions were conceived. These resolutions respectively unmark only the modified head
or the tail of a clone fragment. The corresponding subfragments should be removed from the
other clones in the clone relation, too, making these resolutions slightly more complicated.

As an illustration of the unmark head and unmark tail resolutions, consider the fol-
lowing example. In the code fragment below, the underlined part is assumed to have been
modified.

double distance = Math.sqrt(dx * dx, dy * dy);

1cf. glossary in appendix A.

13

2.2 Prototype Concept Conceptual Design

When this clone change would be resolved by unmarking the tail, all text starting with
the modified text (underlined in the example) would be unmarked, resulting in a clone that
consists only of the first few tokens. The fragment below shows this (the fragment that is
still marked as a clone is boxed):

double distance = Math.sqrt(dx * dx, dy * dy);

The inverse holds for unmarking the head: only the tokens after the last modification
are kept as the clone, all other tokens are unmarked:

double distance = Math.sqrt (dx * dx, dy * dy);

As is shown in the example, unmarking the head or tail of a clone fragment may result in
a remaining clone fragment that does not corresponds with a syntactical unit anymore. One
might consider trimming the remaining clone to the largest syntactical unit still contained
in it. Koschke et al. show an easy way to “cut out syntactical clones” [42] by cleverly
augmenting the token stream of a fragment.

2.2.3.2 Apply Changes to Clone Set

A second way to resolve inconsistent clones is by updating all clones in the clone set2 to
reflect the latest modifications, basically resynchronizing the clones. This update resolution
elegantly implements Mann’s clone-identical operator. However, though updating sounds
deceptively simple, this resolution is actually quite intricate. Clones may differ in spac-
ing (and possibly in comments too), and these differences will have to be respected when
applying changes that have been made to another instance in the clone set.

Let us assume the following clone set, consisting of two clones, where the underlined
fragment again indicates what has been modified:

double x = Math.sin(angle) * distance; //Calculate x

. . .

double x= Math.sin(angle)*radius; //Get X

To properly update the first clone to reflect the changes made to the second clone, the
differences in spacing will have to be taken into account, so that the clone pair will look as
follows after they have been resynchronized:

double x = Math.sin(angle) * radius; //Calculate x

. . .

double x= Math.sin(angle)*radius; //Get X

Notice how spacing has been preserved and the original clone fragment has not been
blindly overwritten by the old one. Things get even more complicated when synchronizing
parameterized clone fragments (cf. section 2.2.3.4).

2cf. glossary in appendix A.

14

Conceptual Design 2.3 Requirements Analysis

2.2.3.3 Postpone and Ignore

Two other, less favorable ways to cope with clone changes are to postpone a resolution and
ignore the changes altogether. Whereas the first solution is basically a way of allowing the
developer to resolve the changes himself first, to ignore the changes means the developer has
to take control over the clones himself. By ignoring clone changes, a resolution is basically
postponed ad infinitum. Postponing and ignoring both emulate different aspects of Mann’s
copy-and-change operation.

2.2.3.4 Parameterize Clones

The final resolution in the list compiled for this project is a combination of unmarking
and ignoring changes: parameterization [4]. The changed parts of the clone are declared
parameters of the clone: tokens that can be freely varied without breaking the clone relation.
Basically, these parts are being unmarked, without being removed from the clone.

By declaring certain parts of a clone as parameters, the clone can later be updated to
changes applied to another instance, without overwriting the parameterized parts. This
form of change resolution is more advanced than the operations Mann suggests, but does
help developers to deal with slight variations in clone fragments in a more intuitive way.

2.3 Requirements Analysis

To implement the clone change resolutions described in the previous section and study their
usefulness in an experiment, it is best to develop a plug-in to an existing development envi-
ronment. By doing so, side-effects of an environment unknown to the experimental subjects
are prevented. An unfamiliar environment might cause subjects to behave differently or may
cause a negative bias caused by the unfamiliarity with the experiment’s settings.

The two most suitable development environments to extend are Microsoft’s Visual Stu-
dio and the Eclipse IDE. Both environments are broadly accepted and used and it would be
fairly easy to find experimental subjects that are used to these particular platforms. Further-
more, these development environments have well-documented extension interfaces, making
the development of a plug-in within the scope of a thesis project more feasible.

A quick survey among likely volunteers – mostly postgraduates and Ph.D. students –
learned that Eclipse was the preferred development environment. After asserting that there
were no major technical advantages to selecting Visual Studio, Eclipse was selected as the
platform for the plug-in.

As a first step towards designing the Eclipse plug-in, a name was chosen. The name
CLONEBOARD was one of the first options generated and was finally elected because it is
both easy to remember and elegantly links the two concepts it relates to: the clone and the
clipboard3.

3The Clone and The Clipboard seems to be quite suitable as a name for a fairytale, actually.

15

2.3 Requirements Analysis Conceptual Design

Developer

Register clone

Copy code Paste code

Resolve change

Break relation

Delete code
Navigate clone set

Find source

Find instances

Modify code

<<extend>>

Clone set inconsistent

<<extend>>

Update clones

Parameterize

<<extend>><<extend>>

Ignore

<<extend>>

CloneBoard IDE

<<extend>>
<<extend>>

Figure 2.1: Use cases for the CLONEBOARD plug-in

2.3.1 Use Cases

Before being able to specify any further requirements to the plug-in that is to be developed,
its uses need to be explored further first. Obviously, the primary use of the plug-in will
be to resolve inconsistent clones using the Mann operation-based resolutions discussed ear-
lier, but other functionality is likely to be required too, if the plug-in is to be accepted by
developers.

Figure 2.1 shows an UML use case diagram in which the uses that are likely to be
required are depicted. As is shown in the diagram, there are three main use cases: Register
clone, Navigate clone set and Resolve change. The most basic of these use cases, Register
clone, describes the creation of a new clone relation by copying and pasting code fragments.
To not disturb the developer more than needed, the action of creating a clone should use
existing copy and paste actions in the integrated development environment (IDE).

The Navigate clone set use case describes the ability to navigate the clones in a clone set.
A clone generally always relates to one other clone. However, as a clone may be duplicated
several times, a set of related clones will come into existence. To allow developers to trace
the origin of clone fragments or find all instances of the clone set, navigation functionality
would be paramount.

Finally, the most elaborate use case involves the resolution of a clone change when a
developer modifies code that has been cloned. Although research shows that cloned code

16

Conceptual Design 2.3 Requirements Analysis

tends to be modified less [43], coping with change is the primary purpose of the plug-in,
so the Resolve change use case is paramount. The case when the code of a clone frag-
ment is totally removed is – as a use case – not considered a code modification, but rather
a clone relation break. Only when a clone’s fragment is altered, this will be considered
modification.

When a clone’s code modification results in an inconsistent clone set, this will trigger
the Resolve change use case, requiring the developer to make a choice out of a selection of
appropriate change resolutions. Depending on the developer’s choice, one of the resolution
use cases will be performed. The specifics of these resolutions have been detailed in section
2.2.3.

2.3.2 Functional Requirements

To come to a system design, the use cases determined previously, need to be translated into
functional requirements that describe “the actions that the product must take if it is to be
useful to its users.” [54] Following the use cases specified in the previous section and shown
in figure 2.1, the following paragraphs describe the respective functional requirements that
were drawn up for CLONEBOARD.

Use Case: Register Clone

• Intercept clipboard manipulation. The plug-in should intercept and register common
clipboard actions (i.e. copy, cut and paste) without disturbing the original actions.

• Relate copied fragments. The plug-in should apply the clone relation to the code frag-
ments that were duplicated using clipboard actions.

• Filter trivial clone relations. Trivial clone relations should be filtered out. Among
such relations are cloned keywords, cloned spacing, cloned operators and cloned com-
ments.

• Provide visual feedback. Established clone relations should be confirmed to the de-
veloper by means of some sort of visual feedback.

Use Case: Navigate Clone Set

• Link clones in clone set. The plug-in should allow a developer to find all clones in a
clone set, by starting from a clone fragment in a source editor. Or as LaToza et al.
propose: “[to discover clones] embed hyperlinks between clone instances with editor
support for navigating between clone instances.” [48]

• Link to original copy. The developer should be able to find the source of cloning, that
is the original copy from which clones were created.

• Browse clones by file. To provide overview, the plug-in should enable clone browsing
on a per file basis. The overview should be linked to the source code viewer, so that
clones can be highlighted in their original context.

17

2.3 Requirements Analysis Conceptual Design

• Show attributes. If attributes are attached to clones (e.g. parameters), the plug-in
should expose these for the developer to inspect.

Use Case: Break Relation

• Remove from clone set. When requested or required to, the plug-in should remove a
clone from a clone set.

• Remove empty clone set. If breaking a clone relation means the clone set becomes
empty (i.e. there is only one copy of the fragment left), the clone set should be removed.

Use Case: Remove Clone

• React on deletion. The plug-in should break the clone relation when the full code frag-
ment of a clone is deleted by the user regardless of the deletion operation used.

Use Case: Modify Code

• Check clone consistency. The plug-in should react on the modification of a clone’s
code by redetermining its consistency. Only when the clone is still consistent with the
rest of the clone set, it should be marked consistent.

• Highlight inconsistency. As soon as an inconsistent clone is detected, the clone should
be highlight to communicate the inconsistency to the developer.

• Trigger resolution. When an inconsistent clone is detected, the plug-in should trigger
clone resolution as soon as the developer stops modifying the clone and is available for
possible queries regarding the change resolution.

Use Case: Resolve Change

• Determine applicable resolutions. When clone change resolution is required due to a
detected inconsistency, the plug-in should determine which resolutions apply.

• Select resolution. To determine the appropriate resolution, the plug-in should query the
developer. The developer should be able to make an informed decision, so the plug-in
should supply the relevant information. The developer should be able to communicate
the resolution he wants to be applied.

• Determine preferred resolution. To aid the developer in selecting a change resolu-
tion, the plug-in should use heuristics to determine the resolution that is most preferable
and highlight this resolution.

• Postpone resolution. Resolution of a clone change should be postponable to cope with
the possibility that the plug-in wrongly assumed the developer was done editing the
clone or is available for queries.

18

Conceptual Design 2.3 Requirements Analysis

• Apply resolution. The selected resolution should be applied after asserting that it is
indeed applicable. Changes to clones that are part of the resolution should not lead to
new resolution queries, but should rather be accepted, however without abstaining to
register inconsistencies.

• Remember selected resolution. If the developer so wishes and it seems appropriate,
the plug-in should remember what resolution was selected for a particular clone.

• Automatically apply selected resolution. If a resolution was remembered for a partic-
ular clone, it should be automatically applied on the next clone change resolution case,
provided that the resolution applies.

2.3.3 Constraints

It is important to get the technical boundaries of a system clear before starting to develop
it. System constraints limit the technical possibilities, but at the same time help to focus on
possible ways to implement the required functionality. Some of the constraints for CLONE-
BOARD were sketched already, others still need to be made explicit. The following list
shows the most important system constraints imposed on CLONEBOARD, either by external
limitations or to reduce implementation complexity.

• Java language. Clone consistency checking and change resolution will assume the
Java language. Although other languages can be used in the Eclipse IDE too, focus-
ing on a single language simplifies the analysis routines.

• Eclipse v3.4. As an open source project, the Eclipse IDE tends to change quite radically
from version to version. To reduce implementation complexity, the Eclipse version the
plug-in is to operate on is fixed on version 3.4, also known as Ganymede4.

• Prototype quality. The plug-in needs to be developed to such a quality level that it is
suitable for use in an experiment. It needs not be commercial quality. As such, there is
no need for installation manuals and elaborate help functionality.

• Single user. The clone data gathered by the plug-in does not need to be shared with
other developers. The plug-in can be assumed single-user only. Adding multi-user
functionality would add considerable development time and is not necessary to evaluate
the concepts.

2.3.4 Non-functional Requirements

As Robertson and Robertson summarized a common observation, “non-functional proper-
ties may be the difference between an accepted, well-liked product and an unused one.” [54]
To prevent such a disappointment, it is wise to draw up a list of so called non-functional
requirements that state which qualities a software system should have in order to be usable.
The following is a list of such requirements for the CLONEBOARD system.

4See http://www.eclipse.org/ganymede

19

http://www.eclipse.org/ganymede

2.4 Summary Conceptual Design

• Blend in. The plug-in should blend in with the development environment as much as
possible, adapting its basic look and feel and not introducing any more user interface
concepts than is strictly necessary.

• Hide. CLONEBOARD’s main purpose is to help developers cope with the negative con-
sequences of clone inconsistencies. As long as there are no problems, the plug-in should
remain invisible as much as possible, not intruding on the developers professional ac-
tivities when there is no strict need for it.

• Patience. No decisions should be forced on developers. When a choice is to be made,
there should always be an option to postpone the choice or escape the matter altogether.

• No performance penalty. There should be no noticeable performance penalty of using
CLONEBOARD. This requirement is slightly diminished by the fact that the tool will at
first only be used in a controlled environment, in which data volumes can be expected
to be low.

• Stable. Bugs in the plug-in should not have consequences for the overall system. Fail-
ure of CLONEBOARD should not bring down the system or corrupt valuable assets.

• Fault tolerance. As developers are no normal users, they can be expected to do things
normal users are not expected to do. CLONEBOARD should – within the bounds of
reason – be tolerant to such potentially faulty behavior.

• Developer friendly. CLONEBOARD is a tool for developers and should as such speak
the language of developers and respect their customs.

2.4 Summary

In this chapter, the conceptual design of a prototype based on Mann’s operators was out-
lined. The process of designing this tool consisted of first translating the Mann operators
into concepts more suitable to be implemented in software. Change resolutions were intro-
duced as a means to infer the Mann operations rather them have them explicitly specified by
the user. Several change resolution strategies have been outlined and a deduction scheme
was given by which Mann’s operators could be inferred.

By means of traditional use case analysis, the core functionality for a prototype plug-in
was established. Each use-case was translated into a set of functional requirements, thus
preparing for the actual implementation. To guard the overall quality and usability of the
prototype, a set of non-functional requirements was specified that set the overall goals for
the prototype system.

20

Chapter 3

Technical Research and Prototyping

Developing a plug-in for Eclipse is a non-trivial endeavor [63]. Eclipse is notoriously com-
plex due to its very flexible design. Although this flexibility allows developers great free-
dom in extending most aspects of the development environment, it at the same time makes
for a very steep learning curve. Without relevant previous experience, starting to write a
plug-in straight on is without doubt dense at best. It is certainly advisable to start experi-
menting with the environment first, building prototypes of key features before integrating
all concepts into a final product.

In this chapter the process of experimenting to come to a final technical design is out-
lined. Sharing some of the design rationale may prove valuable to future researchers and
developers.

3.1 Main Features

The CLONEBOARD plug-in, as specified in the previous chapter, will consist of several
important features, which each pose their own challenges. These features can be broadly
divided into a number of distinct concerns, each of which needed to be tested for imple-
mentation feasibility before the actual plug-in could be developed. By prototyping these
important features, the risk of project failure can be significantly reduced. [11]

• Capturing clipboard activity. The foremost requirement for CLONEBOARD’s success
is to be able to capture the developer’s clipboard activity. Only by doing so can clone
information be gathered in the proposed way. The only alternative to this approach
would be to use clone detection algorithms to find clone relations after the fact [4, 42].

• Clone model. A model of the registered clones is required to be able to implement a
Model-View-Controller (MVC) plug-in. The MVC pattern is widely used in Eclipse
and seems very appropriate for the case at hand, as multiple views on the same model
are required.

21

3.2 Capturing Clipboard Activity Technical Research and Prototyping

• Clone linking. To navigate clones, i.e. finding other instances of the same clone set, it
is necessary to embed some kind of ‘hyperlinks’ [48] in the source code. Without prior
knowledge of the Eclipse API’s, this feature seemed particular difficult to implement.

• Clone browsing. Browsing the clone model using some sort of viewer seems to be one
of the less challenging aspects of the CLONEBOARD plug-in. Lots of viewers have been
developed for Eclipse, so information about the process must be plenty.

• Clone resolution. While resolving clone changes, the modifications will sometimes
have to be forwarded to other instances. Updating code may prove to be more intricate
than at first anticipated, particularly because of Eclipse’s highly abstracted interfaces.
Furthermore, detecting a suitable moment to interrupt a developer to query him about a
resolution may not be as straight forward as one might hope.

Implementing a clone model and an accompanying browser proved to be quite simple.
Clayberg and Rubel actually give a very good tutorial on implementing a model and accom-
panying viewer [18]. A small prototype showed that the implementation of these concerns
would not be likely to cause much technical difficulties.

Some of the other concerns, however, posed more of a challenge. In the following
sections, the research and prototyping activities for each of these concerns are outlined,
giving useful insights into the rationale behind some of the implementation choices for
CLONEBOARD.

3.2 Capturing Clipboard Activity

The first and primary challenge faced was to try and capture clipboard activity in the Eclipse
environment. Quite some good and thick books have been written about Eclipse plug-
in design [18, 26, 29], but none of them mentions capturing clipboard activity. Eclipse
features a well-designed extension API, that allows developers to extend various parts of
the environment. Actually, the API is designed in such a way, that plug-ins themselves can
provide new extension points. And to cap it all off, almost all functionality of Eclipse has
been implemented as a plug-in.

Eclipse features a very helpful toolkit, called the Plug-in Development Environment
(PDE)1, that amongst other things allows plug-in developers to browse all available exten-
sion points. However, browsing the list, double checking every extension point, learned that
there are no clipboard extension points in Eclipse. This meant that alternative solutions had
to be sought for.2

1See http://www.eclipse.org/pde
2In retrospect, one easy solution, only discovered after the plug-in’s completion, would have been to use the

ElectroCodeoGram software by Schlesinger and Jekutsch [56]. This framework captures all sorts of developer
activities in Eclipse, including clipboard activity.

22

http://www.eclipse.org/pde

Technical Research and Prototyping 3.2 Capturing Clipboard Activity

3.2.1 Option 1: Replace the JavaEditor class

The first solution that was conceived came down to replacing the Java editor plug-in that
ships with Eclipse by one that was extended with the CLONEBOARD functionality. In this
modified version, the copy and paste actions would be intercepted.3 Although this option
was considered plausible, it certainly did not feel ‘right’: Eclipse has a highly extensible
framework that should allow for more elegant alternatives.

3.2.2 Option 2: Subclass the JavaEditor class

Eclipse supports registering multiple editors for the same file type. One of these editors
will be the default editor, while the other types can be selected manually, should the need
arise. Using this mechanism was considered as the second way to capture clipboard activity.
By implementing a so called plug-in fragment4, it was found possible to subclass the Java
editor5 and override the default copy and paste actions in this new class. This extended Java
editor could then be registered as an alternative editor for Java files6. But as is often stated
in the Eclipse documentation, plug-in fragments are mainly meant to be used as a way to
make small adjustments to existing plug-ins, not to add new functionality. So this option,
too, was found undesirable.

3.2.3 Final option: Dynamically replace clipboard actions

By further researching, a prototype was eventually created that dynamically replaced the
copy and paste actions of the Java editor – and actually all text-based editors – by custom
actions. Although the implementation still has some drawbacks, it was found the most
optimal solution. The only other plausible possibility would have been to add a low-level
keyboard event filter to be alerted of copy/paste shortcuts, and this option surely did not feel
‘right’ at all.

The clipboard actions were replaced at system start up by registering for the startup
extension point,7 that signals the registered plug-in as soon as the Eclipse environment has
been started.8 At start up, all opened editors are queried – and a listener is registered to
be informed of new editor windows – and the copy and paste actions of each editor were
replaced by using the ITextEditor.setAction method. The new actions were looped back
to the original implementations, to keep any special features particular editors may add to
the standard copy and paste implementation Eclipse provides.9

3Altering org.eclipse.jdt.internal.ui.javaeditor.createActions() should suffice.
4See http://wiki.eclipse.org/FAQ_What_is_a_plug-in_fragment%3F
5Its implementation is marked internal, so that it can not be subclassed in a normal plug-in
6It proved impossible to set any other editor than the one that ships with Eclipse as the default Java editor.
7I.e. org.eclipse.ui.startup
8Actually, users can disable the start up of plug-ins manually, thus possibly disabling CLONEBOARD
9The Java editor, for instance, adds functionality that embeds information about imports that are required

by the copied fragments, so that these imports can be automatically added when the fragment is pasted in an
other source file.

23

http://wiki.eclipse.org/FAQ_What_is_a_plug-in_fragment%3F

3.3 Hyperlinking Clones Technical Research and Prototyping

Figure 3.1: A marker resolution popup used to provide clone navigation options.

3.3 Hyperlinking Clones

To help developers find all instances of a clone, hyperlinking clone instances together would
be a good solution [48]. Implementing hyperlinks in the Eclipse code editors is not neces-
sarily a trivial operation, so some testing was done to find the best technical solution.

After inspecting all possible extension points and studying the relevant Eclipse source
code sections, it was concluded rather quickly that true hyperlinking (i.e. using links em-
bedded in the source code) is not possible in Eclipse. However, alternatives were found.

3.3.1 Marker Resolution

Eclipse supports the notions of code markers and code annotations. A marker can be put
on an annotated piece of source code. These markers can be shown in the margin of most
code editors Eclipse supports. Using a dedicated extension point,10 a list of options can be
shown when the user hovers his mouse over the annotated piece of code or its marker in the
margin.

Experimenting with Eclipse’s marker resolution mechanism, as this extension is called,
proved it to be a good solution to the hyperlink problem. Developers can bring up the
marker resolution popup by hovering an annotated piece of code or by using a keyboard
shortcut. The window is non-obtrusive and can be easily dismissed. Furthermore, multiple
hyperlinks are supported, so that several different navigation options, as well as other clone
related operations, can be supported.

Figure 3.3.1 shows an example of a marker resolution popup in which several naviga-
tion options are shown, along with other clone operations. The only downside of the marker
resolution mechanism is the fact that the popup window shows the caption ‘x quick fixes
available’, which does not quite describes the purpose of the navigational hyperlinks. How-

10The extension point is identified as org.eclipse.ui.ide.markerResolution and is primarily in-
tended to offer the developer solutions to the ‘problem’ a marker indicates.

24

Technical Research and Prototyping 3.4 Capturing Clone Changes

ever, this minor disadvantage will probably have to be accepted, as no other comparable
solutions are available.

3.3.2 Drawback of Technique

Some further experimentation showed a major problem with the marker mechanism: for
reasons not quite clear, the popup window would only show the first time the mouse is
hovered over the marker code fragment. On all later occasions, the hyperlinks were not
shown anymore. After arduous hours of deep investigation, the cause was shown to be in
the Java editor’s implementation of the popup window. Due to what must be considered a
bug, the popup window would show up the first time, regardless of its contents, but would
later on only show up if true ‘quick fixes’ were found.

A workaround for the issue was found, by applying a special ‘is quick-fixable’ attribute
to the marker. Unfortunately, the code required to apply this attribute did not turn out to
be very elegant. As such, one may consider this a rather dirty fix. But then again, most
workarounds tend to get disqualified for beauty contests.

3.4 Capturing Clone Changes

Clones are usually created by using the standard copy and paste operations. These op-
erations make it easy to detect cloning in real-time. Detecting clone changes in real-time,
however, is a bit harder. The main problem in detecting changes is in grouping atomic clone
changes (e.g. character insertions or deletions) into transactions. Clone change resolution
only makes sense when considering change transactions and not atomic changes, as nearly
all semantically relevant syntactical elements developers may alter span multiple characters
and are made during a certain time interval.

3.4.1 Grouping Concerns

Correctly grouping changes into transactions is a very important factor in the final usability
of the plug-in, as change resolution will occur as soon as the clone change transaction has
ended. Concluding a transaction’s end too early will likely lead to frustrated developers as
they will be queried for a resolution when they were actually still in the middle of applying
changes.

To group atomic changes, several of their properties may be considered:

• Location. The clone (or clones11) the change applies to. A change to one clone does
not influence other clones’ transactions.

• Time. The moment in time the change was applied. Changes that are distant in time
are not likely to belong to the same transaction.

11A code fragment may be part of several partially overlapping clone fragments. A developer may for
instance first copy an entire method and later copy an identifier used in this method, thus creating two clone
sets.

25

3.4 Capturing Clone Changes Technical Research and Prototyping

Transaction
open

Atomic change

Atomic change
Mouse/keyboard activity

Transaction
closed

Last change
expired

Editor lost
focus

Figure 3.2: State transition diagram of clone change grouping scheme.

• Type. A change can be an insertion, deletion or replacement. Different types of changes
may belong to sequential transactions, rather than to one single transaction.

• Size. Changes may span just one character, or multiple.12 Small changes are less likely
to form a transaction on their own than large modifications.

Furthermore, there are some external events that may occur in the development envi-
ronment between two atomic changes that may provide help in grouping changes:

• Focus. A developer may change the IDE’s focus to another interface component (i.e.
an other editor window). Changing to another editor may be an indicator of the end of
a transaction.

• Saving. Source files are changed periodically. When an editor saves a file manually13,
it is fair to assume he has finished editing the clones he previously modified.

• Keyboard and mouse activity. A developer may use his keyboard or mouse in be-
tween two atomic changes for other purposes than editing, for instance to navigate
to another part within the same clone fragment or to operate code assistance features
offered by the IDE.14

3.4.2 Final Grouping Scheme

It took quite some experimentation to come up with a grouping scheme that was able to
compose meaningful change transactions. The final scheme was actually only implemented
after the experiment pilot was performed (cf. section 5.6).

The basic concept of the scheme that was designed is that of expiration. For each clone
that is changed, a time of last change is kept. As soon a clone’s last change is a certain
amount of time in the past (i.e. it has expired), all changes to that clone that have been

12Multiple characters may be deleted or replaced at once by means of the fragment selection functionality
found in most source code editors. Multiple characters may be inserted at once by pasting a fragment stored on
the clipboard.

13Most IDE’s support automatic periodical saving to prevent data loss in case of a catastrophic failure.
14In the case of Eclipse, such features include code completion and in-line documentation browsing using

popup windows

26

Technical Research and Prototyping 3.5 Summary

recorded since the last transaction on that clone are grouped into a new transaction. This
design entails that there may be several open change transactions15 at any time, possibly
expiring at the same time, too.

To prevent early transaction ending, the scheme was extended by counting several ex-
ternal events as changes, too. All keyboard and mouse activity that could not be directly
related to a clone change, was considered a change on all open change transactions. During
the experiment pilot it was shown that Eclipse features such as code completion and in-line
documentation were being used in the middle of a transaction quite regularly, but as they
were initially not being counted as changes, clone change transactions would expire in the
middle of using such a feature, often leading to irritation or misunderstanding.

Finally, changing the IDE’s focus to another editor was added to the scheme as a trigger
to instantly expire all clone changes in the editor that just lost focus. This feature was
intended to prevent confusion and disorientation. Queries about the resolution of changes
to a clone in an editor that is not visible or not in focus, may lead to wrong decisions, as the
developer might not evaluate them in the right context.

The final scheme is depicted in figure 3.2. As the diagram shows, a transaction will
remain open as long as atomic changes to its associated clone occur or there is some general
keyboard or mouse activity. When the last change to the transaction expires, or the editor
loses focus, a transaction will be closed and is ready to be resolved.

3.5 Summary

Entire books are written on the subject of developing Eclipse plug-ins. Clearly, creating
plug-ins is not a trivial task. To gain experience in writing plug-ins for Eclipse and to
identify potential problems early on, a number of prototypes was created for the plug-in’s
pivotal features.

Techniques were explored to capture clipboard activity in Eclipse. Two prototypes were
built before the final solution to the seemingly obtuse task of hooking into Eclipse’s clip-
board handlers was found. Even though this solution was still not as elegant as was hoped
for, it proved to be the optimal solution within the bounds set by the Eclipse framework.

To implement clone hyperlinking, quite a lot of research had to be conducted as well.
Finally, a solution based on Eclipse’s marker model was conceived. This solution proved to
be the closest thing to true clone hyperlinking. However, technical issues with the Eclipse
environment called for rather dirty workarounds to get the mechanism working as expected.

Rather surprisingly, tracking changes in Eclipse’s editors proved to be easier than ex-
pected. Still, quite a lot of research had to be done to come up with an appropriate scheme
to bundle atomic changes into transactions.

15A transaction is considered open when it has been created, but is not yet ended.

27

Chapter 4

CLONEBOARD Implementation

The previous chapters have described several preparatory steps towards the development of
an Eclipse plug-in based on Mann’s operations (cf. section 2.1). Based on the requirements
elicited in section 2.3 and the experience gained by research and prototyping (cf. chapter
3), an Eclipse plug-in was implemented and dubbed CLONEBOARD.

This chapter outlines the implementation techniques used to build CLONEBOARD and
details its structure and inner workings using standard UML diagrams.

4.1 Decomposition

CLONEBOARD was decomposed into six major components. Each of these parts fulfill a
specific task. Figure 4.1 shows these components and their interactions. In the sections
to follow, each of the components is detailed. To give an overview of the function of the
components in the greater whole, each of them is briefly described below:

• CloneBoard. The prime component of the plug-in is the CloneBoard component. This
component manages all responsibilities an Eclipse plug-in has, i.a. hooking the other
components, handling errors and providing logging functionality.

• CloneRepository. All clone data is managed by the clone repository. This component
serves as the model in the MVC architecture used by CLONEBOARD and is used by
most of the other components.

• TextEditorManager. As clones are created using Eclipse’s text editors – particularly
its Java editor – quite a lot of CLONEBOARD’s functionality relies on the interface with
these editors. The TextEditorManager component manages this interface.

• CloneManager. The responsibility of creating clones and keeping the clone model up
to date is delegated to the CloneManager component. Using services provided by the
TextEditorManager, this component hooks into the text editors’ copy and paste func-
tionality.

29

4.2 Bootstrapping CLONEBOARD Implementation

Figure 4.1: Basic decomposition of CLONEBOARD.

• CloneChangeManager. Changes to clones and the resolution of these changes are
managed by the CloneChangeManager. To infer clone change transactions (cf. sec-
tion 3.4) the services provided by the TextEditorManager are used. When the end of
a transaction is detected, this component initiates the clone resolution process.

• UI. All user interaction is handled by the UI component. A number of distinct ele-
ments (i.a. a tree-view of the clone model, clone hyperlinks and queries regarding clone
resolutions) jointly make up the user interface.

As can be seen from both the UML diagram and the above descriptions, a number
of components (i.e. CloneBoard, CloneRepository and TextEditorManager) primarily
fulfill a supporting role, whereas the other components provide the actual functionality.

4.2 Bootstrapping

Most Eclipse plug-ins contain a so called ‘activator’ class. This class is automatically acti-
vated by Eclipse when the plug-in is loaded, hence the name. The Eclipse framework con-
tains a base implementation for user interface driven plug-ins, called AbstractUIPlugin.
This class can serve as an activator and thus was a logical starting point for CLONEBOARD.

30

CLONEBOARD Implementation 4.2 Bootstrapping

Figure 4.2: Classes and interfaces involved in the CloneBoard component.

Based on the AbstractUIPlugin class, the CloneBoard class was implemented. As
shown in figure 4.2, this singleton class offers all basic functionality for the CloneBoard
component, including logging, error handling and bootstrapping the other components.

4.2.1 Component Initialization

To initialize the other components, the plug-in makes use of two interfaces: IStartup, part
of the Eclipse framework, and IInstallable. By extending Eclipse’s org.eclipse.ui.-
startup extension point, it is possible to be notified as soon as the Eclipse IDE has been
initialized. As the class that implements the required IStartup interface a class separate
from the CloneBoard class was created, to prevent double instantiation.1 This class, called

1Double instantiation is of course undesirable for a singleton class.

31

4.3 The Clone Model CLONEBOARD Implementation

Figure 4.3: Sequence diagram of component bootstrapping process.

Startup, implements a single method that directly invokes the earlyStartup() method
of CloneBoard.

Once notified of Eclipse’s startup, the CloneBoard class starts to bootstrap the other
components. Three of these components (cf. figure 4.2) implement the IInstallable
interface, that defines methods for installing and uninstalling each of the components in the
Eclipse framework. In this way, the bootstrapping procedure is transparent and allows for
easy future expansion. Figure 4.3 shows a sequence diagram of the general bootstrapping
procedure.

4.2.2 Logging

To facilitate the planned experiment, a logging mechanism was embedded in the Clone-
Board component. Several events can be logged by using the ICloneBoardLogger inter-
face, an instance of which is supplied by the CloneBoard.getLogger() method. Depend-
ing on circumstances2, either a XML-based logging class will be supplied or a dummy class
that discards all log messages.

The XML logs created by the CloneBoardLogger class do not adhere to a standard
XML scheme, but use an ad-hoc scheme specific to the kind of log data being stored. List-
ing 4.1 shows an example of the log data that is written by the XML logger. The data is
structured such, that it can later be interpreted easily using both automatic tools and by
hand.

4.3 The Clone Model

To store clone data, several options were evaluated. The first thought was to create an object
model to represent all clones and use either XML or a database for persistence. However,
integrating this object model into the Eclipse environment, particularly in the text editors,
proved to be quite difficult. Eclipse uses a model of markers and annotations (cf. section

2Mainly write rights on the system’s disk.

32

CLONEBOARD Implementation 4.3 The Clone Model

Listing 4.1: Example of log data written by the CloneBoardLogger class.� �
1 <?xml version="1.0"?>
2 <log>
3 <clipboard action="copy">
4 <timestamp time="1231091935488">
5 <![CDATA[4-jan-2009 18:58:55 CET]]>
6 </timestamp>
7 <fragmenttype type="COMMENT"/>
8 <marker id="1618" type="cloneboard.ui.markers.temp">
9 <attribute name="fragmentType">

10 <![CDATA[COMMENT]]>
11 </attribute>
12 · · ·
13 </marker>
14 </clipboard>
15 </log>� �

3.3) to associate objects with source code. To link an object model to source code, it would
thus be necessary to create markers and annotations for each object in the model and keep
both in sync.

Having two separate object models and keeping them in sync, did not seem to be a task
sufficiently trivial to provide the required level of reliability. To cite Hoare: “The price of
reliability is the pursuit of the utmost simplicity” [28]. A simpler model was thus sought
after, and found. Instead of keeping two models in sync, one model – Eclipse’s marker
model – was wrapped with a second model.

4.3.1 Wrapping Eclipse’s Marker Model

The diagram in figure 4.4 shows how the two models relate to each other. Every element
in Eclipse’s marker model is wrapped by a associated element in CLONEBOARD’s clone
model:

• IClone 7→ IMarker. Eclipse’s markers represent a basic fragment of code. To represent
a cloned piece of code, it suffices to wrap a marker in an object that represents a clone.

• ICloneContainer 7→ IResource. Markers are uniquely associated with resources. Re-
sources can be files, folders, projects or other source entities. The CloneRepository
component represents these resources by clone containers. These containers are an ab-
straction representing the concept of a source element containing clones.

• ICloneRepository 7→ IWorkspaceRoot. In Eclipse, resources form a hierarchy. At
the top of this hierarchy, there is the workspace root. In CLONEBOARD’s model, this
root is represented by the ICloneRepository. In both Eclipse and CLONEBOARD,
these entities are specializations of more general container elements.

33

4.3 The Clone Model CLONEBOARD Implementation

Figure 4.4: Model of the relation between the CLONEBOARD object model and Eclipse’s
marker model.

• CloneManager 7→ IWorkspace. The entity that governs all resources in Eclipse is
the workspace. In CLONEBOARD, the repository of clone data is managed by the
CloneManager class.

A deliberate choice was made to wrap each of Eclipse’s model elements, rather than
inherit from them, such as to hide away all the details of Eclipse’s complicated model and
present only those facts relevant for the cloning model.

4.3.2 Representing Clones as Markers

In the model that was thus created, each piece of cloned code is represented by an Eclipse
resource marker. These markers are persisted by Eclipse automatically, so that no fur-
ther persistence technology is required. Resource markers both have types and attributes.
Marker types are organized hierarchically, so that there can be basic types and more spe-
cialized types.

CLONEBOARD defines five resource marker types, each serving a different purpose (cf.
figure 4.5). At the root of the hierarchy, there is a basic marker. This marker type serves as
a common ancestor to all other marker types. From this root, two main types are derived:
a temporary marker and a clone marker. The temporary marker is used to mark a piece of
code that has been copied to the clipboard, but has not yet been pasted. The clone marker
is further divided into two subtypes: a clone source marker and a clone instance marker.
Source markers mark the original copy of a clone, where instance markers are used to
indicate all other clone instances in a clone set.

34

CLONEBOARD Implementation 4.3 The Clone Model

Figure 4.5: The resource marker types defined by CLONEBOARD.

4.3.3 Clone Interface Hierarchy

To handle the concept of clone families (or clone sets), two distinct types of clones were
defined: a clone source and a clone instance. As shown in figure 4.6, one clone source
aggregates one or more clone instances, thus effectively forming a clone family.

Each clone has a basic set of property getters (shown in the figure 4.6 as the first member
box of IClone), which all wrap calls to getters on the IMarker interface. In other words: all
data associated with a clone is actually stored in its respective marker object. The IMarker
interface conveniently supports a key-value based attribute list, so that arbitrary data ele-
ments can be associated with markers easily.

To enhance the clone model’s performance, some marker attributes and data that is
derived of those are cached. With caching, the risk of running behind the facts is introduced.
To counter this risk, an invalidation mechanism is employed. As soon as an external change
to a marker is detected, the associated clone object is invalidated, effectively clearing its
cache.

4.3.4 Clone Containers

The notion of a clone container provides an elegant abstraction to the diversity of Eclipse
resource types that can directly or indirectly contain code clones. In CLONEBOARD’s clone
model, each clone container is associated with a resource. Furthermore, each container
keeps a list of clones that are directly contained in it and a list of child containers. In
practice, only files will contain clones, whereas other types of resources will generally have
only child containers associated with them.

To benefit overall performance, a lazy loading [25] mechanism was implemented. That
is, only if a container is specifically asked about its child containers or clones, it will inspect
its associated resource and instantiate wrappers for all entities it finds. When a container’s
data is refreshed, for instance because it was signaled that the marker model of a resource
has changed, all previously instantiated wrappers are maintained. In this way, memory

35

4.4 Interfacing with Text Editors CLONEBOARD Implementation

Figure 4.6: The IClone interface and its inheritors.

is conserved, but more importantly, a strict 1-to-1 relation between the wrappers and the
entities they represent is enforced.

4.4 Interfacing with Text Editors

As discussed in sections 3.2 and 3.4, capturing clone creation and clone change events
in Eclipse is not quite trivial. The Eclipse framework heavily uses the Observer design
pattern [27], so the best way to get to know about events is to subscribe to all relevant ob-
servables and bring all gathered information to a central place. The TextEditorManager
class is this junction. By employing the same Observer pattern Eclipse uses, the idTextEdi-
torManager distributes its information to all interested components.

4.4.1 Managing Information

The TextEditorManager gathers its information from various sources, mainly by sub-
scribing itself to observables using addListener methods. Figure 4.7 outlines the parties
involved:

• IPartService. This service provides information about the state of all editors in the
workspace. When new editors are opened, existing ones lose focus or get closed, this
service sends a notification.

• IDocument. Every time an editor is opened, its associated document interface is re-
trieved. The TextEditorManager subscribes itself to document change events. These

36

CLONEBOARD Implementation 4.4 Interfacing with Text Editors

Figure 4.7: Model of the entities involved to integrate CLONEBOARD in Eclipse’s text
editors.

events are fired just before and just after every atomic document change. Each change is
represented as a tuple: offset and length of replaced text and the replacement text. This
information is sufficient to deduce the different types of document operations: insertion,
deletion or replacement.

• IAnnotationModel. Information about changed text annotations is gathered in a way
similar to the way document changes are obtained. The IAnnotationModel interface
provides all necessary information.

• ITextEditor. To get notified of clipboard operations, some trickery was required. There
is no notification mechanism for this sort of events in Eclipse. However, it did prove
possible to retrieve and replace the IAction objects associated with each clipboard
operation of a text editor. By wrapping the original action object in a proxy, existing
functionality was maintained and a notification mechanism was established.

4.4.2 Reversing Relations

Eclipse’s framework is highly normalized. This can for instance be seen in figure 4.7:
documents are not directly related to text editors, but there is an intermediate party, the
document provider, that links the two. These indirections make the framework very flexible,
but at the same time makes it nearly impossible to navigate associations in the reverse
direction. For instance, there is no direct way to relate a document to an editor.

37

4.4 Interfacing with Text Editors CLONEBOARD Implementation

Figure 4.8: The CloneManager and the interfaces it implements.

As some features require to traverse some of the associations between documents, re-
sources and text editors in the reverse direction, extra facilities had to be implemented for
this in the TextEditorManager. Three methods, all prefixed with find, serve this purpose.
The TextEditorManager keeps reverse indices of all relevant associations it detects, using
the endpoint of each relation as the entry into the index. In this way, the associations can be
reversed relatively easily, without a large computational overhead.

The alternative to this approach would be to iterate over collections of the entities that
can possibly be the starting point of an association for which only the endpoint is known.
Although this approach is less prone to errors,3 it is computationally more expensive, which
makes it unsuitable for inner-loop operations.

4.4.3 Opening Editors

Programmatically opening a source file in an editor is not quite a trivial task in Eclipse.
Again, it are Eclipse’s normalizations that complicate matters. As the task of opening an
editor for a certain file, optionally highlighting a clone fragment in such a file, is required
for some of CLONEBOARD’s features, this functionality is embedded in the TextEditor-
Manager.

3In contrast with the index-based approach, iterating over the actual entities guarantees up to date data. A
reverse index may get out-dated and is thus less reliable.

38

CLONEBOARD Implementation 4.5 Capturing Copy and Paste Operations

Figure 4.9: Sequence diagram of a text copy operation.

4.5 Capturing Copy and Paste Operations

One of the main tasks of the CloneManager component is to capture copy and paste oper-
ations and register non-trivial duplications as clones. To implement this functionality, the
CloneManager class was conceived. The class exposes little functionality to other classes,
but rather takes control of the management process and delegates tasks to other components.

4.5.1 Registering Clones

CloneManager registers itself as a copy and paste operation listener with the TextEditor-
Manager. Every time a copy operation is detected, a dedicated handler is fired. This handler
inspects the copied fragment and if it is not dismissed as a trivial clone, it is marked with a
temporary marker. All necessary information to create a clone pair once the copied fragment
is pasted again is added to the clipboard.4

Pasting a code fragment invariably leads to CloneManager’s intervention, too. The
clone information stored on the clipboard during the copy operation is retrieved and used to
link the pasted fragment to the original copy. As part of this process, the temporary marker
that flagged the source copy is replaced by a definitive clone source marker. The process of
copying and pasting is detailed in the sequence diagrams of figures 4.9 and 4.10.

Temporary markers are used in the process as an easy means of describing a code frag-
ment. Other methods, such as a description based on offset and length of the fragment might

4Adding information to the clipboard actually did not prove to be possible. The only operations on the
clipboard supported in Eclipse’s SWT framework are getting and setting. The add operation had to be simulated
by getting all clipboard data first, decoding as much of it as possible and slipping the additional data in before
re-encoding the data and putting it back on the clipboard. In rare cases, this process may lead to data loss due
to unrecognized encoding schemes.

39

4.5 Capturing Copy and Paste Operations CLONEBOARD Implementation

Figure 4.10: Sequence diagram of a text paste operation.

have been used, too, but these often have the disadvantage of being absolute and not robust
against shifts of the fragment due to insertions and deletions in the code before the frag-
ment. The temporary markers used are automatically updated by Eclipse to reflect changes
of the environment. Furthermore, the markers are not persisted between sessions and are
automatically removed by CLONEBOARD when a new fragment is copied.

4.5.2 Normalization and Classification

As can be seen in the sequence diagram of figure 4.9, copied fragments are being normalized
and classified before they are being processed further. Only fragments that are considered
relevant are treated as clone source. Other fragments are dismissed as spurious clones.

CLONEBOARD first normalizes all copied fragments. Normalization is a rather simple
process that removes the leading and trailing whitespace from the fragment. These spaces
are irrelevant for Java code, as they only determine the layout of the code. Eclipse’s Java
editor automatically adjusts the indentation of a code fragment when it is pasted, making it
even less useful to consider white space.

Classification of potential clone fragments is done using a simple, heuristics based code
analyzer, implemented by the FragmentType class. This analyzer detects the kind of code
region that was cloned [35]. Regular expressions are used to analyze code fragments. The
determination diagram in figure 4.11 shows the types differentiated by the analyzer and the
heuristics used. A regular expressions-based heuristic analyzer is used rather than a island
grammar-based parser [53] for performance reasons. Furthermore, the analyzer does not
need to be very accurate and no information is extracted from the fragment other than its
type, so that a full parser really would be overkill.

40

CLONEBOARD Implementation 4.5 Capturing Copy and Paste Operations

Figure 4.11: Determination scheme for heuristic fragment type detection.

Based on reason and experience, a number of fragment types have been declared triv-
ial and are automatically dismissed by the CloneManager when such fragments are copied:

• Empty fragments. Trivially, fragments of zero length are filtered.

• Comments and JavaDoc. Fragments consisting of comments only pose no code in-
consistency risks should they be copied and modified inconsistently.

• Single keywords. Language keywords (for instance access specifiers) are copied for
convenience reasons, but can not be considered clones both because they are too small
and because they cary no information. Furthermore, such fragments are never changed,
but only replaced entirely or deleted.

41

4.6 Detecting and Handling Clone Changes CLONEBOARD Implementation

• Annotations. Just like keywords, annotations5 add little information. Arguably, some
kinds of annotations, particularly custom and more complex annotations, might need to
be excluded if the need arises.

• Number. Numeric constants are filtered, mainly because they are too small to be real
clone candidates and generally carry too little information to be a likely source of in-
consistent modification bugs.

4.5.3 Cutted and External Fragments

Two special situations may occur when the CloneManager handles a paste operation: the
original fragment was cut rather than copied or the fragment was put on the clipboard by
another application. CLONEBOARD handles both situation in the same, elegant way. When
a pasted fragment, for whatever reasons, can not be linked to a source fragment, the pasted
fragment is marked as the source of any future paste operations. In other words, the paste
operation is interpreted as a copy operation. Should the same fragment be pasted again,
then it will be automatically linked to the fragment that was first pasted.

4.6 Detecting and Handling Clone Changes

Thus far, components have been described that work together to register clone relations. The
component that adds the actual clone change resolution functionality is the CloneChange-
Manager. In this component, detecting changes, grouping atomic changes into change trans-
actions and resolving these changes is handled. One single class, by the same name as the
component, implements all this behavior.

4.6.1 Detecting and Grouping Changes

To detect changes, the CloneChangeManager relies on the information provided to it by
the TextEditorManager. Source code changes, or document changes as they are called
in Eclipse lingo, are reported to the CloneChangeManager by means of the IDocument-
Listener interface (cf. section 4.4).

The CloneChangeManager responds to each reported document change by doing two
things: a logical clock [46] is incremented and a document change handler is triggered.
The logical clock is used to impose a total ordering on clone changes. This ordering is
particularly useful in deciding which changes occurred after a document was last saved
and before the document is discarded. Eclipse’s marker persistence engine does not undo
changes to marker when a document is discarded, so that the CloneChangeManager will
have to do this itself.

5A Java annotation is an interface that is associated with a Java element to add special properties. One such
– built-in – annotations is the @override annotation, that indicates an explicit method override.

42

CLONEBOARD Implementation 4.6 Detecting and Handling Clone Changes

Figure 4.12: The CloneChangeManager and the functionality it implements.

To handle document changes, the CloneChangeManager performs a number of steps,
some of which are directly related to the clone change management process, others are
mainly intended to work around limitations in Eclipse’s marker model:

• Update marker positions. Although Eclipse’s marker model provides an automatic
way to update the positions of markers when code is inserted or deleted before them, this
algorithm did not prove to conform to the particular demands of the clone model. Parts
of Eclipse’s update algorithm were therefore overridden, mainly to be able to handle the
correct interpretation of insertions just before or just after a clone.

In CLONEBOARD’s implementation, insertions right before or after a clone frag-
ment are added to it when they contain just alphanumeric characters. During alpha test-
ing, it was discovered that in certain boundary cases, such characters should be added
to the related clone fragment.

• Find affected clones. For every document change, a list of affected clones is compiled.
Every clone that overlaps with the changed fragment is said to be affected. Usually, this
will be just one clone, but especially in large delete operations, this might be more than
one clone instance.

• Create and update transactions. As soon as it is known which clones are affected by
the change, new change transactions are opened for them or current transactions are
updated, thus effectively implementing a grouping strategy. The last change timestamp
of each transaction is updated to keep the transaction open.6

6The system clock rather than the logical clock described before is used for this, as time-outs measured in
milliseconds are used to determine the end of a transaction.

43

4.6 Detecting and Handling Clone Changes CLONEBOARD Implementation

Listing 4.2: Production rules used by CLONEBOARD’s Java tokenizer in EBNF.� �
1 fragment = { token } ;
2 token = spaces | number | string | char |
3 complex identifier | eqop | comment | other ;
4 space char = white space | tab | newline | linefeed | formfeed ;
5 spaces = space char , { space char } ;
6 number = digit , { digit } , ["." { digit }] |
7 "." { digit } ;
8 string = ’"’ , { any - ’"’ } , ’"’ ;
9 char = "’" , any - "’" , "’" ;

10 identifier char = alphabetic char | digit | underscore ;
11 identifier = identifier char , { identifier char } , ["()"] ;
12 complex identifier = identifier , { "." , identifier } ;
13 eqop = ("-" | "<" | ">" | "+" | "/" | "|" | "&" | "=") , "=" ;
14 comment = "/*" , { any } , "*/" |
15 "//" , { any - newline } , newline ;
16 other = any ;� �

• Update clone model. Finally, the clone model is updated to reflect the changes. Each
clone marker stores its exact associated code fragment and this needs to be updated
to the changed situation. Furthermore, clones that have become of zero length due
to an extensive delete operation are removed.7 This update process of course triggers
notifications that viewers of the clone model can use to update their displays.

4.6.2 Calculate Differences

To be able to accurately judge what parts of a clone have been changed – this is relevant for
determining applicable change resolutions – CLONEBOARD uses a comparison algorithm
based on Hunt and McIlroy’s famous diff program [64]. Instead of comparing lines for
differences, tokens are compared. The result of this comparison is the shortest series of add
and delete operations that transform the unchanged clone fragment into its altered form.

Clone fragments are decomposed into a stream of tokens by means of a very simple
lexer that is part of CLONEBOARD. The lexer recognizes only a few terminal symbols,
some of which are more complex than those typically found in a Java tokenizer. The pro-
duction rules for this tokenizer are shown in listing 4.2. Most of the rules need no further
explanation, but one is special: the complex identifier. A complex identifier is a series
of one or more identifiers, possibly with an empty parameter list appended, separated by
dots. These complex identifiers can thus identify fields and function calls without argu-
ments. This special token is of particular use when it comes to parameterizing clones (cf.
section 4.6.4).

7In the process of removing clones, other clones in the same family will have to be updated. Possibly, an
entire clone family is discarded, should it otherwise end up with only one family member.

44

CLONEBOARD Implementation 4.6 Detecting and Handling Clone Changes

Figure 4.13: Implementation hierarchy of clone resolution classes.

4.6.3 Resolving Changes

The CloneChangeManager contains an innerclass that extends Eclipse’s Job class. This
inner class is used to run a scheduled job twice a second to check for expired clone change
transactions. A transaction is said to have expired when it has not been changed for a certain
amount of time. After this time, it will be automatically picked up by the job and handed to
CloneChangeManager’s expiration handler.

Each expired change transaction is handled in the same manner. Before initiating a
clone change resolution, a number of steps is performed:

• Filter trivial changes. Trivial changes, that is changes that only affect spaces and com-
ments, are filtered out. For such changes, no clone change resolution is required as they
do not affect clone family consistency.

• Consistent again. Changes that make an inconsistent clone family consistent again are
excepted from change resolution, too. After all, such changes are actually very desirable
from a clone management perspective.

• Find apt resolutions. Not all change resolution strategies (cf. section 2.2.3) always
apply. Therefore a resolution generator is queried for applicable instances before the
user is addressed. The resulting list is then sorted based on the applicability of each
resolution (cf. section 4.6.6).

45

4.6 Detecting and Handling Clone Changes CLONEBOARD Implementation

• Query user. When a list of suitable resolutions has been compiled, this list is handed
over to a user interface broker with the request to query the user for the most appropriate
course of action (cf. section 4.7.4). If the user has previously indicated that a certain
resolution has to be applied by default, the querying will be skipped automatically.

• Apply resolution. If a resolution has been selected, it will be applied. Each resolution
is designed as a separate object that implements a common interface (cf. figure 4.13).
Among others, this interface provides a method resolveCloneChanges that resolves
the specified changes and returns a list of affected clones. This list is used to automati-
cally discard the resolution processes for clone changes that have been resolved as part
of another clone’s change resolution.

4.6.4 Parameterizing Clones

The parameterize clone change resolution can only be used when the number of tokens in
a clone fragment has remained unchanged during the modification. This is a limitation of
the resolution, caused by the design decision to assign parameters only on a per token basis.
This is best explained using an example. Consider the original fragment below:

subtotal = quantity * price ;

If the boxed token (‘price’) would be replaced by multiple tokens, as shown below,
multiple parameters would need to be defined for the new fragment (i.e. for every changed
token one), whereas just one parameter would have to be defined for the other members of
the family (that still have the old token).

subtotal = quantity * (price * 1.2) ;

Solving this discrepancy is not trivial, as it requires advanced techniques to keep track
of parameters. These techniques are being actively researched and developed [22], but im-
plementation of such algorithms was deemed to fall outside the scope of this thesis project.

CLONEBOARD transforms every changed token into a parameter, when parameteriza-
tion is selected. Information about the tokens that are made parameters is stored in the
clone marker as a list of token indices. When tokenizing a clone fragment that contains
parameters, parameterized tokens are replaced by special markers that will match any token
when compared in the diff algorithm. In this way, future changes to a parameter will not be
considered an inconsistent clone change anymore.

4.6.5 Applying Changes to Clone Family

To apply the changes made to one clone to its family members, as required for the Apply
changes to all clones change resolution, a simple and elegant solution was found. The out-
put generated by the diff algorithm (i.e. a sequential list of addition and deletions) actually

46

CLONEBOARD Implementation 4.7 User Interface

formed the recipe to update other clones to the new, modified state. As parameterized to-
kens are never identified as being modified, no special measures needed to be taken to avoid
updating these special tokens, resulting in a simple yet effective synchronization algorithm.

4.6.6 Determining Clone Change Resolution Applicability

As most computer users tend not to read on-screen messages completely, it is important to
sort option lists presented to a user in such a way that the most relevant options occur first.
In this way, one can be sure that at least the most relevant options will be considered.

This principle was used to aid the developer in selecting a clone resolution. Prior to
querying the user for his preferences, each resolution object is asked to give an assessment
of its applicability to the changes that are being dealt with. Resolutions get to rate their
applicability on a scale from 0.0 to 1.0, where higher values correspond with a higher rele-
vance. Table 4.1 lists the heuristics used to determine the applicabilities of the resolutions
currently offered by CLONEBOARD. Most of the weights associated with the heuristic rules
were determined by experimentation and reasoning. Field testing will have to be done to be
able to fine tune these rules.

4.7 User Interface

The final part of the CLONEBOARD plug-in, the part were all other components come to-
gether, is the user interface. For CLONEBOARD, the most challenging part of the user
interface is in providing a visualization overlay in the Java editor, including the ability to
‘hyperlink’ clone instances together (cf. section 3.3). In the following paragraphs, the
implementation of this feature and other user interface elements is glanced over.

4.7.1 Visualizing and Hyperlinking Clones in Code

As previously discussed in chapter 3, Eclipse’s marker and annotation model is the best can-
didate to be used for in-code clone visualization. Plug-ins have the opportunity to specify
the presentation style for each marker type separately (cf. section 4.3.2 for marker types).
Among the properties that can be set are background color of the marked code fragment,
border styles and optionally a marker icon in the left margin.

After experimenting with the various visualization options, a very subtle scheme was
chosen. In this scheme, clones are highlighted by a thin grey box around the duplicated
code. All other presentation settings were deemed too prominent or obtrusive. As an alter-
native, a ruler bar was added to the margin of each code editor. This so called CloneBar
shows grey bars before lines that contain clones. Lines containing multiple clones get mul-
tiple bars. To warn developers of inconsistently modified clones, the CloneBar shows red
bars in the margin of inconsistent clone families. Clones the cursor is currently placed on,
light up blue to help developers recognize the extent of the clone they are editing. Figure
4.14 shows an example of the CloneBar at work.

47

4.7 User Interface CLONEBOARD Implementation

Table 4.1: Heuristics used to determine clone change resolution applicability.

Resolution Applicability Heuristic
Ignore changes 1.0 Clone family inconsistent

0.5 Comment or JavaDoc
0 Otherwise

Parameterize Clone 0.6 – 1.0 The more tokens replaced, the less applicable
0 Changes too complex for algorithm

Postpone 0.8 Comment or JavaDoc
0.7 Block construct or method declaration
0.7 Uncategorized long fragment
0.3 Otherwise

Unmark clone 1.0 Identifier, keyword or number
0.9 Clone family inconsistent
0.9 Less than 5 tokens in original fragment
0.7 Number of changes exceeds 9
0.3 Otherwise

Unmark head 0.8 First tokens of fragment were changed
0.8 Method declaration
0.6 Uncategorized short or long fragment
0.5 Block construct
0.3 The number of changes exceeds 4
0.3 String literal
0.1 Otherwise

Unmark tail 0.9 Last tokens of fragment were changed
0.8 All changes occur in second half of fragment
0.6 Uncategorized short or long fragment
0.4 Block construct or a method declaration
0.3 The number of changes exceeds 4
0.3 String literal
0.1 Otherwise

Apply to all 0.9 Fragment is an identifier
0.4 A maximum of one change has been applied
0.2 The number of changes exceeds 3
0.1 Otherwise

48

CLONEBOARD Implementation 4.7 User Interface

Figure 4.14: The CloneBar is used to subtly indicate the presence of clones.

Figure 4.15: The CloneView gives a quick overview of a source base’s clone fragments.

Finally, inter-clone hyperlinks were implemented using the technique described in sec-
tion 3.3. Based on Eclipse’s marker resolution mechanism, a popup window was realized
that is shown when the user hovers his mouse sufficiently long over a clone fragment. Aside
from hyperlinks to other clone family members, some other useful tools are offered as well
(cf. figure 3.3.1). Among these options, the option to manually remove the clone fragment
is offered. Furthermore, a user can view some basic properties of a clone fragment using a
link present in the popup window (cf. section 4.7.3).

4.7.2 CloneView

To accommodate easy clone browsing and give developers a quick and easy overview of
the clones in their source base, a hierarchical clone model viewer was implemented. In this
view, all clones in the repository are shown, sorted by location. To prevent an information
overload, a tree control was used to filter irrelevant data. The tree represents the structure
of projects, folders and files the developer is already familiar with and adds to this entries
for clones.

49

4.7 User Interface CLONEBOARD Implementation

(a) Clone property page. (b) Detailed marker property page.

Figure 4.16: The Generic Elipse properties dialog is used to show clone properties.

As shown in figure 4.15, apart from each clone’s location, its type and associated code
fragment are shown in the view as well. To give developers an impression of the amount
of clones in a particular project, folder or file, an extra column was added showing the total
amount of clones for each container. Finally, a red overlay icon is applied to entries that
either contain inconsistent clone families or represent members of such families. In this
way, developers will be able to quickly see where the ‘pain’ is.

A context menu is provided for every entry in the CloneView, giving developers the
option to directly navigate to the code fragment that contains the clone or highlight the
source of the clone family.

The view was implemented based on the excellent explanation of Eclipse views pro-
vided in a book on plug-in development by Clayberg and Rubel [18].

In Eclipse, every view is implemented as a descendant of ViewPart. The contents of
such a part are free to be determined by the developer, but in this case a standard treeview
component was selected as its primary contents. All that was needed to hook the viewer to
the clone model, was to implement a so called content provider: ITreeContentProvider.
This interface specifies a number of methods the viewer can use to determine the root of a
treeview and find each node’s children.

Further presentation of each entry in the view was realised by implementing a series of
interfaces used to handle layout. Among these, the most important is the ITableLabel-
Provider interface, that is used to determine the contents of each of the views contents.

4.7.3 Clone Properties Window

To provide some extra information about clones and ease the process of debugging CLONE-
BOARD, a property page for Eclipse’s standard properties dialog was implemented (cf. fig-
ure (a)). A property dialog for a clone can be opened both using a hyperlink in the marker
popup window or by right-clicking an entry in the CloneView.

50

CLONEBOARD Implementation 4.7 User Interface

Figure 4.17: The clone change resolution window.

A property page is easily created by extending the PropertyPage class. Eclipse does
not force a particular layout for property pages, but there are some conventions that provide
some support.

In total two property pages were implemented. The first page shows information about
a clone fragment itself. Some basic information is shown, including location and type of
the fragment, as well as information regarding the clone family. Furthermore, the clone
fragment itself is displayed outside of its context. Special highlighting is applied to tokens
that were parameterized (cf. section 4.6.4).

The second property pages shows detailed information about the Eclipse marker used
to demarcate the cloned fragment. This page shows additional information, not shown by
Eclipse’s default marker property page. As shown in figure (b), the property page mainly
shows marker attributes. As such, it is a good way to inspect the inner workings of CLONE-
BOARD’s hybrid clone model.

51

4.8 Considerations CLONEBOARD Implementation

4.7.4 Resolution Window

As detailed in section 4.6.3, the CloneChangeManager uses a user interface broker to get a
user interaction object it can use to query the user. Currently, CLONEBOARD contains only
one such interaction object, which is the clone change resolution window. This window is
the part of the user interface that will probably attract most attention, as it will pop up quite
often.

The window is implemented as a simple dialog with an OK and Cancel button. Apart
from a list of available resolutions the user can choose from, both the original and changed
clone fragments are displayed. A simple highlighting scheme is used to show which parts
of the clone have been changed. The data obtained from the diff comparison (cf. section
4.6.2) is used as a basis for the presentation. Each recorded deletion is highlighted in the
original fragment, whereas each addition gets marked in the field that displays the modified
clone text.

4.8 Considerations

To keep the thesis project on schedule as much as possible, a feature freeze was decided
on two weeks before the planned experiment. There were at least a dozen more small and
larger features still on the wish list when this decision was made. In this final section of the
chapter, some of the features missing in the first version of CLONEBOARD that are really
worth to be discussed are touched upon.

4.8.1 CloneBoard Extension Points

Most design decisions made during the initial decomposition of CLONEBOARD were based
on the assumption that the design should allow for easy extension. The de facto way of
extending Eclipse is by writing new plug-ins that subscribe themselves to predefined exten-
sion points. Some parts of CLONEBOARD lend themselves for this sort of extension, too.
One of the wishes therefore was to define a set of new extension points that could be used by
other plug-in developers later on to add new resolutions and resolution querying interfaces.

Having these new extension points, however, was considered a bit of a luxury problem,
as currently there are no likely candidates to extend CLONEBOARD. Implementing exten-
sion points for internal use only, seemed to be a rather pretentious tour de force, and was
thus postponed, hoping that time would remain for such a feat of strength.

4.8.2 Support for Code Repositories

CLONEBOARD’s clone data is stored in Eclipse markers. These markers are persisted in
proprietary binary files on a per-project basis. When working on a software project in a
team, central code repositories are used to share sources and merge the results of each
developer’s individual labour. The binary format used by Eclipse is not suitable for use

52

CLONEBOARD Implementation 4.9 Summary

with code repositories, as merging of binary files is generally considered impossible without
detailed knowledge of the file format.

In the early stages of CLONEBOARD’s development, an alternative persistence engine
was considered. Particularly, an engine more suitable for use in a multi-developer envi-
ronment. Implementing or integrating such technology into CLONEBOARD was, however,
considered too much effort, considering that it had no added value for the experiment. As
can be read in chapter 5, the experiment was to be performed on individual developers rather
than teams of developers, making support for code repository futile.

4.8.3 Alternative Resolution Querying

During alpha-testing and the pilot experiment, CLONEBOARD’s resolution querying mech-
anism (cf. section 4.7.4) was found to be more obtrusive than originally expected. Some
slight modifications were made to the CloneChangeManager to counter part of this effect,
but the need for a more subtle querying mechanism remained irrefutable.

Alternative methods to query a user for his preferred clone change resolution were con-
sidered. Among those was a techniques similar to that used by Eclipse to report code errors:
underlining erroneous code fragments with a distinctive squiggly line. Such markers clearly
indicate to developers that something is wrong, but leaves the choice whether and when to
solve the issue to their own preference. Unfortunately, no more time was available to im-
plement this alternative querying style as a feature freeze had already been effectuated.

4.9 Summary

This chapter has been a rather technical report on the implementation details of CLONE-
BOARD. With its various UML diagrams it serves mainly to outline the techniques that
were used to bring all required technology together in one consistent Eclipse plug-in.

Among other things, the technology used to integrate a clone model in Eclipse’s marker
model was described, just as it was shown what logic was required to be able to dynamically
deduce clone’s from copy and paste operations. Furthermore, it was shown how the various
user-interface components of CLONEBOARD came to be.

In a separate section, some reflective considerations with regard to CLONEBOARD’s
implementation were made explicit. Given the relatively short time for a thesis project, it
is only logical that not all wishes and second thoughts can be resolved within the project’s
scope.

53

Chapter 5

Experiment

Tinkering with a technician’s tools is dangerous. Tools tend to become an inseparable part
of those who work with them. And just as one would not be greeted with gratitude for
tweaking a worker’s wrist joint, no unconditional appreciation is to be expected for cordially
made adjustments to his tools either. All the more reason to be very careful when altering
a software engineer’s development environment. And as CLONEBOARD does change parts
of a developer’s work process, putting it to a test in a controlled setting before praising its
benefits is a definite recommendation.

To measure CLONEBOARD’s impact on the development process and see whether it
would be able to effectively assist in the clone management problem, it was tested in an
experiment. A number of subjects were asked to develop code in an Eclipse environment
that was extended with the CLONEBOARD plug-in. By carefully recording their findings, a
better evaluation of CLONEBOARD and the principles it is based on was made possible.

In the remained of this chapter, the conducted experiment is described and its results are
outlined. Its first section will deal with the experimental design. Before the experiment was
carried out, its design was first evaluated by means of a pilot. After some fine tuning and
sharpening, the actual experiment was conducted. All of these steps, as well as an after-the-
fact evaluation of the experiment and a report on the validity of its outcomes are described
in the sections to come.

5.1 Experimental Design

Experimental design is an important aspect of any experiment. Only when an experiment
is designed well, can its results be interpreted and validly generalized. The first step in
experimental design is to get two important matters straight: firstly, what concepts are to
be examined, and based on that, what type of experiment is best suited to investigate these
variables.

55

5.1 Experimental Design Experiment

5.1.1 Variables

The subject of the experiment to be conducted will be CLONEBOARD, a tool developed as
part of this thesis project, that is implemented based on concepts introduced by Mann [51]
(cf. section 2.1). The CLONEBOARD tool itself will be the independent variable in the
experiment, as the goal is to see what change the tool can make to the development process.

The research questions posed in chapter 1 offer a good starting point to determine the
dependent variables. Two of these questions relate to technical possibilities (i.e. #1 and
#3), whereas the other two relate to more measurable concepts. Only these latter two are
thus suitable to be examined by means of an experiment. Paraphrased in the context of the
proposed experiment, these questions would become:

• Question #2. Is CLONEBOARD sufficiently useful and usable for developers?

• Question #4. Will CLONEBOARD help reduce cloning related problems?

The dependent variables to be examined can be deduced from these questions relatively
easily. Question #2 maps to two variables: adequacy and usability. The other question
yields a third dependent variable, namely effectiveness.

• Adequacy. A tool is said to be adequate when it is sufficiently able to perform the tasks
its users expect it to do.

• Usability. When a tool can be operated in a comprehensible way, without causing grave
discomfort to its user, it is said to be easy to use.

• Effectiveness. An effective tool is one that is able to yield the intended results and
achieves the goals that it is used for.

5.1.2 Experiment Type

Given the conditions for this experiment (i.e. testing a new tool on a number of points),
some types of experiments are better suited than others. As a new tool is tested, conducting
a historic case study is of little use. Given the relatively short amount of time, introducing
the tool with a number of subjects and studying them for a longer period of time (i.e. a
longitudinal study) is ruled out, too. The most reliable and achievable type of experiment is
probably the controlled experiment, as it allows the concepts to be examined in a controlled
environment in a relatively short amount of time. Sjoeberg et al. ’s definition of a controlled
experiment (in a software engineering context) underlines this suspicion:

“A randomized experiment or a quasi-experiment in which individuals or teams
conduct one or more software engineering tasks for the sake of comparing dif-
ferent populations, processes, methods, techniques, languages, or tools.” – [57]

Ideally, a controlled experiment would be performed by using two sets of test subjects:
a control group and an experimental group. The first group would perform a series of tasks
without the new tool, and the experimental group gets to do the same work with the new

56

Experiment 5.1 Experimental Design

tool. However, the nature of the dependent variables is such that it is hard to measure them
without using the tool. In other words, it is only possible to measure the effects of the tool’s
presence, not of its absence.

The only dependent variable that could be tested both with and without the tool, would
be the tool’s effectiveness: if the subjects in the test group experience less clone related
problems than the subjects of the control group, this effect might be attributed to the tool’s
effectiveness. Measuring the amount of clone related problems subjects experience objec-
tively is quite difficult in the context of a controlled experiment. Only in a longitudinal
study could such effects be measured with some reliability.

These considerations led to the conclusion that a classic controlled experiment would
not be feasible. As a second-best option, the one-group pretest-posttest preexperimental
design [16] was chosen. This type of designs is called preexperimental to indicate that
”[it does] not meet the scientific standards of experimental design” [3]. In other words, an
experiment by this design can not be used to report real findings, but rather just findings.
The difference between these two is clearly defined by Brooks1:

“Findings will be those results properly established by soundly-designed ex-
periments, and stated in terms of the domain for which generalization is valid.

Observations will be reports of facts of real user-behavior, even those observed
in under-controlled, limited-sample experiences.” – [13]

So, although an experiment like this will not be able to provide hard facts, it still has
its use. Or as Brooks puts it: “Any data are better than none.” Valuable information about
the value of both Mann’s proposed operators and CLONEBOARD’s implementation of them
can be obtained, and only through experimentation.

5.1.3 One-group Pretest-posttest Design

In a one-group pretest-posttest preexperimental design, only one group is tested. There is
no control group. Instead of having a control group, the experimental group is subjected to
an extra test before the experiment is conducted. This test serves as a base measurement
to which the measurements gathered after the experiment can be compared. Although this
approach has an inherently higher risk of invalidity (cf. section 5.10), it can still render
useful observations when executed carefully.

During pretesting and posttesting, the subjects are measured in terms of the dependent
variables. Usually, the same questionnaire is used both before and after varying the inde-
pendent variable (i.e. introducing the tool). By using the same questions, the pretest and
posttest results can be compared easier. However, when asking the same series of questions
twice, subjects may tend to ‘clean up’ there answers in the second round, as they realize
what purpose the questions serve and want to show themselves off by answering in a more
desirable way. These risks will have to be considered carefully, both during and after the
experiment.

1Brooks also wrote a famous book on software engineering, called “The Mythical Man-Month” [14]

57

5.1 Experimental Design Experiment

5.1.4 Selecting a Case

The independent variable being exanined is CLONEBOARD. To test its influence on the
dependent variables, subjects will have to be exposed to CLONEBOARD, preferably in a
way that maximizes generalizability of the final results. One way to do this, is by simulating
a development task in an environment that includes CLONEBOARD. In this way, subjects
are exposed to the tool in a way that resembles the conditions of its intended use.

Simulating a development task is not easy. For this experiment, the choice was made to
pick a certain existing software system as a case and give subjects a number of programming
assignments that involve modifying existing source code. For this approach to be successful,
a number of important conditions have to be met:

• Realistic case. First of all, the selected case should resemble a real-life software sys-
tem. Even though the system may be smaller and itself not relate to corporate systems,
it should have all the properties of such a system.

• Sufficiently complex. A case that is too simple does not allow the experiment’s find-
ings to be generalized to the complex systems developers typically encounter in a com-
mercial or scientific context.

• Sufficiently interesting. To get the test subjects involved in the case, which will help
them forget the research setting and hopefully show more natural behavior, the case
should be sufficiently interesting. A case that is ‘fun’ to work on is more likely to draw
subjects back into their normal development routines than a tedious task would.

• Equally familiar to all. To eliminate the potential number of external variables that
influence the dependents, conditions should be as similar as possible for all subjects.
One likely candidate to influence the results is a subject’s degree of familiarity with the
case. A developer that is familiar with a system is likely to show other behavior than
one that is still new to it.

• Easy to learn. When a case is selected that is unknown to all test subjects, it should be
sufficiently easy to learn. As the time for the experiment is limited, the amount of time
spent on getting to know the system should be limited as much as possible.

After some careful considerations, two candidate cases were selected: CheckStyle2 and
RoboCode3. Both systems are open source, relatively small, easy to learn, sufficiently
complex and written in Java. CheckStyle is the more serious of the two, being an extensible
‘spell checker’ for Java code. RoboCode, on the other hand, is an AI programming puzzle
and as such is a little more playful. Finally, on the grounds of being the least known and
most interesting of the two candidates, RoboCode was selected as the case.

58

Experiment 5.1 Experimental Design

Figure 5.1: In RoboCode, artificially intelligent agents struggle for survival.

5.1.5 About RoboCode

The selected case, i.e. RoboCode, can essentially be described as a programming puz-
zle. RoboCode implements a simulation framework in which several artificially intelligent
agents are confronted to each other to find the one with the most superior logic (cf. fig-
ure 5.1). Each of the agents represents a robot, a kind of a modern style gladiator, that is
put into an arena with other robots in a struggle for victory. The robot that lasts longest is
proclaimed the winner. Usually a great number of simulations (or ‘rounds’) is run to get
statistical evidence and rule out shear luck.

To compete with each other, each robot can perform three different types of actions:
moving, scanning and firing. The most intelligent combination of these three actions deter-
mines the winner.

• Moving. The arena in which the robots compete has preset dimensions. Each robot
is free to move around in this arena, within the bounds of physics. Each robot has a
maximum speed and acceleration and moving costs energy.

• Scanning. Using a device that most resembles a conventional radar, each agent can
scan its surroundings, looking for opponents. Only by scanning, information about the
opposition can be acquired.

• Firing. To reduce the opposing robots’ energy, bullets can be fired. The amount of
destructive energy of a bullet can be varied, and firing each bullet will drain the firing
agent’s energy resources.
2See http://checkstyle.sourceforge.net/
3See http://robocode.sourceforge.net/

59

http://checkstyle.sourceforge.net/
http://robocode.sourceforge.net/

5.2 Pretest and Posttest Experiment

New agents are created by subclassing a base robot class provided by the RoboCode
framework. Each robot runs its own thread, issuing commands to perform its basic actions.
Each command given will block the threads execution for a time interval that corresponds
with the time it would physically take to perform the action. Information about the arena
and the other contestants is presented to the robot by means of events.

5.2 Pretest and Posttest

As the dependent variables that are studied (i.e. adequacy, usability and effectiveness of
CLONEBOARD) are all rather subjective qualities, gauging them using some sort of a mea-
surement instrument is not possible. Instead, the experimental subjects will have to be
asked about their opinions regarding these variables. The most suitable and reproducible
way to do this, is by means of a questionnaire, preferably with closed-ended questions only.
Open-ended questions are harder to process and more difficult to interpret. Closed-ended
questions, on the other hand induce the risk of limiting the subject’s responses too much,
thereby not measuring some potentially important variables [3].

A common approach to gauge subject’s opinions about certain concepts is to use matrix
questions in which respondents can rate a number of statements on a 1 to 5 scale, ranging
from ‘strongly disagree’ to ‘strongly agree’ (the so called Likert scale [49]). Such matrices
are easy for subjects to fill out and give them a manageable amount of freedom to express
their opinions. The drawback of this method, on the other hand, is that subjects may start
seeing a certain pattern in their answers and fill out the rest of the questions in line with this
pattern instead of their opinion [3]. A way to remedy this effect is to mix the orientations
of questions4, such that the likeliness that subjects ‘discover’ trivial patterns is reduced.

5.2.1 Pretest design

For the pretest, a total number of five themes were chosen. Each theme relates to a different
aspect of the experiment. Most themes are intended to determine possible external variables
that might influence the dependent variables, other than the independent variable that is
being examined (i.e. CLONEBOARD).

• Personal background. First of all, some personal details of the experimental subjects
were asked. Relevant details were thought to be age, education level and current pro-
fessional occupation. Gender was not included in the questions, as this could be easily
deduced from both seeing the subject and realizing that the chance of finding a female
respondent on a computer science faculty is next to zero anyhow.

• Development experience. To get an impression of the subject’s experience in develop-
ing software, a number of statements were included that relate to programming experi-
ence. As a control question, participants were asked whether they had any experience
with RoboCode.
4By orientation is meant, whether agreement to the key concept means having to answer the question

postively or negatively.

60

Experiment 5.2 Pretest and Posttest

• Attitude towards code quality. As developers young and old tend to have different
attitudes towards the importance of good quality code, a number of statements were
added that attempt to gauge each developer’s standpoint.

• Attitude towards cloning. A subject’s attitude towards cloning might influence its ex-
pectations with respect to a tool that supports clone management. To assess the extent of
this effect, a number of statements that gauge each subject’s familiarity with the concept
of cloning was added.

• Expectations for a tool like CLONEBOARD. Finally, a series of statements was con-
ceived to measure the actual dependent variables. The subjects were given a brief de-
scription of CLONEBOARD but in abstract terms as they were not yet familiar with the
tool, followed by statements about such a tool. The description given is printed below.

“With a clone management tool, one should be able to see what parts of
code have been cloned at any time. Such a tool should give a developer
the opportunity to inspect cloning on a per file basis. Furthermore, the tool
should alert a developer whenever he is changing a cloned fragment, offering
several resolution strategies to cope with the changes. Among such strategies
should be the options to update all clone instances.”

The exact list of questions and statements used in the pretest is printed in appendices B
and C.

5.2.2 Posttest Design

After the subjects have completed their assignments, or reached the end of the predesignated
amount of time, they had to fill out a second questionnaire serving as a posttest. This test’s
primary intent was to measure whether the subject’s expectations with regard to a clone
management system have been fulfilled and CLONEBOARD is found to be a useful example
of such a tool.

In the posttest, a number of different issues were addressed. First of all, a number of
checks were performed to see that the experiment went well and to assess the amount of
interference by external variables. For this purpose, two Likert scale matrix questions were
formulated.

• Assignments Experience. The first set of statements relates to the subject’s experience
of the assignments. Were they too hard? Did the subject feel any time pressure that
might have a negative result on his performance or perception? Were the assignments
sufficiently inspiring?

• Development Style. Subjects were asked to indicate their coding habits in question 3 of
the pretest. To see whether the subjects followed these principles during the execution
of the assignments, a number of similar questions were asked in the posttest. Major
differences in style may indicate a Hawthorne effect [47].5

5Landsberger defined the Hawthorne effect as “a short-term improvement caused by observing worker
performance.”

61

5.2 Pretest and Posttest Experiment

Two more matrix questions were added to assess the subject’s experiences with the
CLONEBOARD user-interface. These questions are intended to measure to what extent the
subject noticed the presence of CLONEBOARD and actively used it. Furthermore, questions
to gauge the subject’s appreciation of the features offered were included.

• UI Experience. The first questions measures some general aspects of the subject’s in-
teraction with CLONEBOARD.

• Resolution Window Experience. More statements relating specifically to the clone
change resolution window are grouped into a second question.

To get an impression of the subject’s perception of the change resolutions, two ques-
tions directly relating to the seven resolution options implemented in CLONEBOARD were
added:

• Resolution Frequency. In a matrix question, all seven resolutions were listed with
the request to give a rough indication of the number of times the subject used each
of the resolutions during the assignments. As a scale, five different values were cho-
sen: never, once, 2–5 times, 6–10 times and more than 10 times. Given the relatively
short time given for the assignments and existing figures about developer copy and paste
usage [38], this scale seemed to be fair.

• Resolution Value. The second matrix questions asked subjects to rate the usefulness of
each of the resolution on a Likert scale. If a resolution was never used, the participants
were asked to indicate how useful they thought the resolution would be.

The seventh question of the questionnaire addresses the dependent variables. Subjects
were given the same seven statements as used in question 5 of the pretest, only changed to
feature the name of the clone management tool, namely CLONEBOARD. The answers to
these questions can be directly compared to those given in the pretest, to see to what extent
CLONEBOARD meets up with the subjects expectations for a tool like it.

To further measure the participants perception of the CLONEBOARD user interface and
to see to what extent problems in the usability of the tool hindered its use, an extra series of
Likert-scale statements was added.

As a means to assert that problems with the case, the execution of the experiment, its
documentation or the questionnaires did not have a negative effect on its validity, subjects
were asked to rate a final series of statements. Instead of a Likert scale a scale from 1 to 9
was used to enable participants to give a more fine-grained answer. A ten point scale was
deliberately abstrained from, as especially academically educated tend to find 10 an ireal
rating.

On the back of the posttest questionnaire, participants were given space to write down
some comments or suggestions they might have.

A full list of the questions on the posttest questionnaires is given in appendix C.

62

Experiment 5.3 Programming Assignments

5.3 Programming Assignments

Considering the amount of time a volunteer would maximally want to spend on an exper-
iment, the duration for the programming assignments was fixed at two hours. Ideally, one
would track participants much longer, but this would be nearly impossible without compen-
sating subjects for their expenses. And as is widely known, a software developer’s time is
not cheap.

Thus, the programming assignments to be given to the participants should be such that
completing them in two hours is possible. Furthermore, as time is short subjects should not
have to spend too much time to get to know the case, before starting their programming
work. The RoboCode case chosen for the assignments is very suitable to match these re-
quirements, as it is easy to get acquainted with and a robot can be developed in a relatively
short amount of time.

5.3.1 Initial Design

At first, a series of five assignments was drawn up, leading the experimental participants
through all stages of developing a robot. These stages include processing radar data into
a 2D representation of the other robots’ positions and implementing routines to effectively
move to a predetermined position in the arena. Both tasks involve a non-trivial amount of
trigonometry. Furthermore, AI code would have to be implemented in order to effectively
hunt the robot’s enemies.

During the experiment’s pilot, the relatively large amount of trigonometry involved in
building a robot proved to be an obstacle. As quite a lot of the subject’s time went into
figuring out the math, less cloning-related data was gathered. To counter this negative effect,
the assignments were redesigned.

5.3.2 Final Assignments

For the final assignments, a basic robot implementation was created in which all trigonom-
etry was embedded. Basic operations, such as moving, scanning, aiming and firing were
all abstracted from and more convenient methods to drive the robot were implemented. As
a direct consequence, the programming assignments could be much simplified, while still
offering the subject’s the rather motivating opportunity to develop their own, intelligent
agent.

Attempts were made to include tasks that would provoke code cloning. Among devel-
opers’ motives for cloning described in literature are reuse of complicated control struc-
tures [38, 36] and the lack of language support for secondary concerns [59]. In other words,
asking the experimental subjects to implement variations of a given algorithm and letting
them implement a secondary concern (e.g. logging) are likely ways to provoke cloning
behavior.

Based on these observations, a set of five programming assignments was drawn up. The
last assignment was deliberately designed open-ended, so that the occasional participant that

63

5.4 Selection of Subjects Experiment

would complete the other assignments ahead of time would still be able to fill the remainder
of the two hours with the final assignment.

In the first two assignments, the subjects were asked to implement logging functionality.
These assignments both help participants to get to know the software better and are likely to
give rise to code cloning. The third assignment requires the developers to implement a series
of variations on an already implemented target selection algorithm. The required variations
were designed not to be to big, making them excellent candidates for code duplication.

Having inspired the experimental subjects by the design patterns of the third assignment,
they are requested to implement a different set of algorithms for which the same design
pattern could be used. The assignment’s description explicitly hints at these similarities,
by that both aiding the subjects in finding a solution and increasing the chances of more
cloning.

Finally, the fifth assignment more or less gives participants carte blanche to extend and
alter the robot code as they set fit. Some possible directions for improvements were hinted
on, but not made too explicit.

The final list of assignments used in the experiment is detailed in appendix D.

5.3.3 Additional Documentation

To give each experimental subject an easy introduction to both RoboCode and CLONE-
BOARD, introductory documentation on these systems was handed out to them. This docu-
mentation (printed out in appendix F from page 117 onwards) outlines the structure of the
case and CLONEBOARD’s user-interface and gives some usful background information.

In addition to two pages of documentation text, a laminated reference sheet was handed
out to participants. This sheet shows screenshots of the main parts of both RoboCode and
CLONEBOARD and explained some important details, including the available clone change
resolutions and RoboCode action commands. A facsimile of this reference chart is printed
in appendix F from page 125 onwards.

5.4 Selection of Subjects

Nearly as important as the experimental design are the experimental subjects. Finding vol-
unteers for experiments is a notoriously difficult task, especially when participants need
to have some prior knowledge or skills. To properly test CLONEBOARD, the experimen-
tal subjects had to be moderately skilled Eclipse-based Java developers. Given the current
tendency of the market for IT personnel, finding skilled Java developers that are actually
willing to sacrifice some three ours of their valuable time is hard.

The most likely source of volunteers was found to be the university itself. On Delft’s
faculty of computer science, Java is the de facto programming standard, Eclipse being a
popular IDE choice among students. To recruit volunteers, leaflets were spread on the
student labs and pinned to notice boards spread over the faculty. Furthermore, invitations
were sent to existing mailing groups and informal inquiries were made.

64

Experiment 5.5 Experiment Setup

As an incentive to volunteers, two goodies were promised: a free lunch and a nice
surprise. Whether the incentive worked or not is hard to say in retrospect, but finally a total
number of 7 volunteers for the experiment and 1 volunteer for the pilot were recruited.

5.5 Experiment Setup

In an attempt to exclude as many external variables as possible, the experiment was setup
on a virtual machine. On a virtual machine, a predetermined set of hardware components
is simulated. By simulating hardware, it was easier to reset the experiment equipment after
each run and exclude hardware related influences.

After a process of research, trial and error, VMWare’s virtualization solution6 was se-
lected. VMWare provides a free set of tools that can be used to create virtual machines
(VMWare Server) and play the simulations (VMWare Player). The virtualization software
and the machine images were installed on a PC in the student lab of the Delft University
of Technology’s Software Technology department. The host system was a true workhorse,
featuring multiple processing cores, multiple gigabytes of internal memory and a 27 inch
WUXGA7 TFT display. The student lab was relatively quiet, with good furniture and light-
ing.

On the virtual machine, a stripped down version of Windows XP was installed. The
only applications made available to the test participants were Eclipse 3.4, RoboCode 1.6.2,
Internet Explorer 6 (for access to online Java documentation) and Notepad. An Eclipse Java
project was setup with all the required files and settings.

5.6 Pilot

To test run the experiment and locate any problems in its design, a pilot study was performed
prior to the actual experiment. As the subject of this pilot, an acquaintance with a degree
in software engineering was selected. The initial set of assignments (cf. section 5.3.1) was
used in this pilot, along with the pretest and posttest questionnaires described in section 5.2.

Running a pilot of an experiment is generally considered to be a good way to fine tune
the experiment’s design. In the pilot conducted for this experiment, a number of issues
showed up. These insights were used to adjust some parts of the experiment, particularly
the programming assignments (cf. section 5.3.2).

Furthermore, some bugs in CLONEBOARD were discovered and fixed and some small
adjustments to the tool’s parameters were applied:

• Tokenizer Adjustments. In the clone comparison routine implemented by CLONE-
BOARD, code fragments are compared on a token level. The exact definition of what
constitutes a token showed to be inadequate during the pilot. String constants were not

6See http://www.vmware.com
71920×1200 display resolution.

65

http://www.vmware.com

5.7 Experiment Execution Experiment

properly recognized and the initial definition of identifiers8 proved to be too narrow.
Changes were applied, resulting in the tokenization scheme described in section 4.6.2.

• Enhanced Navigation. Some minor navigational options were found missing in the
initial version of CLONEBOARD. These options were added to conform with their de-
scription in section 4.7.1.

• Resolution Window Timing. The timing of the change resolution window’s pop-up
was adjusted, as it was found to be too obtrusive.

The pretest and posttest questionnaires were found to be adequate and no changes were
made in these. Furthermore, the experiment’s timing proved to be quite accurate and no
changes were made on this matter either.

5.7 Experiment Execution

The experiment was conducted on five days in January 2009, both in the morning and the
afternoon, testing one subject at a time. By not testing groups of subjects, more attention
could be given to each participants, making it easier to create the informal atmosphere
necessary to emulate normal development conditions.

Several techniques were used to make the experimental subjects at ease, including the
use of a soft, low-pitched voice while addressing subjects and an optimistic and inspiring
attitude while briefing the subjects on the experiment. All participants seemed to react well
to this approach, all working on the assignments in a relaxed way.

With regular intervals, the test participants were addressed during their programming
work to ask them about their work. Drinks were offered and advice was given when subjects
were experiencing difficulties with the assignments. Fifteen minutes before the end of the
two-hour experiment window, the participants were notified, enabling them to finish their
work. Some participants specifically asked for more time to finish their work. Never more
than 10 minutes of extra time were granted.

Overall, the experiment went well with no noteworthy problems or irregularities. One
bug that had the potential to invalidate the logs generated by CLONEBOARD was fixed
halfway the experiment. The bug fix was trivial and did in no way alter the functionality of
CLONEBOARD.

5.8 Results

The experiment resulted in three sets of results: the answers from the pretest, the posttest
replies and the cloning activity logged by CLONEBOARD. In this section, the data from all
three sources are discussed. Analysis on these results is deferred to a discussion in section
5.9, whereas conclusions are reported only in chapter 7.

8Before complex identifiers were introduced, only regular identifiers were recognized.

66

Experiment 5.8 Results

0

3

4

0 0

18- 18-24 25-34 35-50 50+

(a) Age distribution

0 0

35-50 50+
5

2

MSc PhD

(b) Education level

MSc PhD
4

1

3

1

MSc Student PhD Student Developer Ass. Prof.

(c) Current occupation

Figure 5.2: Personal background of experimental subjects.

2

MSc PhD
4

1

3

1

MSc Student PhD Student Developer Ass. Prof.

3b

3c

0

1

2

3

4

5
2a

2b

2c

2d

2e

2f

(a) Developer experience

18- 18-24 25

4

1

MSc Student PhD Student

0

1

2

3

4

5
3a

3b

3c

3d

3e

3f

(b) Attitude towards code quality

0

1

2

3

4

5
4a

4b

4c

4d

4e

4f

(c) Attitude towards cloning

Figure 5.3: Developer profile of experimental subjects.

5.8.1 Subject Profile

Personal Background In the pretest questionnaire, the first question asked to every sub-
ject is about their personal background. As all volunteers were recruited on the computer
science faculty, the subjects all had either a MSc degree, PhD degree or were very close to
one. Furthermore, all participants were male and had ages between 22 and 29. The occupa-
tions of the subjects varied, where some reported more than one current occupation. These
results are summarized in figure 5.2.

Developer Profile Several questions were asked to get an impression of the subject’s de-
velopment skills. The radar diagrams in figure 5.3 shows which answers have been given on
questions 2 to 4 of the pretest. The colored surface in these diagrams indicates the range of
answers given, whereas the bold line shows the average answer. Clearly, most subjects con-
sider themselves an averagely experienced (2a, average score 3.4) and rather proficient (2b,
average score 3.9) Java developer. The contexts in which the participants have developed
varies greatly (2c and 2d), where some have worked in teams or in a commercial environ-
ment and others have not. Furthermore, not all subjects consider Eclipse to be their ‘native’
development environment, but most do (2e, average 3.3, median 4). However, none of the

67

5.8 Results Experiment

0

1

2

3

4

5
Ia

Ib

IcId

Ie

(a) Assignments experience

2d

0

1

2

3

4

5
IIa

IIb

IIc

IId

(b) Development style

0

1

2

3

4

5
IIIa

IIIb

IIIcIIId

IIIe

(c) UI experience

Figure 5.4: Subjects’ experiences with CLONEBOARD and the assignments.

participants claimed prior knowledge of RoboCode (2f), which confirms the experimental
design’s assumptions with this regard.

The subjects’ attitude towards code quality is more consistent (cf. figure 5.3b). Writing
clean code is valued about equally much as writing functional code (3a) and most respon-
dents hesitatingly agree that bugs are often the result of programmer sloppiness (3b, average
score 3.7). With a score ranging between 3 and 5, all developers endorse a focus on writ-
ing good quality code (3c, average score 4.0). The statement about commenting behavior
was answered by all subjects with a score of 2 or 3, indicating that they generally keep a
fair balance between the amount of code and comments they write, with a slight bias to-
wards code (3d, average 2.3). With only one rating the statement lower than 3, respondents
seemed to somewhat believe that better tools can actually prevent bugs (3e, average 3.6).
As indicated by the last statement of pretest question 3, only few of the subjects were often
using Eclipse’s code refactoring facilities (3f, average 2.1).

Of all three tested aspects of code development, the respondents are most unanimous in
their attitude towards cloning. With the exception of one respondent, all were very famil-
iar with the concept of cloning (4a) and agree that copy and pasting is not the best reuse
strategy, not in general (4c) and not when it comes to crosscutting concerns (4d). Copy and
paste habits seem to differ quite a bit along the test subjects. Some indicate to copy and
paste a lot while programming, whereas others are more reluctant copiers (4b, average 3.1,
median 2). Most respondents have come across inconsistent clones, but none did so very
often (4e, average 3.1). Apart from two subjects, all agreed that cloning can lead to bugs
(4f, average 3.6).

5.8.2 Working with CLONEBOARD

The first three questions of the posttest questionnaire are used to get a basic impression of
the subject’s experiences with the assignments and CLONEBOARD. These questions help
to assert that the assignments were adequate to provoke the desired kind of behavior. The
results (cf. figure 5.4) show that the participants generally did not find the assignments

68

Experiment 5.8 Results

0

1

2

3

4

5
IVa

IVb

IVc

IVd

IVe

IVf

IVg

IVh

(a) Resolution experience

0

1

2

3

4

5
Va

Vb

Vc

VdVe

Vf

Vg

(b) Resolution frequency

0

1

2

3

4

5
VIa

VIb

VIc

VIdVIe

VIf

VIg

(c) Resolution value

Figure 5.5: Subjects’ experiences with the clone change resolutions.

too hard (Ia, average 2.6, median 2). None of the subjects experienced time pressure and
actually even tended towards the inverse (Ib). Generally, the respondents reported that they
found the assignments interesting to do (Ic and Id). With the exception of one, all subjects
were totally satisfied with the level of guidance provided (Ie, average 2.1).

With regard to their development style, the respondents all gave rather different answers.
Although all subjects confirmed that their programming work reflected their usual habits
(IIa), some reported to have focused on functional code more than others (IIb) and the
reported degree of comments written varies greatly, too (IIc). Most participants did not
indicate to have copied and pasted more than they would normally do, some even reported
to have copied slightly less (IId).

When asked about the subjects’ general experiences with CLONEBOARD, some minor
patterns emerged in the resulting answers. Nearly all respondents reported to have encoun-
tered CLONEBOARD during their assignments, although not all indicate they did so a lot
(IIIa). Interesting to note is that the respondents seem to identify the change resolution win-
dow with CLONEBOARD, as all of them replied the same to both statements IIIa and IIIb,
the latter of which asks about encounters with the resolution window.

Quite some of the subjects reported to have often quickly dismissed the resolution win-
dow by cancelling it (IIIc, average 3.4, median 4).9 Both the CloneView (IIId) and CloneBar
(IIIe) were not rated very high: with the exception of one respondent, all indicated to find
little use for these two navigational elements. Comments of some respondents did however
show that the clone hyperlinking feature (cf. section 3.3) actually was appreciated.

5.8.3 Resolutions

During the experiment, all subjects were confronted with the clone change resolution win-
dow, that would pop-up after a clone had been changed inconsistently. To most subjects

9One respondent denied cancelling the window, but rather indicated that he had confirmed it blindly, most
of the time. His original rating to IIIc was changed from 1 to 5, as canceling and blindly confirming can be
considered the same in the context of the question.

69

5.8 Results Experiment

Resolution Usage Value
Apply changes to all clones Almost never Very useful
Ignore changes Fairly often Useful
Parameterize clone Quite often Very useful
Postpone resolution Quite often Fairly useful
Unmark clone Quite often Useful
Unmark clone’s head Fairly often Not so very useful
Unmark clone’s tail Fairly often Not so very useful

Table 5.1: The experimental subjects’ opinions about the 7 clone change resolutions.

(with the exception of one) it was clear most of the times why the window appeared (IVa,
average 3.9). The window clearly did not always show at convenient moments (IVb, average
2.7). For some of the participants, the before and after views of the changed clone fragment
were not sufficiently clear (IVc, average 2.9), probably because they were too small at times,
as commented by one of the respondents.

Most of the developers more or less agreed that the window showed sufficient informa-
tion (IVd, average 3.4, median 4) and that the order of the resolutions as they were shown
was quite logical (IVe, average 3.7, median 4). The Remember resolution option of the win-
dow was not valued well (IVf), but it was clear to most participants why the option was
not always available (IVg, average 3.6).10 Some of the participants missed change resolu-
tions (IVg), most notably more advanced parameterization and resolutions that refactor the
affected code.

The respondents were asked how often they used each of the resolutions and how they
valued each of them (V and VI). One subject rated all resolutions with a 1, but others an-
swered slightly more differentiated. Table 5.1 summarizes the results, showing what accord-
ing to the test subjects are the most useful resolutions. One striking, somewhat paradoxal
result shown in this table is the fact that apart from one, none of the subjects actually used
the Apply changes to all clones resolution, but is valued highest of all. One respondent com-
ments about this, stating that the case did provoke cloning, but gave little reason to update
clones.

5.8.4 Tool Evaluation

The most important questions of the experiment are question 5 of the pretest and question
VII of the posttest. In these questions, CLONEBOARD is compared to the expectations the
respondents had of a hypothetical clone management tool with CLONEBOARD’s function-
ality. These questions, together with posttest question VIII measure the dependent variables
of the experiment.

In figure 5.6, the radar charts show some differences between the participants original
expectations and their perception of CLONEBOARD. These differences can be observed

10Two of the respondents actually did not rate these statements as they had not noticed the option at all.

70

Experiment 5.8 Results

0

1

2

3

4

5
5a

5b

5c

5d

5e

5f

(a) Expectations

0

1

2

3

4

5
VIIa

VIIb

VIIc

VIId

VIIe

VIIf

(b) Perception

0

1

2

3

4

5
VIIIa

VIIIb

VIIIcVIIId

VIIIe

(c) UI problems

Figure 5.6: Subjects’ evaluation of CLONEBOARDas a clone management tool.

better in figure 5.7, in which the averages and medians of the ratings are shown. Although
participants are still not very convinced a clone management tool would save them time
(5c and VIIc), CLONEBOARD apparently does offer slightly more added value than the
respondents expected (5d and VIId).

The test subjects seem to be somewhat disappointed with CLONEBOARD, in the sense
that they had expected that it would help reduce clone related bugs better (5a and VIIa). This
outcome might be slightly colored by two of the subjects, who changed their opinions rather
radically. The higher than average medians of the ratings illustrate this fact. Furthermore,
the respondents do not seem so very convinced anymore that CLONEBOARD as a clone
management tool might solve any real problems (5f and VIIf). This insight is shared rather
broadly among the test subjects. Only one respondent indicates that CLONEBOARD is more
likely to solve problems than he had expected.

Apparently, subjects are slightly less convinced of CLONEBOARD’s ability to save them
time (5a and VIIa), but are more confident it will help them solve real problems (5b and
VIIb). CLONEBOARD’s ability to significantly help reduce clone related bugs is rated
slightly lower (5c and VIIc), with the median rate still being 4, indicating a number of
negative outliers.

Striking is the rather large difference between the expected and perceived inconvenience
of CLONEBOARD(5b and VIIb). Whereas participants where rather mild about this in the
pretest, after using CLONEBOARD, their attitude has changed significantly. This perceived
inconvenience probably let them to indicate a lower chance of actually using the tool in
practice (5e and VIIe).

CLONEBOARD’s user-interface elements do not seem to be the reason of the subjects’
disappointment. In general, participants found the UI easy to use (VIIIa, average 4.0, me-
dian 5) and are fairly neutral when it comes to assessing their ability to get used to CLONE-
BOARD as part of their IDE (VIIIb). The respondents reported some errors (VIIIc, average
2.4, median 2), but these apparently did not hinder CLONEBOARD’s functionality signifi-
cantly (VIIId, average 1.9, median 1).

71

5.8 Results Experiment

3.7

3.0
3.3

2.3

2.7

1.9

2.9

3.6
3.3

2.1
2.4 2.6

1

2

3

4

5

Reduces clone
bugs

Primarily
inconvenient

Will save a lot of
time

No added value Will use it
extensively

Does not solve
real problems

Expected (average) Perceived (average)

(a) Averages of ratings

4

3

4

2

3

2

4 4 4

2

3

2

1

2

3

4

5

Reduces clone
bugs

Primarily
inconvenient

Will save a lot of
time

No added value Will use it
extensively

Does not solve
real problems

Expected (median) Perceived (median)

(b) Medians of ratings

Figure 5.7: Expectations for and perceptions of CLONEBOARD.

When asked whether CLONEBOARD would need a better user-interface, opinions seem
to differ. Some are more negative than others, but on average, subjects are fairly neutral
about this (VIIIe, average 2.9, median 3). One subject commented that the user-interface
could have been less intrusive.

5.8.5 Experiment Rating

In the final matrix question of the posttest questionnaire, respondents were given the oppor-
tunity to give feedback on the way the experiment was conducted. As can be seen in figure
5.8, ratings in general were high.

Apparently, the subjects found the experiment ‘fun’ to do and had no problems decipher-
ing the assignments and the associated documentation. The selected case (i.e. RoboCode)
was not found suitable by all participants. Two respondents rated ‘suitability’ with a 7 and
a 5 (out of 9) respectively.

72

Experiment 5.8 Results

8.1
7.6

8.1 8.0
8.3

8.6
8.3

8 8 8 8 8

9

8

1

2

3

4

5

6

7

8

9

Clearness of
assignments

Suitability of
case

Quality of
docs

Quality of
surveys

Feedback
opportunity

Fun factor Overall

Average Median

Figure 5.8: The subjects’ rating of the experiment

64

20

52

14

61

13

52

11

0

20

40

60

80

100

120

140

Short
fragment

Long
fragment

Method Identifier Type
declaration

Copy Paste

(a) Fragment types copied and pasted

31

43

6

28

32

3

9

Parameterize

Unmark

Unmark head

Unmark tail

Ignore

Apply changes

Postpone

(b) Resolutions applied

Figure 5.9: CLONEBOARD usage statistics extracted from log files.

5.8.6 Log Data

Apart from the two questionnaires, a third source of information was available in the form
of CLONEBOARD’s XML logs. These logs contain information about non-trivial code frag-
ment copy and paste operations, applied resolutions and possible error conditions. The logs
have been analyzed to extract some basic information about the frequency different frag-
ment types were copied and pasted (cf. figure 5.9a) and the clone change resolutions that
were used most (cf. figure 5.9).

73

5.9 Analysis Experiment

5.9 Analysis

The purpose of the conducted experiment was to investigate three variables relating to
CLONEBOARD: adequacy, usability and effectiveness (cf. section 5.1.1). In the quesion-
naires of the pretest and posttest, specific questions were asked to measure these variables.
In the following paragraphs, the results of these and other questions will be analyzed to
determine to what extent CLONEBOARD is adequate in managing clone changes, whether
it is a user friendly tool and in how far it is an effective solution against clone related bugs.
Furthermore, the usefulness of the implemented clone change resolution strategies will be
considered, based on respondents’ input.

5.9.1 Adequacy

To find out whether CLONEBOARD as a tool is sufficiently adequate for developers to use
as a clone management solution in their daily work, a number of specific statements was
added to the pretest and posttest questionnaires. Specifically, three pairs of statements in
pretest question 5 and posttest question VII gauge CLONEBOARD’s adequacy, as well as
one statement in posttest question VIII:

• 5c & VIIc. CLONEBOARD will help me save a lot of time.
• 5d & VIId. I don’t see the added value of CLONEBOARD.
• 5e & VIIe. I expect that I would be making use of CLONEBOARD quite extensively.
• VIIIb. I will be able to get used to using CLONEBOARD in everyday coding.

The results of the experiment show that the respondents do see some added value for
a tool like CLONEBOARD, actually even more than they initially expected. Although the
difference is rather insignificant, it at least does show that CLONEBOARD lives up to the re-
spondents expectations with regard to its potential to add value to the development process.
Actually, only one respondent (#1) was heavily disappointed: he had great expectations,
but apparently perceived the reverse. Excluding this subject’s input, the average rating for
CLONEBOARD’s added value becomes 1.711, showing a more significant improvement.

Before the experiment, the test subjects were not convinced of a clone management
tool’s ability to save them time, and this opinion did not greatly change. Some respon-
dents were more optimistic than others, but apparently CLONEBOARD either is not able
to save developers time or the experiment was too short to accurately assess time savings.
Considering that clone management tools will typically save time mainly by reducing in-
consistencies and helping to fix bugs in duplicated code fragments more easily, it is likely
that the experiment actually was too short to observe any such positive effects.

Considering these results and the fact that respondents were not overly optimistic about
their ability to get used to CLONEBOARD in their daily practice (or a similar tool, for that
matter), it seems fair to doubt CLONEBOARD’s adequacy. Although it clearly does add

11Please bear in mind that statements 5d and VIId were formulated negatively, so that a lower rating actually
means a higher appreciation.

74

Experiment 5.9 Analysis

value, its adequacy as a tool has not been shown. A longitudinal study would be required to
draw real conclusions about CLONEBOARD’s adequacy on the long term.

5.9.2 Usability

Nearly all respondents either formally or informally reported that they found CLONE-
BOARD slightly too obtrusive. Apart from being a bit annoying, CLONEBOARD was re-
ported to be easy to use. The answers to statement VIIIa clearly illustrate this. Only half of
the respondents is slightly convinced that CLONEBOARD would need a better user-interface
to be useful (statement VIIIf).

The clone change resolution window seems to be the main cause of irritation. Some
of the respondents reported to have mainly dismissed the resolution window by pressing
the cancel button or hitting escape (IIIc). The window did not always pop-up at convenient
moments (IVb), despite all technical attempts made to choose the most appropriate moment.
Comments given by some of the respondents learned that improving the timing will prob-
ably not help, as it is just the concept of a pop-up window that annoys developers: a less
obtrusive query mode (e.g. a warning icon or message in a sidebar, cf. section 4.8.3) would
probably lead to less disturbance.

About the resolution window itself, respondents were quite positive. The dialog window
shows sufficient information to make its purpose clear (IVa and IVd) and the presentation
order of the resolutions was found logical to most respondents (IVe).

Other parts of the CLONEBOARD user-interface (i.e. the CloneView and the CloneBar)
were not found to be especially useful (IIId and IIIe). The size of the selected case and the
time developers were asked to work on it probably did not require the use of such controls
to navigate the clone model.

In short, the experimental subjects found CLONEBOARD to be usable, but too obtrusive.
This outcome underlines the premise that a clone management tool should be as unobtrusive
as possible. The barrier discussed in section 2.2.2 that should make developers more clone-
aware apparently is a bit to high in CLONEBOARD. On the other hands, the techniques used
to aid in resolving clone changes easily, such as the heuristic sorting of strategies and the
smart highlighting of changes, were well appreciated by respondents.

5.9.3 Effectiveness

Measuring the effectiveness on a tool that is expected to be mainly beneficial when used over
longer period of time is difficult within the scope of a short experiment. To nevertheless get
an impression of CLONEBOARD’s effectiveness, subject’s were asked about their opinion:
will CLONEBOARD solve problems (5f and VIIf)? In the pretest, the respondents were quite
optimistic about this. Two hours with CLONEBOARD later, however, the subjects were less
so. Although they still believed CLONEBOARD could solve real problems, their conviction
had diminished considerably.

A similar but more dramatic decline of optimism is shown by the answers subjects gave
when asked about the potential of CLONEBOARD to reduce clone related bugs. Expecta-

75

5.10 Threats to Validity Experiment

tions about this were rather high (5a), but these got crumbled during the experiment. Two
respondents in particular radically changed their mind from being very optimistic to rather
clowdy about the potential of CLONEBOARD. Apparently, more is needed to solve clone
related issues according to the test participants.

So, is CLONEBOARD effective? Although it was hard for the experimental subjects
to judge, the initial results are not very promising. The developers were rather neutral
about CLONEBOARD’s effectiveness, suggesting that a more elaborate evaluation would be
required for them to give a conclusive answer. This impression is supported by one of the
subjects, who actually suggested it quite literally in his comments.

5.9.4 Usefulness of the Resolution Mechanism

Although the primary objective of the experiment was to assess CLONEBOARD’s value as a
clone management tool, the questionnaire results that relate to the resolution strategies used
were such that they justify further analysis.

It was interesting to see that the change resolutions that were used less were valued
most (cf. table 5.1). Most notably, the Apply changes to all clones resolution (cf. section
2.2.3.2) was applied only three times, but rated highest. Quite in contrast with this, another
highly valued resolution, Parameterize clone, was actually used very often. The other res-
olution strategies were valued less, indicating that the primary interest of developers in a
clone management tool is to be able to keep similar code fragments in sync and patch them
whenever a bug requires so.

This observation adds to the impression that a clone management tool should primar-
ily guard and enforce clone integrity, but should not bother developers with the details of
what exactly defines a clone and what parts should be included. The experimental subjects
showed to be quite willing to define parameterized clones, but often escaped the hassle of
other administrative tasks by dismissing CLONEBOARD’s queries or removing clone mark-
ers altogether to prevent being disturbed. One of the participants admitted to this frankly:
“I stopped using ctrl-c to prevent the resolution window from popping up.”

5.10 Threats to Validity

Mathematicians are often skeptical about the value of experimenting. “Experiments don’t
prove a thing”, they often exclaim [60]. And this is true. Theories can only be falsified by
means of experiments. Absolute proof of a hypothesis is never possible through means of
experimentation. However, this does not mean experimentation is a waste of time. As long
as one is aware of the conditions under which an experiment has been conducted, it can be
quite safe to deduce causal relations and generalize findings.

In this section, the validity of the observations resulting from the experiment is dis-
cussed. Traditionally, two different sides of ‘validity’ are considered. First of all, the cause-
effect inferences made during the analysis will have to be tested for validity. This kind of
validity is called ‘internal validity’. The external validity of an experiment relates to its gen-

76

Experiment 5.10 Threats to Validity

eralizability. It is only when an experiment’s results can be justly extrapolated to a larger
population that they make sense.

5.10.1 Internal Validity

Analysis of the experiment’s outcomes relies on the assumption that the only factor influ-
encing the dependent variables is CLONEBOARD itself. However, several factors relating
to the subjects and the circumstances may have interfered. First of all, some subjects may
have felt emotional pressure to answer positively. The one-to-one setting of the experiment
may have incited this behavior. Attempts were made, however, to make clear to all subjects
that they did not have to please anybody, as only sincere answers were of value.

All subjects were selected based on a presupposed experience in Java development.
This assumption was never tested as such, but was confirmed by the subjects’ own re-
sponses. Furthermore, inspections of their work did in fact indicate all participants were
able. Still, the group of subjects was very diverse and there backgrounds undoubtedly had
some influence on their answers. During analysis of the data, no obvious relations were
found, however.

A rather real threat to internal validity is in the simulated circumstances. The assign-
ments that were given to the participants may have induced certain types of behavior more
than others. More importantly, the selected case may have affected the mood of the partici-
pants, indirectly affecting their judgment. Control questions have been added to the posttest
to test for these effects. The selected case and assignments were found suitable by the
subjects, and no negative emotions were observed.

The duration of the experiment may have influenced the validity of the results, too. A
duration of two hours was considered somewhat short by some of the participants, especially
as it is hard to appreciate long term benefits of clone management software in such a short
time. To counter this effect, participants were deliberately asked to try and consider how
the software would work for them in practice.

Finally, all external conditions of the experiment were kept as constant as possible. All
participants were handed out the same documentation, used the same work station in the
same lab, worked on exactly the same case and received the same verbal introduction. The
subjects were made at ease to create an informal atmosphere and were not addressed too
informally during the experiment, to prevent the interaction from becoming too jovial.

5.10.2 External Validity

Generalizability of the experiment’s results depends mainly on three major aspects: repre-
sentativeness of the subjects, suitability of the selected case and the degree of similarity the
programming assignments bear to real-world development tasks.

Although all subjects were academics, their background were different to such a degree,
that it seems safe to assume they represent average developers quite accurately. Some of
the subjects had significant commercial development experience, whereas others had a more

77

5.11 Summary Experiment

theoretical background. The limited age range of the subjects, however, may have hampered
the experiment’s validity.

The case that was selected, was chosen to be easily comprehensible. A clear disadvan-
tage of this choice is that it also meant the case would be not so very complex. It is safe
to assume most real-life systems are more complex than the selected one. CLONEBOARD

might prove to be more useful in a more complex system. However, all participants were
asked to what extent they expected the tool to be of use in their daily practice. Given the
different background of the subjects, this formulation should have resulted in more gener-
alizable answers.

One of the subjects remarked that the programming assignments were more focused on
inducing clone creation than on clone modification. Given the rather limited time frame, it is
hard to simulate the effect of modifying clones other developers created. This shortcoming
may have had a significant influence on the outcomes of the experiment. However, log
traces show that participants did in fact face sufficient clone change resolution situations to
be able to judge CLONEBOARD’s value.

5.11 Summary

In this chapter, the whole process from design to evaluation has been detailed for the exper-
iment that was conducted. A one-group pretest-posttest preexerimental design was chosen
as it best fitted the requirements of the experiment. Although this is a valid experiment
design, its results are generally not considered to be truly scientific. It was argued, however,
that given the goals of this project, truly scientific results were less important than getting a
good impression of the practical use of the techniques proposed.

The experiment was conducted with seven subjects and an additional subject was in-
volved in a pilot. Each subject was tested individually in a 150 minute session. Although
all subjects were academics, their background were quite dissimilar and their ages were
distributed rather evenly.

After the experiment’s results had been analyzed, a number of observations was made.
First of all, CLONEBOARD’s adequacy as a clone management tool is questionable, al-
though subjects clearly did indicate some added value. The tool’s user-interface was well
designed, but its resolution window was found a too obtrusive way of querying. Respon-
dents were not clear about CLONEBOARD’s effectiveness in countering the negative effects
of cloning. According to some, the experiment should have been longer to determine the
plug-in’s true effectiveness.

Only a small number of the clone change resolution strategies was really valued by
the test subjects. Apparently, the ability to cascade changes made to one clone and the
templating made possible by parameterizing clones were valued most. The other resolution
strategies are to be considered superfluous mainly and should preferably be handled behind
the curtains.

78

Chapter 6

Related Work

The clone management question has been undervalued for quite some time. A lot of effort
has been put in developing static clone detectors that analyze source code and mark all
similar code fragments [4, 8, 20, 34]. It is only more recently that effective ways to actually
manage code cloning have been researched [2, 44, 22, 62].

6.1 Linked Editing

An interesting technique to apply changes to a set of clones was introduced by Toomin et
al. [61]. They show that the concept of Linked Editing can prove useful in simultaneously
updating clone fragments. By linking two code fragments together, they can be edited
simultaneously by means of a visual editor. Part of what Toomim et al. have established is
included in CLONEBOARD as well: using similar techniques, a change to one clone can be
cascaded to the rest of the clone set.

The version of the linked editing prototype Toomim et al. have reported on does not
support automatic linking of cloned fragments: users will have to select the fragments man-
ually to start editing them. An interesting finding of the researchers is that in an experiment
they conducted it showed that linked editing can save a lot of time when compared to the
more traditional approach of functional abstraction to refactor redundant duplicates.

6.2 Linking Copied Identifiers

Several others have implemented plug-ins that integrate clone management into a devel-
opment environment. Jablonski and Hou, for instance, have developed a framework that
captures copy and paste activity and uses this information to dynamically track clones [30].
Their software, dubbed CnP, automatically links identifiers, so that rename operations can
be guaranteed to be performed consistently. In essence, this approach is very similar to
CLONEBOARD’s. The main difference is in the way changes are handled: whereas CnP

79

6.3 Tracking Clones Related Work

only assists in rename operations, CLONEBOARD tries to approach changes in a broader
sense.

What is interesting about Jablonski’s approach is the way in which she analyzes copied
clone fragments. Instead of analyzing the raw text of a code fragment, as CLONEBOARD

does, Jablonski uses the abstract syntax tree representation that underlies it. Using this
model, the scope of identifiers can be determined and references to the same entity can
be tracked. For the purpose of enforcing consistent renamings, this probably is the best
approach, but for the purpose CLONEBOARD serves, this would probably be overkill.

6.3 Tracking Clones

Duala-Ekoko and Robillard bring several clone management techniques together in a tool
called CloneTracker [23]. This Eclipse plug-in maintains a model of all clones in a source
base. The data for this model is gathered using a third-party clone detector. The way in
which ClontTracker visualizes clones and allows navigation is similar to the techniques
employed by CLONEBOARD. When it comes to handling clone changes, however, Clone-
Tracker rather resorts to using linked editing, whereas CLONEBOARD introduces the con-
cept of automatic change resolutions.

The plug-in developed by Duala-Ekoko and Robillard is rather complete and offers a
broad range of funtionality. The way in which clones are tracked is especially interesting.
Instead of recording the offset and length of each clone fragment in its source file, specially
designed clone region descriptors are used. These descriptors use the syntactical context
of a clone fragment as an anchor and are as such more robust against unsupervised file
changes. In contrast, CLONEBOARDfully relies on Eclipse’s marker functionality and as
such is not robust against source changes made outside of the Eclipse environment.

6.4 Dynamic Clone Detection

Two tools that are very similar to CLONEBOARD in terms of technology are Clonescape
by Chiu and Hirtle [17] and CPC by Weckerle [63]. Both tools are Eclipse plug-ins that
monitor clipboard activity to infer clone relations, similar to the way CLONEBOARD does.
Clonescape, however, focuses more on providing clone navigation tools. CPC, on the other
hand was implemented to be a framework for others to base clone management technology
on. As such it is technologically superior to CLONEBOARD, but it does not go beyond the
point of notifying users of possible clone inconsistencies. No attempts are made by CPC to
resolve these issues automatically.

It is interesting to see that both Clonescape and CPC rely on Eclipse’s marker model to
store clone information. Weckerle reports on similar problems with implementing clone
capturing as were experienced during the implementation of CLONEBOARD. Whereas
CLONEBOARD is only capable of adding clone marks automatically, in Clonescape the
option was added to manually register clones. This option may prove useful to register
preexisting clones, but introduces the risk of registering spurious clones.

80

Related Work 6.5 Other Work

The work of Weckerle seems particularly solid. Both the resulting CPC framework and
the research he conducted are of admirable quality. The CPC tool was tested on a number
of developers, and data about their cloning behavior were recorded for a period totaling two
months. Weckerle has analyzed these data and was able to generate some quite interesting
statistics about programmer’s cloning behavior.

6.5 Other Work

Among the many other research projects that have been conducted in the field of code
cloning, there are some interesting ones worth mentioning. Juergens et al. for instance
have explored ways to relate inconsistently changed clones to potential bugs [33]. Recent
research by Krinke shows that cloned code actually tends to be more stable than other code:
clones are less likely to be edited once they have been created [43].

As current clone detectors tend to produce a lot of output, often containing a significant
amount of spurious clones, the techniques proposed by Zhang et al. to filter and visualize
clone data is worth mentioning [67]. The visualization techniques used are actually not quite
unlike those used by CLONEBOARD. Finally, the visualization techniques used by Adar and
Kim to help explore clone families and the way they have evolved can be considered quite
remarkable [1]. Using various types of graphs, these researchers managed to give insight in
to a whole new concept which they call clone genealogy.

81

Chapter 7

Conclusions and Future Work

In the time it took to complete this thesis project, quite a lot of work has been done. More
than 150 publications were examined and over 7,500 lines of code were written to imple-
ment the more than 100 classes CLONEBOARD consists of. Furthermore, the 20 hours of
experimentation lead to more than 600 data points and nearly a megabyte of XML logs. But
what for?

7.1 Conclusions

At the start of this thesis project, a number of research questions have been formulated
(cf. section 1.2.1). These questions formed the basis for all further actions taken. Looking
back on the implemented tool, CLONEBOARD and the experiment that has been conducted
with it, is it possible to formulate answers to these questions? In the following paragraphs,
answers to each of the research questions (as shown below) will be proposed.

• Question #1. Can the copy and paste replacements described by Mann be realistically
implemented in a programmer’s development process and coding environment?

• Question #2. Are developers willing to alter existing copy and paste habits to help
contain code clones?

• Question #3. In what ways can the relations established by using Mann’s operations be
used to enforce consistent editing of clones?

• Question #4. Will Mann’s operations help reduce cloning related problems?

7.1.1 Implementing the Mann Operations

The first question that was posed relates to the feasibility of Mann’s proposition to replace
existing copy and paste operations in development tools with a set of cloning operations. In
an attempt to prevent disappointments, Mann’s proposals were interpreted rather flexibly. It
was suspected early on that there would be little support for a tool that replaces two of the

83

7.1 Conclusions Conclusions and Future Work

most solidly anchored shortcuts in the development world. Instead, an alternative way of
implementing the operations proposed by Mann was chosen.

By inferring the Mann operations rather than implementing them directly, developers
will not have to be asked to adapt to new habits. Instead, their current habits could be
translated transparently to the desired new behavior. In CLONEBOARD, this was achieved
by assuming the strictest relation by default and querying the developer every time the
relation might need to be relaxed.

The results of the experiment conducted to test CLONEBOARD show that this interactive
approach was not an undivided success. Although the participating developers did rather
unanimously agree that CLONEBOARD in fact does add value to the development process,
the tool was found to interfere too much with their primary activities. The experiment
clearly showed that a clone management tool will have to be more like a watch-dog than a
traffic policeman, only barking when something is wrong and not standing in the way when
one is in a hurry.

So, can Mann’s operations be realistically implemented in the development process?
Yes, but a strong emphasis should be on usability, requiring as little of a developer’s atten-
tion as possible.

7.1.2 Change Developer Habits to Better Contain Clones

Tinkering with development tools is a delicate matter. Changing their daily work routine
is not an undertaking to think to lightly of. Or is that just a overly negative presumption?
What can be concluded about the second research questions? Are developers willing to alter
their clipboard habits to help contain code clones?

Apart from the fact that CLONEBOARD did not always interfere at convenient moments,
most of the respondents were actually rather optimistic about the concept of clone change
resolutions. It was clear to most that automated support in the process of patching clones
and reusing existing code as templates for new code can save them time. This seems to
suggest that developers do seem to be willing to alter their copy and paste habits when it
saves them time. Important is, however, that they will not have to invest more time to feed
a tool with data than the time the thing will help them save.

In the experiment’s pretest, subjects were asked about their expectations for a clone
management tool. Their answers showed that they did believe such a tool would have them
reduce the amount of clone related bugs. Furthermore, respondents did not expect to leave
such a tool unused. Apparently, CLONEBOARD’s user-interface was not implemented suf-
ficiently well to provide the level of user-friendliness required to have developers accept it
in their development environment. This is indicated by the fact that after they had worked
with CLONEBOARD for two hours, the mild reticence respondents showed about the pos-
sible inconvenience of a clone management tool changed into a more pronounced rejection
of its usability.

To answer the question about developer willingness to change habits to aid in clone con-
tainment: the developers that participated in the experiment mostly recognized the cloning

84

Conclusions and Future Work 7.1 Conclusions

problem and seemed willing to change some of their copying habits to lessen the cloning
problem. So, yes, developers are willing to change their habits, but only if the changes will
not interfere with their productivity too much. CLONEBOARD did not succeed in keeping a
sufficiently low profile to be accepted by developers: it was found too obtrusive.

7.1.3 Mann Operations Used to Enforce Clone Consistency

In what ways can the relations Mann’s operations establish be used to enforce consistent
editing of clones? In this study, the resolution mechanism has been proposed to offer devel-
opers several ways to enforce clone consistency.

Apparently, respondents highly appreciated the possibility to forward changes made
in one clone to all other instances. The possibility to mark wildcards (i.e. parameters)
in clones so that they could be used as templates more easily enhanced this appreciation.
These observations show that the clone relations established using Mann’s operations can
be enforced by using the proposed change resolution mechanism.

Alternative ways to force consistent editing of clones, such as simultaneous editing, do
exist. However, post factum restoral of clone inconsistencies shows to be a good and less
invasive alternative. Other than with simultaneous editing techniques, a developer will not
have to consent to anything before changing a clone. Only when the changes made a clone
family inconsistent, the developer needs to give its approval to some sort of resolution.

In short, several ways to enforce consistent clone editing by using the relations estab-
lished by Mann’s operations do exist. One particular way to use them was designed for and
implemented in CLONEBOARD: clone change resolutions. This mechanism was found to
be useful and seems to be less invasive than alternative solutions.

7.1.4 Effectiveness of Mann Operations in Reducing Clone-related Problems

One of the most important questions of this research project is of course whether Mann’s op-
erations can help reduce problems related to cloning. Based on the respondents’ assessment
of this matter, CLONEBOARD’s implementation of the operations will only be of limited
use. Although the respondents were not pessimistic about its ability to solve real problems,
there is still some more that needs to be done to make CLONEBOARD as effective as it
should be. Respondents indicated that the current set of resolutions did not always suite
their needs. Some more advanced resolution strategies were proposed.

As for Mann’s operations: the fact that CLONEBOARD did not seem to be very effective
does not mean that Mann’s operations are of no use. The opposite might well be true.
Usability aspects play a very important role in the successful implementation of Mann’s
operations. As CLONEBOARD was found to be insufficiently usable, this fact may have
hindered its effectiveness. It is therefore impossible to conclude than Mann’s operations are
ineffective.

All in all, insufficient evidence was found to give a conclusive answer to the question
whether Mann’s operations will help to reduce cloning related problems. More research is

85

7.2 Contributions Conclusions and Future Work

necessary for this, but usability issues need to be resolved first, as these apparently influence
effectiveness considerably.

7.2 Contributions

This thesis project has shown that clone management tools can actually add value to the
development process, but only if their usability is carefully considered and designed to be
as unobtrusive as possible. The work in this thesis makes the following contributions to the
field of clone management research:

• CLONEBOARD. The plug-in introduced in this thesis is a major contribution. Its design
can be used as a starting point for other tools and its underlying concepts can be reused
in other software.

• Dynamic Clone Tracking. Although dynamic clone tracking by means of clipboard
activity monitoring has been shown by others before, this thesis has added a more the-
oretic backbone to the technology by introducing the concepts of atomic clone changes
and clone change transactions.

• Dynamic Change Resolution. When it comes to its unique dynamic change resolu-
tion approach, CLONEBOARD goes beyond other similar tools. The concept of a clone
change resolution adds a valuable alternative to the currently rather limited set of clone
containment options of removal and refactoring. Actually, the concept of change reso-
lution can be seen as an abstraction of these conventional solutions.

• Resolution Strategies. CLONEBOARD adds three new clone management strategies
in the form of parameterization, change forwarding and selective adaptation of clone
boundaries.

• Experiment. The experiment conducted with CLONEBOARD contributes some inter-
esting insights about the perception of clone management tools. The outcomes of this
result clearly shows the importance of usability factors for successful development tool
introductions.

7.3 Future Work

More work is needed to find out which strategies are most fruitful in the struggle for clone
containment. Based on the research done on CLONEBOARD, a number of recommendations
for future work can be made:

7.3.1 Longitudinal Study

To properly assess the value and effectiveness of a clone management solution, it should be
tested in the context of a longitudinal study. In the field of clone management, some longi-
tudinal studies have been performed, but mostly in retrospect by analyzing code versioning

86

Conclusions and Future Work 7.3 Future Work

systems. Such retrospective studies do not lend themselves for tool evaluation as they lack
the so much needed control groups and can not be repeated easily by other researchers.

A longitudinal study with CLONEBOARD may learn whether it has long-term benefits.
The two hour experiment conducted with CLONEBOARD was not sufficiently long to allow
participants to get used to the tool and learn how to best put it to their use.

7.3.2 Further Development of CLONEBOARD

Although CLONEBOARD did not prove to be a golden bullet, it does represent an inter-
esting new way to generalize clone consistency management. It surely seems worth the
effort to further develop CLONEBOARD. Leading the list of improvements should be a less
intrusive resolution querying mode. Possibly, problem markers can be used in combina-
tion with Eclipse’s quick fix framework to offer developers the chance to reconcile clone
inconsistencies at a time it better suits them.

Parts of CLONEBOARD may have to be rewritten to make use of some of Eclipse’s
more advanced features. Project natures, for instance, might be a good way to hook clone
management into Eclipse projects. Natures have not been considered as an implementation
option, but might be an interesting starting point for further development. With project
natures, so called builders can be attached to a project. Such builders are informed about
every change in source code, so that they can update a particular code representation model,
in this case a clone model.

Extending the set of change resolutions CLONEBOARD supports is another desirable di-
rection for further development. As suggested by one of the experimental subjects, includ-
ing certain refactoring options in the resolution set might prove very useful. Furthermore,
the clone parameterization resolution needs to be implemented such that it can handle more
complex cases.

7.3.3 Study Clone Change Patterns

In order to better predict the type of relation that should be enforced on a certain clone set,
it is necessary to gain a deeper understanding of clone change patterns. Quite some general
work has been done in this field [36, 39, 43, 48], but only by compiling a full catalog of
change patterns will it become possible to create clone management software that is able to
infer the desired relations with reasonable success.

Techniques from the artificial intelligence field may prove useful in this matter, too.
Association rule mining algorithms may be used to find out what kind of clone relations fit
best for specific types of clones.

7.3.4 Implement Mann’s Operations

Instead of the inference mechanism used by CLONEBOARD, Mann’s operations could have
been implemented directly. By building a prototype development environment that features

87

7.3 Future Work Conclusions and Future Work

Mann’s operations (and appropriate keyboard shortcut to facilitate frequent use), experi-
ments can be done to see whether these operations are actually usable in their original form.
Possibly, the operations may need to be altered or new operations may be added to the set,
to make them usable to developers.

88

Bibliography

[1] Eytan Adar and Miryung Kim. Softguess: Visualization and exploration of code
clones in context. In ICSE ’07: Proceedings of the 29th International Conference on
Software Engineering, pages 762–766, Washington, DC, USA, 2007. IEEE Computer
Society. – Cited on p. 81

[2] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How clones are main-
tained: An empirical study. In CSMR ’07: Proceedings of the 11th European Con-
ference on Software Maintenance and Reengineering, pages 81–90, Washington, DC,
USA, 2007. IEEE Computer Society. – Cited on p. 79

[3] E.R. Babbie. The practice of social research. Wadsworth Belmont, 11th edition, 2007.
– Cited on pp. 57 and 60

[4] Brenda S. Baker. A program for identifying duplicated code. Computing Science and
Statistics, 24:49–57, 1992. – Cited on pp. 6, 12, 15, 21, and 79

[5] B.S. Baker. On finding duplication and near-duplication in large software systems. In
Proceedings of 2nd Working Conference on Reverse Engineering, pages 86–95, Los
Alamitos, CA, USA, 1995. IEEE Computer Society. – Cited on pp. 1 and 3

[6] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. Measuring clone based reengineering opportunities. In METRICS
’99: Proceedings of the 6th International Symposium on Software Metrics, page 292,
Washington, DC, USA, 1999. IEEE Computer Society. – Cited on p. 2

[7] Hamid Abdul Basit and Stan Jarzabek. Efficient token based clone detection with
flexible tokenization. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pages 513–516, New York, NY, USA,
2007. ACM. – Cited on pp. 2 and 95

[8] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In A. Yahin, editor, Proc. International Conference on Software
Maintenance, pages 368–377, 1998. – Cited on pp. 2, 6, and 79

89

BIBLIOGRAPHY

[9] B.B. Beck. Animal Tool Behavior: The Use and Manufacture of Tools by Animals.
New York: Garland STPM Press, 1980. – Cited on p. 1

[10] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo.
Comparison and evaluation of clone detection tools. IEEE Trans. Software Eng.,
33(9):577–591, 2007. – Cited on pp. 2 and 3

[11] Barry W. Boehm. Software risk management: Principles and practices. IEEE Softw.,
8(1):32–41, 1991. – Cited on p. 21

[12] J. Brandt, P.J. Guo, J. Lewenstein, and S.R. Klemmer. Opportunistic programming:
how rapid ideation and prototyping occur in practice. In Proceedings of the 4th in-
ternational workshop on End-user software engineering, pages 1–5. ACM New York,
NY, USA, 2008. – Cited on p. 5

[13] F. P. Brooks Jr. Grasping reality through illusion—interactive graphics serving science.
In CHI ’88: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1–11, New York, NY, USA, 1988. ACM. – Cited on p. 57

[14] F.P. Brooks Jr. The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1978. – Cited on p. 57

[15] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe. On the use of clone de-
tection for identifying crosscutting concern code. Software Engineering, IEEE Trans-
actions on, 31(10):804–818, 2005. – Cited on p. 6

[16] D.T. Campbell, J.C. Stanley, and N.L. Gage. Experimental and quasi-experimental
designs for research. Rand McNally Chicago, 1963. – Cited on p. 57

[17] Andy Chiu and David Hirtle. Beyond clone detection. Technical report, University of
Waterloo, 2007. – Cited on p. 80

[18] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Quality Plug-Ins. Addison-
Wesley, 2004. – Cited on pp. 22 and 50

[19] James R. Cordy. Comprehending reality – practical barriers to industrial adoption of
software maintenance automation. In 11th IEEE International Workshop on Program
Comprehension, pages 196–205, 2003. – Cited on pp. 4 and 5

[20] N. Davey, P. C. Barson, S. D. H. Field, R. J. Frank, and D. S. W. Tansley. The de-
velopment of a software clone detector. International Journal of Applied Software
Technology, 1(3–4):219–36, 1995. – Cited on pp. 2, 3, and 79

[21] Arie van Deursen. The leap year problem. Year/2000 Journal, 2(4):65–70, July/August
1998. – Cited on p. 2

[22] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving soft-
ware. In ICSE ’07: Proceedings of the 29th International Conference on Software
Engineering, pages 158–167, Washington, DC, USA, 2007. IEEE Computer Society.
– Cited on pp. 6, 12, 46, and 79

90

BIBLIOGRAPHY

[23] Ekwa Duala-Ekoko and Martin P. Robillard. Clonetracker: Tool support for code clone
management. In 30th ACM/IEEE International Conference on Software Engineering,
2008. – Cited on p. 80

[24] Richard Fanta and Václav Rajlich. Removing clones from the code. Journal of Soft-
ware Maintenance, 11(4):223–243, 1999. – Cited on p. 6

[25] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002. – Cited on p. 35

[26] E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison-Wesley, 2003. – Cited on p. 22

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. – Cited on p. 36

[28] C.A.R. Hoare. The emperor’s old clothes. Communications of the ACM, 24(2):75–83,
1981. – Cited on p. 33

[29] S. Holzner. Eclipse Cookbook. O’Reilly, 2004. – Cited on p. 22

[30] Patricia Jablonski and Daqing Hou. Cren: a tool for tracking copy-and-paste code
clones and renaming identifiers consistently in the ide. In eclipse ’07: Proceedings
of the 2007 OOPSLA workshop on eclipse technology eXchange, pages 16–20, New
York, NY, USA, 2007. ACM. – Cited on p. 79

[31] J.A. Jockin-La Bastide and G. van Kooten, editors. Kramers woordenboek Engels:
Engels-Nederlands / Nederlands-Engels. Elsevier / Meulenhoff Educatief, 1987. –
Cited on p. vii

[32] J. Howard Johnson. Identifying redundancy in source code using fingerprints. In
CASCON ’93: Proceedings of the 1993 conference of the Centre for Advanced Stud-
ies on Collaborative research, pages 171–183. IBM Press, 1993. – Cited on pp. 2 and 4

[33] Elmar Juergens, Benjamin Hummel, Florian Deissenboeck, and Martin Feilkas. Static
bug detection through analysis of inconsistent clones. In Walid Maalej and Bernd
Brgge, editors, Software Engineering (Workshops), volume 122 of LNI, pages 443–
446. GI, 2008. – Cited on p. 81

[34] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code. IEEE Trans.
Software Eng., 28(7):654–670, 2002. – Cited on pp. 6 and 79

[35] Cory Kapser and Michael W. Godfrey. Aiding comprehension of cloning through cat-
egorization. In IWPSE ’04: Proceedings of the Principles of Software Evolution, 7th
International Workshop, pages 85–94, Washington, DC, USA, 2004. IEEE Computer
Society. – Cited on pp. 2 and 40

91

BIBLIOGRAPHY

[36] Cory Kapser and Michael W. Godfrey. ”cloning considered harmful” considered
harmful. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse
Engineering, pages 19–28, Washington, DC, USA, 2006. IEEE Computer Society.
– Cited on pp. 1, 2, 4, 5, 10, 63, and 87

[37] F.G. Kenyon. Our Bible and the Ancient Manuscripts: Being a History of the Text and
Its Translations. Eyre and Spottiswoode, 1898. – Cited on p. 1

[38] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethnographic
study of copy and paste programming practices in oopl. In ISESE ’04: Proceedings of
the 2004 International Symposium on Empirical Software Engineering, pages 83–92,
Washington, DC, USA, 2004. IEEE Computer Society. – Cited on pp. 1, 2, 3, 4, 5, 10,
62, and 63

[39] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. SIGSOFT Softw. Eng. Notes, 30(5):187–196, 2005. –
Cited on pp. 6 and 87

[40] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In SAS ’01: Proceedings of the 8th International Symposium on Static
Analysis, pages 40–56, London, UK, 2001. Springer-Verlag. – Cited on p. 5

[41] Rainer Koschke. Identifying and Removing Software Clones, chapter 2, pages 15–36.
Springer, 2008. – Cited on pp. 4 and 6

[42] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract
syntax suffix trees. In WCRE, pages 253–262, 2006. – Cited on pp. 2, 4, 6, 14, and 21

[43] J. Krinke. Is cloned code more stable than non-cloned code? In Eighth IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation, pages 57–66,
Sept. 2008. – Cited on pp. 12, 17, 81, and 87

[44] Jens Krinke. A study of consistent and inconsistent changes to code clones. In 14th
Working Conference on Reverse Engineering, pages 170–178, 2007. – Cited on p. 79

[45] B. Lague, D. Proulx, J. Mayrand, E.M. Merlo, and J. Hudepohl. Assessing the benefits
of incorporating function clone detection in a development process. In International
Conference on Software Maintenance, pages 314–321, 1997. – Cited on pp. 4 and 6

[46] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978. – Cited on p. 42

[47] H.A. Landsberger. Hawthorne revisited. Cornell Univ., 1968. – Cited on p. 61

[48] T.D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a study of de-
veloper work habits. In Proceedings of the 28th international conference on Software
engineering, pages 492–501. ACM New York, NY, USA, 2006. – Cited on pp. 9, 17,
22, 24, and 87

92

BIBLIOGRAPHY

[49] Rensis Likert. A technique for the measurement of attitudes. rchives of Psychology,
140:1–55, 1932. – Cited on p. 60

[50] Angela Lozano and Michel Wermelinger. Assessing the effect of clones on change-
ability. In IEEE International Conference on Software Maintenance, pages 227–236,
28 2008-Oct. 4 2008. – Cited on p. 4

[51] Z.A. Mann. Three public enemies: cut, copy, and paste. Computer, 39(7):31–35,
2006. – Cited on pp. 6, 9, 10, and 56

[52] J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In International Conference on
Software Maintenance, pages 244–253, 1996. – Cited on pp. 1 and 2

[53] Leon Moonen. Generating robust parsers using island grammars. In Proceedings of
the Eighth Working Conference on Reverse Engineering (WCRE’01), page 13, Wash-
ington, DC, USA, 2001. IEEE Computer Society. – Cited on p. 40

[54] Suzanne Robertson and James Robertson. Mastering the requirements process. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999. – Cited on pp. 17
and 19

[55] Chanchal Kumar Roy and James R. Cordy. A survey on software clone detection
research. Technical report, School of Computing, Queen’s University at Kingston,
2007. – Cited on p. 4

[56] Frank Schlesinger and Sebastian Jekutsch. Electrocodeogram: An environment
for studying programming. In Workshop on ”Ethnographies of Code”, 2006. –
Cited on p. 22

[57] D.I.K. Sjoeberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.-K.
Liborg, and A.C. Rekdal. A survey of controlled experiments in software engineering.
In IEEE Transactions on Software Engineering, volume 31, pages 733–753, Sept.
2005. – Cited on p. 56

[58] Robert Tairas, Jeff Gray, and Ira Baxter. Visualization of clone detection results. In
eclipse ’06: Proceedings of the 2006 OOPSLA workshop on eclipse technology eX-
change, pages 50–54, New York, NY, USA, 2006. ACM. – Cited on pp. 5 and 6

[59] P. Tarr, H. Ossher, W. Harrison, and Jr. Sutton, S.M. N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 1999 International Confer-
ence onSoftware Engineering, pages 107–119, 1999. – Cited on pp. 2 and 63

[60] Walter F. Tichy. Should computer scientists experiment more. IEEE Computer, 31:32–
40, 1998. – Cited on p. 76

[61] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated code
with linked editing. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on

93

BIBLIOGRAPHY

Visual Languages - Human Centric Computing, pages 173–180, Washington, DC,
USA, 2004. IEEE Computer Society. – Cited on p. 79

[62] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: maintenance support en-
vironment based on code clone analysis. In IEEE Symposium on Software Metrics,
pages 67–76, 2002. – Cited on p. 79

[63] Valentin Weckerle. Cpc an eclipse framework for automated clone life cycle tracking
and update anomaly detection. Master’s thesis, Freie Universität Berlin, January 2008.
– Cited on pp. 21 and 80

[64] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th IEEE
Symposium on Switching and Automata Theory, pages 1–11, 1973. – Cited on p. 44

[65] I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, and K.H.S. Campbell. Viable off-
spring derived from fetal and adult mammalian cells. Nature, 385:810–813, 1997.
– Cited on p. 1

[66] Michiel Corneliszoon de Wit. Managing code cloning – a literature study, 2008. –
Cited on p. 7

[67] Yali Zhang, Hamid Abdul Basit, Stan Jarzabek, Dang Anh, and Melvin Low. Query-
based filtering and graphical view generation for clone analysis. In IEEE Interna-
tional Conference on Software Maintenance, pages 376–385, 28 2008-Oct. 4 2008.
– Cited on p. 81

94

Appendix A

Glossary

Clone “Code clones (. . .) are code fragments of considerable length and significant sim-
ilarity.” [7] In other words, two fragments of code are considered clones if a certain
clone relation holds. Most often, this relation is defined based on similarity or a
shared origin.

Clone change resolution Strategy to cope with a change that would break one or more
clone relations in a clone set, ideally with the result that the threatened clone relations
are restored.

Clone family Synonymous with clone set.

Clone model The combined set of clone sets in a certain clone base.

Clone set The transitive closure of the clone relation. Put differently: the set of clones that
are all similar to each other or share the same origin, depending on the definition of
the clone relation.

Clone relation Relation between clones, mostly binary but sometimes n-ary, that links
code fragments either based on similarity or shared origin. Clone relations can be
strict in the sense that they only allow minimal or no differences between clones or
loose, allowing for more elaborate changes.

Parameterized clone A clone of which certain parts are marked as parameters. The pa-
rameter parts of a clone are not considered when evaluating the clone relation, so that
clone fragments that differ only in their parameters can still be clones.

95

Appendix B

Pretest Questionnaire

In the experiment conducted as part of this thesis project two questionnaires were used.
In this appendix the pretest questionnaire used to get a zero-measurement before the par-
ticipants started their programming assignments is printed. The following pages contain
the original questions. Facsimiles of the original forms used can be found in appendix F
from page 115 onwards. A more detailed explanation of each question’s purpose is given in
section* 5.2.1.

B.1 Personal Background

“This first question is about you. Please answer the following questions with regard to your
age, education and current occupation. Your answers will be kept private and only serve to
put your other answers in context.”

1a. What is your age?
1b. Please sketch your educational background.
1c. What is your current occupation?

B.2 Development Experience

“Below a number of general statements about software development is shown. Please rate
each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to
what extent they apply to you.”

2a. I consider myself an experienced Java developer
2b. I consider myself a good/proficient Java developer
2c. I often develop software as part of a team
2d. I am often involved in developing commercial class applications
2e. Eclipse is the environment I use most for writing Java code
2f. I am familiar with Robocode

97

B.3 Attitude towards Code Quality Pretest Questionnaire

B.3 Attitude towards Code Quality

“Some more statements are shown below. These statements are about software quality.
Please rate each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to
indicate to what extent they apply to you.”

3a. Writing functional code is more important than writing clean code
3b. Bugs are often the result of programmer sloppiness
3c. When programming, I focus on writing good quality code
3d. I tend to write more comments than actual code
3e. A lot of bugs can be prevented by using better development tools
3f. I often use the automated refactoring tools offered by Eclipse

B.4 Attitude towards Cloning

“The following series of statements is about copy/pasting and code cloning. Please rate
each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to
what extent they apply to you.”

4a. Before this experiment I had never heard of ’code cloning’
4b. I use copy/paste operations often when writing code
4c. Copy/paste is often a good code reuse strategy
4d. Copy/paste is the best reuse strategy for cross-cutting concern code1

4e. I often come across inconsistently modified code copies
4f. I strongly believe cloning can lead to difficult to solve bugs

B.5 Expectations for a Tool like CLONEBOARD

“The final question of this survey is about your expectations for a tool that helps to main-
tain code clones. Please read the description below and then rate each of the following
statements on a scale from 1 (totally disagree) to 5 (totally agree).”

“With a clone management tool, one should be able to see what parts of code
have been cloned at any time. Such a tool should give a developer the opportu-
nity to inspect cloning on a per file basis. Furthermore, the tool should alert a
developer whenever he is changing a cloned fragment, offering several resolu-
tion strategies to cope with the changes. Among such strategies should be the
options to update all clone instances.”

5a. Such a tool would significantly help to reduce clone related bugs

1Cross-cutting concerns are secondary aspects of a program that are orthogonal to the main logic. Examples
of such concerns include logging, error handling, event triggering and code to facilitate debugging.

98

Pretest Questionnaire B.5 Expectations for a Tool like CLONEBOARD

5b. Interference by such a tool would primarily be inconvenient
5c. A clone management tool will save me a lot of time
5d. I don’t see the added value of such a tool
5e. I expect to be making use of this tool quite extensively
5f. The tool will not be able to solve real problems

99

Appendix C

Posttest Questionnaire

In the experiment conducted as part of this thesis project two questionnaires were used.
In this appendix the posttest questionnaire used to evaluate the experiment and gauge the
participants’ experiences is printed. Facsimiles of the original forms used can be found in
appendix F from page 121 onwards. A more detailed explanation of each question’s purpose
is given in section 5.2.1.

C.1 Assignments Experience

“The first question of this evaluation is about your overall experiences in performing the
programming assignments. Please rate each of the statements below on a scale from 1
(totally disagree) to 5 (totally agree) to indicate to what extent they apply to you.”

Ia. The assignments were too hard for me
Ib. I felt a lot of time pressure
Ic. The assignments were very interesting to do
Id. I feel enthusiastic about the assignments
Ie. I would have needed more guidance in completing the assignments

C.2 Development Style

“In this question, we will consider your programming style during the assignments. Please
rate each of the statements below on a scale from 1 (totally disagree) to 5 (totally agree) to
indicate to what extent they apply to you.”

IIa. The programming work I did reflects my usual coding habits
IIb. I focused on writing functional code over clean code
IIc. I have written more comments than I usually do
IId. In the assignments I copy/pasted more often than I usually do

101

C.3 UI Experience Posttest Questionnaire

C.3 UI Experience

“The following statements each relate to your experiences with CLONEBOARD during the
experiment. Please rate each of the statements below on a scale from 1 (totally disagree) to
5 (totally agree) to indicate to what extent they apply to you.”

IIIa. I encountered CLONEBOARD a lot while working on the assignments
IIIb. I often encountered the clone resolution window of CLONEBOARD

IIIc. I mostly dismissed the clone resolution window by pressing Cancel
IIId. The CloneView was of much use in navigating clone fragments
IIIe. The CloneBar was of much use in locating clone fragments

C.4 Resolution Window Experience

“In this question, the Clone Change Resolution window will be considered more closely.
Please rate each of the statements below on a scale from 1 (totally disagree) to 5 (totally
agree) to indicate to what extent they apply to you.”

IVa. It was always clear to me why the resolution window appeared
IVb. The resolution window always showed at convenient moments
IVc. The before and after fragments shown were very useful
IVd. The window offered sufficient information to resolve clone changes
IVe. The order of the available resolutions always seemed logical to me
IVf. I found the Remember resolution option very useful
IVg. It was clear why Remember resolution was not always available
IVh. I missed some essential change resolutions (please specify which)

C.5 Resolution Frequency

“Below all available clone change resolutions are listed. Please indicate for each of them
whether you used the resolution during the experiment and if so, approximately how often
you used them.”

Va. Apply changes to all clones
Vb. Ignore changes
Vc. Parameterize clone
Vd. Postpone resolution
Ve. Unmark clone
Vf. Unmark clone’s head
Vg. Unmark clone’s tail

Respondents were given the choice between five answers: never, once, 2–5, 6–10, 10+.

102

Posttest Questionnaire C.6 Resolution Value

C.6 Resolution Value

“Below, the same list of resolutions is shown again. Can you please indicate how useful you
found each of the resolutions on a scale from 1 (totally useless) to 5 (very useful). If you
never used the resolution, please indicate how useful you think it might be.”

VIa. Apply changes to all clones
VIb. Ignore changes
VIc. Parameterize clone
VId. Postpone resolution
VIe. Unmark clone
VIf. Unmark clone’s head
VIg. Unmark clone’s tail

C.7 CLONEBOARD Perception

“In the general survey you were asked about your expectations for a code clone management
tool. Please rate each of the statements below on a scale from 1 (totally disagree) to 5 (totally
agree) to indicate to what extent they apply to you.”

VIIa. CLONEBOARD will significantly help to reduce clone related bugs
VIIb. Interference by CLONEBOARD will primarily be inconvenient
VIIc. CLONEBOARD will help me save a lot of time
VIId. I don’t see the added value of CLONEBOARD

VIIe. I expect that I would be making use of CLONEBOARD quite extensively
VIIf. CLONEBOARD will not be able to solve real problems

The questions were actually arranged in a different order, to prevent respondents from
recognizing the questions as the same ones asked in pretest question number 5.

C.8 UI Problems

“The last series of statements relates to CLONEBOARD’s usability. Please rate each of the
statements below on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what
extent they apply to you.”

VIIIa. I found CLONEBOARD’s Eclipse extensions easy to use
VIIIb. I will be able to get used to using CLONEBOARD in everyday coding
VIIIc. I often received an error message while using CLONEBOARD

VIIId. Bugs in CLONEBOARD severely hindered its usefulness
VIIIe. In essence CLONEBOARD is useful, but it needs a better user interface

103

C.9 Experiment Rating Posttest Questionnaire

C.9 Experiment Rating

“Please rate the following aspects of this experiment on a scale from 1 (very bad) to 9
(excellent). If you would like to comment on some of your ratings, please do so in the
comment box on the next page.”

IXa. Clearness of assignments
IXb. Suitability of the selected case (i.e. Robocode)
IXc. Quality of case documentation
IXd. Quality of the questionnaires
IXe. Opportunity to give feedback
IXf. ’Fun factor’
IXg. Overall impression

C.10 Comments

“Thank you very much for your participation in this experiment! If you would like to receive
a copy of the experiment’s outcomes, please write down the email address you would like
to receive them on below. If you have any further remarks, findings, suggestions or other
input, please write those down, too!”

The respondent was given ample space to write down his comments.

104

Appendix D

Programming Assignments

A set of five programming assignments was handed out to the participants in the experiment
conducted as part of the thesis project. The full text of these assignments is printed in this
appendix. Facsimiles of the original programming assignment pages used can be found in
appendix F from page 119 onwards. Please refer to chapter 5 for an in-depth description of
the assignments.

D.1 Exploring your robot

To get you more familiar with your robot, you will be adding some logging code to your
robot first. This allows you to explore the existing code and see how things work. Add
logging lines (using the log method implemented in BaseCloneBot) to CloneBot’s next-
Instruction method. Log to which position the robot is moving, which target it has chosen
and with what power it fires at it.

Hints

• By pressing the CloneBot’s button next to the playing field of RoboCode, you open
the robot’s console window. This is the window log messages are written to.
• Press the Paint button in the robot’s console window to see what its current target and

direction are. These are visualized using a red and green circle respectively.

D.2 Extend the Enemy’s toString method

To make the information logged about the selected target more useful, you will have to
extend the toString method of the Enemy class. In its original implementation, this only
shows the enemy’s name. Add some more information to it, such as its current location,
energy level and direction.

105

D.3 Implement better targeting routines Programming Assignments

Hints

• You can use the StringBuilderalready created for you to add more logging infor-
mation.
• Feel free to browse the Enemy class to look for useful information to include.

D.3 Implement better targeting routines

The CloneBot chooses its targets by calling the selectTarget method. This method is
implemented by calling a rather silly targeting routine: findRandomTarget. This routine
just picks one of the enemies as a target, without considering whether it would be a good
candidate.

Using the findRandomTarget as an example, add the following similar targeting rou-
tines:

• findNearestTarget. finds the enemy that is closest. You can use the Enemy’s
getDistance method to determine its distance from your robot.

• findWeakestTarget. finds the enemy that is weakest. Use the Enemy’s get-
Energy method to see which robot has the least amount of energy left and thus is the
weakest.

• findFittestTarget. finds the healthiest enemy (the one that is your best com-
petitor). Use the getEnergy method to find out which enemy is healthiest.

• findSlowestTarget. finds the enemy that is moving the least (and thus is easy to
aim at). Use the getVelocity method of the enemy to find out its speed.

Hints

• Test each of the targeting routines by inserting them into the selectTarget method.
• If you like, you can alter the selectTarget method to randomly pick one of the

targeting routines, for instance by using a switch statement.

D.4 Getting closer to your enemy

The CloneBot is still running around like crazy, picking random locations every turn. It
probably would be better to try and move your robot somewhat closer to its target enemy.
Getting closer enhances the chance of hitting the enemy. Try and implement several differ-
ent movement strategies. Use a similar approach to the one you used for targeting to create
multiple targeting routines and slot them into the idselectNewPosition method.

106

Programming Assignments D.5 The final round

Some suggestions

• getCloserToTarget. get a little closer to your target, by reducing the distance
between you and your enemy. You might try and get 20% closer each time.

• circleTarget. try and move around your enemy in a circular motion. Can you
figure out the math? Consider using the Point.heading and Point.move methods.

• confuseTarget. try not to be too predictable and confuse your enemy. Ideas?

• findBestPosition. pick some 100 random points in the arena and use a rating
function just like was done for picking a target to see which position is best.

D.5 The final round

Your final assignment will be the most important one: actually trying to defeat your ene-
mies. This is where you can decide the faith of your creation. You are free to alter you robot
as you see fit. Your only mission is to defeat the other robots.

Hints

• Override the onHitWall, onHitRobot, onBulletHit and onBulletMiss methods
to improve your robot. These events will help you to get better.
• Consider varying fire power. Less powerful bullets travel faster and are thus more

accurate.

107

Appendix E

Experiment Results

In this chapter, tables are printed contain-
ing the coded results gathered with the ques-
tionnaires used in the pretest and posttest of
the experiment, as well as data gathered by
CLONEBOARD’s logging facility. For rea-
sons of privacy, the respondents’ names were
replaced with numerals. A total number of 7
subjects were tested. The results of the pi-
lot experiment are not included. A more in-
depth analysis of this data can be found in
section 5.8. Rather than citing the full ques-
tions, only their codes are used. A full list of
all questions and statements can be found in
appendices B and C (for pretest and posttest
questions respectively).

E.1 Pretest

Question 1

#1 #2 #3 #4 #5 #6 #7
a 22 29 27 23 24 28 29
b M M M M M P P
c S D S SD SD P A

ad b. M: (near) MSc in computer science.
P: (near) PhD in computer science.

ad c. S: student. D: software developer.
P: PhD student. A: assistant professor.

Question 2

#1 #2 #3 #4 #5 #6 #7
a 4 3 4 4 3 2 4
b 4 3 4 4 5 4 3
c 4 2 3 2 5 2 2
d 2 1 3 3 5 2 1
e 4 4 2 5 1 3 4
f 1 1 1 1 1 1 1

Question 3

#1 #2 #3 #4 #5 #6 #7
a 4 2 3 2 2 4 4
b 3 4 4 2 4 4 5
c 4 4 4 5 5 3 3
d 2 2 3 2 3 2 2
e 3 3 4 4 2 4 5
f 4 2 1 3 1 1 3

Question 4

#1 #2 #3 #4 #5 #6 #7
a 1 1 1 1 2 1 1
b 2 4 2 5 2 5 2
c 1 2 2 1 1 3 3
d 1 3 2 2 2 1 2
e 4 1 4 4 2 3 4
f 4 2 5 4 2 4 4

109

E.2 Posttest Experiment Results

Question 5

#1 #2 #3 #4 #5 #6 #7
a 4 2 3 4 4 4 5
b 2 5 4 1 3 3 3
c 4 2 4 4 2 3 4
d 1 4 2 2 4 2 1
e 2 3 3 3 3 2 3
f 1 2 2 1 2 4 1

E.2 Posttest

Question I

#1 #2 #3 #4 #5 #6 #7
a 2 5 1 1 2 3 4
b 2 2 1 2 1 3 3
c 3 2 4 5 4 4 5
d 3 2 4 5 5 4 5
e 2 4 2 1 1 3 2

Respondent #7 commented on a that he
found the circleTarget suggestion of as-
signment 4 too difficult.

Question II

#1 #2 #3 #4 #5 #6 #7
a 4 4 3 4 5 4 5
b 3 2 3 4 1 4 5
c 2 5 2 2 1 2 4
d 2 2 4 1 2 1 3

Question III

#1 #2 #3 #4 #5 #6 #7
a 3 2 4 5 3 3 4
b 3 2 4 5 3 3 4
c 1 4 3 5 4 2 1
d 1 3 2 3 2 3 2
e 1 3 2 5 2 3 3

Respondent #1 commented on c that he
mostly dismissed the resolution window by
pressing OK. He filled in option 1 for this
question, but this should be interpreted as
a 5. Respondent #4 commented on e that
he found the pop-up window, showing clone
hyperlinks particularly useful.

Question IV

#1 #2 #3 #4 #5 #6 #7
a 3 1 4 4 5 5 5
b 1 3 2 2 4 4 3
c 1 3 4 4 2 2 4
d 2 2 5 3 4 4 4
e 3 2 4 3 4 5 5
f 3 4 2 1 2 1
g 4 2 2 5 5
h 5 4 1 5 2 1 4

Respondent #1 did not answer f and g,
stating that these did not apply. Apparently,
the respondent did not use the respective op-
tion.

Respondent #4 commented that he did
not understand why the parameterize clone
resolution was not always available.

Respondent #5 commented that he found
the parameterize clone resolution very use-
ful, allowing him to use clones as templates.

Respondent #7 commented on c that he
found the before and after clone fragment
fields too small.

Suggested change resolutions:

• Pilot Resolution that allows a method
body to be parameterized as a whole.
• #1 Resolution that automatically ap-

plies a refactoring.
• #7 A variant of the parameterize clone

resolution that can be applied to mul-
tiple changed clones at once.

110

Experiment Results E.2 Posttest

Question V

#1 #2 #3 #4 #5 #6 #7
a 1 1 1 1 3 1 1
b 3 2 3 4 4 1 2
c 3 2 1 4 3 4 4
d 3 2 2 5 1 3 5
e 3 3 3 4 3 4 4
f 3 3 1 2 1 4 4
g 3 4 1 2 1 4 4

Values 1–5 are to be interpreted as follows:

1 Never
2 Once
3 2–5 times
4 6–10 times
5 More than 10 times

Respondent #1 commented that he had
picked the first resolution in the list every
time, making his assessments of resolution
application frequency unreliable.

Question VI

#1 #2 #3 #4 #5 #6 #7
a 1 2 4 5 5 5 5
b 1 4 3 5 4 3 5
c 1 4 3 5 5 4 5
d 1 2 3 5 2 4 5
e 1 2 3 4 4 5 5
f 1 2 2 2 2 3 4
g 1 2 2 2 2 3 4

Question VII

#1 #2 #3 #4 #5 #6 #7
a 1 2 4 4 4 4 1
b 5 4 3 4 4 3 2
c 1 3 4 3 4 4 4
d 5 3 1 2 2 1 1
e 1 3 3 2 3 2 3
f 5 2 2 2 4 2 1

Question VIII

#1 #2 #3 #4 #5 #6 #7
a 1 2 5 5 5 5 5
b 1 2 4 3 4 3 4
c 1 5 1 4 2 2 2
d 1 5 1 2 2 1 1
e 4 2 3 4 4 2 1

Respondent #4 commented on e that the
user interface should be less intrusive.

Question IX

#1 #2 #3 #4 #5 #6 #7
a 9 8 9 8 8 8 7
b 9 8 7 9 5 6 9
c 9 8 9 8 7 8 8
d 9 8 8 8 7 8 8
e 9 8 9 8 7 8 9
f 9 8 8 9 9 8 9
g 9 8 8 9 8 8 8

Question X

A selection of the remarks added by respon-
dents (some remarks have been reformulated
or paraphrased):

#1 “The resolution window interrupts the
workflow. Use a pop-up window or
sidebar instead.”
“Allow manual clone marking.”
“Clones created by typing are not cap-
tured.”
“I stopped using ctrl-c to prevent the
resolution window from popping up.”

#2 “Perhaps the assignment should have
been bigger, allowing participants to
take them home.”
“The Eclipse line-copy hotkey ctrl-alt-
down is not captured.”

111

E.3 Log Data Experiment Results

#3 “It would be useful if the before and
after fragments displayed in the reso-
lution window would scroll in paral-
lel.”
“For larger clone fragments, the abil-
ity to investigate their context while
deciding on a change resolution would
be useful.”
“The experiment tested the creation of
clones, but not their modification.”

#5 “Useful tool. However, the user inter-
face could have been a little more dis-
crete. Without pop-ups, for instance.”

E.3 Log Data

Using CLONEBOARD’s built-in XML logger
objective information was gathered about the
subjects’ copy and paste behavior. The fol-
lowing tables show the most important data
extracted from these logs.

Copy and Paste Operations

The table below shows the frequency frag-
ments of specific types (cf. section 4.5.2)
were copied and pasted by the subjects.

Type #1 #2 #3 #4 #5 #6 #7
COPIED FRAGMENTS

Short 10 10 7 20 6 7 4
Long 1 2 10 1 1 5
Method 5 8 4 10 4 13 8
Identifier 1 12 1
Type 1
PASTED FRAGMENTS

Short 7 15 10 12 3 8 6
Long 1 1 4 1 1 5
Method 4 10 4 8 8 12 6
Identifier 10 1
Type 1

Applied Change Resolutions

In the following table, usage statistics for the
clone change resolutions are reflected. The
data in the table do not include implicit post-
pone resolutions invoked by dismissing the
resolution window.

Resolution #1 #2 #3 #4 #5 #6 #7
Parameterize 4 2 4 6 6 9
Unmark 5 4 6 4 7 11 6
Unmark head 1 2 3
Unmark tail 3 10 2 7 6
Ignore 2 4 6 13 4 3
Update all 1 2
Postpone 1 2 2 4

112

Appendix F

Experiment Documentation
Facsimiles

For purposes of reproducibility and transparency of experimental methods, facsimiles of all
documentation handed out to the participants in the experiment are printed out on the next
pages. To avoid confusion with the numbering of this thesis document, page numbering has
been removed from the facsimiles. Furthermore, the second page of the documentation has
been removed, as this page was blank. The original pages were scaled by a factor 0.665 to
fit in the page layout of this document.

This documentation contains an introductory page, a two-page pretest questionnaire,
two pages of RoboCode and CLONEBOARD documentation, a further two pages of assign-
ments and finally a four-page posttest questionaire.

The reference sheet, printed here in portrait to fit the page layout, was originally handed
out to the participants as a single sheet of laminated paper, printed on both sides.

All documentation used in the experiment was laid out using Microsoft Word 2007.

113

Supervised Cloning with CLONEBOARD

A Controlled Experiment

TŚĞ ĚƵƉůŝĐĂƚŝŽŶ ŽĨ ƐŽƵƌĐĞ ĐŽĚĞ ŝƐ ŽĨƚĞŶ ƌĞĨĞƌƌĞĚ ƚŽ ĂƐ ͚ĐŽĚĞ ĐůŽŶŝŶŐ͛͘ Most programmers make inten-

sive use of the clipboard facilities offered by modern development environments. Copying and past-

ing can, however, often lead to inaccuracies, inconsistencies and even bugs. A lot of research has

been put into finding duplicated pieces of code, but relatively little was done to track and manage

clones as they are being created.

In this research experiment, a tool dubbed CLONEBOARD is being put to the test. CLONEBOARD can be

best regarded as an agent sticking to your Ctrl-C and Ctrl-V keys. Each time code is copied or pasted,

CLONEBOARD will take note, so that later on, when

potential bugs are being introduced, it can advise

and assist to maintain consistency.

The Experiment
In this experiment, you will be using Eclipse with

the CLONEBOARD plug-in installed to perform some

elementary programming assignments. Before

and after these assignments, you will be asked a number of questions by means of a short survey.

These surveys will not take long and are meant to get an impression of your skill level and your expe-

riences with CLONEBOARD.

The programming assignments will all be performed in an Eclipse project that has been prepared for

you. All software you need is installed on a virtual machine running Windows XP, so all you will have

to do is boot the machine and get going.

About the Programming Assignments
The programming assignments that are part of this experiment relate to an open source project

called Robocode. Originally started as a way to keep IBM developers sharp, this game has since

grown into a worldwide AI challenge. The game appeals to developer ingenuity and is often very ex-

citing to play.

The details of Robocode are explained further on, but to give you a hint: in Robocode miniature ro-

botic tanks wage war against each other, struggling for survival. With no more than a set of caterpil-

lars, a gun and a simple radar, the battle is more about inventiveness than it is about brute force. The

ƉƌŽŐƌĂŵŵĞƌ͛Ɛ ƚĂƐŬ ŝŶ Ăůů ƚŚŝƐ ŽĨ ĐŽƵƌƐĞ ŝƐ ƚŽ ĚĞƐŝŐŶ Ă ƌŽďŽƚ ƚŚĂƚ ŝƐ ǁŝƚƚŝĞƌ ƚŚĂŶ Ăůů ŽƚŚĞƌ ƌŽďŽƚƐ͕ ƵƐŝŶŐ
every AI and statistics technique he can think of.

Does this sound too difficult or aggressive to you? Rest assured that the assignments will all be rela-

tively easy and peaceful.

Experiment Agenda

 Brief welcome ± 5 min.

 General survey and introduction ± 15 min.

 5 Programming assignments 120 min.

 Evaluative survey ± 10 min.

Total estimated duration ± 150 min.

F.1 Introduction Experiment Documentation Facsimiles

F.1 Introduction

114

General Survey
In this short survey a number of questions regarding your experience and attitude towards cloning

and clone management will be asked to get an impression of your skills and expectations.

This first question is about you. Please answer the following questions with regard to your

age, education and current occupation. Your answers will be kept private and only server

to put your other answers in context.

 What is your age? ..

 Please sketch your educational background: ...

 ...

 What is your current occupation? ..

 ...

Below a number of general statements about software development is shown. Please rate

each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate

to what extent they apply to you.

 1 2 3 4 5

I consider myself an experienced Java developer

I consider myself a good/proficient Java developer

I often develop software as part of a team

I am often involved in developing commercial class applications

Eclipse is the environment I use most for writing Java code

I am familiar with Robocode.

Some more statements are shown below. These statements are about software quality.

Please rate each of the statements on a scale from 1 (totally disagree) to 5 (totally agree)

to indicate to what extent they apply to you.

 1 2 3 4 5

Writing functional code is more important than writing clean code

Bugs are often the result of programmer sloppiness

When programming, I focus on writing good quality code

I tend to write more comments than actual code

A lot of bugs can be prevented by using better development tools

I often use the automated refactoring tools offered by Eclipse

1

2

3

Experiment Documentation Facsimiles F.2 Pretest Questionnaire

F.2 Pretest Questionnaire

115

The following series of statements is about copy/pasting and code cloning. Please rate

each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate

to what extent they apply to you.

 1 2 3 4 5

Before this experiment I had never heard of ͚ĐŽĚĞ ĐůŽŶŝŶŐ͛

I use copy/paste operations often when writing code

Copy/paste is often a good code reuse strategy

Copy/paste is the best reuse strategy for cross-cutting concern code
1

I often come across inconsistently modified code copies

I strongly believe cloning can lead to difficult to solve bugs

The final question of this survey is about your expectations for a tool that helps to main-

tain code clones. Please read the description below and then rate each of the following

statements on a scale from 1 (totally disagree) to 5 (totally agree).

͞WŝƚŚ Ă ĐůŽŶĞ ŵĂŶĂŐĞŵĞŶƚ ƚŽŽů͕ ŽŶĞ ƐŚŽƵůĚ ďĞ ĂďůĞ ƚŽ ƐĞĞ ǁŚĂƚ ƉĂƌƚƐ ŽĨ ĐŽĚĞ ŚĂǀĞ ďĞĞŶ
cloned at any time. Such a tool should give a developer the opportunity to inspect cloning on a

per file basis. Furthermore, the tool should alert a developer whenever he is changing a cloned

fragment, offering several resolution strategies to cope with the changes. Among such strategies

should be thĞ ŽƉƚŝŽŶƐ ƚŽ ƵƉĚĂƚĞ Ăůů ĐůŽŶĞ ŝŶƐƚĂŶĐĞƐ͘͟

 1 2 3 4 5

Such a tool would significantly help to reduce clone related bugs

Interference by such a tool would primarily be inconvenient

A clone management tool will save me a lot of time

I ĚŽŶ͛ƚ ƐĞĞ ƚŚĞ ĂĚĚĞĚ ǀĂůƵĞ ŽĨ ƐƵĐŚ Ă ƚŽŽů

I expect to be making use of this tool quite extensively

The tool will not be able to solve real problems

1
 Cross-cutting concerns are secondary aspects of a program that are orthogonal to the main logic. Examples of

such concerns include logging, error handling, event triggering and code to facilitate debugging.

4

5

F.2 Pretest Questionnaire Experiment Documentation Facsimiles

116

Introduction to the Assignments
The programming assignments that make up the major part of

this experiment all relate to Robocode. This open source project will be used as a case to test the

usefulness of CLONEBOARD, an Eclipse plug-in designed to assist developers in maintaining code

clones. Before we start with the actual assignments, some background information about both Robo-

code and CLONEBOARD is provided. A condensed version of this information is handed to you in the

form of a reference sheet.

About Robocode

In Robocode, robots fight each other to find out which robot has the

best AI. The concept is very simple, as is implementing robots. Each ro-

bot is a subclass of Robocode.Robot and is identified by a unique name.

To make developing a robot in two hours easier and more fun, a sub-

class named BaseCloneBot was created that adds a lot of convenience

methods. In the assignment, you will be developing the CloneBot, that

is based on the BaseCloneBot.

Commanding the robot

To give commands and get to know more about your enemies, the BaseCloneBot class contains a

number of convenience methods. The table below lists the available methods:

Method Description

moveTo(Point) Moves your robot to the specified location.
aimAt(Point) Makes the robot aim its gun at the specified location.
fireAt(Point, double) Fires a bullet with some power to the location you specify.
fiteAt(Enemy, double) Carefully aims at the enemy and fires a bullet to it.
getEnemies() Returns a collection of all known enemies in the arena.
log(String) Writes a messaŐĞ ƚŽ ƚŚĞ ƌŽďŽƚ͛Ɛ ĐŽŶƐŽůĞ ǁŝŶĚŽǁ͘

The robotǯs universe

In the Robocode universe, the physics are not quite

the same as in the real world. That is, in Robocode the

ůĂǁƐ ĂƌĞ Ă ůŽƚ ƐŝŵƉůĞƌ͘ TŽ ƐƚĂƌƚ ǁŝƚŚ͕ ƚŚĞ ƌŽďŽƚ͛Ɛ Ƶn-

iverse is only 800 x 600 pixels big. Pixels are like me-

ters in the real world, just like robot turns map to

seconds. The coordinate system has its origin in the

lower left of the playing field, with the positive axes

extending to the top and the right.

Robots can move with a maximum speed of 8 pix-

els/turn, accelerating with 1 pixel/turn
2
. Rotation of the robot, gun and radar has different speed

limit for each. These details are handled for you by the BaseCloneBot class, so you need not worry

about them.

Experiment Documentation Facsimiles F.3 Case Documentation

F.3 Case Documentation

117

Testing a robot

On the virtual machine set up for this experiment, an Eclipse project has been created for you. A

robot class, called clone.CloneBot, has been created. The robot is programmed with some random

behavior. To run the robot, just run the project by pressing the button on the toolbar. The Robo-

code arena will be shown, preloaded with a battle in which the CloneBot is one of four contestants.

The other three are relatively simple, yet effective bots. The goal will be to create a robot that is able

to defy all three enemies at least once.

Debugging your robot

TŽ ĚĞďƵŐ ǇŽƵƌ ƌŽďŽƚ͕ ǇŽƵ ĐĂŶ ƵƐĞ EĐůŝƉƐĞ͛Ɛ ĚĞďƵŐ ĨĂĐŝůŝƚŝĞƐ͘ HŽǁĞǀĞƌ͕ ĂƐ ĞĂĐŚ ƌŽďŽƚ ƌƵŶƐ ŝŶ ŝƚƐ ŽǁŶ
thread, only your robot will be paused during debugging. The other robots will continue to fire and

chances are that your robot will be killed before it is bug free. Mostly, it is best to either pause the

battle while debugging, or use the logging facilities. By calling CloneBot.log(String), you can write

String ŵĞƐƐĂŐĞƐ ƚŽ ƚŚĞ ƌŽďŽƚ͛Ɛ ĐŽŶƐŽůĞ͘

Using CloneBoard

The plug-in being tested in this experiment, CLONEBOARD as it is called, has been loaded into your

Eclipse environment. CLONEBOARD monitors your copy and paste actions and registers copied frag-

ments as clones. Clones can be recognized by a thin rectangle around the cloned text, a marker in the

left margin of the code and by a registration in the Clone View.

Clone change resolution

When a clone, created by a copy/paste operation, is modified, CLONEBOARD will intervene. A popup

dialog is shown, asking you what you want to do with the modified clone. Often, when one clone is

changed, the other instances will have to be updated as well. However, CLONEBOARD offers other res-

olutions, too. These resolutions are detailed on the

reference sheet. By canceling the dialog you tell CLO-

NEBOARD to wait for some 20 seconds. After this in-

terval, the same dialog will popup, asking you again

what to do with the changes.

Navigating clones

By hovering over fragments of cloned text, you get a

number of options to handle and navigate clones. A

list of all clones in your project is shown in the Clone

View that you find at the bottom of the Eclipse win-

dow.

F.3 Case Documentation Experiment Documentation Facsimiles

118

Programming Assignments
The following programming assignments need to be performed in the order they are presented.

DŽŶ͛ƚ ƚƌǇ ƚŽ ǁƌŝƚĞ ŵŽƌĞ ďĞĂƵƚŝĨƵů ĐŽĚĞ ƚŚĂŶ ǇŽƵ ĂƌĞ ƵƐĞĚ ƚŽ͘ TŚĞ ƋƵĂůŝƚǇ ŽĨ ǇŽƵƌ ĐŽĚĞ ǁŝůů ŶŽƚ ďĞ Ăs-

sessed. Please try to develop in your usual way, rather than the way you think you are expected to

do. In this experiment it is the plug-in that is

being scrutinized, not the programmer!

All programming assignments are to be per-

formed in the same Java project that has been prepared for you. This project contains the following

classes:

 CloneBot: This is the robot that you will be building on.

 BaseCloneBot: This is the base class of your robot, containing convenience methods that ab-

stract away a lot of less important Robocode details.

 Point: A utility class used to register 2D coordinates.

 Enemy: A class that represents your opponents.

 IEnemyRater: An interface that can be used to rate enemies, such as to find the best target.

Just run the project to test your robot. A battle has already been setup for your. Among your contes-

tants is the foul Tracker robot and an easy target called SittingDuck.

Exploring your robot

To get you more familiar with your robot, you will be adding some logging code to your robot first.

This allows you to explore the existing code and see how things work. Add logging lines (using the

log method implemented in BaseCloneBot) to CloneBot͛Ɛ nextInstruction method. Log to which

position the robot is moving, which target it has chosen and with what power it fires at it.

Hints:

 By pressing the CloneBoƚ͛Ɛ ďƵƚƚŽŶ ŶĞǆƚ ƚŽ ƚŚĞ ƉůĂǇŝŶŐ ĨŝĞůĚ ŽĨ ‘ŽďŽĐŽĚĞ͕ ǇŽƵ ŽƉĞŶ ƚŚĞ ƌo-

ďŽƚ͛Ɛ ĐŽŶƐŽůĞ ǁŝŶĚŽǁ͘ TŚŝƐ ŝƐ ƚŚĞ ǁŝŶĚŽǁ ůŽŐ ŵĞƐƐĂŐĞƐ ĂƌĞ ǁƌŝƚƚĞŶ ƚŽ͘

 Press the Paint ďƵƚƚŽŶ ŝŶ ƚŚĞ ƌŽďŽƚ͛Ɛ ĐŽŶƐŽůĞ ǁŝŶĚŽǁ ƚŽ ƐĞĞ ǁŚĂƚ ŝƚƐ ĐƵƌƌĞŶƚ ƚĂƌŐĞƚ ĂŶĚ Ěi-

rection are. These are visualized using a red and green circle respectively.

Extend the Enemyǯs toString method

To make the information logged about the selected target more useful, you will have to extend the

toString method of the Enemy class. In its original implementation, this onůǇ ƐŚŽǁƐ ƚŚĞ ĞŶĞŵǇ͛Ɛ
name. Add some more information to it, such as its current location, energy level and direction.

Hints:

 You can use the StringBuilder already created for you to add more logging information.

 Feel free to browse the Enemy class to look for useful information to include.

1

2

ǲIn this experiment it is the plug-in that is

being scrutinizedǡ not the programmerǨǳ

Experiment Documentation Facsimiles F.4 Programming Assignments

F.4 Programming Assignments

119

Implement better targeting routines

The CloneBot chooses its targets by calling the selectTarget method. This method is implemented

by calling a rather silly targeting routine: findRandomTarget. This routine just picks one of the ene-

mies as a target, without considering whether it would be a good candidate.

Using the findRandomTarget as an example, add the following similar targeting routines:

 findNearestTarget: finds the enemy that is closest. You can ƵƐĞ ƚŚĞ EŶĞŵǇ͛Ɛ getDistance

method to determine its distance from your robot.

 findWeakestTarget͗ ĨŝŶĚƐ ƚŚĞ ĞŶĞŵǇ ƚŚĂƚ ŝƐ ǁĞĂŬĞƐƚ͘ UƐĞ ƚŚĞ EŶĞŵǇ͛Ɛ getEnergy method

to see which robot has the least amount of energy left and thus is the weakest.

 findFittestTarget: finds the healthiest enemy (the one that is your best competitor). Use

the getEnergy method to find out which enemy is healthiest.

 findSlowestTarget: finds the enemy that is moving the least (and thus is easy to aim at).

Use the getVelocity method of the enemy to find out its speed.

Hints:

 Test each of the targeting routines by inserting them into the selectTarget method.

 If you like, you can alter the selectTarget method to randomly pick one of the targeting

routines, for instance by using a switch statement.

Getting closer to your enemy

The CloneBot is still running around like crazy, picking random locations every turn. It probably would

be better to try and move your robot somewhat closer to its target enemy. Getting closer enhances

the chance of hitting the enemy. Try and implement several different movement strategies.

Use a similar approach to the one you used for targeting to create multiple targeting routines and

slot them into the selectNewPosition method. Some suggestions:

 getCloserToTarget: get a little closer to your target, by reducing the distance between you

and your enemy. You might try and get 20% closer each time.

 circleTarget: try and move around your enemy in a circular motion. Can you figure out the

math? Consider using the Point.heading and Point.move methods.

 confuseTarget: try not to be too predictable and confuse your enemy. Ideas?

 findBestPosition: pick some 100 random points in the arena and use a rating function just

like was done for picking a target to see which position is best.

The final round

Your final assignment will be the most important one: actually trying to defeat your enemies. This is

where you can decide the faith of your creation. You are free to alter you robot as you see fit. Your

only mission is to defeat the other robots.

Hints:

 Override the onHitWall, onHitRobot, onBulletHit and onBulletMiss methods to improve

your robot. These events will help you to get better.

 Consider varying fire power. Less powerful bullets travel faster and are thus more accurate.

3

4

5

F.4 Programming Assignments Experiment Documentation Facsimiles

120

Experiment Evaluation
Thanks for completing the programming assignments! To get an impression of your experiences with

CLONEBOARD and to allow you to give your comments, please fill in the following further questions.

The first question of this evaluation is about your overall experiences in performing the

programming assignments. Please rate each of the statements below on a scale from 1

(totally disagree) to 5 (totally agree) to indicate to what extent they apply to you.

 1 2 3 4 5

The assignments were too hard for me

I felt a lot of time pressure

The assignments were very interesting to do

I feel enthusiastic about the assignments

I would have needed more guidance in completing the assignments

In this question, we will consider your programming style during the assignments. Please

rate each of the statements below on a scale from 1 (totally disagree) to 5 (totally agree)

to indicate to what extent they apply to you.

 1 2 3 4 5

The programming work I did reflects my usual coding habits

I focused on writing functional code over clean code

I have written more comments than I usually do

In the assignments I copy/pasted more often than I usually do

The following statements each relate to your experiences with CLONEBOARD during the expe-

riment. Please rate each of the statements below on a scale from 1 (totally disagree) to 5

(totally agree) to indicate to what extent they apply to you.

 1 2 3 4 5

I encountered CLONEBOARD a lot while working on the assignments

I often encountered the clone resolution window of CLONEBOARD

I mostly dismissed the clone resolution window by pressing Cancel

The Clone View was of much use in navigating clone fragments

The CloneBar
2
 was of much use in locating clone fragments

2
 The CloneBar is the ruler appearing in the left margin of the Java editor, highlighting lines containing cloned

code with gray and blue bars.

1

2

3

Experiment Documentation Facsimiles F.5 Posttest Questionnaire

F.5 Posttest Questionnaire

121

In this question, the Clone Change Resolution window will be considered more closely.

Please rate each of the statements below on a scale from 1 (totally disagree) to 5 (totally

agree) to indicate to what extent they apply to you.

 1 2 3 4 5

It was always clear to me why the resolution window appeared

The resolution window always showed at convenient moments

The before and after fragments shown were very useful

The window offered sufficient information to resolve clone changes

The order of the available resolutions always seemed logical to me

I found the Remember resolution option very useful

It was clear why Remember resolution was not always available

I missed some essential change resolutions (please specify which)

 ..

Below all available clone change resolutions are listed. Please indicate for each of them

whether you used the resolution during the experiment and if so, approximately how of-

ten you used them.

 Never Once 2 Ȃ 5 6 - 10 10+

Apply changes to all clones

Ignore changes

Parameterize clone

Postpone resolution

Unmark clone

UŶŵĂƌŬ ĐůŽŶĞ͛Ɛ ŚĞĂĚ

UŶŵĂƌŬ ĐůŽŶĞ͛Ɛ ƚĂŝů

Below, the same list of resolutions is shown again. Can you please indicate how useful you

found each of the resolutions on a scale from 1 (totally useless) to 5 (very useful). If you

never used the resolution, please indicate how useful you think it might be.

 1 2 3 4 5

Apply changes to all clones

Ignore changes

Parameterize clone

Postpone resolution

Unmark clone

UŶŵĂƌŬ ĐůŽŶĞ͛Ɛ ŚĞĂĚ

UŶŵĂƌŬ ĐůŽŶĞ͛Ɛ ƚĂŝů

4

5

6

F.5 Posttest Questionnaire Experiment Documentation Facsimiles

122

In the general survey you were asked about your expectations for a code clone manage-

ment tool. Please rate each of the statements below on a scale from 1 (totally disagree) to

5 (totally agree) to indicate to what extent they apply to you.

 1 2 3 4 5

CLONEBOARD will help me save a lot of time

CLONEBOARD will not be able to solve real problems

CLONEBOARD will significantly help to reduce clone related bugs

I ĚŽŶ͛ƚ ƐĞĞ ƚŚĞ ĂĚĚĞĚ ǀĂůƵĞ ŽĨ CLONEBOARD

I expect that I would be making use of CLONEBOARD quite extensively

Interference by CLONEBOARD will primarily be inconvenient

The last series of statements relates to CLONEBOARD͚Ɛ ƵƐĂďŝůŝƚǇ͘ PůĞĂƐĞ ƌĂƚĞ ĞĂĐŚ ŽĨ ƚŚĞ Ɛƚa-

tements below on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what

extent they apply to you.

 1 2 3 4 5

I ĨŽƵŶĚ CůŽŶĞBŽĂƌĚ͛Ɛ Eclipse extensions easy to use

I will be able to get used to using CloneBoard in everyday coding

I often received an error message while using CloneBoard

Bugs in CloneBoard severely hindered its usefulness

In essence CloneBoard is useful, but it needs a better user interface

Please rate the following aspects of this experiment on a scale from 1 (very bad) to 9 (ex-

cellent). If you would like to comment on some of your ratings, please do so in the com-

ment box on the next page.

 1 2 3 4 5 6 7 8 9

Clearness of assignments

Suitability of the selected case (i.e. Robocode)

Quality of case documentation

Quality of the questionnaires

Opportunity to give feedback

͚FƵŶ ĨĂĐƚŽƌ͛

Overall impression

7

8

9

Experiment Documentation Facsimiles F.5 Posttest Questionnaire

123

Thank you very much for your participation in this experiment! If you would like to

ƌĞĐĞŝǀĞ Ă ĐŽƉǇ ŽĨ ƚŚĞ ĞǆƉĞƌŝŵĞŶƚ͛Ɛ ŽƵƚĐŽŵĞƐ͕ please write down the email address

you would like to receive them on below. If you have any further remarks, findings,

suggestions or other input, please write those down, too!

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

 ..

Thanks again!

10

F.5 Posttest Questionnaire Experiment Documentation Facsimiles

124

R
o

b
o

c
o

d
e

 R
e

fe
r
e

n
c

e
 S

h
e

e
t

R

o
b

o
t

st
a

tu
s

a
re

a
.

C
li

ck
 o

n
 a

ƌŽ
ďŽ

ƚ͛
Ɛ

ŶĂ
ŵ

Ğ
ƚŽ

sh

o
w

 it
s

co
n

so
le

w
in

d
o

w
.

S
im

u
la

ti
o

n

co
n

tr
o

ls
. S
im

u
la

ti
o

n

sp
e

e
d

 c
o

n
tr

o
l

R
o

b
o

co
d

e

A
re

n
a

 w
in

d
o

w

A
ct

u
a

l
R

o
b

o
co

d
e

si
m

u
la

ti
o

n
 a

re
a

R
o

b
o

t
w

it
h

 n
a

m
e

a
n

d
 c

u
rr

e
n

t
e

n
e

rg
y

le
v

e
l

a
i
m
A
t
(
P
o
i
n
t
)

f
i
r
e
A
t
(
P
o
i
n
t
,

d
o
u
b
l
e
)

f
i
t
e
A
t
(
E
n
e
m
y
,

d
o
u
b
l
e
)

g
e
t
E
n
e
m
i
e
s
(
)

g
e
t
E
n
e
m
y
(
S
t
r
i
n
g
)

s
e
l
e
c
t
E
n
e
m
y
(
.
.
.
)

m
o
v
e
T
o
(
P
o
i
n
t
)

a
h
e
a
d
(
d
o
u
b
l
e
)

b
a
c
k
(
d
o
u
b
l
e
)

t
u
r
n
R
i
g
h
t
(
d
o
u
b
l
e
)

t
u
r
n
L
e
f
t
(
d
o
u
b
l
e
)

s
t
o
p
(
)

o
n
H
i
t
B
y
B
u
l
l
e
t
(
.
.
.
)

o
n
H
i
t
W
a
l
l
(
.
.
.
)

o
n
H
i
t
R
o
b
o
t
(
.
.
.
)

o
n
B
u
l
l
e
t
H
i
t
(
.
.
.
)

o
n
B
u
l
l
e
t
M
i
s
s
(
.
.
.
)

R
o

b
o

t
co

n
so

le
 w

in
d

o
w

P
a

in
t

b
u

tt
o

n

ሺ ݕ ݔ 0,0ሻ

ሺ 800,6
0
0
ሻ

Experiment Documentation Facsimiles F.6 Reference Sheet

F.6 Reference Sheet

125

C
L

O
N

E
B

O
A

R
D

 R
e

fe
r
e

n
c

e
 S

h
e

e
t

C

lo
n

e
 c

h
a

n
g

e

re
so

lu
ti

o
n

 w
in

d
o

w

O
ri

g
in

a
l

fr
a

g
m

e
n

t

C
h

a
n

g
e

d
 f

ra
g

m
e

n
t

H
ig

h
li

g
h

te
d

 d
if

fe
re

n
ce

R
e

m
e

m
b

e
r

re
so

lu
ti

o
n

 o
p

ti
o

n

D
e

sc
ri

p
ti

o
n

 o
f

re
so

lu
ti

o
n

C
lo

n
e

B
a

r
ru

le
r

H
ig

h
li

g
h

te
d

 c
lo

n
e

 f
ra

g
m

e
n

t

In
co

n
si

st
e

n
t

cl
o

n
in

g

A
v

a
il

a
b

le
 c

lo
n

e
 c

h
a

n
g

e
 r

e
s

o
lu

ti
o

n
s

R
e

s
o

lu
ti

o
n

D

e
s

c
ri

p
ti

o
n

U
n

m
a

rk
 c

lo
n

e

R
e

m
o

v
e

 c
lo

n
e

 m
a

rk
 f

ro
m

 f
ra

g
m

e
n

t.
 C

lo
n

e
B

o
a

rd
 w

il
l

n
o

 lo
n

g
e

r
in

te
rf

e
re

.

U
n

m
a

rk
 h

e
a

d
/t

a
il

R
e

d
u

ce
 t

h
e

 c
lo

n
e

 b
y

 u
n

m
a

rk
in

g
 t

h
e

 c
h

a
n

g
e

d
 h

e
a

d
 o

r
ta

il
.

A
p

p
ly

 c
h

a
n

g
e

s
to

 a
ll

U
p

d
a

te
 a

ll
 c

lo
n

e
s

in
 t

h
e

 f
a

m
il

y
 t

o
 r

e
fl

e
ct

 t
h

e
 c

h
a

n
g

e
s.

Ig
n

o
re

 c
h

a
n

g
e

s
D

o
 n

o
t

re
so

lv
e

 c
h

a
n

g
e

s,
 t

h
u

s
cr

e
a

ti
n

g
 a

n
 i

n
co

n
si

st
e

n
t

cl
o

n
e

 f
a

m
ily

.

P
o

st
p

o
n

e
 r

e
so

lu
ti

o
n

P

o
st

p
o

n
e

 r
e

so
lu

ti
o

n
 f

o
r

2
0

 s
e

co
n

d
s.

P
a

ra
m

e
te

ri
ze

 c
lo

n
e

s
M

a
rk

 t
h

e
 c

h
a

n
g

e
d

 t
o

k
e

n
s

a
s

p
a

ra
m

e
te

rs
,

ig
n

o
ri

n
g

 f
u

rt
h

e
r

ch
a

n
g

e
s

to

th
e

se
 p

a
rt

s,
 t

h
u

s
b

e
in

g
 a

b
le

 t
o

 k
e

e
p

 t
h

e
 c

lo
n

e
 r

e
la

ti
o

n
 w

it
h

o
u

t
k

e
e

p
in

g

a
ll

 c
lo

n
e

s
id

e
n

ti
ca

l.

C
lo

n
e

V
ie

w

F
il

e
s

a
n

d
 f

o
ld

e
rs

In
co

n
si

st
e

n
t

cl
o

n
in

g

m
a

rk
e

r

C
lo

n
e

d
 f

ra
g

m
e

n
t

F.6 Reference Sheet Experiment Documentation Facsimiles

126

Index

A
activator, 30
adequacy, 56, 74
AI, 58
analysis, 74
annotation, 24
applicability, 47
assignments, 63
atomic change, 25
automatically apply, 19

B
bootstrap, 31
bug

propagation, 5
bugs, 65, 68
bullet, 59

C
case, 58
case study, 56
change resolution, 12, 69

applicable, 18
apply, 19
postpone, 18
preferred, 18
remember, 19

change transaction, 42
CheckStyle, 58
clipboard, 21, 37, 39

action, 17

copy and paste, 10
replacement operators, 11
use scenarios, 10

clock, 42
clone

attributes, 18
benefits, 5
change

resolution, 12
transaction, 25

change resolution, 45
classification, 40
consistency, 18
consistent, 45
container, 35
definition, 2
detection, 6
family, 46
interface, 35
model, 12, 21, 32
modify, 16
parameterized, 12, 46
persistence, 53
presentation, 47
properties, 49, 50
refactor, 6
register, 39
remove, 6, 17, 18
repository, 33
semantic, 3
source, 17

127

INDEX

taxonomy, 3
type, 3

clone instances
navigate, 17

clone relation
break, 18

clone set
empty, 18
inconsistent, 17
remove clone, 18

CloneBar, 47
CloneBoard, 15, 21
clones

browse, 17, 22, 49
hyperlink, 24, 47
navigate, 22
synchronize, 14

CloneView, 49
code quality, 68
code repository, 52
component, 29
composition, 29
copy, 39
copy and paste, 10
cut, 42

D
decomposition, 29
diff, 44
document

change, 43
document change, 36
documentation, 64
Dolly, 1
dummy, 32

E
Eclipse, 15, 21
editor, 29

open, 38
effectiveness, 56, 75
error

handling, 29
event, 32

annotation change, 37
clipboard, 37
document change, 36, 43
focus, 36

expectations, 61
experiment, 55

controlled, 56
design, 55
pilot, 65
rating, 72
results, 66
type, 56

experimental group, 56
extension point, 22, 31, 52

F
file, 33
finding, 57
focus, 26
folder, 33
forking, 5
framework, 30
functional requirements, 17

G
generalizability, 58
grammar, 40, 44

H
heuristics, 18, 40, 47
hyperlink, 17, 24, 47

I
idiom, 2
island grammar, 40

J
Java

editor, 23
JavaEditor, 23

K
keyboard, 26

L
lazy loading, 35

128

INDEX

leap year, 2
lexer, 44
Likert scale, 60
loggin

XML, 32
logging, 29, 32

dummy, 32
logical clock, 42

M
Mann, Zoltán, 6
marker, 24, 33

persistence, 34, 40
position, 43
temporary, 39
types, 34

matrix question, 60
mental macro, 2
model-view-controller, 29
mouse, 26
MVC, 29

N
normalization, 9

O
observable, 36
observation, 57
observer pattern, 36
one-group design, 57

P
parameter, 46
parameterized clone, 12
paste, 39
PDE, 22
perception, 62
performance, 35
pilot, 65
plug-in, 15, 21

fragment, 23
posttest, 57, 61
preexperimental, 57
pretest, 57, 60
production rules, 44

project, 33
prototype, 21
prototyping, 21
proxy, 37

Q
questionnaire, 60

R
redundacy, 9
refactoring, 6
reference sheet, 64
relation

reverse, 37
reliability, 33
requirements

functional, 17
research question, 56
resolution, 45
resource, 33
RoboCode, 58
robot, 59
role

supporting, 30
ruler bar, 47

S
semantic clone, 3
sheep, 1
simplicity, 33
simulation, 59
singleton, 31
startup, 31
subjects, 64
SWT, 39

T
templating, 10
time pressure, 69
token, 44

replacement, 12
tokenizer, 44, 65
transaction, 43
trigonometry, 63
trivial change, 45

129

INDEX

tutorial, 22

U
UI, 47
UML

use case diagram, 16
usability, 56, 75
user interface, 47, 62

V
validity, 76

external, 77
internal, 77

variable
dependent, 56, 62
external, 60
independent, 56

variables, 56
virtual machine, 65
visual feedback, 17
Visual Studio, 15

W
white space, 40
window, 70
workaround, 25
workspace, 34
wrapper, 33

130

	Preface
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 About code cloning
	1.1.1 Defining code clones
	1.1.2 Clone Typology
	1.1.3 Good or Bad?
	1.1.4 Managing Clones

	1.2 Thesis Project
	1.2.1 Research Questions
	1.2.2 Project Goals

	1.3 Thesis Structure

	2 Conceptual Design
	2.1 About Mann's Operators
	2.1.1 Copy and Paste Scenarios
	2.1.2 Replacement Operators

	2.2 Prototype Concept
	2.2.1 Inferring the Operations
	2.2.2 Clone Change Resolution
	2.2.3 Resolutions
	2.2.3.1 Unmark Clones
	2.2.3.2 Apply Changes to Clone Set
	2.2.3.3 Postpone and Ignore
	2.2.3.4 Parameterize Clones

	2.3 Requirements Analysis
	2.3.1 Use Cases
	2.3.2 Functional Requirements
	2.3.3 Constraints
	2.3.4 Non-functional Requirements

	2.4 Summary

	3 Technical Research and Prototyping
	3.1 Main Features
	3.2 Capturing Clipboard Activity
	3.2.1 Option 1: Replace the JavaEditor class
	3.2.2 Option 2: Subclass the JavaEditor class
	3.2.3 Final option: Dynamically replace clipboard actions

	3.3 Hyperlinking Clones
	3.3.1 Marker Resolution
	3.3.2 Drawback of Technique

	3.4 Capturing Clone Changes
	3.4.1 Grouping Concerns
	3.4.2 Final Grouping Scheme

	3.5 Summary

	4 CloneBoard Implementation
	4.1 Decomposition
	4.2 Bootstrapping
	4.2.1 Component Initialization
	4.2.2 Logging

	4.3 The Clone Model
	4.3.1 Wrapping Eclipse's Marker Model
	4.3.2 Representing Clones as Markers
	4.3.3 Clone Interface Hierarchy
	4.3.4 Clone Containers

	4.4 Interfacing with Text Editors
	4.4.1 Managing Information
	4.4.2 Reversing Relations
	4.4.3 Opening Editors

	4.5 Capturing Copy and Paste Operations
	4.5.1 Registering Clones
	4.5.2 Normalization and Classification
	4.5.3 Cutted and External Fragments

	4.6 Detecting and Handling Clone Changes
	4.6.1 Detecting and Grouping Changes
	4.6.2 Calculate Differences
	4.6.3 Resolving Changes
	4.6.4 Parameterizing Clones
	4.6.5 Applying Changes to Clone Family
	4.6.6 Determining Clone Change Resolution Applicability

	4.7 User Interface
	4.7.1 Visualizing and Hyperlinking Clones in Code
	4.7.2 CloneView
	4.7.3 Clone Properties Window
	4.7.4 Resolution Window

	4.8 Considerations
	4.8.1 CloneBoard Extension Points
	4.8.2 Support for Code Repositories
	4.8.3 Alternative Resolution Querying

	4.9 Summary

	5 Experiment
	5.1 Experimental Design
	5.1.1 Variables
	5.1.2 Experiment Type
	5.1.3 One-group Pretest-posttest Design
	5.1.4 Selecting a Case
	5.1.5 About RoboCode

	5.2 Pretest and Posttest
	5.2.1 Pretest design
	5.2.2 Posttest Design

	5.3 Programming Assignments
	5.3.1 Initial Design
	5.3.2 Final Assignments
	5.3.3 Additional Documentation

	5.4 Selection of Subjects
	5.5 Experiment Setup
	5.6 Pilot
	5.7 Experiment Execution
	5.8 Results
	5.8.1 Subject Profile
	5.8.2 Working with CloneBoard
	5.8.3 Resolutions
	5.8.4 Tool Evaluation
	5.8.5 Experiment Rating
	5.8.6 Log Data

	5.9 Analysis
	5.9.1 Adequacy
	5.9.2 Usability
	5.9.3 Effectiveness
	5.9.4 Usefulness of the Resolution Mechanism

	5.10 Threats to Validity
	5.10.1 Internal Validity
	5.10.2 External Validity

	5.11 Summary

	6 Related Work
	6.1 Linked Editing
	6.2 Linking Copied Identifiers
	6.3 Tracking Clones
	6.4 Dynamic Clone Detection
	6.5 Other Work

	7 Conclusions and Future Work
	7.1 Conclusions
	7.1.1 Implementing the Mann Operations
	7.1.2 Change Developer Habits to Better Contain Clones
	7.1.3 Mann Operations Used to Enforce Clone Consistency
	7.1.4 Effectiveness of Mann Operations in Reducing Clone-related Problems

	7.2 Contributions
	7.3 Future Work
	7.3.1 Longitudinal Study
	7.3.2 Further Development of CloneBoard
	7.3.3 Study Clone Change Patterns
	7.3.4 Implement Mann's Operations

	Bibliography
	A Glossary
	B Pretest Questionnaire
	B.1 Personal Background
	B.2 Development Experience
	B.3 Attitude towards Code Quality
	B.4 Attitude towards Cloning
	B.5 Expectations for a Tool like CloneBoard

	C Posttest Questionnaire
	C.1 Assignments Experience
	C.2 Development Style
	C.3 UI Experience
	C.4 Resolution Window Experience
	C.5 Resolution Frequency
	C.6 Resolution Value
	C.7 CloneBoard Perception
	C.8 UI Problems
	C.9 Experiment Rating
	C.10 Comments

	D Programming Assignments
	D.1 Exploring your robot
	D.2 Extend the Enemy's toString method
	D.3 Implement better targeting routines
	D.4 Getting closer to your enemy
	D.5 The final round

	E Experiment Results
	E.1 Pretest
	E.2 Posttest
	E.3 Log Data

	F Experiment Documentation Facsimiles
	F.1 Introduction
	F.2 Pretest Questionnaire
	F.3 Case Documentation
	F.4 Programming Assignments
	F.5 Posttest Questionnaire
	F.6 Reference Sheet

	Index

