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Preface

“History will be kind to me for | intend to write it.”
Sir Winston Churchill

The topic of this graduation thesis is how code and its tdsémge over time. While
programmers write their software they are often not awaratwheat consequences their
actions can have. Pick a random book on software enginearidgyou will encounter at
least one example of software terribly gone wrong becaudeavidl errors. Thoroughly
testing your software can prevent these painful situatiand will repay the invested effort
in time. The quote by Winston Churchill is applicable to s@fte developers: you can write
your own software history, or become an example in a textbdogt take your time to do it
right.

Eventually it is all about about how, and with who, your spgodr time. It is not as
much about how much time you spend in university, or aboutithe you have in front of
you after graduation, but whether you did it in a way you fembdabout.

Personally, | had a great time doing this thesis project. Fawn from both the ups and
the downs, and | am happy | was able to do the project in a gred@toeament with many
interesting people. All the people | have shared a room witheslast August, Reinier,
Rinse, Gerard, Leo (Who needs Apple?), Peter, Mitchellnkrdim and Johnny, thanks
for the pleasant times and the much needed distraction frork.wAll the other people at
SIG, and especially Joost Visser and llja Heitlager for theagfeedback and insights on
my work.

I'd like to thank both my supervisors, Andy Zaidman from TUIDeand Michel Kroon
from SIG, for the time you both took to keep me going in the tidinection. Andy, thank
you for reviewing my writings so remarkably fast, everytimgain, and giving so much
space to find my own way in this project.

All my friends and family, who showed interest in how | wasmpi you were a great
support. And last but not least, and certainly the most ingody Arina and my parents,
thank you for all the patience, understanding and suppastgave all these years. I'm
lucky to spend my time with you.
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Chapter 1

Introduction

The development of high quality software systems is a coxptecess, and maintaining
an existing system over time no less. After the initial rekeaf the system, the eroding
effects of software evolution cause systems to become hirdeaintain and even obsolete,
as formulated by Lehman’s Laws of Software Evolution [23Jic&ssful and increasingly
more adopted methods to counter the effects of softwar@itenlare automated unit testing
(see xUnit Testing FrameworRsand the practice of Test-Driven development [5]. Unit
testing is becoming an essential aspect for the developofergliable and high quality
systems, and can ease the ongoing maintenance of the syfteitsdnitial release [30].

But unit tests are executed in a simulated environment,t@nduality of the tests greatly
depends on the effort that the developer who wrote the tégtouit. The behaviour of code
units must be checked for different input values, and pbssitany exceptional cases [8].
Tests are only as good as how the tester writes them. Thisdehe desire to be able to
assess the quality of the test suite of a system.

In popular fashion, the quality of a test suite is typicalipessed by code coverage:
the percentage of the code that is exercised by the set of ttegt is executed [8]. But
code coverage (coverage for short) is a somewhat shallovsureaf test quality. Code
coverage expresses that some code is executed, not how bisvésted. One should think
of different input values and the number of assertions abagdly the test. Simply running
the code only guarantees that the code compiles and doegasatin trivial situations.

So we are left with open questions regarding the quality eftést suite. A tester wants
to know if his testing effort is any good, or a project managants to know if his testing
team is meeting the required standards. These questioolyenthetesting effortand the
long term qualityof the unit tests. Being able to answer these questions ra@sléast two
ways for different stakeholders [33]:

e Assessment of the testing process, for example to estimateefmaintenance, and
in first-contact situations with an existing system.

e Monitoring of the testing process, to compare the currentgss to the intended
process, and for the identification of trends.

IxUnit Testing Frameworks: http://www.xunit.org
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Combining these observations of the importance of highityutgst suites and test-
driven development, we argue that the production and ted® @o a system should co-
evolve synchronously. New functionality added to a systaoukl be unit tested as soon
as possible, and the preservation of behaviour should beketieafter changes have been
made.

1.1 Problem Statement

The situation that is presented in this introduction is aticoration of the work done by
Zaidman et al. [33]. In their work they present three lightyla visualisation techniques
to study the co-evolution of production and test code, feedsaround the main research
question:‘How does testing happen in open-source software systeifis€’proposed ap-
proach has the downside that there are no explicit measuatsragailable to support the
observations from the visualisations. Interpretatiorhefppiresented high-level views of the
system’s history is left to the viewer.

Data mining is a collective name for techniques that atteimfind hidden information
in large amounts of data [11]. These techniques allow to agnane sophisticated informa-
tion from databases than normal query languages and \gatiahs of the data offer. The
main source of historical data of software systems are derSiontrol Systems (VCS) [4].
Each change in a system is committed to a VCS fraasaction or commit A VCS con-
tains the history of transactions of a software system (fnom on: the change history). To
use data mining techniques on the change history is aniwg@hd proven method to study
the evolution of a software system [6, 32, 34].

The employment of data mining techniques appear to be aresiieg candidate to
extend the previous work on the co-evolution of productiod test code. To build on the
approach by Zaidman et al. the central research questidrsahiesis is:

Central Research Question:How can data mining techniques be applied to (retrospec-
tively) study the unit testing process in software systems?

More specific, the purpose of this research is to solve thewolg supplemental, and
subsequent, research questions (RQ):

RQ1: Can data mining techniques be used to find evidence of ioteadtsynchronous co-
evolution of production and test code?

RQ2: Can the nature of the test code (unit test vs. integratiot) besdistilled from the
change history?

RQ3: Can a quality measurement for co-evolution of productiod st code be defined
based on a presented technique?

RQ4: Can different patterns of co-evolution be observed in wiistsettings, for example
different cultures like open-source software versus itrihlsystems?
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1.2 Proposed Solution and Approach

To solve the raised research questions we propose to mioeiassn rules from the change
history contained in the VCS of a software system. Assamiatile mining attempts to find
common usage of items in data, and is often applied to assattivities like marketing,
advertising, floor placement in stores, and inventory abriftl]. An association rule is a
statistical implication between a set of items that occgetber in a database for a specified
minimum number of times. Association rules are typicallyiverl from transactional data,
that is, records containing a collection of items and a tiarep.

Association rules are frequently applied in everyday sibus. A common example is
the suggestions of other products that are presented toneeast who are viewing a product
in an online store. Websites like Amazon.com often have doseof the webpage sug-
gesting a number of products (“people who bought this prodiso bought...”), depending
on the article that is currently viewed by the customer. €mmgygestions are derived from
previous purchases of the current article in combinaticth wiher articles. In this example
association rules describe the individual suggestions.

An association rule expresses a statistical implicatidween items based on their com-
mon usage, as recorded in the change history. Dependingromiany times the combina-
tion of items is found in the change history, the associatide has a certaistrength By
mining association rules from a software system’s VCS, waeekthat the resulting asso-
ciation rules can express the characteristics of the ch#on of the production and test
code in the system. For example, if a production class arab#sciated unit test are always
changed and committed together in the change history, wecéxpat the mining process
will result in an association rule that connects these twities based on their historical co-
change. The strength of the association between the twilesrtan be used as a measure
for the co-evolution of the two entities. This principle damgeneralised for multiple rules.

In this research project we perform an explorative study @m hssociation rules can
be used to study co-evolution of production and test code prbposed solution consists
of two parts:

e Design and implementation of an association rule miningttmobtain co-evolution
information of a system, and exploration of the interpietabf the association rules.

e A number of case studies to validate and explore the apjilityatf the approach, as
well as to observe differences in testing processes inldetai

The separate parts are now explained in more detail.

1.2.1 Tool design and implementation

First we will develop a tool that can mine association rutesifa system’s VCS. Next we
explore measurements that express the co-evolution ofiptioth code and test code in a
system, based on the derived association rules. We impletinese measurements in the
tool to study the co-evolution of production and test code, the underlying testing process
of a number of software systems.
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1.2.2 Case Studies

We perform several case studies to evaluate the assocrat®mining approach, and to
observe different development and testing approaches $1v8Scommercial software set-
tings. The main observations of the cases will be derivedh ffour sources: the visuali-
sation technique to study the change history (Changehlii®w) by Zaidman et al., the
results from the association rule mining tool, log messdgma the commits in the VCS
and information from the developers of the systems evaluatéhe cases.

Each case will be assessed by the results from the assaciateometrics, and we use
the visualisations to validate whether the computatiorallits match the visual observa-
tions. The log messages are used to internally validatelibergations, and the information
from the system developers serves as external referenbe oésults.

1.3 Software Improvement Group

The Software Improvement Grotijs specialised in the area of quality improvement, com-
plexity reduction and software renovation in software aagring. The SIG performs static
source code analysis to analyse huge software portfolidsaaderive hard facts from soft-
ware to assess the quality and complexity of a system. ThHgsasaf systems is used in
activities like risk assessment, software monitoring,hoentation generation and renova-
tion management. These kind of activities are useful fayddegacy systems as well as
newly developed systems. By gaining more insight into tlee@ss that drives the testing
and development processes of a system, the SIG can give nforméd and accurate as-
sessments to its customers regarding the quality and Hiexdlthe testing strategy and the
current testset. With test health, we mean the long ternityud| and the amount of effort
being put into maintaining the test suite.

1.4 Thesis Structure

This thesis is structured as follows. First we discussedlatork in chapter 2 to describe the
context of this thesis. In chapters 3 and 4 we introduce apthixthe proposed technique
to study co-evolution of production and test code. The casgdies that are performed to
explore the proposed technique, and the results follow apter 5. Finally conclusions are
drawn and future work is proposed in chapter 6.

2http://www.sig.nl



Chapter 2

Background and Related Work

2.1 Software Evolution

Software Evolution is the process of continual fixing, adéiph, and enhancements to
maintain stakeholder satisfaction [23]. Systems must tattaghe changing environment
they operate in by adding features or correcting bugs [24iclvcauses the structural com-
position of the system to decay [12, 28], unless preventiv@oective measures are taken.
This observation is formulated in Lehman’s Laws of Softwawelution [23]. While these
empirical finding have been disputed [19], all argumentsafat against illustrate the diver-
sity and complexity of evolving software.

A recent research trend in software evolution research Vsstalise the evolution his-
tory [31], and research is based on empirical findings. Actbpics in software evolution
research are how to identify entities or parts of a systenthvare bottlenecks in the main-
tenance of systems, how to refactor these problematidesntt how to avoid entities from
becoming complex and problematic. Examples of approaahéientify bottlenecks are
Girba’s Yesterday’s Weather [18] and the Evolution Radakarco D’Ambros [10].

The visual approach to study software evolution origindtesn the ability of visuali-
sations to communicate trends [29]. A XY-chart can quickigw growth or other changes
over time. An increasingly popular type of visualisationghis area are polymetric views,
like Lanza'’s Evolution Matrix [21, 22]. The visualisatiomgpically plot entities against a
time measurement, and use size and colour to incorpordézatif metrics into the view.

2.1.1 Software Co-evolution

Software co-evolution is the multi-dimensional cousinaftware evolution research. Soft-
ware itself and its underlying development process areidimieénsional. The development
of high quality software requires other artefacts besidrgce code, like specifications,
constraints, documentation, tests, etc. [26]. This is whakes it multidimensional. All
these artefacts are inherently intertwined with the soemme of a system, and thus in-
fluences its evolution. Software co-evolution studies hiogse relations between artefacts
exhibit themselves and change over time.
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One of the more important concepts in software evolutiotoggcal coupling Two
entities are logically coupled when they change at the same inh the history [15, 14].
The more times entities are changed together the strongdogiical coupling is. Logical
coupling is a measure for the number of co-changes of etitia given period.

The work by Zaidman et al. [33] is preceding the work in thiedils, as already men-
tioned in chapter 1. The visualisations proposed by Zaidaikw the analyst to study
how production and test code grow and change over time, aredhehchanges in pro-
duction code is followed by changes in test code, or viceavei®hey seek for evidence
of intentional synchronous co-evolution. This can proviggight in the test process of a
development cycle, and can visualise the testing efforta &ystem. It is based on the un-
derstanding that ideally additions to a system should edess soon as possible, and the
preservation of behaviour should be checked when changespatied. This is contrasted
to a more phased approach where (longer) periods of dedicatie writing are alternated
by (shorter) periods of increased testing effort.

A similar idea is explored by Fluri et al. [13]. Instead of duztion and test code, Fluri
studies whether code comments are updated when producdtignchanges. They use code
metrics and charts to study these changes. A main differiarfelerri’s approach is that they
analyse the changes on the code level, while Zaidman reronittee file level.

Both Zaidman and Fluri explore two dimensions of softwarel@ion. Even more
dimensions are combined by Hindle et al. [20] and German. [Hifpdle studies whether
release patterns can be detected in software projects. i§,Hathavioural patterns in the
revision frequency of four different artefact classes:reelcode, test code, build files and
documentation. They do observe repeating patterns areleases for distinct systems, but
the data shows large differences between the systems.

Daniel German combines information from many differentrses, like mailing lists,
version control logs, web sites, software releases, dontatien and source code. He calls
this information that is left behind by developers softwaegls. He extracts useful facts
from the trails and correlates them to each other in ordeetover the evolution of the
software system. The approach reveals interesting factstdbe history of a system: its
growth, the interaction between its contributors, the diextpy and size of contributions,
and important milestones in the development.

2.2 Software Repository Mining and Data Mining

Software evolution research relies on historical data&saa over past development activ-
ities. These development activities are often containesbftware repositories [27]. The
source code of a software system is most often containedrgioveControl Systems (VCS).
A VCS provides functionality to allow developers to worklehlorative on a system, to keep
backups of code and to revert changes.

Each time a developer makes a change to source code, he subenithanges to the
VCS, and with this action, he creates a new revision of thensoé. The set of changed
files that are added to a VCS are called a commit (or transgotie will use both terms
interchangeably in the rest of this work). A VCS not only nefsothe changes to the files
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in the commit (structural information), but also who made tihange, when the change
was made, and what files were added, changed or deleted ioriait (meta-data). The
complete set of transactions that transforms each revigitime VCS to the next is called
thechange histonof a system. The meta-data that is recorded in the changmhistused
extensively in modern software evolution research.

The idea to analyse the change history was first coined byeBall [4]. They explored
the idea by studying who changed what files, and that one casume the connection
strength of two entities based on the probability that twassés are modified together in
the change history. This last idea was further explored dye®al. [14], and is now known
as the before mentioned logical coupling.

Data mining is the use of algorithms to extract or find usefifbimation, hidden de-
pendencies and patterns in data [11]. Data mining techaigueve to be very useful in
software evolution research when applied to the changerkishe particular technique
of assaociation rule mining that is used in this work is diseasin more detail in the next
sub section, and followed by a discussion of more generataglwork that employs data
mining to study software evolution.

2.2.1 Association Rules

Association rules mining [1, 2] is a data mining techniquat throduces rules that show the
relationships between items from transactional data intabdae, as introduced in chapter
1 of this thesis (think of market baskets). It is very impotti note that association rules
detect common usage of items. The uncovered relationshipaat inherent in the data,
as with functional dependencies, and they do not represgnsa@t of causality or logical
relation [11]. Zimmermann states that a rule has a prolsibilinterpretation based on the
amount of evidence in the transactions they are derived [Bah

2.2.2 Data Mining to Study Software Evolution

We found two uses of association rule mining in literaturée Tirst is the work by Zim-
mermann et al. [34]. He attempts to guide the work of devetpased on dependencies
found in the change history. For each change a developeranlaisesupport tool guides the
programmer along related changes in order to suggest aditpligely changes, prevent
errors due to incomplete changes and identify couplingsatreundetectable by program
analysis. The tool works with a ‘Programmers who changesktifienctions also changed...’
metaphor, similar to suggestions encountered in onlinesteeds (again, see the example
in chapter 1). Zimmermann’'s approach derives associatites rat function and variable
levels, in real time while the programmer is writing codeisTis different from the typical
application of retrospectively mining association rulestild a descriptive model of the
data. The intent of this approach is to build a predictive ehod

The second work that utilises association rules is by Xing &troulia. They use an
association rule mining algorithm to detect class co-di@hu[32]. They apply the rule
mining at class level, and are able to detect several clagvaation instances. They
also intend to give advice to developers on what action te fak modification requests,
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based on learned experiences from past evolution activitieheir approach focusses on
the design-level, in contrast to Zimmermann's more loweleapproach. Both of these
approaches differ from our approach in that both parse thecesccode, and we remain on
the file level. At the file level less information is availapbait as we will argument further
on in this thesis, that is not a large problem, and a good todfdeetween information and
performance is made.

Another frequently employed data mining technique in saftwevolution research is
clustering. Clustering attempts to groups items by usingstace measurement [11]. In
their initial paper on mining VCSs, Thomas Ball et al. ilkade the potential of repository
mining by clustering the change history. Their clusterihgpdthm places classes closer
together in a pane when they are changed together more diteA ¢lustering algorithm is
used to determine the layout of the visualisation. Very lsin@re the evolution storyboards
by Dirk Beyer [7], and work by Stephen Eick et al. [12]. All 8eapproaches use the
logical coupling of items as the distance metric for the telting.



Chapter 3

SIGAR: Association Rule Mining
Implementation

As described in the introduction in chapter 1, the main idg¢a mine association rules from
the change history of a VCS to obtain a model of the co-chamgliferent code entities.
Now the tool to mine association rules is proposed, which e 8IG Association Rules
(SIGAR). The technical implementation of the tool used tmenihe association rules and
the design considerations are described.

3.1 Toolchain Introduction

First the general characteristics of the approach aredat®ed. The main motivations to
use association rules to study co-evolution of productimhtast code are:

e Association rules are based on the common usage of itenysdéseribe the logical
coupling (see chapter 2) between the items in the rule. Thidiés that they can
express the actual way that developers use productioreslassl unit tests. It seems
intuitive to mine association rules from change histories.

e Analysing systems on the file level (described next) is ehtligeight’ approach, in
that no static or dynamic source code analyses is neededse Tdiker approaches
provide a deeper level of granularity, but are more costl{erms of required time
and computations. For example, statical analysis of alD3@@isions of a system
of 2000 classes is an enormous task. Comparing classes e&athother class for
every revision yields a quadratical number of comparisbmes the number of trans-
actions.

For the scope of this research project we have set sometiionisato the approach. Cur-
rently, the analysis is limited to systems written in Javal the extraction of the change his-
tory is restricted to Subversion (SVN)epositories. The reason that only Java systems can

Lhttp://subversion.tigris.org/



3.2 Toolchain Structure and Implementation SIGAR: AsgiocidRule Mining Implementation

10

be analysed is that Java uses conventions that imply thegedgexcept inner and anony-
mous classes) are all written in a separate file. VCS'’s onlgior flat text files, and in the
case of Java, classes and files are practically mapped emeetoThe file level relations
that are extracted using this approach are also valid onléise tevel.

The approach is restricted to SVN repositories because SMbhally tracks changes
to the repository by storing transactions. This means tiaidg data from SVN can be
easily transformed to the data format used in the tool. CwantiVersions System (CV3)
repositories can be converted to a SVN repository usingiptd@o that systems that are
versioned in CVS can also be analysed by this approach. Cd®ssuccessor SVN are
two of the most popular and widely used VCS'’s.

3.2 Toolchain Structure and Implementation

In this section the different components, the data-flow andand output of the tool are
described. The tool has a number of design goals:

e Generation of association rules from the change historpiivare systems.
e Ability to analyse large systems with long histories.
e Ability to configure the tool to accept a range of differenstgms.

The tool itself is also written in Java. It consists of seVegparate modules that can
be chained together by a configuration file. The configuraticthe modules and the chain
is based on the Spring Framewbrnd the Chain of Responsibility and Command design
patterns [16]. In the configuration file the order of the medudan be specified, and settings
for each module can be configured, for example from whichdileead the input data.

The shared data that is needed for the entire computatigeldralong the chain in a
contextobject. The initial configuration settings and paths of tifgut and output files are
stored in this object. The modules that compose the tool eseribed in the following
subsections. We discuss their workings, the design cordides and the encountered
implementation problems. An illustration of the data-flomdastructure of the toolchain
can be found in figure 3.2

3.2.1 Change History Extraction

The input data for the entire association rule mining predssgathered by this module.
It operates on a SVN repository and extracts the log data fopjct in the repository. It
stores for each commit made to the repository the revisiombau, the author, the timestamp
and all the files that were added, modified or deleted in thengibnThe change history is
stored in a XML format, of which an example can be found in fgg@rl. This format is
what the actual toolchain operates on.

2http://http://www.nongnu.org/cvs/
Shttp://cvs2svn.tigris.org/
4Spring Framework: http://www.springframework.org/
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<ProjectHistory>

<comm t revision="88">
<revision>
88
</ revision>
<aut hor >
arie
</ aut hor >
<dat e>
Mon Jul 18 21:04:19 CEST 2005
</ date>
<message >
<! [ CDATA[ moving the observer interface to the model.]]>
</ message >
<M>
l'trunk/src/javal pacman/ model / Engi ne. java
</ M>
<D>
/trunk/src/javal pacman/ control |l er/ PacmanObserver . java
</ D>
<A>
/trunk/src/javal pacman/ model / Observer.java
</ A>
</ comm t >

</ ProjectHistory>

Figure 3.1: An excerpt of an extracted change history.

The figure shows an excerpt of an extracted change histdhjisinase from the
JPacman project. Each commit element contains the reuvsiorber, author,
timestamp and the files added (A), modified (M) or deleted (O commit.

This module is a proverbial exception to the rule. The modsileun separate from
the rest of the toolchain, because it needs to be executedcatidns other than where
the analyses are performed. Examples are the VCS’s fronsindupartners for the case
studies, whose repositories are not accessible from euthiglr offices. As stated in the
introduction of this chapter, only logs from SVN and CVS @hgh conversion) repositories
can be extracted.

3.2.2 Change History View Generation

This module builds a data file for the ChangeHistoryView @i@ation from the change
history. The data underlying the visualisation is store@nnXML file containing all the
points in the plot and can be used to generate the Changep\isw on-screen. The
generation of this data file is incorporated in the toolchiaispeed up the computation. For
this work the computations are typically performed on agaster that has no monitor. The

11
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Figure 3.2: SIGAR toolchain structure.

The structure of the SIGAR toolchain. All input and interriad data are
stored in a context object that travels along the chain. 1@tdé modules with
storage and retrieval of intermediate results allow forifidity of the analysis
tool. Two typically used chains are illustrated in the figutdain 2 consists of
only analyses of the rules, but utilises the results (thefisode entities and the
mined rules) from chain 1. The calculation of new metrics barperformed
without running the entire chain again, and thus skippimfgpeance intensive
modules like change history analyses and frequent itemiségn

actual rendering of the view is a quick operation, and candstopmed independent from
the generation of the data at any time desired, and on slostations without annoying
waiting times.

3.2.3 Change History Analyses

The first step in the mining of association rules consists pfeaprocessing task, and the
extraction of general information from the change hist@ymple queries are run against
the change history file, and extract global information lifke total number of distinct files
(distinguished between production and test code) and timbaciof revisions in the history.
The first part of the pre-processing consists of filtering itiut data of everything
but actual code and test files. The input data contains lagrimdtion of all files in the
repository, like maven project files or configuration fileshe$e are not of interest to the
mining of association rules, so they are left out of the pssceFiles are filtered on their



SIGAR: Association Rule Mining Implementation 3.2 Todlkel&tructure and Implementation

extension (e.g. onlyjava files are kept in the history). Each code file encountered is
stored as aode entity A code entity is a tuple consisting of an integer identifégfijename
and a type.

The frequent itemset mining algorithm (described in thet mexdule) expects its input
to be a sequence of transactions that contain only intedg@esaThe original input consists
of transactions containing strings (see figure 3.1), soitiydies that each file needs to be
assigned a unique numeric identifier. The analyser tras¢ingechange history to swap each
code file in the history with its identifier, assigning a newritfier to files that it has not yet
encountered and storing the identifier/file pair as a codéyeiihe code entities are stored
in a bi-directional hashmap. This allows lookup of the codtties by both filename and
identifier, as both ways are required in the entire chainc&achange history often contains
several thousands of unique files a hashmap provides godéafmpence of insertion and
retrieval of code entities. Each transaction in the charig®ty contains several files that
all need to be looked up in the list of encountered code entito the data structure must be
efficient to keep performance acceptable. Each code eh#tyd encountered in the change
history is also tagged as being a production code, test codadefined. This tagging is
done by matching the filename (and path) to a regular exjpresisat is configured in the
context object. Production and test code files often havie then place in the directory
structure of the system. This is often a path similar Booj ect/src/java/... and
I Project/src/test/..., butinthe case studies we encountered several exotidioasa
The regular expressions are used to describe the pattardiiaguishes different files.
Test code mostly follows a naming convention that incluthestordTest in the filenames.
This convention is utilised in the regular expression fggiag of test code. Files that are
not recognised as production or test code are tagged as nedlefi

The analyser produces three results: (1) general infoomatn the change history, (2) a
filtered change history containing only integer identifigrshe transactions, and (3) a col-
lection of tagged code entities. While finding frequent isets is the most essential module
of the entire association rule mining process, the changteryi analyses and building of
the code entities is the most costly part. Note that this i=iation to the performance of
the frequent itemset mining module with the computatioaisiderations described in that
module (see next module). Not pre-processing this datassitmwn the other modules sig-
nificantly. It generally cuts the running time of the entifem in half. An illustration: for
a system containing files, and each file is changed on averagémes, the total number
of lookups in the list of code entities isx m. As larger systems contain thousands of files
during their lifetime, and the longer the change historyni®ie transactions), the number
of lookups can grow very large.

3.2.4 Frequent Itemset Mining

The frequent itemset mining module is responsible for thetrassential part of the toolchain.
It finds all sets of items in a transactional database thatiroatleast a given number of
times. The number of times that an itemset appears in théakgas called theupport
When the support of an itemset is at least equal to the givaimmim support, the itemset
is said to be drequent itemsetSupport is described in more detail in section 4.1.

13
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The frequent itemsets are mined using an implementatiomeoApriori algorithn? [2].
Apriori is one of the earliest algorithms for mining itemsednd is still the major technique
used by commercial products to detect frequent itemseis [11

Apriori attempts to find frequent itemsets by making sevpaaises over the transactions
and counting the support of itemsets. In the first pass aatisets of size one are counted. In
each following pass the size the itemsets is increased bpyi@ning the found itemsets.
Thus in pasq, itemsets of sizen are counted. This approach generates many possible
itemsets. To limit the number of possibilities Apriori makese of thefrequent itemset
property. “Any subset of a frequent itemset must be frequent” [11]isTgrinciple states
that for any itemset found that is not frequent, there can be no larger itemsetagtng |
that is frequent. Apriori can thus discard any itemsetsdhanot frequent, as these will not
generate frequent itemsets of a larger size.

The performance of the algorithm is dependent on the cdityimd the largest frequent
itemset. The number of database scans is one more than tlieatity of the largest fre-
quent itemset. This potentially large number of databaaassis a weakness of the Apriori
approach [11]. We believe that in general the nature of ohdmsfory data is sparse and
narrow (i.e., not often recurring items and a low number @i per transaction). How-
ever, analysis of the ChangeHistoryView for some systenesate that there are often many
files changed at the same time. A recent study by Alali et dl.s@ws that the number
of items in a typical commit is small (under 5 files) for 75% bé&tcommits, but that there
are very large extremes (up to thousands). Very large cosnmiist often occur when the
code is automatically changed by using code checkers (bgckStyle or PMD) or features
from the IDE (e.g., ‘organise imports’ in Eclipse). Whengarcommits occur a number of
times, the Apriori algorithm will find very large itemsets)cathus make many passes over
the database. The potential number of large itemset8'is 2 [11], wherem is the size
of the largest transaction in the database. Simple tests gfai even for a small project
(JPacman, discussed later in this chapter) the algorithiforpes a large number of passes
over the change history, and the number of generated iteregptodes exponentially. To
control the running time of Apriori, and the huge number aigrated itemsets, we decided
to let the algorithm only generate itemsets of size 2. Bexzauss are primarily interested
in association rules that link single production classesitigle unit tests, we believe that
this is a defendable decision. It also greatly simplifiesrdmaainder of the analyses as the
resulting association rules are easier to interpret.

The Apriori algorithm was chosen because it is a widely usgdrazhm with a proven
track record. We currently only perform a few passes overmttabase, and the Apriori
algorithm is quite fast in the earlier passes [11]. With &refice implementation in Java
available, incorporation in the tool required little woNkle do not believe that alternatives
to the Apriori algorithm yield significant performance gaifor this particular setting, and
that an evaluation is not within the scope of this project.

SCredits for the implementation go to Bart Goethals and Métioller. Their implementations of Apriori
in C++ and Java were used as a reference.
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Rule Classification
{ProductionClass=> ProductionClas$ | Pure production rule
{ProductionClass=> TestClas$ Production to test rule,
Production-test pair
{TestClass=> ProductionClas$ Test to production rule
Production-test pair
{TestClass=> TestClas} Pure test rule
Containing an Undefined class Undefined rule

Table 3.1: Classification of association rules.

Summary of classifications of association rules, based ®tyfes of the code
entities that occur in a rule. Note that rules that assogiegduction classes to
test classes and vice versa are assigned two classificalibese rule receive
both a general classification (Production-test pair), aduextional classifica-
tion for when the direction of the association between theipamportant.

3.2.5 Association Rules Extraction

After frequent itemset are found, the generation of rulgésvil [11]. Each itemset of size
two or more can be mapped to two or more rules (iterdgeB} produces rule§A =>
B,B => A}). For each found rule, rule specific metrics are calculaiéstse are described
in section 4.1.1. With the collection of code entities in thathe rule extractor tags each
rule with a classification based on the type of the code entitiat occur in the rule. The
different classifications of rules are described in table Jhe classifying of the rules is
required to give meaning to the measurements over multipds

3.2.6 Association Rules Analyses

Now actual association rules are mined from the changerijsteeasurements can be cal-
culated over them. Measurements can be applicable oned aulonly on rules of a certain
type. Each measurement is implemented as a visitor desig@ripa The rules analyser
itself is a walker that traverses over all the rules, andtlegsvisitors perform their calcu-
lation on each rule. The analyser can be configured with wilsébxs to traverse the rules
in a similar way as the entire toolchain is configured. New sneaments can be added at
a later time by implementing a new visitor. Benefits of thipiementation are flexibility
and performance, as all measurements are calculated inasseoper the rules (instead of
having each measurement take a traversal on its own). Theumegaents themselves are
discussed in the next section.
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3.2.7 Reading and Writing Intermediate Results

In addition to the modules that perform computations on tipaii data, the toolchain pro-
vides functionality to write and read intermediate datarid &#om files. The intermediate
data includes the analysed change history, the labelled eatties, the mined itemsets
and the mined typed association rules. All this data candredt and be fed back into a
different chain. The use and order of the different modudesl the data flow are depicted
in figure 3.2. The input/output mechanism has two benefitgpeantion of the intermediate
data, and the construction of short chains that rely on pleutated data.



Chapter 4

Association Rules Analysis

Now we explore and discuss measurements to understand ithesirsuite of a software
system and the underlying testing process, based on theageth@ssociation rules (section
4.1). The discussed interpretations of the associati@s iate divided into two groups: met-
rics that are derived from multiple rules (rule based), amdrits that use rules to give data
on code entities (entity based). We illustrate the presenteasurements with a running
example in section 4.2.

4.1 Association Rules Interpretation

An association rule is a statistical description of the cowsrence of the elements that
constitute the rule in the change history. Agrawal [1] pres@ formal description:

Definition 4.1 Given a set of items £ I4,15,....I, and adatabase of transactions D =
t1,t,....th where t = iy, li2, ..., li and I € I, an association rule is an implication of the
form A= B where AB C | are sets of items callellemsetsand AN B = 0.

For an association rule, the left-hand side of the implarats called theantecedentand
the right-hand side is called tle®@nsequenof the rule. An association rule expresses that
the occurrence of A in a transaction statistically implies presence of B in the same trans-
action with some probability. It is important to note thas@sation rules are not causal,
but spurious, e.g., the co-occurrence of X and Y is causechby(or a chain of) unknown
external event(s). An association rule only describes ttiete is a relation between the
two items, but there is no proven cause-effect relation.Iyipg the definition to a version
control log, the database of transacti@ng the change history (containimgtransactions),
and the itemsets are sets of production or test classes. s&siloked in chapter 3, we only
consider itemsets of size 2.

In many applications where association rules are used,gels is for rules that are
interesting or surprising (i.e., for marketing purposes seeks for striking combinations of
items or interesting correlations between products),ildase we seek to find a global view
of the entire change history. We are not primarily interéstespecific production/test code
class pairs that follow from the rules, but more in the totainber of rules that associate

17
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production and test code and how strong the statisticahiogytof these rules is. We seek
to express the global co-evolution of production and testecoasses, and not specific
pairs. The interpretation of the rules we seek is thus diffethan in most applications of
association rules.

We explore measurements in two directions, which follownrfrthe direction of the
research questions:

Test suite quality: Metrics that describe the quality of the test suite. Questmbe an-
swered are if the test suite is up to date with the productaafecand if it consists of
actual unit tests or mainly high level integration tests.

Test effort indication: Metrics that provide understanding of the testing procédsese
metrics should give evidence of intentional synchronoug\amution, or a different
testing strategy (or the lack thereof).

This section explores the different measurements that egrelformed on the mined
association rules, and how these can be interpreted to atisswdifferent research questions
we have put forward. While we advance through the remaintitreochapter, we present
lemmas and hypothesises and raise questions on the metbodd understanding of how
to interpret the metrics.

4.1.1 Individual Rule Metrics

First we introduce metrics that describe one single asogieule. These metrics help us to
determine the significance and strength of the statisticalehthat a rule represents. They
give argument and weight to the metrics that are describ#tkinext sections. A summary
of the metrics can be found in table 4.1.

Support

The support for a rul¢A =- B} is the absolute number of times that the iten’s& appears
in a transaction in the change history. This metric expiesise statistical significance of a
rule, or why someone should care about a rule. The more tiheeems in a rule appear
together in the change history, the stronger the statidtizsis of the rule is. The support
of an itemset (and thus of a rule that is derived from an itéiseounted by the frequent
itemset mining algorithm. An itemset is frequent when itpsurt is equal or larger than
the configured minimum support.

While support is counted as an integer value, it can also peeeged as a percentage,
by dividing the absolute number by(the number of transactions in the change history).
For example, when the support of an itemset is 10%, the catibmof items occurs in
10% of the change history. This is often more intuitive toenstand for an analyst. Here,
we call this relative support of the frequency of an item3éite frequency has the property
that it is an approximation of the statistical probabilititioe occurrence of the itemset in
the change historyR(A,B)). An example: when an itemséA, B} has a support of 2 in 10
transactions, the probability of A and B occurring togetimea transactiorP(A,B) is 0,2,
or 20%. The relative support is a normalisation to the lemdtine change history.
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Support is often used in conjunction with one of the metrieBnéd below, where sup-
port shows the relevance of the rule, and the other metrizvshbe ‘interestingness’ of
the rule. In a typical analysis of association rules, ondgofr specific rules with high
support. As mentioned before, our intent is different int thva seek for a global view of
the change history. For this purpose we require as manyiatisos between classes in the
change history, and can later determine whether they bomérinteresting information to
the analysis, while with a high minimum support these rulaildaot be generated. This
situation is called theare item problem classes that occur very infrequently in the change
history are pruned although they would still produce irdéng and potentially valuable
rules. The rare item problem is important for transactiotadehich usually have a very
uneven distribution of support for the individual itemswfeéeems are used all the time and
most item are rarely used) [25]. The rare item problem carirbaravented by mining with
a very low minimum support, but can cause an explosion of timeher of found itemsets.

The SIGAR tool is typically configured to mine rules with a inum support of 2,
thus a combination of classes must occur at least twice iettiee history. This is a low
number, but we need as much data on the change history ablppssid we expect that
there is a significant number of classes that is not changedften (possibly two to five
times) in the history. We will need to verify this second asption using case study data.

Confidence

The confidence for a rul¢A = B} is the ratio of the number of transactions that contain
AUB to the number of transactions that cont&in Confidence expresses the conditional
probability P(B|A). Confidence is also called tistrengthof a rule, and is, together with
support, the most common measurement for association ralase confidence expresses
a probability, it takes on values between 0 and 1.

The most common way to express an association rule is byrgo&i both support
and confidence. This is called the suppport-confidence frame The combination of
relevance and strength of the rule is often enough to deniwelésired information, and the
metrics are easy to grasp.

But a problem with confidence is that it does not take into ant@ossible negative
correlations between the items [11]. A rule with a confideoic@.8 might seem interesting,
but thea priori probability of B might be 0.9. The occurrence éfthus actually lowers
the probability ofB. Confidence has no ability to express this situation. Alsopeding to
Brin, confidence assigns high values to rules simply bectugseonsequent is popular [9].

The rule mining algorithm that derives rules from found freqt itemsets takes a min-
imum confidence value as a parameter. Minimum confidenceed, U&e the minimum
support for the itemset mining, to limit the number of rulbattis found, and to set a a
lower bound for the ‘interestingness’ of the derived ruBscause of the exploratory nature
of this work, we set the minimum confidence to zero. This caadlerules to be generated.
In this way we can learn whether rules with low confidence bute to increased under-
standing of the change history, and we can always cut thergieaerules at a minimum
confidence boundary at a later time.

19
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Lift

The lift (originally called interest) for a rul§A = B} is a measure of the relationship
betweenA andB using correlation. Its calculation is derived from the cédtion of the
correlation between two probabilities [11], and is essdlgtia measure of departure from
independence [9], based on co-occurrence of the antecadémonsequent. Lift measures
how many times more often (hentift) the antecedent and the consequent occur together
than expected if they where statistically independent.

Lift assigns one to associations where the items are coetpleidependent. Associa-
tions that get found by the algorithm have a real value langequal to one as the items are
more correlated. Negative correlations are between 0 apdsltjve correlations are larger
than 1. This measurement is symmetric, which means thahteeest ofA = B is equal to
B= A

When we relate this to our context, this means that when abpaittities has a large lift
value, the entities in question appear to be correlatedre@ed entities are more likely to
be changed because of changes inits correlated counttraantot correlated entities. Low
lift values imply that the entities are close to being indegent, thus that co-occurrences of
the entities are more likely to be coincidence.

Lift does not suffer from the rare item problem, but is susitdg to noise in small
databases [9]. This could cause the lift metric not to be weitable to smaller change
histories.

Conviction

The conviction for a rul§ A= B} is a measure of the implication that the rule expresses.
Lift only measures the correlation between items, but adion also measures the implica-
tion of the items. It is based on the statistical notion ofrelation and logical implication
[9]. The benefit that conviction has over lift in measuringretation between items, is that
conviction is not symmetrical, and thus truly measures thglication of an association
rule.

The conviction of two items is a real value between 1 and ityfiniotally independent
items will have a conviction of 1, and rules that always hadéinfinite conviction. Similar
to confidence, conviction always assigns the same valudgas that holds 100% of the time.
Unlike confidence, conviction factors in boB{A) and P(B). When two items are likely
to occur in a transaction, but are completely unrelated ¢b e¢her, confidence will assign
a high value. Conviction, on the other hand, assigns a loakrevbecause the items are
likely to occur by themselves. Co-change of the items is tray likely, but not because
they are related.

The potential benefit of conviction over confidence and &fthat it measures the di-
rection of the association. This means that we potentialy measure whether there is a
difference between the probability of classes being chauhgeause of testing, or tests be-
ing changed because of coding.

Strength typically means the confidence of a rule, but from oo we use it as a general
expression to indicate the probability of a rule (i.e., coefice, lift or conviction). In this
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| Metric | Probability | Interpretation | Implementation |
suppor{A = B) P(A,B)n Statistical significance Counted by Apriori
frequencyA=B) | P(A,B) Statistical significance Normalised suppor
confidencéA = B) | P(B|A) Conditional probability S(s’?AE)‘)
interes{A = B) % Correlation between items %
convictior/A = B) Pg?}fi;? Logical implication %

Table 4.1: Individual association rule metrics.

Summary of individual association rule metrics. Hars the total number of
transactions, ang{A) is shorthand notation f@uppor{A).

discussion we encountered the first pieces of the explorptizzle, which we formulate in
the following lemmas.

Lemma 4.1 The support of an association rule is equal to the logicalptimg between
two code entities, and determines the statistical relegasfache association rule.

Lemma 4.2 The confidence, lift and conviction of an association rulehegive a proba-
bilistic describtion of the occurrences of the entities iuke. Larger values of these metrics
correspond to stronger rules.

4.1.2 Rule Classification Based Metrics

An individual rule does not provide much information on tbgital coupling in a system,
but only on one single pair of classes. To be able to analygiedbcoupling on a larger
scale, the rules have to be aggregated. We define metricd basthe aggregated rules
through the reasoning that follows.

Logical coupling between entities

The support of a single rule is the number of time the entitiethe rule co-change (or
the amount of logical coupling, by lemma 4.1). The strendtthe rule is expressed as a
probability by a second metric (see previous section). talgioupling is a measurement
for the co-change of entities. In terms of change historg,dai-change implies co-usage of
the entities that appear in the rule: they are changed tegb#tause an addition or change
in the code intersects both entities. The reason why thegehartersects both entities is
not known from the rule, but the types of the entities candatdi how the co-change can
be interpreted. A programmer may change two productiorseag the same commit,
because he changes the way the classes interact. A pradacti a test class may be
changed together because newly added functionality isddst the test class.
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Lemma 4.3 Logical coupling expresses co-change of classes. Co-thguaipsses imply
that the classes are used together by a programmer. With $effn an association rule
implies co-usage between the items in the rule.

When rules are grouped together, the group describes timlampupling among the
entities within that group. The interpretation of logicaupling among entities of different
types is described as follows:

Logical coupling between production classesThis describes logical coupling in the tra-
ditional sense [10, 15, 14, 34]. In good OOP practice (abstra, separation of
concerns), changes to classes should be local, and notartisg) between classes.
This implies that two classes should not be changed togetiten. Strong logi-
cal couplings between production classes is considered tmbmful, as it points to
dependencies between classes that should not be there. IMacgl couplings of
average strength between many classes is probably thé @épure production code
programming effort, as many production classes are comdiitigether.

Logical coupling between test classesThis is the test class equivalent of logical coupling
among production classes. Unit tests should only test coguption class, so mod-
erate to high logical couplings between test classes mékessense. Again, many
logical couplings between many test classes could be thdt 'esm pure testing
effort by the programmers.

Logical coupling between production and test classesThis describes the logical coupling
between production and test classes. In contrast to logmabling between only
production classes or only test classes, logical coupletgéen a production and a
related test class are considered to be positive. The ntitedrproduction and test
classes should change together is the driving assumptitirisafesearch.

Logical coupling between undefined classesClasses that cannot be resolved as a pro-
duction or test class can appear in the extracted rules.eTbgEal couplings cannot
be directly related to programmer effort, as informationtlos nature of the classes
is unknown.

The different types of logical coupling are illustrated iguie 4.1. We summarise this in
the following lemma:

Lemma 4.4 Co-usage between the same or different types of entitigsirgdécation of the
distribution of programmer effort.

Classification of rules

The classification of the rules is used to group the rules anelate them to a type of
logical coupling. The classifications of rules, as listedhible 3.1, allows us to separate the
total collection of rules in several groups. Some groupsheadivided into subgroups that
are increasingly more specific on the rules that belong tgtbep. Each group can explain
different types of logical coupling in a system, and reveacdfic information.
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Lemma 4.5 Multiple association rules of some classification (a rulasd) describe the
logical coupling between entities of the types that deteentie classification.

The main thought behind the grouping of association rulegth@n their classification
is that the composition of the total number of rules indisatat type of logical couplings
contribute to the couplings in the entire system, and thindegima 4.4 how programmer
effort is composed.

The different rule classification groups, and the inteigdieh of their ratios and strengths
are described in the following overview. The interpretasi@re hypothetical, and the case
studies must show their validity.

All association rules (ALL): The collection of all found association rules.

This group can be used as a reference for other groups. Téreg#irof this group
can be a combination of the strengths of the subgroups, $strigngth can also be
dominated by a single classification.

Pure production rules (PROD): Rules that associate only production classes.

PROD rules will be generated when production classes aem atianged together.
The ratio of PROD can indicate how much effort is put into afiag production
code. When there is no (structural) testing performed,saetions will have few
test classes in them, and the ratio of PROD will dominate Alith phased testing,
PROD will also be the dominant group, but TEST could be moesgnt, and have a
relative high strength, as the co-use among test classepésted to be high in the
testing phases.

Pure test rules (TEST): Rules that associate only test classes.

Analogous to PROD, TEST rules can indicate test writingréffohe higher the ratio
for TEST is, the more dedicated test writing effort can beeex@d to have occurred
in the history of the system. Comparison of the ratios anehgths of PROD and
TEST could reveal how much pure testing is performed relaigulire coding.

Production-test pairs (P&T): All rules that associate both a production class and a test
class. This group describes logical coupling between miialu and test classes.
Within this group we distinguish four subgroups:

The ratio of P&T to ALL, and compared to PROD and TEST tells thibe production
and test code is often changed together, or that produationest code is more often
written in separate stints.

Production to test rules (P2T): Rules that have a production class as antecedent
and a test class as consequent. These rules express thatge ¢hagroduc-
tion code implies a change in test code with some probability

Test to production rules (T2P): Rules that have a test class as antecedent and a pro-
duction class as consequent. These rules express that gechratest code
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implies a change in production code with some probabilithede rules are
symmetric to P2T rules, and the union of P2T and T2P equals P&T

The union of P2T and T2P yields P&T, and both are always symicrnieteach

other. For each rul¢A = B} in P2T, its inverse{B = A} is in T2P. P2T and
T2P rules provide a more detailed view of P&T, as the directibthe associa-
tion can come into play. For example, when the strength T2Ruish stronger
than P2T, there are more transactions that contain onlyugtimsh code or both
production and test code, than there are transactionsthatontain test code.

Matching production to test rules (mP2T): P2T rules where the antecedent and con-
sequent can be matched to belong together as unit test aswdurider-test on
naming conventions (e.g{Classjava=- ClassTestjava}, or vice versa).

Matching test to production rules (mT2P): The symmetric counterpart of mP2T.
mP2T and mT2P are subsets of P2T and T2P respectively. Thegpsgare
even more specialised than P2T and T2P, as they give weigitttial classes
and their tests that, ideally, should co-evolve.

Undefined rules (UNDEF): Rules that cannot be resolved to a classification.

UNDEF rules are most likely the result of entities that carimm recognised during
change history analysis. This could mean , for examplefillatare placed at strange
locations in the systems file hierarchy, or that the regutpressions used for match-
ing files is not complete. If the cause of the non-identifmaf the entities is known,
UNDEF rules can be of value. Otherwise, there should be asat/NDEF rules as
possible.

Using lemmas 4.4 and 4.5, we state the following theorem:

Theorem 4.1 The ratios between different rule classes, and the didiohuwf strengths of
each rule class related to other rule classes is a measurthéodistribution of programmer
effort among different types of code classes.

We will now describe the strenght measures for classes oiceg®n rules in more
detail.

Statistical analyses of rule classes

Allindividual rules are derived from the change historywatstatistical certainty, expressed
by the different metrics described in section 4.1.1. By aggting the metrics for all rules
and for the different classifications, we can build undeditag of how, and how strong, the
different rules contribute to the complete picture.

For each class of association rules, the distribution of/éthees of the different metrics
over the rules can show us how strong the statistical mod&ieofules is. For example,
when the majority (say 60%) of all rules has support lowentBer 4, the statistical rele-
vance of the complete picture is not very strong. On the dihad, when the confidence of
the production-test pairs is generally more towards 1.6 tbathe pure production rules,
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the evidence for co-change among production and test slésséronger than among pro-
duction classes only.

We compute the following statistics for each metric for eelelss, which are the basics
of standard descriptive statistics:

e Minimum

Maximum

(Arithmetic) Mean

Standard deviation

Variance

Skewness

Kurtosis

Together these values describe the distribution of thevigigial metrics of the rules.
This distribution can be visualised by using histograms axpots. The minimum and
maximum define the range of the values, the mean designateetitral tendency of the
distribution. The more the mean is toward the maximum fordiyeport distribution, the
more relevant the rules are for that class, and its ratio imarfe importance. The standard
deviation (and variance, which is the squared standarchtien) quantifies the spread of
the values around the mean.

Skewness is a measure of the asymmetry of the distributign,vehether more weight
of the distribution is to the right (negative skewness) otti® left (positive skewness). A
symmetrical distribution (like the normal distributionddra skewness of zero.

Kurtosis is a measure of the ‘peakedness’ of the distributibligher kurtosis means
more of the variance is due to infrequent extreme deviat@sepposed to frequent modestly-
sized deviations. The normal distribution has a kurtosizenb.

4.1.3 Entity Based Metrics

With rule based metrics, we look at the logical coupling irystem from a high level view.
A test suite consists of many individual tests, which shatidshd on their own when it con-
cerns unit tests. Integration test have a more cross-guttture. To get more information
on the amount of effort that is put into maintaining the testes we have to step down to
the entity level. Here we discuss several measurementariaentered around the entities
that occur in the change history.

Test code classification

Given the classification of rules, we can classify the cladisat appear in rules, based on in
how many rules the class appears as antecedent. That nufmblersds equal to the distinct
number of other classes a class is associated with. Thessfidations are described in
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Froduction Classes Test Classes=

Figure 4.1: Measurement of logical coupling based on aaonirules.

Interpretation of association rules to understand logicaipling. Rules that
connect production or test classes within their own settéddines) measure
the logical coupling among classes within that set (puredpeton or pure
test rule classification). Solid lines represent assaniatules that associate
production and test classes (Production-test pair cleasoin). These rule give
measure to the co-evolution between the two types of clagdes number of
rules that associate a specific class to other classes didicksssification. For
example B is a pure unit test of class, and so isG of F. E is an integration
test of classe€ andD. Production classl is associated to several test classes,
and becomes classified as a multiple tested class.

table 4.2. Using this classification, we can potentially wiat tests are actually used as a
unit test or as an integration test.
Rule coverage of classes

Where the quality of a test suite is typically expressed bwysueng structural code cov-
erage, we explore an analogous way to logically express dingbar of classes that are
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Rule type Cardinality | Classification
{TestClass=> ProductionClas$ (1:1) Unit test

(1:n) Integration test

(1:0 Orphan test
{ProductionClass=> TestClas$ (1:0) Untested class

(1:1) Unit tested class

(1:n) Multiple tested class
{ProductionClass=> ProductionClas$ | (1:n),n>1 | Logically coupled class
{TestClass=> TestClas} (1:n),n>1 | Logically coupled test

Table 4.2: Classification of production and test classes.

Classification of classes, based on the number of rules ataircéype for each
specific class. Cardinalities of a class are always of tha fdr: x), meaning
that the antecedent of the rule is associated withifferent tests or classes
(consequents) by association rules. Undefined rules are not applicable.

associated with test classes, and vice versa.
We define the following logical coverage metrics:

Production class mapping ratio: The ratio of production classes that are associated with

one or more test classes by a rule. This number is calculqt%gr—(%w

uctionclasses

Production class matching coverage:The percentage of production classes that gets as-
sociated to a test matching on naming conventions. This purisbcalculated by
m&*ﬂ]‘d%ws This is Fhe pe_rcen.tage of production classes that poﬂtynﬁ;an—_
chronously co-evolve with their unit test, based on the sage of the class and its

unit test.

Test class mapping ratio: The ratio of test classes that are associated with one or more

: . . P|
production classes by a rule. This number is calculate Tasses

Test class matching coverageThe percentage of test classes that gets associated to a pro-
duction class matching on naming conventions. This is cetafyl analogous ex-
pressed byﬁ%s This is interpreted as the percentage of tests that aretite
synchronously co-evolving with its class-under-test,ellasn the co-usage of the

class and its unit test.

4.2 Evaluation: JPacman Test-Case

We use the educational game JPacman as a ‘guinea pig’ tiraleisand evaluate the
technique and metrics presented in this chapter. We genar&hangeHistoryView of
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the change history, and walk through the different measenéntomparing the observa-
tions with the knowledge we have of JPacman (log messagdgharinterpretation of the
ChangeHistoryView.

JPacman is a small game, written for educational purposassingle developer. It was
developed using a test-driven development model. The SI@#&Ris run on the change
history of JPacman. The tool extracts the following infotior in the history of develop-
ment, 46 classes where found in 246 revisions. Of the totalbhau of classes, 25 where
classified as a production class, 20 as a test class, andas®ecduld not be defined. This
is an almost one-to-one ratio, and supports the observitiom the ChangeHistoryView
(figure 4.2) that most classes have an associated unit tesierdnspection of the list of en-
tities reveals that the unidentified file was a completelas&ied file called\ap. j ava, that
was added for no apparent reason. The tool extracted a fdt8Bd association rules from
the change history. The rules where mined with a minimum supg 2, and a minimum
confidence of (0.

4.2.1 Test Process Understanding

In table 4.3 the ratios for the rules different are listede Tirst thing we notice is that almost
half of the rules associate a production to a test class. @oedpio the ratios of pure produc-
tion rules (36,88%) and pure test rules (15,74%) this isgelahare of the total number of
rules. This is the first indication that production and testecare developed simultaneously
and not in distinct phases, as can also be observed in theg€HatoryView.

When looking at the statistics for the different types oegjllisted in table 4.4, we can
observe the distributions the four basic metrics for théediint rule classifications. This
overwhelming amount of numbers can be conveniently contho®e boxplots and his-
tograms. The boxplots for support and confidence for all cidsses are depicted in figure
4.3. The histograms in figures 4.4 (support) and 4.5 (confieleprovide an alternative
view on the distributions. For the sake of this test-casdy; the plots for support and con-
fidence are considered. For the case studies in the folloahiagter we will only discuss
the boxplots, as they provide enough information, but tihemwtlata is included here as an
example.

We can make some quick observations from the data of JPacman:

¢ In addition to the ratios in table 4.3, we computed the rdtosnatching rules. From
the third row of data we can compute that 3,48% (twice 1,74%4he P&T rules
actually match on naming conventions.

e The means of all metrics for mP2T and mT2P are higher thanZdrdnd T2P. This
confirms that classes and tests that belong together ardikalyeo change together,
and actually have changed more often together (suppont)dtieer pairs of classes
and tests. This could mean that co-change between seemingdiated classes and
tests is coincidental, and not structural, as it most likelipr matching pairs.

e The interest (correlation measure) in table 4.4 has minimalaes that are below
1, which means that some rules are negatively correlateds ortly occurs in P&T
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Figure 4.2: ChangeHistoryView of JPacman.

In the ChangeHistoryView we can see that the initial committains a large
number of classes. From the log messages, we can see thabjthet pxisted
before it was put under version control in this repositorg. idal development
on the project begins until about revision 20. From that pomwe can ob-
serve coinciding production and test classes among morédndl changes to
classes and tests. This observation matches the testradi@xelopment model
of the author. There are some tests that get changed oftea migtory, and in-
spection of the log data suggests that these are mostlyléigh-organisational
tests Test Al l . j ava) (note that in the view, these tests are mistakenly shown
as production classes). Commits that touch many files tegette typically
the result of automated, and mostly cosmetic, changes toottie base.

rules, but not in the matching variants, so we can see thatebatively correlated
entities are production and test classes that most likelyaddnelong together.

e The support of PROD rules is somewhat spread out, but hasallgnieigher values
than TEST rules. Thus logical coupling (and co-usage) anpoaduction classes is
higher than among test classes. Thus there is more dedwadednriting effort than
pure testing effort

e Support for P&T, P2T and T2P rules hit rock-bottom. Only a fewtliers have a
support over 2. The interesting observation here is thatigedly all the outliers are
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Type N | Percentage
ALL 1334 100%
P&T 632 47,38%
P2T 316 23,69%
T2P 316 23,69%
mP2T 11 0,83%
mT2P 11 0,83%
PROD 492 36,88%
TEST 210 15,74%
UNDEF 0 0%
Production classes 25 54,35%
Test classes 20 43,38%
Undefined classes 1 2,17%

Table 4.3: Rule ratios for JPacman.

matching rules. Thus the production and test code that weogxp occur together
actually does occur more often than not trivial combinatiohis is evidence of
intentional co-evolution among production and test classe

e The observation of high support for matching rules is algibié in the confidence
distributions. The weight of the matching rules is signifitha higher than for other
P&T rules. PROD rules span the entire spectrum. There areatohing rules that
occur always together (confidence of 1.0), but some P&T mbesSo there could be
some integration tests that get changed every time the whatkes test is changed.

e The observation that both support and confidence are highenditching rules than
for P&T rules, add more weight to the distribution of the cdafice of mMP&T rules.
The matching combinations generally occur more often, s@thchange more struc-
tural in nature.

e Support and confidence are generally higher for TEST rules tbr P&T (and sub-
classes) rules. This indicates that, beside the intertmmahange among matching
rules, there is more dedicated test writing effort than iomoius ‘random’ testing of
not directly related production and test classes.

e The scale of the histograms makes the bars for matching nglady invisible. The
boxplots provide a clearer view on the distributions. Th&tdgrams however are
better for spotting interesting peaks and outliers.

4.2.2 Test Suite Quality

Figure 4.6 shows the number of P2T or T2P association rulegioh a production or a
test class occurs as antecedent. We can see that the majaeityities is associated often
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Figure 4.3: Boxplots of support and confidence for JPacman.

(15 to 23 times), while some classes are never encounteradtesedent in a P&T rule.
Based on the presented classification of code entitiese(taB), most of the tests would be
classified as integration or orphan tests. Based on the nuohb@T 2P rules (11 rules), we
know that we should encounter at least eleven true unit.t8stdor the JPacman test-case
this analysis is not providing insightful results.

The scatterplot in figure 4.6 shows the number of times eastuygtion or test class
occurs in a P2T or T2P rule respectively. We can see thatleestes are more often associ-
ated to a production class than vice versa. Since there ame pnaduction classes than test
classes, this is plausible. But it means that most clasgeasmociated with almost every
other class. We can see that the majority of entities is &socoften (15 to 23 times),
while some classes are never encountered as anteceden&ih@le. Production classes
are associated with 14 to 16 tests, on a total of 20 test da3$e other way around, tests
get associated with about all but three production clasBased on the number of mT2P
rules (11 rules), we know that we should encounter at leagaltrue unit tests. The conse-
guence of this is that the data of the JPacman test-case applitable to the classification
scheme of table 4.2.

Based on the observation that 11 tests are used as true sisit ttae other 9 tests are
potentially integration tests. This could explain why tlodlective strengths of TEST rules
are higher than P&T rules. Integration testing could be nobre ‘separated’ activity than
true unit testing, which appear to be a continuous effort.

We compute the different rule coverage measures for classhe production class
mapping coverage i%‘5 =1264. On average, each production class is associated with
about 12 test classes.

The production class matching coverage%—és: 0,44, which indicates that based on
the usage of tests, only eleven classes can be seen as #lfjassievolving unit test and
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Support distributions of rule classes
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Figure 4.4: Histograms of support for JPacman.
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Confidence distributions of rule classes
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Figure 4.5: Histograms of confidence for JPacman.
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All P&T | P2T | T2P | mP2T| mT2P | PROD | TEST | UNDEF
% to total 100 | 47,38| 23,69| 23,69| 0,83 | 0,83 | 36,88 | 15,74 0
% to P&T 1,74 | 1,74
Support
min 2 2 2 2 2 2 2 2 NaN
max 11 6 6 6 5 5 11 6 NaN
mean 2,86 | 234 | 2,34 | 2,34 | 3,73 | 3,73 3,55 2,82 NaN
std dev 1,11 | 0,72 | 0,72 | 0,72 | 1,19 | 1,19 1,19 1,06 NaN
variance 1,24 | 0,52 | 0,52 | 0,52 | 1,42 | 1,42 1,40 1,12 NaN
skewness 164 | 2,38 | 2,39 | 2,39 | -0,23 | -0,23 | 1,52 1,15 NaN
kurtosis 480 | 558 | 564 | 564 | -1,51 | -1,51| 6,21 | 0,38 NaN
Confidence
min 0,09 | 0,09 | 0,09 | 0,22 | 0,25 | 0,17 0,09 | 0,11 NaN
max 1,00 | 1,00 | 1,00 | 0,67 | 0,50 | 0,67 1,00 1,00 NaN
mean 0,36 | 0,29 | 0,30 | 0,28 | 0,30 | 0,46 0,45 | 0,33 NaN
std dev 0,23 | 0,19 | 0,19 | 0,28 | 0,10 | 0,18 0,24 | 0,23 NaN
variance 0,05 | 0,03 | 0,04 | 0,03 | 0,00 | 0,03 0,06 | 0,05 NaN
skewness 1,23 | 1,71 | 2,45 | 1,25 | 0,87 | -0,33 | 0,78 1,51 NaN
kurtosis 0,9 | 3,23 | 5,70 | 0,23 | 0,50 | -0,98 | -0,17 | 1,68 NaN
Lift
min 0,73 0,73 | 0,73 | 0,73 | 2,11 | 2,11 1,55 1,13 NaN
max 50,67 | 50,67 | 50,67 | 50,67 | 12,67 | 12,67 | 38,00 | 50,67 NaN
mean 6,73 | 552 | 552 | 552 | 6,16 | 6,16 8,68 5,81 NaN
std dev 6,23 | 585 | 586 | 586 | 4,11 | 4,11 6,31 6,01 NaN
variance 38,76 | 34,27 | 34,33 | 34,33| 16,90 | 16,90 | 39,76 | 36,11 NaN
skewness 2,88 | 390 | 3,91 | 3,91 | 0,81 0,81 1,72 455 NaN
kurtosis 12,73 | 22,60| 22,79| 22,79| -1,10 | -1,10 | 3,31 | 29,19 NaN
Conviction
min 0,9 | 095| 097 | 0,95 | 1,16 | 1,11 1,08 1,01 NaN
max 580 | 296 | 2,27 | 296 | 1,92 | 2,84 5,80 2,92 NaN
mean 155|137 | 1,30 | 1,43 | 1,36 | 1,86 1,86 1,44 NaN
std dev 0,72 | 045 | 0,24 | 0,58 | 0,24 | 0,66 0,95 | 0,52 NaN
variance 0,52 | 0,21 | 0,06 | 0,34 | 0,06 | 0,44 0,91 | 0,27 NaN
skewness 281 | 233 | 1,14 | 1,79 | 1,61 0,62 2,18 1,88 NaN
kurtosis 955 | 4,74 | 1,34 | 1,59 | 2,10 | -1,17 | 4,64 | 2,23 NaN
# infinite 60 14 14 0 0 0 35 11 0

Table 4.4: Summary of rule distributions of metrics for JRan.




Association Rules Analysis 4.2 Evaluation: JPacman TeseC

A A
AAA A AAA A AA A A type
A ProductionClass
20,0 ATestClass
A Undefined
A

o 1504 A A A
c AAAA A A A AA AAAA AAA A A
o
=
@©
(&)
O 10,0+
(7]
(7]
©

5,0=

A
A
A
00 AAAA A AA
T T T T T
0,0 10,0 20,0 30,0 40,0
id

Figure 4.6: Class and tests occurrences for JPacman.

these test 44% of the production classes. When we look atataefdr mP2T, the means
are not particularly strong, especially compared to mT2f {Est class matching coverage

is %—é =0,55. We could say that 44% of the system is unit tested by 55%eoffetst classes,
based on the co-usage of the classes.
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Chapter 5

Case Studies

In the previous chapter we proposed several measuremesgd ba association rules. Us-
ing a number of case studies on systems with different cteiatics, we attempt to explore
and interpret the applicability and usefulness of the diifé measurements. We use the pro-
posed measurements to answer the research questions paisediist chapter for the case
studies. Using the insight into the history of the case ssithiat the measurements provide,
the applicability and usefulness of the metrics can be avatu

We discuss the following different categories of questioith the case studies data:

Analysing the development and testing effort: Can we find evidence of intentional co-
evolution of production and test code, or a phased testipgoagh? How is the
coding effort of programmers distributed over writing puotion code and testing?

Test suite evaluation: Are tests found in the system used as a unit or a high-levegiat
tion test? Are tests up-to-date with respect to changesiptbduction classes?

Basic rule metrics interpretation: How should we interpret and value the meaning of the
individual association rule metrics support, confidenifeahd conviction?

We have data on the case studies from a number of sourcesaand@urce serves its
OWn purpose.

System characteristics: Basic information of the structure of the system, like thenber
of production classes, tests and revisions. This infoionadiefines the system.

ChangeHistoryView: The ChangeHistoryView of a case is used to get a high leval vie
of the system. The view is also used to select systems forathe studies.

Log data: The commit messages of the change history can provide imafitom on why
things happened in the change history. Why was a change roadég all test au-
tomatically pass after a refactoring? Log messages areassigdernal validation of
the development and testing process.

System developers feedbackWe had each developer of the systems explain their devel-
opment and testing practices to understand what we see iGhhrgeHistoryView
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and the data. This is used as external validation of the dpeent and testing pro-
cess.

Association Rules: The association rules that are derived from the changerhiate the
basis for the explored metrics.

Important observations that we come across in this chapiebe/noted in separate
statements. In section 5.4 we will evaluate the obsenmtiordeduce general statements
on our approach.

ChangeHistoryView Inconsistency

During the analysis of the ChangeHistoryViews of the systesome inconsistencies where
found in the visualisation of the change history. It appdhes some test classes not only
get plotted on top of the class-under-test, but also as aaeparoduction class. Because
of this, too many files are listed on the vertical axis of thewi For example, the view of
the JPacman test-case (figure 4.2) lists some 40 classem tReonumbers extracted by
the change history analyser of the tool, we learn that thene\25 production classes in
the history of the application, out of a total of 46 files. Frim number of matching rules
extracted by the tool we know there are at least 11 unit tested system. That leaves
9 possible integration tests. Thus we expect a total of 3&iiovthe view. Despite these
inconsistencies, we believe that the global observationsoeevolving entities and phases
of increased production or test code writing effort ard gélid. All production classes and
associated tests are plotted correctly and will allow ugthe patterns we are looking for.

5.1 Systems Desciptions

We have selected a nhumber of systems for the case studiesysiims had to comply
to the requirements that follow from the tool implementatiot must be written in Java
and automated unit tests must be included in the SVN or CVSorercontrol system. We
obtained about 20 candidate systems from three differehisinial companies and made
a selection based on the ChangeHistoryView and upfront ledgye of characteristics and
origins of the system. We include one open source softwasteisy Here we will discuss
the selected systems. The ChangeHistoryView for the cadéestis also presented to get a
feel for the systems.

5.1.1 OSS: Checkstyle

Checkstyle is a open-source coding standard checker farstauce code. Between June
2001 and March 2007, 2259 commits resulted in a total of 1168, fof which 797 where
Java classes, and 363 were identified as a test class.

The ChangeHistoryView for Checkstyle is shown in figure 5From the view, we
can see that initially little testing is performed. Thereidy one test in the system up to
about revision 250. After that, the system starts to growtasts are added with new code.
Around revisions 690 and 780, to phases of pure test efforbeadistinguished, and after
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5.1 Systems Desciptions

| System | #Java| # Test| # Undefined| Revisions| Firstcommit | Last commit |
Checkstyle | 462 519 0 2259 June 2001 March 2007
System A.l | 2480 | 1675 | O 2838 April 2004 January 2008
System A.ll| 375 170 8 1244 July 2003 January 200§
System B.I | 737 368 0 8853 August 2006 May 2008
System B.Il | 2151 | 362 0 10395 December 2004 May 2008
System C.l | 1038 | 383 72 4403 August 2006 May 2008
System C.1l| 122 81 5 1076 August 2006 March 2008

Table 5.1: Characteristics of the case studies.

Figure 5.1: Checkstyle ChangeHistoryView
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revision 850 many tests are added. After these additioage ik a significant period of pure
coding with hardly any maintenance to the tests being pmddr We see some recurring
test phases around revisions 1380 and 2100. For the largesffihe history, tests appear
to receive a fair amount of attention from developers, asynaititions and changes to
production code are accompanied or closely followed by tittimn or change in a related
test file. Regular commits touching many files can be see (@ttical bars) and these are,
with some exceptions, because of code cleanups or copyrigite changes.
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5.1.2 Company A Systems

Company A is a IT consultancy service provider. For its bes#) it develops several tools
for static source code analysis. Originally, differentlgsia tool were developed separately,
but over time different projects were merged into one sydtgystem A.l), and common
functionality was abstracted into a utility library (systeA.1l). Our change history begins
with the merging of different projects into one repositofye will mainly focus on system
A.l, as both projects share the same development modeligtwgibs show similar practices,
and the two systems are developed in tandem. System A.Inffisantly larger than A.ll
(see table 5.1), and changes more frequently. System Aldasconsidered to evaluate what
impact the size and length of the change history have on thlg<is with our approach. We
expect both systems to show similar results.

SCRUM was recently introduced as the main development rdetbgy. Before that
adoption, the process has always been centered aroungeagteces.

Company A employs a strong test-driven development modeleDpers are expected
to test all code and keep the test up to date. Code coveragsureegents are used to
monitor and control the test suite. Unit testing has beensim since the beginning of
development of the initial projects, which was around theryg900.

The ChangeHistoryView for A.l shows a steady growth curve fecause of the merges
of different projects and reorganisations of the repogitoany outliers clutter the view. The
total overview of the view (figure 5.2) shows code writing @esting effort overlapping for
the entire change history. Close inspection shows additéomd changes to the code base
being accompanied by added and changed tests most of theLémge commits correspond
to refactorings (with changing tests) and code cleanus @&en changing tests). System
A.ll yields very similar observations.

5.1.3 Company B Systems

Company B is a large international transportation compdiay tises many information
systems to support its activities. Systems are both deedlap-house, as well as by an
external contractor. For some projects coding is outsalirce

We selected two company B systems, which both have beenopedeby the same
external developer, and have around the same length of drgehistory. They, however,
have a striking difference: the use of unit tests. The firsteay (B.l), makes heavy use of
unit tests, while the second system (B.Il) only shows theagio use of tests, and hardly
any evidence of intentional co-evolution of production aest classes can be found. The
two systems show a completely different picture, and weratszésted in the effect this has
on our approach. The ChangeHistoryView for B.l is shown inrfg5.3, and for B.Il in
figure 5.4.

System B.l appears to be thoroughly tested, and many testadaled together with
new production code being introduced. There are two largesgif test activity noticeable:
between 2000 and 2500, and after the addition of many files GRD—700) after revision
2500. The first bulk of changed tests is the result of cleanjmgode, and appears to have
little to do with actual structural testing. The second spbt involves an overhaul in the
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Figure 5.2: System A.l ChangeHistoryView

Change History View

software, and the changes to tests that follow the largegehantually are adaptations to
the new production software. Thus here the testing is figrdane after the code has been
committed to the repository.

System BL.II tells a different story. Testing occurs sparadliring the long history of
the system. There are two minor, and one major concentgatiothe view: at the early
beginning, and around revision 6000. The large conceatraif test activity after revision
6000 around file-ID’s 2400 and 2500 occurs both because ofeflagtoring of tests (the
tests are added after the actual code is written), and clgar the test code.

5.1.4 Company C Systems

Company C develops both hard- and software for missioicarisystems for a wide range
of large financial, service oriented and industrial cust@am®ne of its main selling points
is commitment to quality, and to this effect the company \aatjvely uses unit tests in their
development model. The systems we consider were develgpsihall teams of under 10
developers, and using a blend of RUP, DSDM and eXtreme Progiag, picking elements
as they see fit. The use of unit testing is required for eacjegicand is controlled using
code coverage measurement and test code is peer-reviewed.

Similar to Company A, we evaluate two systems: one largeesy$C.1), and a small
system with a ‘supporting’ role (B.Il). The systems are viietsed applications used to man-
age contracts for an international financial service pravidgain, we primarily discuss the
larger system.
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Figure 5.3: System B.l ChangeHistoryView

Change History View
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Figure 5.5 show the ChangeHistoryView for the history oteysC.l. The view reveals
a smooth development curve of the system. There are not matgrs, which indicates
that the code in the repository was very stable, e.g., notyrfilas have been moved to
other locations. The overlap of tests and production ctakszks very consistent. There is
a steady line of changes to test code trailing the edge ofrinvetly curve, indicating that
testing effort accompanies additions to the system. Thergénbservation is a disciplined
and consistent test-driven development practice. Largentits are not very evident, and
most occurrences involve actual work on the system, and aolyrocosmetic changes as
with the other considered systems. A possible cause carabedty clear and stable coding
standards are set or the requirements for the system do aegeloften, and thus not many
clean up work or large overhauls have to be done. The smoatltigrcurve supports
this last possibility (except for the ‘bumps’ around rewisi415 and 3540, where files for
complete modules are added in one commit). System C.II showdentical change history.

5.2 Test Process Analysis

Our first attempt at applying the mined association rulefiéocase studies is to study the
ratios of the rules and the distributions of their strengttrins. We interpret the data of
the systems to deduce how the coding effort of programmatisisbuted among writing
code and testing. In table 5.2 the total number of rules (Allk class) and the percentages
that each of the different rules classes contributes toatad are listed. We will discuss the
ratios and strengths of the rules for the cases in the fatigwubsections. The observations
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Figure 5.4: System B.ll ChangeHistoryView

Change History View
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we make assume the cases (sections) are read in the ordérethare discussed.

5.2.1 Checkstyle

The first observation when looking at the rule ratios for Gisgde is the huge amount of
PROD rules. 9836% of the 58566 rules express an association between tvaugtion
code entities. While initially the developers hardly useit tests, they adopted a more test-
driven development model over time. The first period of depelent thus practically only
involved production code, but the several phases of putimgesffort that were observed
in the ChangeHistoryView (figure 5.1) could have createdimdamount of TEST rules.
Revisiting the ChangeHistoryView in close detail revedlattthe testing phases involve
commits with only a few tests per commit, while many other ogita contain a larger
amount of production files. As the change history of Ched&stgntains several recurring
very large commits, the generation of many rules from thasgles commits is very large
(2™ — 1, with mthe size of the commit).

We reason that many of the PROD rules should have low strermghbause of the in-
cidental nature of the combinations. We check this by tynmthe distributions of the
rule strength metrics. The distributions of the metricssirewn as boxplots in figure 5.6.
The average support of rules is generally low, with the PROIBsrhaving many extreme
outliers (shown as crosses). This shows that many of the io@tidins of files only occur a
few times in the change history. In table 5.3, we compute dftie of the number of rules
that get generated per revision, and the number of rulegttagenerated per code entity.
Looking up the ratios for Checkstyle, we find that each emésults in almost 60 rules. This
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Figure 5.5: System C.1 ChangeHistoryView

| Rule Class| Checkstyle | Al Al | BI[ B.| C.l C.l
ALL (N) 58566 | 101896] 14590 8820| 219248] 27308 498
PROD 98,86%| 35,15% | 49,64% | 39,00%| 99,12% | 51,84%| 40,96%
TEST 0,48% | 26,11%]| 9,95% | 24,81%| 0,20%| 9,99% | 16,87%
P&T 0,67% | 38,75%] 40,25%| 36,19%| 0,69% | 32,44%/| 32,13%
P2T 0,33% | 19,37%| 20,12%| 18,10%| 0,34% | 16,22% | 16,06%
T2P 0,33% | 19,37%| 20,12% | 18,10% | 0,34% | 16,22% | 16,06%
mP2T 0,09%| 0,78%| 0,74%| 0,83% | 0,01%| 0,78%| 4,82%
mT2P 0,09%| 0,78%| 0,74%| 0,83%| 0,01%| 0,78%| 4,82%
UNDEF 0,00%| 0,00%]| 0,16%| 0,00%| 0,00% | 5,73% | 10,04%

Table 5.2: Rule ratios for the case studies.

supports the idea that the huge ratio for PROD is there bedhese are commits with many
production files in them. We can also see this in the Changefigiew of Checkstyle, by
noticing the large blue vertical lines in the view.

Observation 5.1 Commits touching large numbers of files generate an exp@henimber
of rules. These rules can dominate the ratios of the ruleselss

The ratios of TEST and P%T (sub-)classes are minimal at d&st.the Checkstyle
developers appear to have adopted a decent testing pragtcdime. We can recognise
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| System | Rules/revision | Rules/entity |
Checkstyle 25,93 59,70
Al 35,90 24,52
Al 11,73 26,38
B.I 1,00 7,98
B.lI 21,09 87,25
C. 6,20 18,29
C. 0,46 2,39

Table 5.3: Ratios of rules, entities and revisions for thex=ea

several phases of testing in the first half of the change fyistmd a more test-driven ap-
proach in the latter part. Looking at lift, the correlatian@ng matching production and test
classes is stronger than for more unrelated classes. Thelat@mn among TEST rules is

even stronger. This observation also holds for the confel@mcl conviction distributions.

For example, the confidence of mT2P rules shows that 75% ekthdes express a con-
ditional probability of over 50%. Note that that number adas not enough to conclude
synchronous co-evolution between tests and code, as wetd@nknow how many tests

are actively maintained.

An interesting contrast is the significantly weaker disttibn of mP2T rules for confi-
dence and conviction. As these two metrics are not symnfetrerule, the often changing
nature of production code makes the presence of a producigs in a commit so trivial
that no interesting statement can be made based on its peesEme values for lift of match-
ing rules are identical, because of the symmetry of the létrin. The measured strength
between matching production and test classes is not asnglyideégher using lift than it is
with confidence and conviction, since the highly correlgt@)iT2P rules are averaged out
against the lowly correlated (m)P2T rules.

Observation 5.2 Strong distributions for TEST, related to (m)P&T rule sémdistribu-
tions, originate from co-usage of test classes and inditla# testing is performed as a
separate activity.

Observation 5.3 Lift averages the measurements for matching rules in @iffiedirections.
This causes the differences to even out, and makes lift apesific metric.

Summarising, we can see that Checkstyle has a very high ammgehof production
classes. These co-occurrences are mostly unintentiodlata@msed by code cleanup ac-
tivities. Apart from that, there is reasonable evidencebioth a phased and a test-driven
testing practice.

5.2.2 System A.land A.ll

Recalling observations of the ChangeHistoryViews fromteays A.l (figure 5.2) and A.ll,
we expect these two systems to show similar results. Thesrafithe rule classes are much
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Figure 5.6: Checkstyle rule strengths distributions

more even partitioned than for Checkstyle. For system Ad,ratios of PROD and P&T
are almost one to one. System A.Il has a slightly larger @iffee, but nearly 10% of the
total number of rules is of class TEST. Both systems A.l arltishow remarkable uniform
strength distributions for all rule classes in additionte &venly partitioned ratios.

In line with the observations from the ChangeHistoryVielwg tissociation rules reveal
a strongly synchronous co-evolution of production anddesie for company A's systems.
Not only are the rule class ratios evenly partitioned oveemoding and test-driven devel-
opment, the strength distribution present a uniform p&tROD, TEST and P&T rules
show equal measurements, and so do the matching classes,mR&T, and mT2P. The
distributions are more uniform (resembling the normalribistion), and show less skew-
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ness than for the Checkstyle case. We have four remarks atatador these two systems.

System A.l has surprisingly strong TEST rules, and theyasgmt twice as much of the
total compared to system A.ll. This could be caused by comthét contain multiple pairs
of production and test code. Two pairs generate P&T, PRODT&H®IT rules. The strong
TEST rules can occur when the combinations of test classes oéten in the history. The
strength of these rules is possibly a by-product of the nbdeelopment cycle combined
with more dedicated test effort.

In each of the up to now discussed systems the strengths oPmuil@s are high. For
A.ll, however, T2P is quite low even though mT2P is strong.isThheans that the other
part of the T2P rules (i.e., the non-mT2P rules) are weak ¢b s extent that they bring
down the average of T2P. Thus the non-mT2P rules are sigmiffo@ore independent than
mT2P rules, and occurrences of non-mT2P rules are incidentature, versus structural
co-use of truly related production and test code.

System A.l shows values for conviction that reach up in tlrasands, where for the
other cases the values concentrate around 2. We are not betbew this is because of
miscalculations for this specific case, or that it is a propef the system. Lift values for
A.l are not noteworthy exceptional, thus we assume an eaven though none was found.

System A.ll contains a number of undefined rules. Supporthiese rules is very low,
but the confidence and lift are very high. We inspect the eadfithese rules, and find that
they are generated from a number of test stubs and helpartebjehese classes belong to
test code, but are not classified as such because they dohereao the regular naming
conventions of tests. This explains the found data: thesstidonot occur frequently in
the change history, because they have a very static funcBorce they are part of a very
isolated and not frequently changed part of the test suitly (melonging to some specific
tests), the metrics are very strong.

We summarise the following observation:

Observation 5.4 For systems with synchronous co-evolution of productiod st code,

the ratios of the rule classes do represent the distributbprogrammer effort. For these
systems the strength distributions of the rule classes iandas. The strength of typical

rules is not low.

5.2.3 System B.l and B.II

With systems A.l, A.ll and Checkstyle we have been able tirdjsish different patterns of
co-evolving production and test code. Systems B.l and Bwktbeen selected because the
systems have very different test patterns, as analysedhét@hangeHistoryView. System
B.l is well tested, and shows the characteristics of a symus co-evolution. System B.I
only has two main periods of testing, and the test effort ¢ated to very specific parts of
the system.

The ratios of the rule classes for both systems look almeasitical to what we have
already encountered. With minor variations, B.l is simi@A.I, and B.Il has a huge PROD
ratio, very similar to Checkstyle. So are the testing pcastialso similar? Judging from
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Figure 5.7: A.l rule strengths distributions

the ChangeHistoryViews, B.l is much more sparingly testethtA.l, and Checkstyle is
significantly better tested than B.II.

The strength distributions of systems A.l and B.l show simiklations among the rule
classes. There is however a striking difference. A.l hag s&ong TEST rules, and B.I.
has strong PROD rules (compared to the other rule classeshokh systems, the supports
for these rule classes are not spectacular, so the strofigeoce, lift and conviction values
for the rules must be the result from not many, but from stmattco-occurrences. That
is, the entities that occur in combinations of test class€BHST (for A.l) and production
classes in PROD (for B.I) do not occur that often in other cimations. We believe this tells
us that the programmers of the systems are working with agtfacus on specific parts
on the system or test suite. For example, B.l is a system Inaifd scratch, and appears
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Figure 5.8: A.ll rule strengths distributions

to be build incrementally. The rounded growth curve in theu@eHistoryView supports

this idea. Inspection of the commit messages that often tasdare build by a specific

programmer. That programmer only changes the classestisghaific part of the system,
and moves on to another part when finished. Therefor the ¢wtibins of classes that are
checked in are limited to the specific parts of the system tla@dorrelation between those
classes is high.

For system A.l there is a similar explanation for the strorigST rules. Developers
focus on writing tests for specific parts of the system. Thesldpment of system A.l is
different than for B.l, because it is a collection of anatygdols that grows and changes
over time when analyses for customers require this. Deeetopre assigned to different
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customers, so their work on the tools is cross-cutting thinahhe entire system. The causes
more combinations of classes to occur, and brings down thelaton between classes,
and thus the distribution of strengths of PROD rules. Fadlhgafrom this reasoning, we
expect tests to focus on specific parts of the code, as thelaton among tests is high.
Company A developers confirm that

Observation 5.5 High correlations between only production classes (or dakt classes)
indicates that programmers focus on specific parts of thegysor the test suite).

When we compare Checkstyle and B.Il, because of their gitnilge number of PROD
rules, we expect to see a difference in testing related mdgnts. Checkstyle adopted a
testing strategy over time, but B.1l only shows two minoripés of very localised testing in
the ChangeHistoryView. The number of rules generated péyémnlarge for both systems.
Both systems show strong rules for TEST and mT2P, indicatiagy co-usage of tests,
and some co-changing tests and production classes. Cyleckas a slightly higher ratio
of TEST rules, so there is more dedicated testing than in BHls is in line with the
observations from the ChangeHistoryViews. B.llI has exoeptly strong PROD rules,
which is interpreted as dedicated and localised produatmate writing effort. Despite
these differences, we cannot make a definite distinctiowds the testing practices of
Checkstyle and B.II.

Observation 5.6 It is hard to determine differences between hardly testetraasonably,
but phases tested systems based on ratios of rules clasgesanibutions of rule strengths
alone.

5.2.4 System C.land C.II

Company A systems show similar results to the systems frampaoy A. Just like with
the discussion of the ChangeHistoryViews for C.l and Chiere are only a few noteworthy
observations for these systems that have not already besumered in the other cases.
Even the ratios of the number of rules per entity do not differch. These systems show
an impeccable test practice. We will only make a few remarks.

First, system C.I has significantly strong matching ruleB&wn, mP2T and mT2P). For
confidence, lift and conviction the interquartile range RlQf the boxplots of matching
rules is often higher than the IQR of the other rule classéss means that the upper 75%
of the matching rules is stronger, or more correlated, that @f the other rule classes.
This is strong evidence that production classes and itstekt enjoy concurrent attention
from developers.

System C.II shows similar distributions, but has strongeusage among test classes.
We can trace the strong correlations of test classes torlagemits with many tests and
classes. The large differences for the boxplots of corvictielated to C.I and A systems,
are mainly due to scale differences of the vertical axis.

Observation 5.7 Cases A.l, A.ll, C.l and C.II all reinforce observation 5.4.
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Figure 5.9: B.I rule strengths distributions

Both C.I and C.ll have UNDEF rules, but these are not veryngtrdnspection of the
rules learns us that, again, these rules are generatedseechstub and helper classes in
the test suite. For system C.ll we can see that the suppoliesétrules is quite high, but
the strength measures are obviously lower than for otheralalss. This means that the
combinations of classes with the stubs occur quite oftehwliln many different classes
per stub. It is plausible that a number of different teststheesame stub or helper class.
Note that this is a different practice than we encountereslysiem A.Il, where UNDEF
rules occurred very few times, but had high strengths.
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Figure 5.10: B.Il rule strengths distributions

5.3 Test Suite Quality Evaluation

The second interpretation of association rules we expki®y/ilooking from a code class
point of view. We formulated two variants: code entity clfisations based on the number
of associations, and the ‘logical coverage’ of associatiartes to code entities. We now
discuss the results from these attempts.

5.3.1 Code entity classification

The classification of code entities based on the number ofd2R2P rules they occur in
is not proving to be a useful metric. For many of the casesnpthprity of the classes is
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Figure 5.11: C.l rule strengths distributions

not being associated in an interesting way. An example lobxgdlthe number of distinct
rules associating a production or a test class, is shown imefi§.13. Where the number
of occurrences of a class as antecedent in a P&T rules wasiginfor the JPacman test-
case (in chapter 4), associating every class to every testhaumber of occurrences of a
typical class as antecedent for larger projects is eitherpbetely none, or growing very
large. The number of classes that get associated with ebéensimber of other classes that
resembles the actual structural coupling is low (around d0fe total number of classes).
One would expect a few number of occurrences for tests: dngeg, four times. A test
that is structurally testing more than a few classes is josamgood practice, so the numbers
obtained here are completely not representative. We cdachat it is not feasible to make
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any useful analysis based on this interpretation of assogiaules.

Observation 5.8 Classification of classes and tests cannot be done basecibruiage by

programmers.

5.3.2 Rule coverage

Another take on test quality is done by use of the rule covedglasses. In section 4.1.3
we define four types of coverage measures based on the rdatie alimber of (matching)
rules and the number of classes and tests in a system. We tthpdour ratios for all the

cases, these can be found in table 5.4.
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Distribution of number of associations per type

associations

type

Figure 5.13: Example of the number of occurrences per cjges t

We already made the observation that strong rules for nmagcpioduction and test
class pairs originate from a disciplined test-driven teptstrategy. The production and
test matching coverage percentages can actually give a mlerant interpretation to the
strengths, because together they express (1) how manygii@madand test class pairs are
co-used, and (2) how structural the co-usage is.

We immediately see a clear separation: the system that shimstdriven testing prac-
tices, and Checkstyle and B.II. The first category of systehusv large (20%, 30%, 50%)
parts of the test suite that potentially synchronous cdvevdNe can check the mT2P rule
strengths to see to what extent they actually co-evolvehdmtevious section we already
discussed these strengths and saw that the relations Imetiegt@nd production code is high
for these systems.

For the other two cases, the matching coverage ratios giyktlgl more insight in a
potential difference between the testing practice. Botrelza equal part of their test suite
that potentially co-evolves (nearly 10%), but only abot4,0f the production classes in
B.1l have their tests updated when changes are made to #® algainst 11% in Checkstyle.
So Checkstyle has a 7 times larger part of production codehteamaintained tests than
B.II.

5.4 Evaluation

In this chapter we evaluated our proposed approach to shgdya-evolution of production
and test code in a system using several case studies. Welhssmed that based on assoca-
tion rules we can express how developers divide their effover production code writing
and testing activities, and to what extent parts of the systethe test suite are co-evolving.
While we can also detect the absence of synchronous cotmrola a system, it proves
to be hard to determine whether the system is poorly testeldrgé ratio of strong TEST
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Case Studies

Case Production class Production class Test class Test class

mapping ratio | matching coverage| mapping ratio | matching coverage
Checkstyle 0,42 11,04% 0,38 9,83%
Al 7,96 32,22% 11,79 47,70%
Al 7,83 28,80% 17,27 63,53%
B.I 2,17 9,91% 4,34 19,84%
B.lI 0,35 1,49% 2,08 8,84%
C. 4,27 20,42% 11,57 55,35%
C. 0,66 19,67% 0,99 29,63%

Table 5.4: Rule coverage ratios of classes for the casesstudi

rules would indicate a phased testing approach, but the &asescwe considered where this
would possibly occur, huge amounts of PROD rules, genefatdadrge commits, cluttered
the view. Valid detection of structural phased testing meggufuther investigation.
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Chapter 6

Conclusions and Future Work

This chapter gives an overview of the project’s results andrdoutions.

6.1 Conclusions

The central research question of this thesis was “How camrdating techniques be applied
to (retrospectively) study the unit testing process invgafe systems?”. We formulated four
supplemental research questions, and we will provide anisstwghese questions here.

RQ1: We applied association rule mining to the change historyoftixare systems, and
presented an approach to analyse the co-usage betweerctwodand test code
based on the mined association rules. Using several catiestue can conclude that
association rule mining can be successfully applied to fimtlexpress synchronous
co-evolution of production and test code.

RQ2: Our attempt to classify test classes based on their co-ehaiily production classes
leads us to conclude that this does not lead to satisfacesyits. The occurrences
of test classes in the change history is generally to wideagbto make any sensible
statements.

RQ3: Using the association rules we can determine what percerghthe test suite is
actually used as a unit test, and the distribution of rukengfths can be used to express
how structural the production and test code is synchronowsvolving. We believe
that this can be applied to measure (long term) unit testtgual

RQ4: While we have discussed five industrial case studies that similar testing prac-
tices, we have also observed one industrial case and onesopete software case
that show radically different patterns. In our completeypofiindustrial systems (not
discussed in this thesis), we observed different patteatewden, and even inside,
several companies.

To return to the central research question, we found thaapipdication of association
rules to the change history of a software system can very leelised to study the unit
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testing process of the system. We believe that there is af Ipptential in this type of
analysis, as it can truly express the way in which classedests are used by developers.

In the introduction of chapter 1 we identified to potentiaésigor this type of anal-
ysis. The analyses techniques that we explored in this warkepto be useful for both
(retrospective) assessment of the unit test suite and tlyeteséing is employed. We did
not investigate whether monitoring of the testing procesa possibility. We expect that
changes to the test practice over small periods of time willyeld noticeable differences
in the results, as our technique summarises the entirerpisBhanges to longer histories
will not influence the complete picture enough to make ugefigements.

6.2 Contributions
In this thesis we have made the following contributions.

e We have developed a tool to mine association rules at fild feom the change
history of a system, based on the log data of the system’sovec®ntrol system.
This is a more lightweight approach to find co-usage amorggekathan using static
code analyses at class level. For our purpose, analysis &fél is fast and provides
enough precision compared to code level.

e We have presented an approach to study the co-evolutiorodtiption and test code
in a system based on the co-usage of classes and unit tests.

e We have collected a large number of change histories of tridusystems to study
testing processes in real world situations.

6.3 Future work
We have identified some ideas to build upon this exploratagearch.

Refine and operationalise the measurements presented in ghvork: We would like to
refine the interpretation of the measurements that we pieieo make the results
easier to understand for more people, we would like to be @béxpress the data
in terms like “Programmers spertamount of time to testing” ory% of the system
exhibits a synchronous co-evolution of production anddede”. Using this simpler
interpretation, we would like to build a benchmark of systeand be able to formule
‘quality-standards’. This allows for better comparisoncag systems.

Use of more detailed data: By adding more information from other sources the level of
detall of the rule classes can be enhanced to get more dktkita on what is chang-
ing in the system. We could add more VCS log data, link to imfation from bug
tracking systems, or perform static source code analysisst&ically analysing the
actual classes we can determine in more detail what classrig gest or an integra-
tion test, or analyse if more complex classes are testeértmtivorse than an average
class.



Conclusions and Future Work 6.3 Future work

Compare unit testing practice differences in distinct deveopment cultures: We have stud-
ied the change histories of a large number of industriaksystand reported on six of
them. The previous study by Zaidman et al. [33], and our OS8 study show that
open source systems have less disciplined and more phased) tpractices com-
pared to the majority of the industrial cases we have seenwtiid like to study
how unit testing is employed in different cultures of softevdevelopment.
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