
Studying Co-evolution of Production
and Test Code Using Association Rule

Mining

Master’s Thesis

Zeeger A. Lubsen

Studying Co-evolution of Production
and Test Code Using Association Rule

Mining

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Zeeger A. Lubsen
born in Amsterdam, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Software Improvement Group
A.J. Ernststraat 595-H
1082 LD Amsterdam

the Netherlands
www.sig.nl

c© 2008 Zeeger A. Lubsen.
Cover picture: Evolution queue,c© 2008 www.wulffmorgenthaler.com.

Studying Co-evolution of Production
and Test Code Using Association Rule

Mining

Author: Zeeger A. Lubsen
Student id: 1054503
Email: z.a.lubsen@student.tudelft.nl

Abstract

Unit testing is generally accepted as an aid to produce high quality code, and can provide quick
feedback to developers on the quality of the software. To have a high quality and well maintained
test suite requires the production and test code to synchronously co-evolve, as added or changed
production code should be tested as soon as possible. Traditionally the quality of a test suite is
measured using code coverage, but this measurement does notprovide insight in how tests are used
by developers. In this thesis we explore a new approach to analyse how tests in a system are used
based on association rules mined from the system’s change history. The approach is based on the
reasoning that an association rule between two entities, possibly of a different type, is a measure
for the co-use of the entities. Case studies show that analysing all the resulting rules allows us to
uncover the distribution of programmer effort over pure coding, pure testing, or a more test-driven
practice. Another application of our approach is that we canexpress the number of tests that are
truly co-evolving with their associated production class.

Thesis Committee:

Chair: Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
Committee Member: Dr. Hans-Gerhard Gross, Faculty EEMCS, TU Delft
Committee Member: Dr. Tomas Klos, Faculty EEMCS, TU Delft
University supervisor: Dr. Andy Zaidman, Faculty EEMCS, TUDelft
Company supervisor: Ir. Michel Kroon, Software Improvement Group B.V.

Preface

“History will be kind to me for I intend to write it.”
Sir Winston Churchill

The topic of this graduation thesis is how code and its tests change over time. While
programmers write their software they are often not aware what great consequences their
actions can have. Pick a random book on software engineeringand you will encounter at
least one example of software terribly gone wrong because oftrivial errors. Thoroughly
testing your software can prevent these painful situations, and will repay the invested effort
in time. The quote by Winston Churchill is applicable to software developers: you can write
your own software history, or become an example in a textbook. Just take your time to do it
right.

Eventually it is all about about how, and with who, your spendyour time. It is not as
much about how much time you spend in university, or about thetime you have in front of
you after graduation, but whether you did it in a way you feel good about.

Personally, I had a great time doing this thesis project. Youlearn from both the ups and
the downs, and I am happy I was able to do the project in a great environment with many
interesting people. All the people I have shared a room with since last August, Reinier,
Rinse, Gerard, Leo (Who needs Apple?), Peter, Mitchell, Frank, Tim and Johnny, thanks
for the pleasant times and the much needed distraction from work. All the other people at
SIG, and especially Joost Visser and Ilja Heitlager for the great feedback and insights on
my work.

I’d like to thank both my supervisors, Andy Zaidman from TU Delft, and Michel Kroon
from SIG, for the time you both took to keep me going in the right direction. Andy, thank
you for reviewing my writings so remarkably fast, everytimeagain, and giving so much
space to find my own way in this project.

All my friends and family, who showed interest in how I was doing, you were a great
support. And last but not least, and certainly the most important, Arina and my parents,
thank you for all the patience, understanding and support you gave all these years. I’m
lucky to spend my time with you.

iii

Preface

Zeeger A. Lubsen
Amsterdam, the Netherlands

June 24, 2008

iv

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Proposed Solution and Approach .. . 3
1.3 Software Improvement Group .4
1.4 Thesis Structure . 4

2 Background and Related Work 5
2.1 Software Evolution . 5
2.2 Software Repository Mining and Data Mining 6

3 SIGAR: Association Rule Mining Implementation 9
3.1 Toolchain Introduction .. 9
3.2 Toolchain Structure and Implementation 10

4 Association Rules Analysis 17
4.1 Association Rules Interpretation 17
4.2 Evaluation: JPacman Test-Case 27

5 Case Studies 37
5.1 Systems Desciptions . 38
5.2 Test Process Analysis .42
5.3 Test Suite Quality Evaluation 52
5.4 Evaluation . 55

v

CONTENTS

6 Conclusions and Future Work 57
6.1 Conclusions . 57
6.2 Contributions . 58
6.3 Future work . 58

Bibliography 61

vi

List of Figures

3.1 An excerpt of an extracted change history. 11
3.2 SIGAR toolchain structure. 12

4.1 Measurement of logical coupling based on association rules. 26
4.2 ChangeHistoryView of JPacman. 29
4.3 Boxplots of support and confidence for JPacman. 31
4.4 Histograms of support for JPacman. 32
4.5 Histograms of confidence for JPacman. 33
4.6 Class and tests occurrences for JPacman. 35

5.1 Checkstyle ChangeHistoryView 39
5.2 System A.I ChangeHistoryView 41
5.3 System B.I ChangeHistoryView 42
5.4 System B.II ChangeHistoryView 43
5.5 System C.1 ChangeHistoryView 44
5.6 Checkstyle rule strengths distributions 46
5.7 A.I rule strengths distributions 48
5.8 A.II rule strengths distributions 49
5.9 B.I rule strengths distributions 51
5.10 B.II rule strengths distributions 52
5.11 C.I rule strengths distributions 53
5.12 C.II rule strengths distributions 54
5.13 Example of the number of occurrences per class type. 55

vii

List of Tables

3.1 Classification of association rules. 15

4.1 Individual association rule metrics. 21
4.2 Classification of production and test classes. 27
4.3 Rule ratios for JPacman. .. . 30
4.4 Summary of rule distributions of metrics for JPacman. 34

5.1 Characteristics of the case studies. 39
5.2 Rule ratios for the case studies. 44
5.3 Ratios of rules, entities and revisions for the cases. 45
5.4 Rule coverage ratios of classes for the case studies. 56

ix

Chapter 1

Introduction

The development of high quality software systems is a complex process, and maintaining
an existing system over time no less. After the initial release of the system, the eroding
effects of software evolution cause systems to become harder to maintain and even obsolete,
as formulated by Lehman’s Laws of Software Evolution [23]. Successful and increasingly
more adopted methods to counter the effects of software evolution are automated unit testing
(see xUnit Testing Frameworks1) and the practice of Test-Driven development [5]. Unit
testing is becoming an essential aspect for the developmentof reliable and high quality
systems, and can ease the ongoing maintenance of the system after its initial release [30].

But unit tests are executed in a simulated environment, and the quality of the tests greatly
depends on the effort that the developer who wrote the test put into it. The behaviour of code
units must be checked for different input values, and possibly many exceptional cases [8].
Tests are only as good as how the tester writes them. This leaves the desire to be able to
assess the quality of the test suite of a system.

In popular fashion, the quality of a test suite is typically expressed by code coverage:
the percentage of the code that is exercised by the set of tests that is executed [8]. But
code coverage (coverage for short) is a somewhat shallow measure of test quality. Code
coverage expresses that some code is executed, not how or what is tested. One should think
of different input values and the number of assertions checked by the test. Simply running
the code only guarantees that the code compiles and does not crash in trivial situations.

So we are left with open questions regarding the quality of the test suite. A tester wants
to know if his testing effort is any good, or a project managerwants to know if his testing
team is meeting the required standards. These questions involve thetesting effortand the
long term qualityof the unit tests. Being able to answer these questions aids in at least two
ways for different stakeholders [33]:

• Assessment of the testing process, for example to estimate future maintenance, and
in first-contact situations with an existing system.

• Monitoring of the testing process, to compare the current process to the intended
process, and for the identification of trends.

1xUnit Testing Frameworks: http://www.xunit.org

1

1.1 Problem Statement Introduction

Combining these observations of the importance of high quality test suites and test-
driven development, we argue that the production and test code in a system should co-
evolve synchronously. New functionality added to a system should be unit tested as soon
as possible, and the preservation of behaviour should be checked after changes have been
made.

1.1 Problem Statement

The situation that is presented in this introduction is a continuation of the work done by
Zaidman et al. [33]. In their work they present three lightweight visualisation techniques
to study the co-evolution of production and test code, focussed around the main research
question:‘How does testing happen in open-source software systems?’The proposed ap-
proach has the downside that there are no explicit measurements available to support the
observations from the visualisations. Interpretation of the presented high-level views of the
system’s history is left to the viewer.

Data mining is a collective name for techniques that attemptto find hidden information
in large amounts of data [11]. These techniques allow to drawmore sophisticated informa-
tion from databases than normal query languages and visualisations of the data offer. The
main source of historical data of software systems are Version Control Systems (VCS) [4].
Each change in a system is committed to a VCS in atransaction, or commit. A VCS con-
tains the history of transactions of a software system (fromnow on: the change history). To
use data mining techniques on the change history is an intuitive and proven method to study
the evolution of a software system [6, 32, 34].

The employment of data mining techniques appear to be an interesting candidate to
extend the previous work on the co-evolution of production and test code. To build on the
approach by Zaidman et al. the central research question of this thesis is:

Central Research Question:How can data mining techniques be applied to (retrospec-
tively) study the unit testing process in software systems?

More specific, the purpose of this research is to solve the following supplemental, and
subsequent, research questions (RQ):

RQ1: Can data mining techniques be used to find evidence of intentional synchronous co-
evolution of production and test code?

RQ2: Can the nature of the test code (unit test vs. integration test) be distilled from the
change history?

RQ3: Can a quality measurement for co-evolution of production and test code be defined
based on a presented technique?

RQ4: Can different patterns of co-evolution be observed in distinct settings, for example
different cultures like open-source software versus industrial systems?

2

Introduction 1.2 Proposed Solution and Approach

1.2 Proposed Solution and Approach

To solve the raised research questions we propose to mine association rules from the change
history contained in the VCS of a software system. Association rule mining attempts to find
common usage of items in data, and is often applied to assist in activities like marketing,
advertising, floor placement in stores, and inventory control [11]. An association rule is a
statistical implication between a set of items that occur together in a database for a specified
minimum number of times. Association rules are typically derived from transactional data,
that is, records containing a collection of items and a timestamp.

Association rules are frequently applied in everyday situations. A common example is
the suggestions of other products that are presented to customers who are viewing a product
in an online store. Websites like Amazon.com often have a section of the webpage sug-
gesting a number of products (“people who bought this product also bought...”), depending
on the article that is currently viewed by the customer. These suggestions are derived from
previous purchases of the current article in combination with other articles. In this example
association rules describe the individual suggestions.

An association rule expresses a statistical implication between items based on their com-
mon usage, as recorded in the change history. Depending on how many times the combina-
tion of items is found in the change history, the associationrule has a certainstrength. By
mining association rules from a software system’s VCS, we expect that the resulting asso-
ciation rules can express the characteristics of the co-evolution of the production and test
code in the system. For example, if a production class and itsassociated unit test are always
changed and committed together in the change history, we expect that the mining process
will result in an association rule that connects these two entities based on their historical co-
change. The strength of the association between the two entities can be used as a measure
for the co-evolution of the two entities. This principle canbe generalised for multiple rules.

In this research project we perform an explorative study on how association rules can
be used to study co-evolution of production and test code. The proposed solution consists
of two parts:

• Design and implementation of an association rule mining tool to obtain co-evolution
information of a system, and exploration of the interpretation of the association rules.

• A number of case studies to validate and explore the applicability of the approach, as
well as to observe differences in testing processes in detail.

The separate parts are now explained in more detail.

1.2.1 Tool design and implementation

First we will develop a tool that can mine association rules from a system’s VCS. Next we
explore measurements that express the co-evolution of production code and test code in a
system, based on the derived association rules. We implement these measurements in the
tool to study the co-evolution of production and test code, and the underlying testing process
of a number of software systems.

3

1.3 Software Improvement Group Introduction

1.2.2 Case Studies

We perform several case studies to evaluate the associationrule mining approach, and to
observe different development and testing approaches in OSS vs. commercial software set-
tings. The main observations of the cases will be derived from four sources: the visuali-
sation technique to study the change history (ChangeHistoryView) by Zaidman et al., the
results from the association rule mining tool, log messagesfrom the commits in the VCS
and information from the developers of the systems evaluated in the cases.

Each case will be assessed by the results from the association rule metrics, and we use
the visualisations to validate whether the computational results match the visual observa-
tions. The log messages are used to internally validate the observations, and the information
from the system developers serves as external reference of the results.

1.3 Software Improvement Group

The Software Improvement Group2 is specialised in the area of quality improvement, com-
plexity reduction and software renovation in software engineering. The SIG performs static
source code analysis to analyse huge software portfolios and to derive hard facts from soft-
ware to assess the quality and complexity of a system. The analysis of systems is used in
activities like risk assessment, software monitoring, documentation generation and renova-
tion management. These kind of activities are useful for large legacy systems as well as
newly developed systems. By gaining more insight into the process that drives the testing
and development processes of a system, the SIG can give more informed and accurate as-
sessments to its customers regarding the quality and ‘health’ of the testing strategy and the
current testset. With test health, we mean the long term quality of, and the amount of effort
being put into maintaining the test suite.

1.4 Thesis Structure

This thesis is structured as follows. First we discuss related work in chapter 2 to describe the
context of this thesis. In chapters 3 and 4 we introduce and explain the proposed technique
to study co-evolution of production and test code. The case studies that are performed to
explore the proposed technique, and the results follow in chapter 5. Finally conclusions are
drawn and future work is proposed in chapter 6.

2http://www.sig.nl

4

Chapter 2

Background and Related Work

2.1 Software Evolution

Software Evolution is the process of continual fixing, adaptation, and enhancements to
maintain stakeholder satisfaction [23]. Systems must adapt to the changing environment
they operate in by adding features or correcting bugs [24], which causes the structural com-
position of the system to decay [12, 28], unless preventive or corrective measures are taken.
This observation is formulated in Lehman’s Laws of SoftwareEvolution [23]. While these
empirical finding have been disputed [19], all arguments forand against illustrate the diver-
sity and complexity of evolving software.

A recent research trend in software evolution research is tovisualise the evolution his-
tory [31], and research is based on empirical findings. Active topics in software evolution
research are how to identify entities or parts of a system which are bottlenecks in the main-
tenance of systems, how to refactor these problematic entities or how to avoid entities from
becoming complex and problematic. Examples of approaches to identify bottlenecks are
Gı̂rba’s Yesterday’s Weather [18] and the Evolution Radar by Marco D’Ambros [10].

The visual approach to study software evolution originatesfrom the ability of visuali-
sations to communicate trends [29]. A XY-chart can quickly show growth or other changes
over time. An increasingly popular type of visualisations in this area are polymetric views,
like Lanza’s Evolution Matrix [21, 22]. The visualisationstypically plot entities against a
time measurement, and use size and colour to incorporate different metrics into the view.

2.1.1 Software Co-evolution

Software co-evolution is the multi-dimensional cousin of software evolution research. Soft-
ware itself and its underlying development process are multidimensional. The development
of high quality software requires other artefacts besides source code, like specifications,
constraints, documentation, tests, etc. [26]. This is whatmakes it multidimensional. All
these artefacts are inherently intertwined with the sourcecode of a system, and thus in-
fluences its evolution. Software co-evolution studies how these relations between artefacts
exhibit themselves and change over time.

5

2.2 Software Repository Mining and Data Mining Background and Related Work

One of the more important concepts in software evolution islogical coupling. Two
entities are logically coupled when they change at the same time in the history [15, 14].
The more times entities are changed together the stronger the logical coupling is. Logical
coupling is a measure for the number of co-changes of entities in a given period.

The work by Zaidman et al. [33] is preceding the work in this thesis, as already men-
tioned in chapter 1. The visualisations proposed by Zaidmanallow the analyst to study
how production and test code grow and change over time, and whether changes in pro-
duction code is followed by changes in test code, or vice versa. They seek for evidence
of intentional synchronous co-evolution. This can provideinsight in the test process of a
development cycle, and can visualise the testing efforts for a system. It is based on the un-
derstanding that ideally additions to a system should be tested as soon as possible, and the
preservation of behaviour should be checked when changes are applied. This is contrasted
to a more phased approach where (longer) periods of dedicated code writing are alternated
by (shorter) periods of increased testing effort.

A similar idea is explored by Fluri et al. [13]. Instead of production and test code, Fluri
studies whether code comments are updated when production code changes. They use code
metrics and charts to study these changes. A main differencein Fluri’s approach is that they
analyse the changes on the code level, while Zaidman remainson the file level.

Both Zaidman and Fluri explore two dimensions of software evolution. Even more
dimensions are combined by Hindle et al. [20] and German [17]. Hindle studies whether
release patterns can be detected in software projects. Thatis, behavioural patterns in the
revision frequency of four different artefact classes: source code, test code, build files and
documentation. They do observe repeating patterns around releases for distinct systems, but
the data shows large differences between the systems.

Daniel German combines information from many different sources, like mailing lists,
version control logs, web sites, software releases, documentation and source code. He calls
this information that is left behind by developers softwaretrails. He extracts useful facts
from the trails and correlates them to each other in order to recover the evolution of the
software system. The approach reveals interesting facts about the history of a system: its
growth, the interaction between its contributors, the frequency and size of contributions,
and important milestones in the development.

2.2 Software Repository Mining and Data Mining

Software evolution research relies on historical data to reason over past development activ-
ities. These development activities are often contained insoftware repositories [27]. The
source code of a software system is most often contained in Version Control Systems (VCS).
A VCS provides functionality to allow developers to work collaborative on a system, to keep
backups of code and to revert changes.

Each time a developer makes a change to source code, he submits the changes to the
VCS, and with this action, he creates a new revision of the software. The set of changed
files that are added to a VCS are called a commit (or transaction, we will use both terms
interchangeably in the rest of this work). A VCS not only records the changes to the files

6

Background and Related Work 2.2 Software Repository Miningand Data Mining

in the commit (structural information), but also who made the change, when the change
was made, and what files were added, changed or deleted in the commit (meta-data). The
complete set of transactions that transforms each revisionin the VCS to the next is called
thechange historyof a system. The meta-data that is recorded in the change history is used
extensively in modern software evolution research.

The idea to analyse the change history was first coined by Ballet al. [4]. They explored
the idea by studying who changed what files, and that one can measure the connection
strength of two entities based on the probability that two classes are modified together in
the change history. This last idea was further explored by Gall et al. [14], and is now known
as the before mentioned logical coupling.

Data mining is the use of algorithms to extract or find useful information, hidden de-
pendencies and patterns in data [11]. Data mining techniques prove to be very useful in
software evolution research when applied to the change history. The particular technique
of association rule mining that is used in this work is discussed in more detail in the next
sub section, and followed by a discussion of more general related work that employs data
mining to study software evolution.

2.2.1 Association Rules

Association rules mining [1, 2] is a data mining technique that produces rules that show the
relationships between items from transactional data in a database, as introduced in chapter
1 of this thesis (think of market baskets). It is very important to note that association rules
detect common usage of items. The uncovered relationships are not inherent in the data,
as with functional dependencies, and they do not represent any sort of causality or logical
relation [11]. Zimmermann states that a rule has a probabilistic interpretation based on the
amount of evidence in the transactions they are derived from[34].

2.2.2 Data Mining to Study Software Evolution

We found two uses of association rule mining in literature. The first is the work by Zim-
mermann et al. [34]. He attempts to guide the work of developers based on dependencies
found in the change history. For each change a developer makes, his support tool guides the
programmer along related changes in order to suggest and predict likely changes, prevent
errors due to incomplete changes and identify couplings that are undetectable by program
analysis. The tool works with a ‘Programmers who changed these functions also changed...’
metaphor, similar to suggestions encountered in online webstores (again, see the example
in chapter 1). Zimmermann’s approach derives association rules at function and variable
levels, in real time while the programmer is writing code. This is different from the typical
application of retrospectively mining association rules to build a descriptive model of the
data. The intent of this approach is to build a predictive model.

The second work that utilises association rules is by Xing and Stroulia. They use an
association rule mining algorithm to detect class co-evolution [32]. They apply the rule
mining at class level, and are able to detect several class co-evolution instances. They
also intend to give advice to developers on what action to take for modification requests,

7

2.2 Software Repository Mining and Data Mining Background and Related Work

based on learned experiences from past evolution activities. Their approach focusses on
the design-level, in contrast to Zimmermann’s more low-level approach. Both of these
approaches differ from our approach in that both parse the source code, and we remain on
the file level. At the file level less information is available, but as we will argument further
on in this thesis, that is not a large problem, and a good trade-off between information and
performance is made.

Another frequently employed data mining technique in software evolution research is
clustering. Clustering attempts to groups items by using a distance measurement [11]. In
their initial paper on mining VCSs, Thomas Ball et al. illustrate the potential of repository
mining by clustering the change history. Their clustering algorithm places classes closer
together in a pane when they are changed together more often [4]. A clustering algorithm is
used to determine the layout of the visualisation. Very similar are the evolution storyboards
by Dirk Beyer [7], and work by Stephen Eick et al. [12]. All these approaches use the
logical coupling of items as the distance metric for the clustering.

8

Chapter 3

SIGAR: Association Rule Mining
Implementation

As described in the introduction in chapter 1, the main idea is to mine association rules from
the change history of a VCS to obtain a model of the co-change of different code entities.
Now the tool to mine association rules is proposed, which we dub SIG Association Rules
(SIGAR). The technical implementation of the tool used to mine the association rules and
the design considerations are described.

3.1 Toolchain Introduction

First the general characteristics of the approach are introduced. The main motivations to
use association rules to study co-evolution of production and test code are:

• Association rules are based on the common usage of items, they describe the logical
coupling (see chapter 2) between the items in the rule. This implies that they can
express the actual way that developers use production classes and unit tests. It seems
intuitive to mine association rules from change histories.

• Analysing systems on the file level (described next) is a ‘lightweight’ approach, in
that no static or dynamic source code analyses is needed. These other approaches
provide a deeper level of granularity, but are more costly interms of required time
and computations. For example, statical analysis of all 3000 revisions of a system
of 2000 classes is an enormous task. Comparing classes whicheach other class for
every revision yields a quadratical number of comparisons,times the number of trans-
actions.

For the scope of this research project we have set some limitations to the approach. Cur-
rently, the analysis is limited to systems written in Java, and the extraction of the change his-
tory is restricted to Subversion (SVN)1 repositories. The reason that only Java systems can

1http://subversion.tigris.org/

9

3.2 Toolchain Structure and Implementation SIGAR: Association Rule Mining Implementation

be analysed is that Java uses conventions that imply that classes (except inner and anony-
mous classes) are all written in a separate file. VCS’s only version flat text files, and in the
case of Java, classes and files are practically mapped one-to-one. The file level relations
that are extracted using this approach are also valid on the class level.

The approach is restricted to SVN repositories because SVN actually tracks changes
to the repository by storing transactions. This means that the log data from SVN can be
easily transformed to the data format used in the tool. Concurrent Versions System (CVS)2

repositories can be converted to a SVN repository using a script3 so that systems that are
versioned in CVS can also be analysed by this approach. CVS and its successor SVN are
two of the most popular and widely used VCS’s.

3.2 Toolchain Structure and Implementation

In this section the different components, the data-flow and in- and output of the tool are
described. The tool has a number of design goals:

• Generation of association rules from the change history of software systems.

• Ability to analyse large systems with long histories.

• Ability to configure the tool to accept a range of different systems.

The tool itself is also written in Java. It consists of several separate modules that can
be chained together by a configuration file. The configurationof the modules and the chain
is based on the Spring Framework4 and the Chain of Responsibility and Command design
patterns [16]. In the configuration file the order of the modules can be specified, and settings
for each module can be configured, for example from which file to read the input data.

The shared data that is needed for the entire computation travels along the chain in a
contextobject. The initial configuration settings and paths of the input and output files are
stored in this object. The modules that compose the tool are described in the following
subsections. We discuss their workings, the design considerations and the encountered
implementation problems. An illustration of the data-flow and structure of the toolchain
can be found in figure 3.2

3.2.1 Change History Extraction

The input data for the entire association rule mining process is gathered by this module.
It operates on a SVN repository and extracts the log data for aproject in the repository. It
stores for each commit made to the repository the revision number, the author, the timestamp
and all the files that were added, modified or deleted in the commit. The change history is
stored in a XML format, of which an example can be found in figure 3.1. This format is
what the actual toolchain operates on.

2http://http://www.nongnu.org/cvs/
3http://cvs2svn.tigris.org/
4Spring Framework: http://www.springframework.org/

10

SIGAR: Association Rule Mining Implementation 3.2 Toolchain Structure and Implementation

1 <ProjectHistory >
2 ...
3 <commit revision="88">
4 <revision >
5 88
6 </revision >
7 <author >
8 arie
9 </author >

10 <date >
11 Mon Jul 18 21:04:19 CEST 2005
12 </date >
13 <message >
14 <![CDATA[moving the observer interface to the model.]]>
15 </message >
16 <M>
17 /trunk/src/java/pacman/model/Engine.java
18 </M>
19 <D>
20 /trunk/src/java/pacman/controller/PacmanObserver .java
21 </D>
22 <A>
23 /trunk/src/java/pacman/model/Observer.java
24
25 </commit >
26 ...
27 </ProjectHistory >

Figure 3.1: An excerpt of an extracted change history.

The figure shows an excerpt of an extracted change history, inthis case from the
JPacman project. Each commit element contains the revisionnumber, author,
timestamp and the files added (A), modified (M) or deleted (D) in the commit.

This module is a proverbial exception to the rule. The moduleis run separate from
the rest of the toolchain, because it needs to be executed on locations other than where
the analyses are performed. Examples are the VCS’s from industrial partners for the case
studies, whose repositories are not accessible from outside their offices. As stated in the
introduction of this chapter, only logs from SVN and CVS (through conversion) repositories
can be extracted.

3.2.2 Change History View Generation

This module builds a data file for the ChangeHistoryView visualisation from the change
history. The data underlying the visualisation is stored inan XML file containing all the
points in the plot and can be used to generate the ChangeHistoryView on-screen. The
generation of this data file is incorporated in the toolchainto speed up the computation. For
this work the computations are typically performed on a fastserver that has no monitor. The

11

3.2 Toolchain Structure and Implementation SIGAR: Association Rule Mining Implementation

Change History Analysis Frequent Itemset Mining Rules AnalysisRules Extraction

Context

Rule Metrics

Change History

Analysed

Change History Itemsets
Association

Rules

Toolchain Settings

General

Info

Code Entities

Chain 1 Chain 2

Figure 3.2: SIGAR toolchain structure.

The structure of the SIGAR toolchain. All input and intermediate data are
stored in a context object that travels along the chain. Chainable modules with
storage and retrieval of intermediate results allow for flexibility of the analysis
tool. Two typically used chains are illustrated in the figure. Chain 2 consists of
only analyses of the rules, but utilises the results (the list of code entities and the
mined rules) from chain 1. The calculation of new metrics canbe performed
without running the entire chain again, and thus skipping performance intensive
modules like change history analyses and frequent itemset mining.

actual rendering of the view is a quick operation, and can be performed independent from
the generation of the data at any time desired, and on slow workstations without annoying
waiting times.

3.2.3 Change History Analyses

The first step in the mining of association rules consists of apre-processing task, and the
extraction of general information from the change history.Simple queries are run against
the change history file, and extract global information likethe total number of distinct files
(distinguished between production and test code) and the number of revisions in the history.

The first part of the pre-processing consists of filtering theinput data of everything
but actual code and test files. The input data contains log information of all files in the
repository, like maven project files or configuration files. These are not of interest to the
mining of association rules, so they are left out of the process. Files are filtered on their

12

SIGAR: Association Rule Mining Implementation 3.2 Toolchain Structure and Implementation

extension (e.g. only.java files are kept in the history). Each code file encountered is
stored as acode entity. A code entity is a tuple consisting of an integer identifier,a filename
and a type.

The frequent itemset mining algorithm (described in the next module) expects its input
to be a sequence of transactions that contain only integer values. The original input consists
of transactions containing strings (see figure 3.1), so thisimplies that each file needs to be
assigned a unique numeric identifier. The analyser traverses the change history to swap each
code file in the history with its identifier, assigning a new identifier to files that it has not yet
encountered and storing the identifier/file pair as a code entity. The code entities are stored
in a bi-directional hashmap. This allows lookup of the code entities by both filename and
identifier, as both ways are required in the entire chain. Since a change history often contains
several thousands of unique files a hashmap provides good performance of insertion and
retrieval of code entities. Each transaction in the change history contains several files that
all need to be looked up in the list of encountered code entities, so the data structure must be
efficient to keep performance acceptable. Each code entity that is encountered in the change
history is also tagged as being a production code, test code or undefined. This tagging is
done by matching the filename (and path) to a regular expression that is configured in the
context object. Production and test code files often have their own place in the directory
structure of the system. This is often a path similar to/Project/src/java/... and
/Project/src/test/..., but in the case studies we encountered several exotic variations.
The regular expressions are used to describe the pattern that distinguishes different files.
Test code mostly follows a naming convention that includes the wordTest in the filenames.
This convention is utilised in the regular expression for tagging of test code. Files that are
not recognised as production or test code are tagged as undefined.

The analyser produces three results: (1) general information on the change history, (2) a
filtered change history containing only integer identifiersin the transactions, and (3) a col-
lection of tagged code entities. While finding frequent itemsets is the most essential module
of the entire association rule mining process, the change history analyses and building of
the code entities is the most costly part. Note that this is inrelation to the performance of
the frequent itemset mining module with the computational considerations described in that
module (see next module). Not pre-processing this data slows down the other modules sig-
nificantly. It generally cuts the running time of the entire chain in half. An illustration: for
a system containingn files, and each file is changed on averagem times, the total number
of lookups in the list of code entities isn×m. As larger systems contain thousands of files
during their lifetime, and the longer the change history is (more transactions), the number
of lookups can grow very large.

3.2.4 Frequent Itemset Mining

The frequent itemset mining module is responsible for the most essential part of the toolchain.
It finds all sets of items in a transactional database that occur at least a given number of
times. The number of times that an itemset appears in the database is called thesupport.
When the support of an itemset is at least equal to the given minimum support, the itemset
is said to be afrequent itemset. Support is described in more detail in section 4.1.

13

3.2 Toolchain Structure and Implementation SIGAR: Association Rule Mining Implementation

The frequent itemsets are mined using an implementation of the Apriori algorithm5 [2].
Apriori is one of the earliest algorithms for mining itemsets, and is still the major technique
used by commercial products to detect frequent itemsets [11].

Apriori attempts to find frequent itemsets by making severalpasses over the transactions
and counting the support of itemsets. In the first pass, all itemsets of size one are counted. In
each following pass the size the itemsets is increased by oneby joining the found itemsets.
Thus in passn, itemsets of sizen are counted. This approach generates many possible
itemsets. To limit the number of possibilities Apriori makes use of thefrequent itemset
property: “Any subset of a frequent itemset must be frequent” [11]. This principle states
that for any itemsetI found that is not frequent, there can be no larger itemset containing I
that is frequent. Apriori can thus discard any itemsets thatare not frequent, as these will not
generate frequent itemsets of a larger size.

The performance of the algorithm is dependent on the cardinality of the largest frequent
itemset. The number of database scans is one more than the cardinality of the largest fre-
quent itemset. This potentially large number of database scans is a weakness of the Apriori
approach [11]. We believe that in general the nature of change history data is sparse and
narrow (i.e., not often recurring items and a low number of items per transaction). How-
ever, analysis of the ChangeHistoryView for some systems reveals that there are often many
files changed at the same time. A recent study by Alali et al. [3] shows that the number
of items in a typical commit is small (under 5 files) for 75% of the commits, but that there
are very large extremes (up to thousands). Very large commits most often occur when the
code is automatically changed by using code checkers (e.g. Checkstyle or PMD) or features
from the IDE (e.g., ‘organise imports’ in Eclipse). When large commits occur a number of
times, the Apriori algorithm will find very large itemsets, and thus make many passes over
the database. The potential number of large itemsets is 2m− 1 [11], wherem is the size
of the largest transaction in the database. Simple tests show that even for a small project
(JPacman, discussed later in this chapter) the algorithm performs a large number of passes
over the change history, and the number of generated itemsets explodes exponentially. To
control the running time of Apriori, and the huge number of generated itemsets, we decided
to let the algorithm only generate itemsets of size 2. Because we are primarily interested
in association rules that link single production classes tosingle unit tests, we believe that
this is a defendable decision. It also greatly simplifies theremainder of the analyses as the
resulting association rules are easier to interpret.

The Apriori algorithm was chosen because it is a widely used algorithm with a proven
track record. We currently only perform a few passes over thedatabase, and the Apriori
algorithm is quite fast in the earlier passes [11]. With a reference implementation in Java
available, incorporation in the tool required little work.We do not believe that alternatives
to the Apriori algorithm yield significant performance gains for this particular setting, and
that an evaluation is not within the scope of this project.

5Credits for the implementation go to Bart Goethals and Michael Holler. Their implementations of Apriori
in C++ and Java were used as a reference.

14

SIGAR: Association Rule Mining Implementation 3.2 Toolchain Structure and Implementation

Rule Classification
{ProductionClass=> ProductionClass} Pure production rule
{ProductionClass=> TestClass} Production to test rule,

Production-test pair
{TestClass=> ProductionClass} Test to production rule,

Production-test pair
{TestClass=> TestClass} Pure test rule
Containing an Undefined class Undefined rule

Table 3.1: Classification of association rules.

Summary of classifications of association rules, based on the types of the code
entities that occur in a rule. Note that rules that associateproduction classes to
test classes and vice versa are assigned two classifications. These rule receive
both a general classification (Production-test pair), and adirectional classifica-
tion for when the direction of the association between the pair is important.

3.2.5 Association Rules Extraction

After frequent itemset are found, the generation of rules istrivial [11]. Each itemset of size
two or more can be mapped to two or more rules (itemset{A,B} produces rules{A =>

B,B => A}). For each found rule, rule specific metrics are calculated.These are described
in section 4.1.1. With the collection of code entities in hand, the rule extractor tags each
rule with a classification based on the type of the code entities that occur in the rule. The
different classifications of rules are described in table 3.1. The classifying of the rules is
required to give meaning to the measurements over multiple rules.

3.2.6 Association Rules Analyses

Now actual association rules are mined from the change history, measurements can be cal-
culated over them. Measurements can be applicable on all rules or only on rules of a certain
type. Each measurement is implemented as a visitor design pattern. The rules analyser
itself is a walker that traverses over all the rules, and letsthe visitors perform their calcu-
lation on each rule. The analyser can be configured with what visitors to traverse the rules
in a similar way as the entire toolchain is configured. New measurements can be added at
a later time by implementing a new visitor. Benefits of this implementation are flexibility
and performance, as all measurements are calculated in one pass over the rules (instead of
having each measurement take a traversal on its own). The measurements themselves are
discussed in the next section.

15

3.2 Toolchain Structure and Implementation SIGAR: Association Rule Mining Implementation

3.2.7 Reading and Writing Intermediate Results

In addition to the modules that perform computations on the input data, the toolchain pro-
vides functionality to write and read intermediate data to and from files. The intermediate
data includes the analysed change history, the labelled code entities, the mined itemsets
and the mined typed association rules. All this data can be stored, and be fed back into a
different chain. The use and order of the different modules,and the data flow are depicted
in figure 3.2. The input/output mechanism has two benefits: inspection of the intermediate
data, and the construction of short chains that rely on pre-calculated data.

16

Chapter 4

Association Rules Analysis

Now we explore and discuss measurements to understand the unit test suite of a software
system and the underlying testing process, based on the generated association rules (section
4.1). The discussed interpretations of the association rules are divided into two groups: met-
rics that are derived from multiple rules (rule based), and metrics that use rules to give data
on code entities (entity based). We illustrate the presented measurements with a running
example in section 4.2.

4.1 Association Rules Interpretation

An association rule is a statistical description of the co-occurrence of the elements that
constitute the rule in the change history. Agrawal [1] presents a formal description:

Definition 4.1 Given a set of items I= I1, I2, ..., Im and a database of transactions D =
t1, t2, ..., tn where ti = Ii1, Ii2, ..., Iik and Ijk ∈ I, an association rule is an implication of the
form A⇒ B where A,B⊂ I are sets of items calleditemsetsand A∩B= /0.

For an association rule, the left-hand side of the implication is called theantecedent, and
the right-hand side is called theconsequentof the rule. An association rule expresses that
the occurrence of A in a transaction statistically implies the presence of B in the same trans-
action with some probability. It is important to note that association rules are not causal,
but spurious, e.g., the co-occurrence of X and Y is caused by one (or a chain of) unknown
external event(s). An association rule only describes thatthere is a relation between the
two items, but there is no proven cause-effect relation. Applying the definition to a version
control log, the database of transactionsD is the change history (containingn transactions),
and the itemsets are sets of production or test classes. As described in chapter 3, we only
consider itemsets of size 2.

In many applications where association rules are used, the search is for rules that are
interesting or surprising (i.e., for marketing purposes one seeks for striking combinations of
items or interesting correlations between products), In this case we seek to find a global view
of the entire change history. We are not primarily interested in specific production/test code
class pairs that follow from the rules, but more in the total number of rules that associate

17

4.1 Association Rules Interpretation Association Rules Analysis

production and test code and how strong the statistical certainty of these rules is. We seek
to express the global co-evolution of production and test code classes, and not specific
pairs. The interpretation of the rules we seek is thus different than in most applications of
association rules.

We explore measurements in two directions, which follow from the direction of the
research questions:

Test suite quality: Metrics that describe the quality of the test suite. Question to be an-
swered are if the test suite is up to date with the production code, and if it consists of
actual unit tests or mainly high level integration tests.

Test effort indication: Metrics that provide understanding of the testing process.These
metrics should give evidence of intentional synchronous co-evolution, or a different
testing strategy (or the lack thereof).

This section explores the different measurements that can be performed on the mined
association rules, and how these can be interpreted to answer the different research questions
we have put forward. While we advance through the remainder of the chapter, we present
lemmas and hypothesises and raise questions on the metrics to build understanding of how
to interpret the metrics.

4.1.1 Individual Rule Metrics

First we introduce metrics that describe one single association rule. These metrics help us to
determine the significance and strength of the statistical model that a rule represents. They
give argument and weight to the metrics that are described inthe next sections. A summary
of the metrics can be found in table 4.1.

Support

The support for a rule{A⇒B} is the absolute number of times that the itemsetA,B appears
in a transaction in the change history. This metric expresses the statistical significance of a
rule, or why someone should care about a rule. The more times the items in a rule appear
together in the change history, the stronger the statistical basis of the rule is. The support
of an itemset (and thus of a rule that is derived from an itemset) is counted by the frequent
itemset mining algorithm. An itemset is frequent when its support is equal or larger than
the configured minimum support.

While support is counted as an integer value, it can also be expressed as a percentage,
by dividing the absolute number byn (the number of transactions in the change history).
For example, when the support of an itemset is 10%, the combination of items occurs in
10% of the change history. This is often more intuitive to understand for an analyst. Here,
we call this relative support of the frequency of an itemset.The frequency has the property
that it is an approximation of the statistical probability of the occurrence of the itemset in
the change history (P(A,B)). An example: when an itemset{A,B} has a support of 2 in 10
transactions, the probability of A and B occurring togetherin a transactionP(A,B) is 0,2,
or 20%. The relative support is a normalisation to the lengthof the change history.

18

Association Rules Analysis 4.1 Association Rules Interpretation

Support is often used in conjunction with one of the metrics defined below, where sup-
port shows the relevance of the rule, and the other metric shows the ‘interestingness’ of
the rule. In a typical analysis of association rules, one looks for specific rules with high
support. As mentioned before, our intent is different in that we seek for a global view of
the change history. For this purpose we require as many associations between classes in the
change history, and can later determine whether they contribute interesting information to
the analysis, while with a high minimum support these rule would not be generated. This
situation is called therare item problem: classes that occur very infrequently in the change
history are pruned although they would still produce interesting and potentially valuable
rules. The rare item problem is important for transaction data which usually have a very
uneven distribution of support for the individual items (few items are used all the time and
most item are rarely used) [25]. The rare item problem can be circumvented by mining with
a very low minimum support, but can cause an explosion of the number of found itemsets.

The SIGAR tool is typically configured to mine rules with a minimum support of 2,
thus a combination of classes must occur at least twice in theentire history. This is a low
number, but we need as much data on the change history as possible, and we expect that
there is a significant number of classes that is not changed that often (possibly two to five
times) in the history. We will need to verify this second assumption using case study data.

Confidence

The confidence for a rule{A ⇒ B} is the ratio of the number of transactions that contain
A∪B to the number of transactions that containA. Confidence expresses the conditional
probability P(B|A). Confidence is also called thestrengthof a rule, and is, together with
support, the most common measurement for association rules. Since confidence expresses
a probability, it takes on values between 0 and 1.

The most common way to express an association rule is by looking at both support
and confidence. This is called the suppport-confidence framework. The combination of
relevance and strength of the rule is often enough to derive the desired information, and the
metrics are easy to grasp.

But a problem with confidence is that it does not take into account possible negative
correlations between the items [11]. A rule with a confidenceof 0.8 might seem interesting,
but thea priori probability of B might be 0.9. The occurrence ofA thus actually lowers
the probability ofB. Confidence has no ability to express this situation. Also, according to
Brin, confidence assigns high values to rules simply becausethe consequent is popular [9].

The rule mining algorithm that derives rules from found frequent itemsets takes a min-
imum confidence value as a parameter. Minimum confidence is used, like the minimum
support for the itemset mining, to limit the number of rules that is found, and to set a a
lower bound for the ‘interestingness’ of the derived rules.Because of the exploratory nature
of this work, we set the minimum confidence to zero. This causes all rules to be generated.
In this way we can learn whether rules with low confidence contribute to increased under-
standing of the change history, and we can always cut the generated rules at a minimum
confidence boundary at a later time.

19

4.1 Association Rules Interpretation Association Rules Analysis

Lift

The lift (originally called interest) for a rule{A ⇒ B} is a measure of the relationship
betweenA andB using correlation. Its calculation is derived from the calculation of the
correlation between two probabilities [11], and is essentially a measure of departure from
independence [9], based on co-occurrence of the antecedentand consequent. Lift measures
how many times more often (hencelift) the antecedent and the consequent occur together
than expected if they where statistically independent.

Lift assigns one to associations where the items are completely independent. Associa-
tions that get found by the algorithm have a real value largeror equal to one as the items are
more correlated. Negative correlations are between 0 and 1,positive correlations are larger
than 1. This measurement is symmetric, which means that the interest ofA⇒ B is equal to
B⇒ A.

When we relate this to our context, this means that when a pairof entities has a large lift
value, the entities in question appear to be correlated. Correlated entities are more likely to
be changed because of changes in its correlated counterpartthan not correlated entities. Low
lift values imply that the entities are close to being independent, thus that co-occurrences of
the entities are more likely to be coincidence.

Lift does not suffer from the rare item problem, but is susceptible to noise in small
databases [9]. This could cause the lift metric not to be verysuitable to smaller change
histories.

Conviction

The conviction for a rule{A ⇒ B} is a measure of the implication that the rule expresses.
Lift only measures the correlation between items, but conviction also measures the implica-
tion of the items. It is based on the statistical notion of correlation and logical implication
[9]. The benefit that conviction has over lift in measuring correlation between items, is that
conviction is not symmetrical, and thus truly measures the implication of an association
rule.

The conviction of two items is a real value between 1 and infinity. Totally independent
items will have a conviction of 1, and rules that always hold have infinite conviction. Similar
to confidence, conviction always assigns the same value to rules that holds 100% of the time.
Unlike confidence, conviction factors in bothP(A) andP(B). When two items are likely
to occur in a transaction, but are completely unrelated to each other, confidence will assign
a high value. Conviction, on the other hand, assigns a lower value because the items are
likely to occur by themselves. Co-change of the items is thenvery likely, but not because
they are related.

The potential benefit of conviction over confidence and lift is that it measures the di-
rection of the association. This means that we potentially can measure whether there is a
difference between the probability of classes being changed because of testing, or tests be-
ing changed because of coding.

Strength typically means the confidence of a rule, but from now on we use it as a general
expression to indicate the probability of a rule (i.e., confidence, lift or conviction). In this

20

Association Rules Analysis 4.1 Association Rules Interpretation

Metric Probability Interpretation Implementation

support(A⇒ B) P(A,B)n Statistical significance Counted by Apriori
f requency(A ⇒ B) P(A,B) Statistical significance Normalised support

con f idence(A ⇒ B) P(B|A) Conditional probability s(A,B)
s(A)

interest(A⇒ B) P(A,B)
P(A)P(B) Correlation between items s(A,B)n

s(A)s(B)

conviction(A ⇒ B) P(A)P(¬B)
P(A,¬B) Logical implication

s(A)n− s(A)s(B)
n

s(A)−s(A,B)

Table 4.1: Individual association rule metrics.

Summary of individual association rule metrics. Heren is the total number of
transactions, ands(A) is shorthand notation forsupport(A).

discussion we encountered the first pieces of the exploration-puzzle, which we formulate in
the following lemmas.

Lemma 4.1 The support of an association rule is equal to the logical coupling between
two code entities, and determines the statistical relevance of the association rule.

Lemma 4.2 The confidence, lift and conviction of an association rule each give a proba-
bilistic describtion of the occurrences of the entities in arule. Larger values of these metrics
correspond to stronger rules.

4.1.2 Rule Classification Based Metrics

An individual rule does not provide much information on the logical coupling in a system,
but only on one single pair of classes. To be able to analyse logical coupling on a larger
scale, the rules have to be aggregated. We define metrics based on the aggregated rules
through the reasoning that follows.

Logical coupling between entities

The support of a single rule is the number of time the entitiesin the rule co-change (or
the amount of logical coupling, by lemma 4.1). The strength of the rule is expressed as a
probability by a second metric (see previous section). Logical coupling is a measurement
for the co-change of entities. In terms of change history data, co-change implies co-usage of
the entities that appear in the rule: they are changed together because an addition or change
in the code intersects both entities. The reason why the change intersects both entities is
not known from the rule, but the types of the entities can indicate how the co-change can
be interpreted. A programmer may change two production classes in the same commit,
because he changes the way the classes interact. A production and a test class may be
changed together because newly added functionality is tested by the test class.

21

4.1 Association Rules Interpretation Association Rules Analysis

Lemma 4.3 Logical coupling expresses co-change of classes. Co-changing classes imply
that the classes are used together by a programmer. With lemma 4.1, an association rule
implies co-usage between the items in the rule.

When rules are grouped together, the group describes the logical coupling among the
entities within that group. The interpretation of logical coupling among entities of different
types is described as follows:

Logical coupling between production classes:This describes logical coupling in the tra-
ditional sense [10, 15, 14, 34]. In good OOP practice (abstraction, separation of
concerns), changes to classes should be local, and not cross-cutting between classes.
This implies that two classes should not be changed togetheroften. Strong logi-
cal couplings between production classes is considered to be harmful, as it points to
dependencies between classes that should not be there. Manylogical couplings of
average strength between many classes is probably the result of pure production code
programming effort, as many production classes are committed together.

Logical coupling between test classes:This is the test class equivalent of logical coupling
among production classes. Unit tests should only test one production class, so mod-
erate to high logical couplings between test classes makes little sense. Again, many
logical couplings between many test classes could be the result from pure testing
effort by the programmers.

Logical coupling between production and test classes:This describes the logical coupling
between production and test classes. In contrast to logicalcoupling between only
production classes or only test classes, logical coupling between a production and a
related test class are considered to be positive. The notionthat production and test
classes should change together is the driving assumption ofthis research.

Logical coupling between undefined classes:Classes that cannot be resolved as a pro-
duction or test class can appear in the extracted rules. These logical couplings cannot
be directly related to programmer effort, as information onthe nature of the classes
is unknown.

The different types of logical coupling are illustrated in figure 4.1. We summarise this in
the following lemma:

Lemma 4.4 Co-usage between the same or different types of entities is an indication of the
distribution of programmer effort.

Classification of rules

The classification of the rules is used to group the rules and to relate them to a type of
logical coupling. The classifications of rules, as listed intable 3.1, allows us to separate the
total collection of rules in several groups. Some groups canbe divided into subgroups that
are increasingly more specific on the rules that belong to thegroup. Each group can explain
different types of logical coupling in a system, and reveal specific information.

22

Association Rules Analysis 4.1 Association Rules Interpretation

Lemma 4.5 Multiple association rules of some classification (a rule class) describe the
logical coupling between entities of the types that determine the classification.

The main thought behind the grouping of association rules based on their classification
is that the composition of the total number of rules indicates what type of logical couplings
contribute to the couplings in the entire system, and through lemma 4.4 how programmer
effort is composed.

The different rule classification groups, and the interpretation of their ratios and strengths
are described in the following overview. The interpretations are hypothetical, and the case
studies must show their validity.

All association rules (ALL): The collection of all found association rules.

This group can be used as a reference for other groups. The strength of this group
can be a combination of the strengths of the subgroups, but its strength can also be
dominated by a single classification.

Pure production rules (PROD): Rules that associate only production classes.

PROD rules will be generated when production classes are often changed together.
The ratio of PROD can indicate how much effort is put into changing production
code. When there is no (structural) testing performed, transactions will have few
test classes in them, and the ratio of PROD will dominate ALL.With phased testing,
PROD will also be the dominant group, but TEST could be more present, and have a
relative high strength, as the co-use among test classes is expected to be high in the
testing phases.

Pure test rules (TEST): Rules that associate only test classes.

Analogous to PROD, TEST rules can indicate test writing effort. The higher the ratio
for TEST is, the more dedicated test writing effort can be expected to have occurred
in the history of the system. Comparison of the ratios and strengths of PROD and
TEST could reveal how much pure testing is performed relatedto pure coding.

Production-test pairs (P&T): All rules that associate both a production class and a test
class. This group describes logical coupling between production and test classes.
Within this group we distinguish four subgroups:

The ratio of P&T to ALL, and compared to PROD and TEST tells whether production
and test code is often changed together, or that production and test code is more often
written in separate stints.

Production to test rules (P2T): Rules that have a production class as antecedent
and a test class as consequent. These rules express that a change in produc-
tion code implies a change in test code with some probability.

Test to production rules (T2P): Rules that have a test class as antecedent and a pro-
duction class as consequent. These rules express that a change in test code

23

4.1 Association Rules Interpretation Association Rules Analysis

implies a change in production code with some probability. These rules are
symmetric to P2T rules, and the union of P2T and T2P equals P&T.

The union of P2T and T2P yields P&T, and both are always symmetric to each
other. For each rule{A ⇒ B} in P2T, its inverse{B ⇒ A} is in T2P. P2T and
T2P rules provide a more detailed view of P&T, as the direction of the associa-
tion can come into play. For example, when the strength T2P ismuch stronger
than P2T, there are more transactions that contain only production code or both
production and test code, than there are transactions that only contain test code.

Matching production to test rules (mP2T): P2T rules where the antecedent and con-
sequent can be matched to belong together as unit test and class-under-test on
naming conventions (e.g.,{Class. java⇒ClassTest. java}, or vice versa).

Matching test to production rules (mT2P): The symmetric counterpart of mP2T.

mP2T and mT2P are subsets of P2T and T2P respectively. These groups are
even more specialised than P2T and T2P, as they give weight toactual classes
and their tests that, ideally, should co-evolve.

Undefined rules (UNDEF): Rules that cannot be resolved to a classification.

UNDEF rules are most likely the result of entities that cannot be recognised during
change history analysis. This could mean , for example, thatfiles are placed at strange
locations in the systems file hierarchy, or that the regular expressions used for match-
ing files is not complete. If the cause of the non-identification of the entities is known,
UNDEF rules can be of value. Otherwise, there should be as as few UNDEF rules as
possible.

Using lemmas 4.4 and 4.5, we state the following theorem:

Theorem 4.1 The ratios between different rule classes, and the distribution of strengths of
each rule class related to other rule classes is a measure forthe distribution of programmer
effort among different types of code classes.

We will now describe the strenght measures for classes of association rules in more
detail.

Statistical analyses of rule classes

All individual rules are derived from the change history with a statistical certainty, expressed
by the different metrics described in section 4.1.1. By aggregating the metrics for all rules
and for the different classifications, we can build understanding of how, and how strong, the
different rules contribute to the complete picture.

For each class of association rules, the distribution of thevalues of the different metrics
over the rules can show us how strong the statistical model ofthe rules is. For example,
when the majority (say 60%) of all rules has support lower then 3 or 4, the statistical rele-
vance of the complete picture is not very strong. On the otherhand, when the confidence of
the production-test pairs is generally more towards 1.0 than for the pure production rules,

24

Association Rules Analysis 4.1 Association Rules Interpretation

the evidence for co-change among production and test classes is stronger than among pro-
duction classes only.

We compute the following statistics for each metric for eachclass, which are the basics
of standard descriptive statistics:

• Minimum

• Maximum

• (Arithmetic) Mean

• Standard deviation

• Variance

• Skewness

• Kurtosis

Together these values describe the distribution of the individual metrics of the rules.
This distribution can be visualised by using histograms or boxplots. The minimum and
maximum define the range of the values, the mean designates the central tendency of the
distribution. The more the mean is toward the maximum for thesupport distribution, the
more relevant the rules are for that class, and its ratio is ofmore importance. The standard
deviation (and variance, which is the squared standard deviation) quantifies the spread of
the values around the mean.

Skewness is a measure of the asymmetry of the distribution, e.g., whether more weight
of the distribution is to the right (negative skewness) or tothe left (positive skewness). A
symmetrical distribution (like the normal distribution) has a skewness of zero.

Kurtosis is a measure of the ‘peakedness’ of the distribution. Higher kurtosis means
more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly-
sized deviations. The normal distribution has a kurtosis ofzero.

4.1.3 Entity Based Metrics

With rule based metrics, we look at the logical coupling in a system from a high level view.
A test suite consists of many individual tests, which shouldstand on their own when it con-
cerns unit tests. Integration test have a more cross-cutting nature. To get more information
on the amount of effort that is put into maintaining the test suite, we have to step down to
the entity level. Here we discuss several measurements thatare centered around the entities
that occur in the change history.

Test code classification

Given the classification of rules, we can classify the classes that appear in rules, based on in
how many rules the class appears as antecedent. That number of rules is equal to the distinct
number of other classes a class is associated with. These classifications are described in

25

4.1 Association Rules Interpretation Association Rules Analysis

Figure 4.1: Measurement of logical coupling based on association rules.

Interpretation of association rules to understand logicalcoupling. Rules that
connect production or test classes within their own set (dotted lines) measure
the logical coupling among classes within that set (pure production or pure
test rule classification). Solid lines represent association rules that associate
production and test classes (Production-test pair classification). These rule give
measure to the co-evolution between the two types of classes. The number of
rules that associate a specific class to other classes definesits classification. For
example,B is a pure unit test of classA, and so isG of F. E is an integration
test of classesC andD. Production classH is associated to several test classes,
and becomes classified as a multiple tested class.

table 4.2. Using this classification, we can potentially seewhat tests are actually used as a
unit test or as an integration test.

Rule coverage of classes

Where the quality of a test suite is typically expressed by measuring structural code cov-
erage, we explore an analogous way to logically express the number of classes that are

26

Association Rules Analysis 4.2 Evaluation: JPacman Test-Case

Rule type Cardinality Classification
{TestClass=> ProductionClass} (1 : 1) Unit test

(1 : n) Integration test
(1 : 0) Orphan test

{ProductionClass=> TestClass} (1 : 0) Untested class
(1 : 1) Unit tested class
(1 : n) Multiple tested class

{ProductionClass=> ProductionClass} (1 : n),n≥ 1 Logically coupled class
{TestClass=> TestClass} (1 : n),n≥ 1 Logically coupled test

Table 4.2: Classification of production and test classes.

Classification of classes, based on the number of rules of a certain type for each
specific class. Cardinalities of a class are always of the form (1 : x), meaning
that the antecedent of the rule is associated withx different tests or classes
(consequents) byx association rules. Undefined rules are not applicable.

associated with test classes, and vice versa.
We define the following logical coverage metrics:

Production class mapping ratio: The ratio of production classes that are associated with
one or more test classes by a rule. This number is calculated by |P2T|

#productionclasses.

Production class matching coverage:The percentage of production classes that gets as-
sociated to a test matching on naming conventions. This number is calculated by

|mP2T|
#productionclasses. This is the percentage of production classes that potentially syn-
chronously co-evolve with their unit test, based on the co-usage of the class and its
unit test.

Test class mapping ratio: The ratio of test classes that are associated with one or more
production classes by a rule. This number is calculated by|T2P|

#testclasses.

Test class matching coverage:The percentage of test classes that gets associated to a pro-
duction class matching on naming conventions. This is completely analogous ex-
pressed by |mT2P|

#testclasses. This is interpreted as the percentage of tests that are potentially
synchronously co-evolving with its class-under-test, based on the co-usage of the
class and its unit test.

4.2 Evaluation: JPacman Test-Case

We use the educational game JPacman as a ‘guinea pig’ to illustrate and evaluate the
technique and metrics presented in this chapter. We generate a ChangeHistoryView of

27

4.2 Evaluation: JPacman Test-Case Association Rules Analysis

the change history, and walk through the different measurement, comparing the observa-
tions with the knowledge we have of JPacman (log messages) and the interpretation of the
ChangeHistoryView.

JPacman is a small game, written for educational purposes bya single developer. It was
developed using a test-driven development model. The SIGARtool is run on the change
history of JPacman. The tool extracts the following information: in the history of develop-
ment, 46 classes where found in 246 revisions. Of the total number of classes, 25 where
classified as a production class, 20 as a test class, and one class could not be defined. This
is an almost one-to-one ratio, and supports the observationfrom the ChangeHistoryView
(figure 4.2) that most classes have an associated unit test. Closer inspection of the list of en-
tities reveals that the unidentified file was a completely separated file calledAap.java, that
was added for no apparent reason. The tool extracted a total of 1334 association rules from
the change history. The rules where mined with a minimum support of 2, and a minimum
confidence of 0,0.

4.2.1 Test Process Understanding

In table 4.3 the ratios for the rules different are listed. The first thing we notice is that almost
half of the rules associate a production to a test class. Compared to the ratios of pure produc-
tion rules (36,88%) and pure test rules (15,74%) this is a large share of the total number of
rules. This is the first indication that production and test code are developed simultaneously
and not in distinct phases, as can also be observed in the ChangeHistoryView.

When looking at the statistics for the different types of rules, listed in table 4.4, we can
observe the distributions the four basic metrics for the different rule classifications. This
overwhelming amount of numbers can be conveniently composed into boxplots and his-
tograms. The boxplots for support and confidence for all ruleclasses are depicted in figure
4.3. The histograms in figures 4.4 (support) and 4.5 (confidence) provide an alternative
view on the distributions. For the sake of this test-case, only the plots for support and con-
fidence are considered. For the case studies in the followingchapter we will only discuss
the boxplots, as they provide enough information, but the other data is included here as an
example.

We can make some quick observations from the data of JPacman:

• In addition to the ratios in table 4.3, we computed the ratiosfor matching rules. From
the third row of data we can compute that 3,48% (twice 1,74%) of the P&T rules
actually match on naming conventions.

• The means of all metrics for mP2T and mT2P are higher than for P2T and T2P. This
confirms that classes and tests that belong together are morelikely to change together,
and actually have changed more often together (support) than other pairs of classes
and tests. This could mean that co-change between seeminglyunrelated classes and
tests is coincidental, and not structural, as it most likelyis for matching pairs.

• The interest (correlation measure) in table 4.4 has minimumvalues that are below
1, which means that some rules are negatively correlated. This only occurs in P&T

28

Association Rules Analysis 4.2 Evaluation: JPacman Test-Case

Figure 4.2: ChangeHistoryView of JPacman.

In the ChangeHistoryView we can see that the initial commit contains a large
number of classes. From the log messages, we can see that the project existed
before it was put under version control in this repository. No real development
on the project begins until about revision 20. From that point on we can ob-
serve coinciding production and test classes among more individual changes to
classes and tests. This observation matches the test-driven development model
of the author. There are some tests that get changed often in the history, and in-
spection of the log data suggests that these are mostly high-level, organisational
tests (TestAll.java) (note that in the view, these tests are mistakenly shown
as production classes). Commits that touch many files together are typically
the result of automated, and mostly cosmetic, changes to thecode base.

rules, but not in the matching variants, so we can see that thenegatively correlated
entities are production and test classes that most likely donot belong together.

• The support of PROD rules is somewhat spread out, but has generally higher values
than TEST rules. Thus logical coupling (and co-usage) amongproduction classes is
higher than among test classes. Thus there is more dedicatedcode writing effort than
pure testing effort

• Support for P&T, P2T and T2P rules hit rock-bottom. Only a fewoutliers have a
support over 2. The interesting observation here is that practically all the outliers are

29

4.2 Evaluation: JPacman Test-Case Association Rules Analysis

Type N Percentage
ALL 1334 100%
P&T 632 47,38%
P2T 316 23,69%
T2P 316 23,69%
mP2T 11 0,83%
mT2P 11 0,83%

PROD 492 36,88%
TEST 210 15,74%
UNDEF 0 0%

Production classes 25 54,35%
Test classes 20 43,38%
Undefined classes 1 2,17%

Table 4.3: Rule ratios for JPacman.

matching rules. Thus the production and test code that we expect to occur together
actually does occur more often than not trivial combinations. This is evidence of
intentional co-evolution among production and test classes.

• The observation of high support for matching rules is also visible in the confidence
distributions. The weight of the matching rules is significantly higher than for other
P&T rules. PROD rules span the entire spectrum. There are no matching rules that
occur always together (confidence of 1.0), but some P&T rulesdo. So there could be
some integration tests that get changed every time the classunder test is changed.

• The observation that both support and confidence are higher for matching rules than
for P&T rules, add more weight to the distribution of the confidence of mP&T rules.
The matching combinations generally occur more often, so the co-change more struc-
tural in nature.

• Support and confidence are generally higher for TEST rules than for P&T (and sub-
classes) rules. This indicates that, beside the intentional co-change among matching
rules, there is more dedicated test writing effort than continuous ‘random’ testing of
not directly related production and test classes.

• The scale of the histograms makes the bars for matching rulesnearly invisible. The
boxplots provide a clearer view on the distributions. The histograms however are
better for spotting interesting peaks and outliers.

4.2.2 Test Suite Quality

Figure 4.6 shows the number of P2T or T2P association rules inwhich a production or a
test class occurs as antecedent. We can see that the majorityof entities is associated often

30

Association Rules Analysis 4.2 Evaluation: JPacman Test-Case

2 4 6 8 10

Support

mP2T

mPT

mT2P

P2T

PROD

PT

T2P

TEST

Total

R
u

le
 c

la
ss

es

ΑΑΑΑ ΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑ ΑΑ

ΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑΑ ΑΑΑ Α

ΑΑ

ΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣ Σ ΣΣΣΣΣ ΣΣΣΣ ΣΣΣΣΣΣΣ ΣΣΣΣ ΣΣΣ ΣΣΣ

Σ ΣΣΣ

ΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣ Σ ΣΣΣΣΣ ΣΣΣΣ ΣΣΣΣΣΣΣ ΣΣΣΣ ΣΣΣ ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣΣΣΣΣΣ ΣΣ ΣΣΣΣ ΣΣΣΣΣΣ ΣΣ ΣΣΣ ΣΣΣ ΣΣΣΣΣ ΣΣΣ Σ ΣΣΣΣΣΣΣ Σ ΣΣ

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ ΣΣΣΣΣΣΣΣΣΣΣΣΣΣ ΣΣ ΣΣΣΣ ΣΣΣΣΣΣ ΣΣ ΣΣΣ ΣΣΣ ΣΣΣΣΣ ΣΣΣ Σ ΣΣΣΣΣΣΣ Σ ΣΣ

ΣΣ

Supports for rule classes

0,20 0,40 0,60 0,80 1,00

Confidence

mP2T

mPT

mT2P

P2T

PROD

PT

T2P

TEST

Total

R
u

le
 c

la
ss

es

Α

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

ΑΑ

ΑΑ

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

ΑΑ

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

ΣΣΣΣΣΣΣΣΣΣΣ

Confidences for rule classes

Figure 4.3: Boxplots of support and confidence for JPacman.

(15 to 23 times), while some classes are never encountered asantecedent in a P&T rule.
Based on the presented classification of code entities (table 4.2), most of the tests would be
classified as integration or orphan tests. Based on the number of mT2P rules (11 rules), we
know that we should encounter at least eleven true unit tests. So for the JPacman test-case
this analysis is not providing insightful results.

The scatterplot in figure 4.6 shows the number of times each production or test class
occurs in a P2T or T2P rule respectively. We can see that test classes are more often associ-
ated to a production class than vice versa. Since there are more production classes than test
classes, this is plausible. But it means that most classes are associated with almost every
other class. We can see that the majority of entities is associated often (15 to 23 times),
while some classes are never encountered as antecedent in a P&T rule. Production classes
are associated with 14 to 16 tests, on a total of 20 test classes. The other way around, tests
get associated with about all but three production classes.Based on the number of mT2P
rules (11 rules), we know that we should encounter at least eleven true unit tests. The conse-
quence of this is that the data of the JPacman test-case is notapplicable to the classification
scheme of table 4.2.

Based on the observation that 11 tests are used as true unit tests, the other 9 tests are
potentially integration tests. This could explain why the collective strengths of TEST rules
are higher than P&T rules. Integration testing could be moreof a ‘separated’ activity than
true unit testing, which appear to be a continuous effort.

We compute the different rule coverage measures for classes. The production class
mapping coverage is316

25 = 12,64. On average, each production class is associated with
about 12 test classes.

The production class matching coverage is11
25 = 0,44, which indicates that based on

the usage of tests, only eleven classes can be seen as a (possibly) co-evolving unit test and

31

4.2 Evaluation: JPacman Test-Case Association Rules Analysis

0

200

400

600

C
o

u
n

t

mP2T mPT mT2P

P2T PROD PT

T2P TEST Total

0

200

400

600

C
o

u
n

t

4 6 8 10

Support

0

200

400

600

C
o

u
n

t

4 6 8 10

Support

4 6 8 10

Support

Support distributions of rule classes

Figure 4.4: Histograms of support for JPacman.

32

Association Rules Analysis 4.2 Evaluation: JPacman Test-Case

25

50

75

100

125

C
o

u
n

t

mP2T mPT mT2P

P2T PROD PT

T2P TEST Total

25

50

75

100

125

C
o

u
n

t

0,20 0,40 0,60 0,80 1,00

Confidence

25

50

75

100

125

C
o

u
n

t

0,20 0,40 0,60 0,80 1,00

Confidence

0,20 0,40 0,60 0,80 1,00

Confidence

Confidence distributions of rule classes

Figure 4.5: Histograms of confidence for JPacman.

33

4.2 Evaluation: JPacman Test-Case Association Rules Analysis

All P&T P2T T2P mP2T mT2P PROD TEST UNDEF
% to total 100 47,38 23,69 23,69 0,83 0,83 36,88 15,74 0
% to P&T 1,74 1,74
Support
min 2 2 2 2 2 2 2 2 NaN
max 11 6 6 6 5 5 11 6 NaN
mean 2,86 2,34 2,34 2,34 3,73 3,73 3,55 2,82 NaN
std dev 1,11 0,72 0,72 0,72 1,19 1,19 1,19 1,06 NaN
variance 1,24 0,52 0,52 0,52 1,42 1,42 1,40 1,12 NaN
skewness 1,64 2,38 2,39 2,39 -0,23 -0,23 1,52 1,15 NaN
kurtosis 4,80 5,58 5,64 5,64 -1,51 -1,51 6,21 0,38 NaN
Confidence
min 0,09 0,09 0,09 0,11 0,15 0,17 0,09 0,11 NaN
max 1,00 1,00 1,00 0,67 0,50 0,67 1,00 1,00 NaN
mean 0,36 0,29 0,30 0,28 0,30 0,46 0,45 0,33 NaN
std dev 0,23 0,19 0,19 0,18 0,10 0,18 0,24 0,23 NaN
variance 0,05 0,03 0,04 0,03 0,01 0,03 0,06 0,05 NaN
skewness 1,23 1,71 2,15 1,25 0,87 -0,33 0,78 1,51 NaN
kurtosis 0,95 3,23 5,70 0,23 0,50 -0,98 -0,17 1,68 NaN
Lift
min 0,73 0,73 0,73 0,73 2,11 2,11 1,55 1,13 NaN
max 50,67 50,67 50,67 50,67 12,67 12,67 38,00 50,67 NaN
mean 6,73 5,52 5,52 5,52 6,16 6,16 8,68 5,81 NaN
std dev 6,23 5,85 5,86 5,86 4,11 4,11 6,31 6,01 NaN
variance 38,76 34,27 34,33 34,33 16,90 16,90 39,76 36,11 NaN
skewness 2,88 3,90 3,91 3,91 0,81 0,81 1,72 4,55 NaN
kurtosis 12,73 22,60 22,79 22,79 -1,10 -1,10 3,31 29,19 NaN
Conviction
min 0,95 0,95 0,97 0,95 1,16 1,11 1,08 1,01 NaN
max 5,80 2,96 2,27 2,96 1,92 2,84 5,80 2,92 NaN
mean 1,55 1,37 1,30 1,43 1,36 1,86 1,86 1,44 NaN
std dev 0,72 0,45 0,24 0,58 0,24 0,66 0,95 0,52 NaN
variance 0,52 0,21 0,06 0,34 0,06 0,44 0,91 0,27 NaN
skewness 2,81 2,33 1,14 1,79 1,61 0,62 2,18 1,88 NaN
kurtosis 9,55 4,74 1,34 1,59 2,10 -1,17 4,64 2,23 NaN
infinite 60 14 14 0 0 0 35 11 0

Table 4.4: Summary of rule distributions of metrics for JPacman.

34

Association Rules Analysis 4.2 Evaluation: JPacman Test-Case

Α ProductionClass
Α TestClass
Α Undefined

type

0,0 10,0 20,0 30,0 40,0

id

0,0

5,0

10,0

15,0

20,0

as
so

ci
at

io
n

s

Α Α

Α Α

Α
Α

Α Α
Α

ΑΑ Α
Α

ΑΑΑΑ Α

Α

ΑΑ Α Α

Α

Α

Α
Α Α Α Α

Α

ΑΑ ΑΑ

Α

ΑΑ

Α

Α

Α

Α
Α

Α ΑΑ

Figure 4.6: Class and tests occurrences for JPacman.

these test 44% of the production classes. When we look at the data for mP2T, the means
are not particularly strong, especially compared to mT2P. The test class matching coverage
is 11

20 = 0,55. We could say that 44% of the system is unit tested by 55% of the test classes,
based on the co-usage of the classes.

35

Chapter 5

Case Studies

In the previous chapter we proposed several measurements based on association rules. Us-
ing a number of case studies on systems with different characteristics, we attempt to explore
and interpret the applicability and usefulness of the different measurements. We use the pro-
posed measurements to answer the research questions posed in the first chapter for the case
studies. Using the insight into the history of the case studies that the measurements provide,
the applicability and usefulness of the metrics can be evaluated.

We discuss the following different categories of questionswith the case studies data:

Analysing the development and testing effort:Can we find evidence of intentional co-
evolution of production and test code, or a phased testing approach? How is the
coding effort of programmers distributed over writing production code and testing?

Test suite evaluation: Are tests found in the system used as a unit or a high-level integra-
tion test? Are tests up-to-date with respect to changes in the production classes?

Basic rule metrics interpretation: How should we interpret and value the meaning of the
individual association rule metrics support, confidence, lift and conviction?

We have data on the case studies from a number of sources, and each source serves its
own purpose.

System characteristics: Basic information of the structure of the system, like the number
of production classes, tests and revisions. This information defines the system.

ChangeHistoryView: The ChangeHistoryView of a case is used to get a high level view
of the system. The view is also used to select systems for the case studies.

Log data: The commit messages of the change history can provide information on why
things happened in the change history. Why was a change made,or did all test au-
tomatically pass after a refactoring? Log messages are usedas internal validation of
the development and testing process.

System developers feedback:We had each developer of the systems explain their devel-
opment and testing practices to understand what we see in theChangeHistoryView

37

5.1 Systems Desciptions Case Studies

and the data. This is used as external validation of the development and testing pro-
cess.

Association Rules: The association rules that are derived from the change history are the
basis for the explored metrics.

Important observations that we come across in this chapter will be noted in separate
statements. In section 5.4 we will evaluate the observations to deduce general statements
on our approach.

ChangeHistoryView Inconsistency

During the analysis of the ChangeHistoryViews of the systems, some inconsistencies where
found in the visualisation of the change history. It appearsthat some test classes not only
get plotted on top of the class-under-test, but also as a separate production class. Because
of this, too many files are listed on the vertical axis of the view. For example, the view of
the JPacman test-case (figure 4.2) lists some 40 classes. From the numbers extracted by
the change history analyser of the tool, we learn that there were 25 production classes in
the history of the application, out of a total of 46 files. Fromthe number of matching rules
extracted by the tool we know there are at least 11 unit tests in the system. That leaves
9 possible integration tests. Thus we expect a total of 34 rows in the view. Despite these
inconsistencies, we believe that the global observations on co-evolving entities and phases
of increased production or test code writing effort are still valid. All production classes and
associated tests are plotted correctly and will allow us to see the patterns we are looking for.

5.1 Systems Desciptions

We have selected a number of systems for the case studies. Allsystems had to comply
to the requirements that follow from the tool implementation: it must be written in Java
and automated unit tests must be included in the SVN or CVS version control system. We
obtained about 20 candidate systems from three different industrial companies and made
a selection based on the ChangeHistoryView and upfront knowledge of characteristics and
origins of the system. We include one open source software system. Here we will discuss
the selected systems. The ChangeHistoryView for the case studies is also presented to get a
feel for the systems.

5.1.1 OSS: Checkstyle

Checkstyle is a open-source coding standard checker for Java source code. Between June
2001 and March 2007, 2259 commits resulted in a total of 1160 files, of which 797 where
Java classes, and 363 were identified as a test class.

The ChangeHistoryView for Checkstyle is shown in figure 5.1.From the view, we
can see that initially little testing is performed. There isonly one test in the system up to
about revision 250. After that, the system starts to grow andtests are added with new code.
Around revisions 690 and 780, to phases of pure test effort can be distinguished, and after

38

Case Studies 5.1 Systems Desciptions

System # Java # Test # Undefined Revisions First commit Last commit

Checkstyle 462 519 0 2259 June 2001 March 2007
System A.I 2480 1675 0 2838 April 2004 January 2008
System A.II 375 170 8 1244 July 2003 January 2008
System B.I 737 368 0 8853 August 2006 May 2008
System B.II 2151 362 0 10395 December 2004 May 2008
System C.I 1038 383 72 4403 August 2006 May 2008
System C.II 122 81 5 1076 August 2006 March 2008

Table 5.1: Characteristics of the case studies.

Figure 5.1: Checkstyle ChangeHistoryView

revision 850 many tests are added. After these additions, there is a significant period of pure
coding with hardly any maintenance to the tests being performed. We see some recurring
test phases around revisions 1380 and 2100. For the larger part of the history, tests appear
to receive a fair amount of attention from developers, as many additions and changes to
production code are accompanied or closely followed by the addition or change in a related
test file. Regular commits touching many files can be seen (blue vertical bars) and these are,
with some exceptions, because of code cleanups or copyrightnotice changes.

39

5.1 Systems Desciptions Case Studies

5.1.2 Company A Systems

Company A is a IT consultancy service provider. For its business, it develops several tools
for static source code analysis. Originally, different analysis tool were developed separately,
but over time different projects were merged into one system(system A.I), and common
functionality was abstracted into a utility library (system A.II). Our change history begins
with the merging of different projects into one repository.We will mainly focus on system
A.I, as both projects share the same development model, the histories show similar practices,
and the two systems are developed in tandem. System A.I is significantly larger than A.II
(see table 5.1), and changes more frequently. System A.II isalso considered to evaluate what
impact the size and length of the change history have on the analysis with our approach. We
expect both systems to show similar results.

SCRUM was recently introduced as the main development methodology. Before that
adoption, the process has always been centered around agilepractices.

Company A employs a strong test-driven development model. Developers are expected
to test all code and keep the test up to date. Code coverage measurements are used to
monitor and control the test suite. Unit testing has been in use since the beginning of
development of the initial projects, which was around the year 2000.

The ChangeHistoryView for A.I shows a steady growth curve, but because of the merges
of different projects and reorganisations of the repository many outliers clutter the view. The
total overview of the view (figure 5.2) shows code writing andtesting effort overlapping for
the entire change history. Close inspection shows additions and changes to the code base
being accompanied by added and changed tests most of the time. Large commits correspond
to refactorings (with changing tests) and code cleanups (less often changing tests). System
A.II yields very similar observations.

5.1.3 Company B Systems

Company B is a large international transportation company that uses many information
systems to support its activities. Systems are both developed in-house, as well as by an
external contractor. For some projects coding is outsourced.

We selected two company B systems, which both have been developed by the same
external developer, and have around the same length of the change history. They, however,
have a striking difference: the use of unit tests. The first system (B.I), makes heavy use of
unit tests, while the second system (B.II) only shows the sporadic use of tests, and hardly
any evidence of intentional co-evolution of production andtest classes can be found. The
two systems show a completely different picture, and we are interested in the effect this has
on our approach. The ChangeHistoryView for B.I is shown in figure 5.3, and for B.II in
figure 5.4.

System B.I appears to be thoroughly tested, and many tests are added together with
new production code being introduced. There are two large spots of test activity noticeable:
between 2000 and 2500, and after the addition of many files (IDs 650–700) after revision
2500. The first bulk of changed tests is the result of cleaningup code, and appears to have
little to do with actual structural testing. The second hot-spot involves an overhaul in the

40

Case Studies 5.1 Systems Desciptions

Figure 5.2: System A.I ChangeHistoryView

software, and the changes to tests that follow the large change actually are adaptations to
the new production software. Thus here the testing is partially done after the code has been
committed to the repository.

System B.II tells a different story. Testing occurs sporadic during the long history of
the system. There are two minor, and one major concentrations in the view: at the early
beginning, and around revision 6000. The large concentration of test activity after revision
6000 around file-ID’s 2400 and 2500 occurs both because of therefactoring of tests (the
tests are added after the actual code is written), and cleaning up the test code.

5.1.4 Company C Systems

Company C develops both hard- and software for mission-critical systems for a wide range
of large financial, service oriented and industrial customers. One of its main selling points
is commitment to quality, and to this effect the company veryactively uses unit tests in their
development model. The systems we consider were developed by small teams of under 10
developers, and using a blend of RUP, DSDM and eXtreme Programming, picking elements
as they see fit. The use of unit testing is required for each project, and is controlled using
code coverage measurement and test code is peer-reviewed.

Similar to Company A, we evaluate two systems: one large system (C.I), and a small
system with a ‘supporting’ role (B.II). The systems are web-based applications used to man-
age contracts for an international financial service provider. Again, we primarily discuss the
larger system.

41

5.2 Test Process Analysis Case Studies

Figure 5.3: System B.I ChangeHistoryView

Figure 5.5 show the ChangeHistoryView for the history of system C.I. The view reveals
a smooth development curve of the system. There are not many outliers, which indicates
that the code in the repository was very stable, e.g., not many files have been moved to
other locations. The overlap of tests and production classes looks very consistent. There is
a steady line of changes to test code trailing the edge of the growth curve, indicating that
testing effort accompanies additions to the system. The general observation is a disciplined
and consistent test-driven development practice. Large commits are not very evident, and
most occurrences involve actual work on the system, and not many cosmetic changes as
with the other considered systems. A possible cause can be that very clear and stable coding
standards are set or the requirements for the system do not change often, and thus not many
clean up work or large overhauls have to be done. The smooth growth curve supports
this last possibility (except for the ‘bumps’ around revision 415 and 3540, where files for
complete modules are added in one commit). System C.II showsan identical change history.

5.2 Test Process Analysis

Our first attempt at applying the mined association rules to the case studies is to study the
ratios of the rules and the distributions of their strength metrics. We interpret the data of
the systems to deduce how the coding effort of programmers isdistributed among writing
code and testing. In table 5.2 the total number of rules (ALL rule class) and the percentages
that each of the different rules classes contributes to the total are listed. We will discuss the
ratios and strengths of the rules for the cases in the following subsections. The observations

42

Case Studies 5.2 Test Process Analysis

Figure 5.4: System B.II ChangeHistoryView

we make assume the cases (sections) are read in the order thatthey are discussed.

5.2.1 Checkstyle

The first observation when looking at the rule ratios for Checkstyle is the huge amount of
PROD rules. 98,86% of the 58566 rules express an association between two production
code entities. While initially the developers hardly used unit tests, they adopted a more test-
driven development model over time. The first period of development thus practically only
involved production code, but the several phases of pure testing effort that were observed
in the ChangeHistoryView (figure 5.1) could have created a fair amount of TEST rules.
Revisiting the ChangeHistoryView in close detail reveals that the testing phases involve
commits with only a few tests per commit, while many other commits contain a larger
amount of production files. As the change history of Checkstyle contains several recurring
very large commits, the generation of many rules from those single commits is very large
(2m−1, with m the size of the commit).

We reason that many of the PROD rules should have low strengths because of the in-
cidental nature of the combinations. We check this by turning to the distributions of the
rule strength metrics. The distributions of the metrics areshown as boxplots in figure 5.6.
The average support of rules is generally low, with the PROD rules having many extreme
outliers (shown as crosses). This shows that many of the combinations of files only occur a
few times in the change history. In table 5.3, we compute the ratio of the number of rules
that get generated per revision, and the number of rules thatget generated per code entity.
Looking up the ratios for Checkstyle, we find that each entityresults in almost 60 rules. This

43

5.2 Test Process Analysis Case Studies

Figure 5.5: System C.1 ChangeHistoryView

Rule Class Checkstyle A.I A.II B.I B.II C.I C.II

ALL (N) 58566 101896 14590 8820 219248 27308 498
PROD 98,86% 35,15% 49,64% 39,00% 99,12% 51,84% 40,96%
TEST 0,48% 26,11% 9,95% 24,81% 0,20% 9,99% 16,87%
P&T 0,67% 38,75% 40,25% 36,19% 0,69% 32,44% 32,13%
P2T 0,33% 19,37% 20,12% 18,10% 0,34% 16,22% 16,06%
T2P 0,33% 19,37% 20,12% 18,10% 0,34% 16,22% 16,06%
mP2T 0,09% 0,78% 0,74% 0,83% 0,01% 0,78% 4,82%
mT2P 0,09% 0,78% 0,74% 0,83% 0,01% 0,78% 4,82%

UNDEF 0,00% 0,00% 0,16% 0,00% 0,00% 5,73% 10,04%

Table 5.2: Rule ratios for the case studies.

supports the idea that the huge ratio for PROD is there because there are commits with many
production files in them. We can also see this in the ChangeHistoryView of Checkstyle, by
noticing the large blue vertical lines in the view.

Observation 5.1 Commits touching large numbers of files generate an exponential number
of rules. These rules can dominate the ratios of the rule classes.

The ratios of TEST and P%T (sub-)classes are minimal at best.But the Checkstyle
developers appear to have adopted a decent testing practiceover time. We can recognise

44

Case Studies 5.2 Test Process Analysis

System Rules/revision Rules/entity

Checkstyle 25,93 59,70
A.I 35,90 24,52
A.II 11,73 26,38
B.I 1,00 7,98
B.II 21,09 87,25
C.I 6,20 18,29
C.II 0,46 2,39

Table 5.3: Ratios of rules, entities and revisions for the cases.

several phases of testing in the first half of the change history, and a more test-driven ap-
proach in the latter part. Looking at lift, the correlation among matching production and test
classes is stronger than for more unrelated classes. The correlation among TEST rules is
even stronger. This observation also holds for the confidence and conviction distributions.
For example, the confidence of mT2P rules shows that 75% of those rules express a con-
ditional probability of over 50%. Note that that number alone is not enough to conclude
synchronous co-evolution between tests and code, as we do not yet know how many tests
are actively maintained.

An interesting contrast is the significantly weaker distribution of mP2T rules for confi-
dence and conviction. As these two metrics are not symmetricfor a rule, the often changing
nature of production code makes the presence of a productionclass in a commit so trivial
that no interesting statement can be made based on its presence. The values for lift of match-
ing rules are identical, because of the symmetry of the lift metric. The measured strength
between matching production and test classes is not as evidently higher using lift than it is
with confidence and conviction, since the highly correlated(m)T2P rules are averaged out
against the lowly correlated (m)P2T rules.

Observation 5.2 Strong distributions for TEST, related to (m)P&T rule strength distribu-
tions, originate from co-usage of test classes and indicatethat testing is performed as a
separate activity.

Observation 5.3 Lift averages the measurements for matching rules in different directions.
This causes the differences to even out, and makes lift a lessspecific metric.

Summarising, we can see that Checkstyle has a very high co-change of production
classes. These co-occurrences are mostly unintentional and caused by code cleanup ac-
tivities. Apart from that, there is reasonable evidence forboth a phased and a test-driven
testing practice.

5.2.2 System A.I and A.II

Recalling observations of the ChangeHistoryViews from systems A.I (figure 5.2) and A.II,
we expect these two systems to show similar results. The ratios of the rule classes are much

45

5.2 Test Process Analysis Case Studies

Figure 5.6: Checkstyle rule strengths distributions

more even partitioned than for Checkstyle. For system A.I, the ratios of PROD and P&T
are almost one to one. System A.II has a slightly larger difference, but nearly 10% of the
total number of rules is of class TEST. Both systems A.I and A.II show remarkable uniform
strength distributions for all rule classes in addition to the evenly partitioned ratios.

In line with the observations from the ChangeHistoryView, the association rules reveal
a strongly synchronous co-evolution of production and testcode for company A’s systems.
Not only are the rule class ratios evenly partitioned over pure coding and test-driven devel-
opment, the strength distribution present a uniform picture. PROD, TEST and P&T rules
show equal measurements, and so do the matching classes mP&T, mP2T, and mT2P. The
distributions are more uniform (resembling the normal distribution), and show less skew-

46

Case Studies 5.2 Test Process Analysis

ness than for the Checkstyle case. We have four remarks on thedata for these two systems.
System A.I has surprisingly strong TEST rules, and they represent twice as much of the

total compared to system A.II. This could be caused by commits that contain multiple pairs
of production and test code. Two pairs generate P&T, PROD andTEST rules. The strong
TEST rules can occur when the combinations of test classes occur often in the history. The
strength of these rules is possibly a by-product of the normal development cycle combined
with more dedicated test effort.

In each of the up to now discussed systems the strengths of mT2P rules are high. For
A.II, however, T2P is quite low even though mT2P is strong. This means that the other
part of the T2P rules (i.e., the non-mT2P rules) are weak to such an extent that they bring
down the average of T2P. Thus the non-mT2P rules are significantly more independent than
mT2P rules, and occurrences of non-mT2P rules are incidental in nature, versus structural
co-use of truly related production and test code.

System A.I shows values for conviction that reach up in the thousands, where for the
other cases the values concentrate around 2. We are not sure whether this is because of
miscalculations for this specific case, or that it is a property of the system. Lift values for
A.I are not noteworthy exceptional, thus we assume an error,even though none was found.

System A.II contains a number of undefined rules. Support forthese rules is very low,
but the confidence and lift are very high. We inspect the nature of these rules, and find that
they are generated from a number of test stubs and helper objects. These classes belong to
test code, but are not classified as such because they do not adhere to the regular naming
conventions of tests. This explains the found data: the stubs do not occur frequently in
the change history, because they have a very static function. Since they are part of a very
isolated and not frequently changed part of the test suite (only belonging to some specific
tests), the metrics are very strong.

We summarise the following observation:

Observation 5.4 For systems with synchronous co-evolution of production and test code,
the ratios of the rule classes do represent the distributionof programmer effort. For these
systems the strength distributions of the rule classes are similar. The strength of typical
rules is not low.

5.2.3 System B.I and B.II

With systems A.I, A.II and Checkstyle we have been able to distinguish different patterns of
co-evolving production and test code. Systems B.I and B.II have been selected because the
systems have very different test patterns, as analysed withthe ChangeHistoryView. System
B.I is well tested, and shows the characteristics of a synchronous co-evolution. System B.I
only has two main periods of testing, and the test effort is located to very specific parts of
the system.

The ratios of the rule classes for both systems look almost identical to what we have
already encountered. With minor variations, B.I is similarto A.I, and B.II has a huge PROD
ratio, very similar to Checkstyle. So are the testing practices also similar? Judging from

47

5.2 Test Process Analysis Case Studies

Figure 5.7: A.I rule strengths distributions

the ChangeHistoryViews, B.I is much more sparingly tested than A.I, and Checkstyle is
significantly better tested than B.II.

The strength distributions of systems A.I and B.I show similar relations among the rule
classes. There is however a striking difference. A.I has very strong TEST rules, and B.I.
has strong PROD rules (compared to the other rule classes). For both systems, the supports
for these rule classes are not spectacular, so the strong confidence, lift and conviction values
for the rules must be the result from not many, but from structural co-occurrences. That
is, the entities that occur in combinations of test classes in TEST (for A.I) and production
classes in PROD (for B.I) do not occur that often in other combinations. We believe this tells
us that the programmers of the systems are working with a strong focus on specific parts
on the system or test suite. For example, B.I is a system buildfrom scratch, and appears

48

Case Studies 5.2 Test Process Analysis

Figure 5.8: A.II rule strengths distributions

to be build incrementally. The rounded growth curve in the ChangeHistoryView supports
this idea. Inspection of the commit messages that often modules are build by a specific
programmer. That programmer only changes the classes in that specific part of the system,
and moves on to another part when finished. Therefor the combinations of classes that are
checked in are limited to the specific parts of the system, andthe correlation between those
classes is high.

For system A.I there is a similar explanation for the strong TEST rules. Developers
focus on writing tests for specific parts of the system. The development of system A.I is
different than for B.I, because it is a collection of analysis tools that grows and changes
over time when analyses for customers require this. Developers are assigned to different

49

5.2 Test Process Analysis Case Studies

customers, so their work on the tools is cross-cutting through the entire system. The causes
more combinations of classes to occur, and brings down the correlation between classes,
and thus the distribution of strengths of PROD rules. Following from this reasoning, we
expect tests to focus on specific parts of the code, as the correlation among tests is high.
Company A developers confirm that

Observation 5.5 High correlations between only production classes (or onlytest classes)
indicates that programmers focus on specific parts of the system (or the test suite).

When we compare Checkstyle and B.II, because of their similar huge number of PROD
rules, we expect to see a difference in testing related associations. Checkstyle adopted a
testing strategy over time, but B.II only shows two minor periods of very localised testing in
the ChangeHistoryView. The number of rules generated per entity is large for both systems.
Both systems show strong rules for TEST and mT2P, indicatingmany co-usage of tests,
and some co-changing tests and production classes. Checkstyle has a slightly higher ratio
of TEST rules, so there is more dedicated testing than in B.II. This is in line with the
observations from the ChangeHistoryViews. B.II has exceptionally strong PROD rules,
which is interpreted as dedicated and localised productioncode writing effort. Despite
these differences, we cannot make a definite distinction between the testing practices of
Checkstyle and B.II.

Observation 5.6 It is hard to determine differences between hardly tested and reasonably,
but phases tested systems based on ratios of rules classes and distributions of rule strengths
alone.

5.2.4 System C.I and C.II

Company A systems show similar results to the systems from company A. Just like with
the discussion of the ChangeHistoryViews for C.I and C.II, there are only a few noteworthy
observations for these systems that have not already been encountered in the other cases.
Even the ratios of the number of rules per entity do not differmuch. These systems show
an impeccable test practice. We will only make a few remarks.

First, system C.I has significantly strong matching rules (mP&T, mP2T and mT2P). For
confidence, lift and conviction the interquartile range (IQR) of the boxplots of matching
rules is often higher than the IQR of the other rule classes. This means that the upper 75%
of the matching rules is stronger, or more correlated, than 75& of the other rule classes.
This is strong evidence that production classes and its testcode enjoy concurrent attention
from developers.

System C.II shows similar distributions, but has stronger co-usage among test classes.
We can trace the strong correlations of test classes to larger commits with many tests and
classes. The large differences for the boxplots of conviction, related to C.I and A systems,
are mainly due to scale differences of the vertical axis.

Observation 5.7 Cases A.I, A.II, C.I and C.II all reinforce observation 5.4.

50

Case Studies 5.2 Test Process Analysis

Figure 5.9: B.I rule strengths distributions

Both C.I and C.II have UNDEF rules, but these are not very strong. Inspection of the
rules learns us that, again, these rules are generated because of stub and helper classes in
the test suite. For system C.II we can see that the support of these rules is quite high, but
the strength measures are obviously lower than for other rule class. This means that the
combinations of classes with the stubs occur quite often, but with many different classes
per stub. It is plausible that a number of different tests usethe same stub or helper class.
Note that this is a different practice than we encountered insystem A.II, where UNDEF
rules occurred very few times, but had high strengths.

51

5.3 Test Suite Quality Evaluation Case Studies

Figure 5.10: B.II rule strengths distributions

5.3 Test Suite Quality Evaluation

The second interpretation of association rules we explore is by looking from a code class
point of view. We formulated two variants: code entity classifications based on the number
of associations, and the ‘logical coverage’ of associations rules to code entities. We now
discuss the results from these attempts.

5.3.1 Code entity classification

The classification of code entities based on the number of P2Tor T2P rules they occur in
is not proving to be a useful metric. For many of the cases, themajority of the classes is

52

Case Studies 5.3 Test Suite Quality Evaluation

Figure 5.11: C.I rule strengths distributions

not being associated in an interesting way. An example boxplot of the number of distinct
rules associating a production or a test class, is shown in figure 5.13. Where the number
of occurrences of a class as antecedent in a P&T rules was veryhigh for the JPacman test-
case (in chapter 4), associating every class to every test, the number of occurrences of a
typical class as antecedent for larger projects is either completely none, or growing very
large. The number of classes that get associated with a sensible number of other classes that
resembles the actual structural coupling is low (around 10%of the total number of classes).
One would expect a few number of occurrences for tests: once,twice, four times. A test
that is structurally testing more than a few classes is just not a good practice, so the numbers
obtained here are completely not representative. We conclude that it is not feasible to make

53

5.3 Test Suite Quality Evaluation Case Studies

Figure 5.12: C.II rule strengths distributions

any useful analysis based on this interpretation of association rules.

Observation 5.8 Classification of classes and tests cannot be done based on their usage by
programmers.

5.3.2 Rule coverage

Another take on test quality is done by use of the rule coverage of classes. In section 4.1.3
we define four types of coverage measures based on the ratio ofthe number of (matching)
rules and the number of classes and tests in a system. We compute the four ratios for all the
cases, these can be found in table 5.4.

54

Case Studies 5.4 Evaluation

Figure 5.13: Example of the number of occurrences per class type.

We already made the observation that strong rules for matching production and test
class pairs originate from a disciplined test-driven testing strategy. The production and
test matching coverage percentages can actually give a morerelevant interpretation to the
strengths, because together they express (1) how many production and test class pairs are
co-used, and (2) how structural the co-usage is.

We immediately see a clear separation: the system that showed test-driven testing prac-
tices, and Checkstyle and B.II. The first category of systemsshow large (20%, 30%, 50%)
parts of the test suite that potentially synchronous co-evolve. We can check the mT2P rule
strengths to see to what extent they actually co-evolve. In the previous section we already
discussed these strengths and saw that the relations between test and production code is high
for these systems.

For the other two cases, the matching coverage ratios give slightly more insight in a
potential difference between the testing practice. Both have an equal part of their test suite
that potentially co-evolves (nearly 10%), but only about 1,5% of the production classes in
B.II have their tests updated when changes are made to the class, against 11% in Checkstyle.
So Checkstyle has a 7 times larger part of production code that has maintained tests than
B.II.

5.4 Evaluation

In this chapter we evaluated our proposed approach to study the co-evolution of production
and test code in a system using several case studies. We have observed that based on assoca-
tion rules we can express how developers divide their efforts over production code writing
and testing activities, and to what extent parts of the system or the test suite are co-evolving.

While we can also detect the absence of synchronous co-evolution in a system, it proves
to be hard to determine whether the system is poorly tested. Alarge ratio of strong TEST

55

5.4 Evaluation Case Studies

Case Production class Production class Test class Test class
mapping ratio matching coverage mapping ratio matching coverage

Checkstyle 0,42 11,04% 0,38 9,83%
A.I 7,96 32,22% 11,79 47,70%
A.II 7,83 28,80% 17,27 63,53%
B.I 2,17 9,91% 4,34 19,84%
B.II 0,35 1,49% 2,08 8,84%
C.I 4,27 20,42% 11,57 55,35%
C.II 0,66 19,67% 0,99 29,63%

Table 5.4: Rule coverage ratios of classes for the case studies.

rules would indicate a phased testing approach, but the two cases we considered where this
would possibly occur, huge amounts of PROD rules, generatedby large commits, cluttered
the view. Valid detection of structural phased testing requires futher investigation.

56

Chapter 6

Conclusions and Future Work

This chapter gives an overview of the project’s results and contributions.

6.1 Conclusions

The central research question of this thesis was “How can data mining techniques be applied
to (retrospectively) study the unit testing process in software systems?”. We formulated four
supplemental research questions, and we will provide answers to these questions here.

RQ1: We applied association rule mining to the change history of software systems, and
presented an approach to analyse the co-usage between production and test code
based on the mined association rules. Using several case studies we can conclude that
association rule mining can be successfully applied to find and express synchronous
co-evolution of production and test code.

RQ2: Our attempt to classify test classes based on their co-change with production classes
leads us to conclude that this does not lead to satisfactory results. The occurrences
of test classes in the change history is generally to wide spread to make any sensible
statements.

RQ3: Using the association rules we can determine what percentage of the test suite is
actually used as a unit test, and the distribution of rule strengths can be used to express
how structural the production and test code is synchronous co-evolving. We believe
that this can be applied to measure (long term) unit test quality

RQ4: While we have discussed five industrial case studies that show similar testing prac-
tices, we have also observed one industrial case and one opensource software case
that show radically different patterns. In our complete body of industrial systems (not
discussed in this thesis), we observed different patterns between, and even inside,
several companies.

To return to the central research question, we found that theapplication of association
rules to the change history of a software system can very wellbe used to study the unit

57

6.2 Contributions Conclusions and Future Work

testing process of the system. We believe that there is a lot of potential in this type of
analysis, as it can truly express the way in which classes andtests are used by developers.

In the introduction of chapter 1 we identified to potential uses for this type of anal-
ysis. The analyses techniques that we explored in this work prove to be useful for both
(retrospective) assessment of the unit test suite and the way testing is employed. We did
not investigate whether monitoring of the testing process is a possibility. We expect that
changes to the test practice over small periods of time will not yield noticeable differences
in the results, as our technique summarises the entire history. Changes to longer histories
will not influence the complete picture enough to make usefuljudgements.

6.2 Contributions

In this thesis we have made the following contributions.

• We have developed a tool to mine association rules at file level from the change
history of a system, based on the log data of the system’s version control system.
This is a more lightweight approach to find co-usage among classes than using static
code analyses at class level. For our purpose, analysis at file level is fast and provides
enough precision compared to code level.

• We have presented an approach to study the co-evolution of production and test code
in a system based on the co-usage of classes and unit tests.

• We have collected a large number of change histories of industrial systems to study
testing processes in real world situations.

6.3 Future work

We have identified some ideas to build upon this explorative research.

Refine and operationalise the measurements presented in this work: We would like to
refine the interpretation of the measurements that we presented. To make the results
easier to understand for more people, we would like to be ableto express the data
in terms like “Programmers spentx amount of time to testing” or “y% of the system
exhibits a synchronous co-evolution of production and testcode”. Using this simpler
interpretation, we would like to build a benchmark of systems and be able to formule
‘quality-standards’. This allows for better comparison among systems.

Use of more detailed data:By adding more information from other sources the level of
detail of the rule classes can be enhanced to get more detailed data on what is chang-
ing in the system. We could add more VCS log data, link to information from bug
tracking systems, or perform static source code analysis. By statically analysing the
actual classes we can determine in more detail what class is aunit test or an integra-
tion test, or analyse if more complex classes are tested better or worse than an average
class.

58

Conclusions and Future Work 6.3 Future work

Compare unit testing practice differences in distinct development cultures: We have stud-
ied the change histories of a large number of industrial systems and reported on six of
them. The previous study by Zaidman et al. [33], and our OSS case study show that
open source systems have less disciplined and more phased testing practices com-
pared to the majority of the industrial cases we have seen. Wewould like to study
how unit testing is employed in different cultures of software development.

59

Bibliography

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules
between sets of items in large databases. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, pages 207–216, Washington, DC, USA, May 26-28 1993. ACM Press.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Jorge B. Bocca, Matthias Jarke,and Carlo Zaniolo, editors,
Proceedings of 20th International Conference on Very LargeData Bases (VLDB),
pages 487–499, Santiago de Chile, Chile, September 12-15 1994. Morgan Kaufmann.

[3] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. What’s a typical commit?
a characterization of open source software repositories. In Proceedings of the 16th In-
ternational Conference on Program Comprehension, pages 182–191. IEEE Computer
Society Press, June 2008.

[4] Thomas Ball, Jung-Min Kim, Adam A. Porter, and Harvey P. Siy. If your version
control system could talk. InICSE ’97 Workshop on Process Modelling and Empirical
Studies of Software Engineering, May 1997.

[5] Kent Beck. Test-Driven Development: By Example. Number 0321146530. Addison-
Wesley Longman Publishing Co., Boston, MA, USA, 2002.

[6] Dirk Beyer and Ahmed E. Hassan. Animated visualization of software history using
evolution storyboards. InProceedings of the 13th Working Conference on Reverse En-
gineering (WCRE 2006), volume 00, pages 199–210. IEEE Computer Society Press,
october 2006.

[7] Dirk Beyer and Ahmed E. Hassan. Evolution storyboards: Visualization of software
structure dynamics. InProceedings of the 14th International Conference on Program
Comprehension (ICPC 2006), pages 248–251. IEEE Computer Society Press, 2006.

[8] Robert V. Binder. Testing Object-Oriented Systems; Models, Patterns, and Tools.
Addison-Wesley, 2000.

61

BIBLIOGRAPHY

[9] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset
counting and implication rules for market basket data. InProceedings of the ACM
SIGMOD International Conference on Management of Data, volume 26,2 ofSIG-
MOD Record, pages 255–264. ACM Press, May 1997.

[10] Marco D’Ambros, Michele Lanza, and Mircea Lungu. The evolution radar: Visu-
alizing integrated logical coupling information. InThird International Workshop on
Mining Software Repositories (MSR), pages 26–32. ACM Press, May 2006.

[11] Margaret H. Dunham.Data Mining: Introductory and Advanced Topics. Number
0-13-088892-3. Prentice Hall, August 2002.

[12] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does code decay? assessing the evidence from change management data.IEEE Trans-
actions on Software Engineering, 27(1):1–12, 2001.

[13] Beat Fluri, Michael Würsch, and Harald C. Gall. Do codeand comments co-evolve?
on the relation between source code and comment changes. InProceedings of the IEEE
Working Conference on Reverse Engineering (WCRE), pages 70–79. IEEE Computer
Society Press, 2007.

[14] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based on
product release history. InProceedings of the International Conference on Software
Maintenance, pages 190–197. IEEE Computer Society Press, November 1998.

[15] Harald Gall, Mehdi Jazayeri, René R. Klösch, and Georg Trausmuth. Software evolu-
tion observations based on product release history. InProceedings of the International
Conference on Software Maintenance, page 160. IEEE Computer Society Press, 1997.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[17] Daniel M. German. Using software trails to reconstructthe evolution of software:
Research articles.J. Softw. Maint. Evol., 16(6):367–384, 2004.

[18] Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. Yesterday’s weather: Guiding
early reverse engineering efforts by summarizing the evolution of changes. InPro-
ceedings of the 20th International Conference on Software Maintenance (ICSM 2004),
pages 40–49. IEEE Computer Society Press, 2004.

[19] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A case study.
In Proceedings of International Conference on Software Maintenance (ICSM 2000),
pages 131–142. IEEE Computer Society Press, 2000.

[20] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Release pattern discovery
via partitioning: Methodology and case study. InFourth International Workshop on
Mining Software Repositories (MSR), pages 19–26. IEEE Computer Society Press,
2007.

62

BIBLIOGRAPHY

[21] Michele Lanza. The evolution matrix: Recovering software evolution using software
visualization techniques. InProceedings of the 4th International Workshop on the
Principles of Software Evolution (IWPSE 2001), pages 37–42. ACM Press, 2001.

[22] Michele Lanza and Stéphane Ducasse. Polymetric views- a lightweight visual
approach to reverse engineering.IEEE Transactions on Software Engineering,
29(6):782–795, September 2003.

[23] M. M. Lehman. Program evolution: Processes of softwarechange.Information Pro-
cessing and Management, 20(1):19–36, 1985.

[24] Bennet P. Lientz and E. Burton Swanson.Software Maintenance Management.
Addison-Wesley, 1980.

[25] Bing Liu, Wynne Hsu, and Yiming Ma. Mining association rules with multiple min-
imum supports. InProceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 337–341. ACM Press, 1999.

[26] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution. In IWPSE 2005:
Proceedings of the Eighth International Workshop on Principles of Software Evolu-
tion, pages 13–22, Washington, DC, USA, 2005. IEEE Computer Society Press.

[27] John Mylopoulos and Thomas Rose. Software repositories, tutorial 4. In Li-Yan Yuan,
editor, 18th International Conference on Very Large Data Bases, page 455. Morgan
Kaufmann, 1992.

[28] David Lorge Parnas. Software aging. InProceedings of the 16th International Con-
ference On Software Engineering (ICSM), pages 279–287. IEEE Computer Society
Press, May 1994.

[29] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing mul-
tiple evolution metrics. InSoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 67–75. ACM, 2005.

[30] Per Runeson. A survey of unit testing practices.IEEE Software, 23(4):22–29, 2006.

[31] Margaret-Anne D. Storey, DavořCubranić, and Daniel M. German. On the use of
visualization to support awareness of human activities in software development: A
survey and framework. InSoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, pages 193–202, New York, NY, USA, 2005. ACM.

[32] Zhenchang Xing and Eleni Stroulia. Understanding the evolution and co-evolution of
classes in object-oriented systems.International Journal of Software Engineering and
Knowledge Engineering, 16(1):23–52, 2006.

[33] Andy Zaidman, Bart van Rompaey, Serge Demeyer, and Arievan Deursen. Mining
software repositories to study co-evolution of productionand test code. InProceedings

63

BIBLIOGRAPHY

of the 1st International Conference on Software Testing, Verification and Validation
(ICST), page Accepted for Publication. IEEE Computer Society Press, 2008.

[34] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. InProceedings of the 26th International
Conference on Software Engineering (ICSE 2004), pages 563–572. IEEE Computer
Society Press, 2004.

64

