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Prof.dr. T. Systä Tampere University of Technology, Finland
Prof.dr. S. Ducasse Institut National de Recherche en Informa-

tique et en Automatique, France

The work in this thesis has been carried out at the Delft University of Tech-
nology, under the auspices of the research school IPA (Institute for Program-
ming research and Algorithmics). The research was supported by the Nether-
lands Organization for Scientific Research through the Jacquard Reconstructor
project (grant no. 638.001.408).

IPA Dissertation Series 2009-13

ISBN 978-90-799-8203-5

Copyright c© 2009 by Bas Cornelissen

Depicted in the bottom right portion of the cover page is The Thinker, a
famous sculpture by Auguste Rodin.
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There are many more colleagues that deserve mentioning, including Gerd
Gross, Ali Mesbah, Peter Zoeteweij, ... but the research group has grown so
rapidly that I can barely keep up. (Most seem quite addicted to coffee, by
the way – I don’t know which is worse, a defective printer or a broken coffee
machine.) Thanks also to Marco Dekker and Cathal for protecting me from
my evil opponents during the defense!

Having saved the most important people for last, I would now like to thank
my family. I am ever grateful to my parents for encouraging me to accept this
challenge and the ones before, and to my brother Thijs for demonstrating
how it should be done. Thijs, this dissertation contains fewer up quarks and



interesting-looking formulas than yours, but the colorful images hopefully
make up for it.

My final thanks go to a special someone who has been the subject of my
reverse engineering efforts for several years. Miriam, thank you for your love
and your support.

Bas Cornelissen
May 1, 2009

Delft

iv



Contents

List of Acronyms xi

1 Introduction 1
1.1 Program Comprehension . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Evaluating Dynamic Analysis Techniques . . . . . . . . . . . . . 4

1.4 Challenges & Research Questions . . . . . . . . . . . . . . . . . 5

1.4.1 Characterization of existing work . . . . . . . . . . . . . 5

1.4.2 Suitability of traditional visualizations . . . . . . . . . . 6

1.4.3 Suitability of advanced visualizations . . . . . . . . . . . 7

1.4.4 Evaluating program comprehension techniques . . . . . 8

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Origin of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Survey of Program Comprehension & Dynamic Analysis 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Program Comprehension through Dynamic Analysis . . . . . . 13

2.2.1 Early research . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Research in the last decade . . . . . . . . . . . . . . . . . 15

2.2.3 Structuring the field . . . . . . . . . . . . . . . . . . . . . 16

2.3 Article Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Initial article selection . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Selection pilot study . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Reference checking . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Article selection results . . . . . . . . . . . . . . . . . . . 19

2.4 Attribute Framework . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Attribute identification . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Attribute generalization . . . . . . . . . . . . . . . . . . . 21

2.4.3 Resulting attribute framework . . . . . . . . . . . . . . . 21

2.5 Article Characterization . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Attribute assignment . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Summarization of similar work . . . . . . . . . . . . . . . 23

2.5.3 Characterization pilot study . . . . . . . . . . . . . . . . 24

2.5.4 Characterization pilot results & implications . . . . . . . 24

2.5.5 Measuring attribute coincidence . . . . . . . . . . . . . . 25

2.5.6 Characterization results . . . . . . . . . . . . . . . . . . . 26

2.6 Avenues for Future Research . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Most common attributes . . . . . . . . . . . . . . . . . . . 27

2.6.2 Least common activities . . . . . . . . . . . . . . . . . . . 28

2.6.3 Least common targets . . . . . . . . . . . . . . . . . . . . 28



2.6.4 Least common evaluations . . . . . . . . . . . . . . . . . 30

2.6.5 How activities are evaluated . . . . . . . . . . . . . . . . 32

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Article selection . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.2 Attribute framework . . . . . . . . . . . . . . . . . . . . . 34

2.7.3 Article characterization . . . . . . . . . . . . . . . . . . . 35

2.7.4 Results interpretation . . . . . . . . . . . . . . . . . . . . 35

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Sequence Diagram Reconstruction 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Visualizing test suites . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Design Options and Requirements . . . . . . . . . . . . . . . . . 39

3.2.1 Design options . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Tracing test cases . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Trace reduction . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 First Implementation: SDR . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Scenario diagram metamodel . . . . . . . . . . . . . . . . 45

3.4.2 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Listening to events . . . . . . . . . . . . . . . . . . . . . . 47

3.4.4 Handling test cases . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Case Study: JPacman . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Acceptance tests . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.3 Discussion & future improvements . . . . . . . . . . . . 53

3.6 Second Implementation: JRET . . . . . . . . . . . . . . . . . . . . 54

3.6.1 Scenario diagram metamodel . . . . . . . . . . . . . . . . 54

3.6.2 Tool implementation . . . . . . . . . . . . . . . . . . . . . 55

3.7 Case Study: Checkstyle . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.1 Quantitative evaluation . . . . . . . . . . . . . . . . . . . 58

3.7.2 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . 59

3.7.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.1 General approaches . . . . . . . . . . . . . . . . . . . . . 67

3.8.2 Sequence diagrams . . . . . . . . . . . . . . . . . . . . . . 67

3.8.3 General visualizations . . . . . . . . . . . . . . . . . . . . 68

3.9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 68

4 An Assessment Methodology for Trace Reduction Techniques 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Assessment Methodology . . . . . . . . . . . . . . . . . . . . . . 74

vi Contents



4.4 Four Reduction Techniques . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Subsequence summarization . . . . . . . . . . . . . . . . 75

4.4.2 Stack depth limitation . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Language-based filterings . . . . . . . . . . . . . . . . . . 76

4.4.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . 77

4.5.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.4 Test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.6 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Reduction success rate . . . . . . . . . . . . . . . . . . . . 84

4.6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.3 Information preservation . . . . . . . . . . . . . . . . . . 86

4.6.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Advanced Trace Visualization with Extravis 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Existing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Circle approach . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Message sequence charts . . . . . . . . . . . . . . . . . . 94

5.2.3 Visualization criteria . . . . . . . . . . . . . . . . . . . . . 95

5.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Circular bundle view . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Massive sequence view . . . . . . . . . . . . . . . . . . . 98

5.3.4 View interaction . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Case Study 1: Trace Exploration . . . . . . . . . . . . . . . . . . 101

5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.2 Cromod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.3 Obtaining the trace . . . . . . . . . . . . . . . . . . . . . . 102

5.5.4 Analyzing the trace . . . . . . . . . . . . . . . . . . . . . . 102

5.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Case Study 2: Feature Location . . . . . . . . . . . . . . . . . . . 106

5.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.2 JHotDraw . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.3 Obtaining the trace . . . . . . . . . . . . . . . . . . . . . . 106

5.6.4 Analyzing the trace . . . . . . . . . . . . . . . . . . . . . . 106

5.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Case Study 3: Top-down Program Comprehension with Do-
main Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Contents vii



5.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7.2 Checkstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7.3 Obtaining the trace . . . . . . . . . . . . . . . . . . . . . . 111

5.7.4 Comprehension hypothesis . . . . . . . . . . . . . . . . . 111

5.7.5 Analyzing the trace . . . . . . . . . . . . . . . . . . . . . . 112

5.7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8.3 Shneiderman criteria . . . . . . . . . . . . . . . . . . . . . 121

5.8.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 121

5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Trace Visualization: A Controlled Experiment 127
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Execution trace analysis . . . . . . . . . . . . . . . . . . . 128

6.2.2 Extravis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Validating trace visualizations . . . . . . . . . . . . . . . 129

6.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.1 Research questions & hypotheses . . . . . . . . . . . . . 130

6.3.2 Object & task design . . . . . . . . . . . . . . . . . . . . . 131

6.3.3 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.4 Experimental procedure . . . . . . . . . . . . . . . . . . . 134

6.3.5 Variables & analysis . . . . . . . . . . . . . . . . . . . . . 134

6.3.6 Pilot studies . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4.1 Time results . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4.2 Correctness results . . . . . . . . . . . . . . . . . . . . . . 138

6.4.3 Individual task scores . . . . . . . . . . . . . . . . . . . . 139

6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.1 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5.2 External validity . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Conclusion 147
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 147

7.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Literature Survey: Coincidence Measurements & Article Characteri-
zation 155

viii Contents



B Controlled Experiment: Subject Characterization & Handouts 159
B.1 Expertise assessment . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.2 Subject characterization . . . . . . . . . . . . . . . . . . . . . . . 160

B.3 Handouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.4 Answer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography 175

Summary 193

Samenvatting 197

Curriculum Vitae 203

Contents ix



x Contents



List of Acronyms

AOP Aspect-Oriented Programming

AST Abstract Syntax Tree

DOPG Dynamic Object Process Graph

DSDM Dynamic Systems Development Model

Extravis Execution Trace Visualizer

GQM Goal-Question-Metric

GUI Graphical User Interface

IBAA Importance-Based Anti-Aliasing

IDE Integrated Development Environment

JRET Java Reverse Engineering Tool

(k)LOC (kilo-)Lines of Code

NCD Normalized Compression Distance

NID Normalized Information Distance

OO Object-Oriented

SDR Sequence Diagram Reconstruction

TPTP Eclipse Test & Performance Tool Platform

UCM Use Case Map

UML Unified Modeling Language

XML Extensible Markup Language

XP Extreme Programming



xii



Chapter

1
Introduction

Program comprehension is an essential part of software development and software
maintenance, as software must be sufficiently understood before it can be properly
modified. One of the common approaches in getting to understand a program is
the study of its execution, also known as dynamic analysis. While many such
approaches have been proposed in the literature, their empirical evaluation is, as
we will see, often missing or inconclusive, and their added values to existing
solutions are seldomly quantified.
This dissertation aims to characterize, and extend upon, the existing work on
program comprehension through dynamic analysis. A strong emphasis in our
research is put on empirical evaluation. To structure the current state of the
art and to identify research opportunities, we first conduct a systematic survey
of all publications on this topic in the past decades. We then propose both a
traditional and a more advanced visualization technique, discuss the necessary
abstraction techniques, and provide tool implementations. Our approaches are
validated through extensive case studies and a controlled experiment. Finally, we
conclude with a set of recommendations for future directions.

Software evolution has become an increasingly important aspect of the soft-
ware development process. As software systems grow larger and their de-
velopment becomes more expensive, they are constantly changed rather than
rebuilt from scratch. The same holds for legacy systems, which in spite of
their age are often essential in industry (Bennett, 1995); Moreover, it is ar-
gued that if no action is taken, evolving systems tend to become increasingly
complex (Lehman and Belady, 1985).

As a result of these developments, a great deal of time and money is
spent on performing maintenance activities. Software maintenance comprises
a broad spectrum of activities: a common distinction is made between adap-
tive, perfective, corrective, and preventive maintenance (Lientz and Swanson,
1980). The focus in this thesis is on adaptive maintenance, which involves
such activities as the addition of new functionalities and the modification of
existing ones.

1.1 Program Comprehension

In order to properly maintain a software system, it must be sufficiently un-
derstood by its maintainers. If this knowledge is not readily available, they
are faced with the challenging task of gaining an understanding of the sys-
tem’s inner workings. This process is known as program comprehension, which
Biggerstaff et al. (1993) define as follows:



“A person understands a program when he or she is able to explain
the program, its structure, its behavior, its effects on its operation context,
and its relationships to its application domain in terms that are qualita-
tively different from the tokens used to construct the source code of the
program.”

Following this definition, one should understand that int z = x + y actually
corresponds to the addition of two numbers.

Program comprehension is at the center of this thesis, and typically com-
prises the study of such artifacts as source code and documentation. How-
ever, as dealing with source code involves a mental mapping between the
system’s code and its behavior, large amounts of source code are difficult to
interpret directly because they result in a cognitive overload on the part of the
maintainer. Furthermore, software documentation is often incomplete, out-
dated, or non-existent at all. As a consequence, program comprehension is
a rather time-consuming activity: the literature reports that up to 60% of the
software engineering effort is spent on understanding the software system at
hand (Fjeldstad and Hamlen, 1979; Corbi, 1989; Pigoski, 1997).

1.2 Dynamic Analysis

Since program comprehension is so expensive, the development of techniques
and tools that support this activity can significantly increase the overall effi-
ciency of software development. The literature offers many such techniques:
examples include execution trace analysis, architecture reconstruction, and
feature location (an activity that involves linking functionalities to source
code). Most approaches can be broken down into static and dynamic anal-
yses (and combinations thereof).

Static approaches typically concern (semi-)automatic analyses of source
code. An important advantage of static analysis is its completeness: a sys-
tem’s source code essentially represents a full description of the system. One
of the major drawbacks is that static analyses often do not capture the sys-
tem’s behavioral aspects: in object-oriented code, for example, occurrences of
late binding and polymorphism are difficult to grasp if runtime information
is missing.

The focus of this thesis, on the other hand, is dynamic analysis, which con-
cerns a system’s runtime execution. It is defined by Ball (1999) as “the analysis
of the properties of a running software system”. A specification of the properties at
hand has been purposely omitted to allow the definition to apply to multiple
problem domains. Figure 1.1 shows an overview of the main steps in dy-
namic analyses: they typically comprise the analysis of a system’s execution
through interpretation (e.g., using the Virtual Machine in Java) or instrumen-
tation (e.g., using AspectJ (Kiczales et al., 2001)). The resulting data can be
used for such purposes as reverse engineering and debugging, often in the
form of execution traces. Program comprehension constitutes one such pur-
pose, and over the years, numerous dynamic analysis approaches have been
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of data

1

e.g., playing a game

Figure 1.1 Principal steps of dynamic analysis.

proposed in this context, with a broad spectrum of different techniques and
tools as a result.

Since the definition of dynamic analysis is rather abstract, we shall elabo-
rate on the benefits and limitations of dynamic analysis for program compre-
hension in particular. The advantages that we consider are:

• The precision with regard to the actual behavior of the software system,
for example, in the context of object-oriented software software with its
late binding mechanism (Ball, 1999).

• The fact that a goal-oriented strategy can be used, which entails the defini-
tion of an execution scenario such that only the parts of interest of the
software system are analyzed (Koenemann and Robertson, 1991; Zaid-
man, 2006).

The drawbacks that we distinguish are:

• The inherent incompleteness of dynamic analysis, as the behavior or exe-
cution traces under analysis capture only a small fraction of the usually
infinite execution domain of the program under study (Ball, 1999). Note
that the same limitation applies to software testing.

• The difficulty of determining which scenarios to execute in order to trigger
the program elements of interest. In practice, test suites can be used, or
recorded executions involving user interaction with the system (Ball,
1999).

• The scalability of dynamic analysis due to the large amounts of data that
may be produced by dynamic analysis, affecting performance, storage,
and the cognitive load humans can deal with (Zaidman, 2006).

• The observer effect, i.e., the phenomenon in which software acts differently
when under observation, might pose a problem in multithreaded or
multi-process software because of timing issues (Andrews, 1997).
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In order to deal with these limitations, many techniques propose abstractions
or heuristics that allow the grouping or program points or execution points
that share certain properties, which results in more high-level representations
of software. In such cases, a trade-off must be made between recall (are we
missing any relevant program points?) and precision (are the program points
we direct the user to indeed relevant for his or her comprehension problem?).

1.3 Evaluating Dynamic Analysis Techniques

In the literature, dynamic analysis techniques for program comprehension
are evaluated in different manners. The findings of an extensive study that
we conducted on this topic (discussed in Chapter 2) suggests a distinction
between six evaluation types:

1. Preliminary evaluations: these involve toy examples, e.g., relatively small
systems or traces.

2. Regular evaluations: these typically concern anecdotal evidence gathered
through the study of a medium- or large-scale open source system.

3. Industrial studies: evaluations of this nature involve actual systems from
industry.

4. Comparisons: the authors’ approach is compared side-by-side with one or
more existing solutions.

5. Involvement of human subjects: the measurement of a technique’s impact
from a cognitive point of view, e.g., through controlled experiments.

6. Quantitative evaluations: the assessment of a techniques’ quantitative as-
pects, such as speed or recall.

In spite of their importance, industrial case studies, comparisons, and con-
trolled experiments are rather uncommon in the literature. While industrial
studies are indeed difficult to initiate because of several factors (discussed in
Chapter 2), the latter two evaluation types certainly merit additional consid-
eration for the following reasons.

Comparisons are important because they clearly highlight the improve-
ments over existing work. While it is reasonable for a novel technique to be
initially evaluated by itself through a case study, the next step must be to
assess its added value to conventional solutions. Such an assessment should
comprise measurements of both qualitative and quantitative aspects. As an
example, consider a technique for the reduction of large execution traces:
here, one should measure quantifiable aspects such as the speed and the re-
duction rate, but also the degree to which the reduced trace actually supports
humans during program comprehension.

The cognitive impact of a program comprehension technique is ideally
measured through the involvement of human subjects. This is often a dif-
ficult task, especially because a reasonable number of appropriate subjects
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is not easily found (Di Penta et al., 2007). Nevertheless, such an evaluation
is vital in assessing the practical usefulness of a novel technique: examples
include questionnaires that enable actual developers to give their opinions
on the results of a technique, and controlled experiments, which allow for the
accurate measurement of such a technique’s added value (Wohlin et al., 2000).

1.4 Challenges & Research Questions

The field of program comprehension through dynamic analysis shows the
development of numerous techniques every year, but the evaluations are of-
ten limited: they typically concern one case study, and most subfields exhibit
little emphasis on comparisons. Therefore, our investigations into both ex-
isting and new techniques shall exhibit a strong focus on solid evaluations
and comparisons. Specifically, in this thesis we distinguish a characterization
of existing work, the study of a traditional visualization, and the proposition
and evaluation of an advanced visualization technique.

1.4.1 Characterization of existing work

Program comprehension through dynamic analysis has been a popular re-
search area for several decades, which has led to a large research body that
distinguishes multiple subfields. The lack of a broad overview of the state
of the art has made it increasingly difficult for researchers to identify future
opportunities. There exist several surveys on this topic (Pacione et al., 2003;
Hamou-Lhadj and Lethbridge, 2004; Greevy, 2007; Reiss, 2007), but they (1)
do not constitute systematic approaches, which hinders the reproducibility
of their results, (2) do not utilize common evaluation or characterization cri-
teria, making it difficult to structure their collective outcomes, and (3) have
restricted scopes rather than broad perspectives. This motivates us to conduct
a literature survey that concerns the use of dynamic analysis in program com-
prehension contexts: an inventory and characterization of the research efforts
to date will enable the comparison of existing work, and assists researchers
in such tasks as finding related work and identifying new research opportu-
nities.

Unfortunately, the design of such a survey is rather complicated as there
exists no keyword standard within the field, and because the usefulness of
search engines and the quality of abstracts is reportedly low in software engi-
neering literature (Brereton et al., 2007). We thus formulate our first research
question as follows:

Research Question 1

How can we structure the available literature on program comprehension and
dynamic analysis, and which topics need additional consideration the near future?
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Figure 1.2 Example of a traditional visualization technique.

1.4.2 Suitability of traditional visualizations

Visualization is a popular means to convey information to the user. In par-
ticular, information gathered through dynamic analysis benefits greatly from
visualization because of the large amounts of data that are involved: Reiss
and Renieris, for example, report on an experiment in which one gigabyte of
trace data was generated for every two seconds of executed C/C++ code or ev-
ery ten seconds of Java code (Reiss and Renieris, 2001). Among the candidate
visualization techniques in our context are UML sequence diagrams (OMG,
2003) (Figure 1.2). While these have been proposed in the dynamic analy-
sis literature on several occasions (e.g., De Pauw et al. (1993); Koskimies and
Mössenböck (1996); Briand et al. (2006)), they have not been extensively eval-
uated, with the exception of a recent article on the actual use of tool features
for such diagrams (Bennett et al., 2008).

Furthermore, as dynamically reconstructed sequence diagrams inevitably
suffer from scalability issues because they can only display limited numbers
of events, any abstractions techniques used in these diagrams should be thor-
oughly evaluated, preferably in actual maintenance contexts. Unfortunately,
the different techniques in the literature are generally not evaluated (1) in the
same software engineering contexts, (2) by the same evaluation criteria, and
(3) on the same test sets, which hinders the generalizability of their results.

Therefore, with respect to visualization, our initial focus shall be on the
implementation and evaluation of reconstructed UML sequence diagrams and
on the usefulness of the necessary abstraction techniques.
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Figure 1.3 Example of an advanced visualization technique.

Research Question 2

Given the excessive amounts of data involved in dynamic analysis, are abstraction
techniques sufficient to render traditional visualizations such as UML sequence
diagrams useful for program comprehension?

1.4.3 Suitability of advanced visualizations

In contrast to traditional visualizations, the literature also offers a number
of advanced visualization techniques. Examples include information murals
(Jerding and Stasko, 1998), polymetric views (Ducasse et al., 2004), and hierar-
chical edge bundling (Holten, 2006) (Figure 1.3). Most of these visualizations
are quite scalable, rendering them potentially useful for dynamic analysis; on
the other hand, the intended target audience may not be so easily accustomed
to advanced visualizations as it is to traditional ones. Moreover, particularly
on the subject of execution trace visualization, the existing work mostly pro-
vides anecdotal evidence of their usefulness, rather than evaluations that in-
volve human subjects and actual comprehension tasks. For this reason, our
focus shall not be merely on the development of an advanced visualization tech-
nique but also on its thorough empirical validation.

Research Question 3

How can program comprehension through dynamic analysis be effectively sup-
ported by more advanced visualizations?
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1.4.4 Evaluating program comprehension techniques
In order to raise the bar with respect to the evaluation of dynamic analysis
techniques for program comprehension, our own manners of validation must
meet certain standards. For example, we opt for multiple case studies that
each involve different software systems and program comprehension activ-
ities. Moreover, if we are to compare our techniques to existing solutions
and if fellow researchers are to compare their future techniques to ours, we
need to introduce methodologies and reusable experimental designs to facili-
tate the comparison process. This is also emphasized by Sim et al., who argue
that assessment frameworks and benchmarks can stimulate technical progress
and community building (Sim et al., 2003). Thus, our final research question
crosscuts the previous ones and is formulated as follows:

Research Question 4

How can we evaluate techniques for program comprehension and dynamic anal-
ysis, and how can we compare their added value to existing solutions?

Table 1.1 shows the four research questions and the chapters in which they
are addressed.

1.5 Thesis Outline

Chapter 2, “A Survey of Program Comprehension through Dynamic Analy-
sis”, is aimed at the structuring and interpretation of the entire research body
on this topic. The relevant articles are decomposed into four facets: activity,
target, method, and evaluation. Each of these facets contains a set of at-
tributes. Using the facets, we identify the articles of interest, and characterize
each article using an attribute framework. Based on the findings, we describe
how the attention for each attribute is distributed across the relevant litera-
ture, and how the various activities are typically evaluated. We conclude with
a series of recommendations as to directions that should receive additional
consideration in the near future.

Chapter 3, “Sequence Diagram Reconstruction”, describes the first of our
efforts in understanding software through visualization. We show how a sys-
tem’s test suite can be used as a starting point for program comprehension
by instrumenting and executing it and visualizing each test case as a UML
sequence diagram. A series of abstractions and trace reduction techniques is
proposed and implemented. Through a set of case studies we attempt to use
the diagrams to build a sufficient understanding for several concrete mainte-
nance tasks, and discuss the benefits and limitations of our approach.

Chapter 4, “An Assessment Methodology for Trace Reduction Techniques”,
addresses the need for automatic trace reduction techniques in program com-
prehension through dynamic analysis. Such techniques render large execu-
tion traces tractable and are omnipresent in the dynamic analysis literature,
but are rarely (quantitatively) compared to one another. We attempt to fill this
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Research question Chapter(s)
1. How can we structure the available literature on program com-
prehension and dynamic analysis, and which topics need additional
consideration the near future?

2

2. Given the excessive amounts of data involved in dynamic analysis,
are abstraction techniques sufficient to render traditional visualiza-
tions such as UML sequence diagrams useful for program compre-
hension?

3, 4

3. How can program comprehension through dynamic analysis be
effectively supported by more advanced visualizations?

5, 6

4. How can we evaluate techniques for program comprehension and
dynamic analysis, and how can we compare their added value to
existing solutions?

2, 3, 4, 5, 6

Table 1.1 The research questions and their corresponding chapters.

gap through the introduction of a methodology that enables a fair comparison
of existing solutions. The framework is demonstrated on four reduction tech-
niques from literature and a series of large traces from six different systems.

Chapter 5, “Advanced Trace Visualization with Extravis”, continues our
investigation of visualization techniques for program comprehension. We
propose the use of two novel views to visualize large execution traces: the
circular bundle view and the massive sequence view, both developed with
an emphasis on scalability. These techniques are implemented in Extravis,
which we validate through a series of three case studies, each involving dif-
ferent program comprehension activities and different software systems.

Chapter 6, “Trace Visualization: A Controlled Experiment”, describes the
design of a controlled experiment for the validation of trace visualization tech-
niques. It discerns eight representative comprehension tasks that are to be
performed by a control group (using a conventional tool) and an experimen-
tal group (using the tool under evaluation). We conduct one such experiment
through the empirical validation of Extravis, of which we measure the added
value to the Eclipse IDE using a group of 24 subjects.

Finally, in Chapter 7 we revisit our research questions, and evaluate the
extent to which we have succeeded in answering them.

1.6 Origin of Chapters

The core chapters in this thesis are directly based on refereed publications
and contain a certain degree of redundancy to ensure that they remain self-
contained. In each chapter, the author of this thesis is responsible for most of
the effort involved in implementing the approach (unless stated otherwise),
executing the experiments, and writing the text.
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Chapter 2 This chapter is based on our publication in the IEEE Transactions
on Software Engineering (TSE) in 2009, and is referenced as (Cornelissen
et al., 2009a).

Chapter 3 This chapter is a significant extension of our publication in the Pro-
ceedings of the 11

th European Conference on Software Maintenance and
Reengineering (CSMR) in March 2007, referenced as Cornelissen et al.
(2007b), and has been extended with work conducted with M.Sc. stu-
dent Voets (2008).

Chapter 4 This chapter is based on our publication in the Proceedings of the
24

th International Conference on Software Maintenance (ICSM) in Octo-
ber 2008, referenced as Cornelissen et al. (2008a).

Chapter 5 This chapter is based on our publication in the Journal of Systems &
Software (JSS) in December 2008, and is referenced as Cornelissen et al.
(2008b). Earlier versions of this work appeared in the Proceedings of
the 15

th International Conference on Program Comprehension (ICPC),
cited as Cornelissen et al. (2007a), and in the Proceedings of the 4

th

International Workshop on Visualizing Software for Understanding &
Analysis (VISSOFT), cited as Holten et al. (2007), in June 2007. Credit
for the tool implementation goes to Danny Holten.

Chapter 6 This chapter is based on our publication in the 17
th International

Conference on Program Comprehension (ICPC) in May 2009, and is ref-
erenced as Cornelissen et al. (2009b).

Furthermore, our research has resulted in the following publications that are
not explicitly included in this thesis:

• Dynamic Analysis Techniques for the Reconstruction of Architectural
Views. In Proceedings of the 14th Working Conference on Reverse Engineering
(WCRE), Doctoral Symposium, October 2007, referenced as Cornelissen
(2007).

• Visualizing Similarities in Execution Traces. In Proceedings of the 3rd Work-
shop on Program Comprehension through Dynamic Analysis (PCODA), October
2007, referenced as Cornelissen and Moonen (2007).

• Aiding in the Comprehension of Testsuites. In Proceedings of the 2nd Work-
shop on Program Comprehension through Dynamic Analysis (PCODA), October
2006, referenced as Cornelissen et al. (2006).

• Identification of Variation Points using Dynamic Analysis. In Proceedings
of the 1st Workshop on Reengineering towards Product Lines (R2PL), November
2005, referenced as Cornelissen et al. (2005).
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Chapter

2

A Survey of Program
Comprehension through Dynamic
Analysis?

Program comprehension is an important activity in software maintenance, as
software must be sufficiently understood before it can be properly modified. The
study of a program’s execution, known as dynamic analysis, has become a com-
mon technique in this respect and has received substantial attention from the re-
search community, particularly over the last decade. These efforts have resulted in
a large research body of which currently there exists no comprehensive overview.
This chapter reports on a systematic literature survey aimed at the identification
and structuring of research on program comprehension through dynamic analy-
sis. From a research body consisting of 4,795 articles published in 14 relevant
venues between July 1999 and June 2008 and the references therein, we have
systematically selected 172 articles and characterized them in terms of four main
facets: activity, target, method, and evaluation. The resulting overview offers
insight in what constitutes the main contributions of the field, supports the task
of identifying gaps and opportunities, and has motivated our discussion of sev-
eral important research directions that merit additional consideration in the near
future.

2.1 Introduction

One of the most important aspects of software maintenance is to under-
stand the software at hand. Understanding a system’s inner workings implies
studying such artifacts as source code and documentation in order to gain a
sufficient level of understanding for a given maintenance task. This program
comprehension process is known to be very time-consuming, and it is reported
that up to 60% of the software engineering effort is spent on understand-
ing the software system at hand (Fjeldstad and Hamlen, 1979; Corbi, 1989;
Pigoski, 1997).

Dynamic analysis, or the analysis of data gathered from a running pro-
gram, has the potential to provide an accurate picture of a software system
because it exposes the system’s actual behavior. This picture can range from
class-level details up to high-level architectural views (Richner and Ducasse,
1999; Walker et al., 1998; Schmerl et al., 2006). Among the benefits over static

?This chapter is based on our publication in the IEEE Transactions on Software Engineering
in 2009 (Cornelissen et al., 2009a). It is co-authored by Andy Zaidman, Arie van Deursen, Leon
Moonen, and Rainer Koschke.



analysis are the availability of runtime information and, in the context of
object-oriented software, the exposure of object identities and the actual reso-
lution of late binding. A drawback is that dynamic analysis can only provide
a partial picture of the system, i.e., the results obtained are valid for the sce-
narios that were exercised during the analysis.

Dynamic analyses typically comprise the analysis of a system’s execution
through interpretation (e.g., using the Virtual Machine in Java) or instrumen-
tation, after which the resulting data is used for such purposes as reverse
engineering and debugging. Program comprehension constitutes one such
purpose, and over the years, numerous dynamic analysis approaches have
been proposed in this context, with a broad spectrum of different techniques
and tools as a result.

The existence of such a large research body on program comprehension
and dynamic analysis necessitates a broad overview of this topic. Through a
characterization and structuring of the research efforts to date, existing work
can be compared and one can be assisted in such tasks as finding related
work and identifying new research opportunities. This has motivated us to
conduct a systematic survey of research literature that concerns the use of
dynamic analysis in program comprehension contexts.

In order to characterize the articles of interest, we have first performed an
exploratory study on the structure of several articles on this topic. This study
has led us to decompose typical program comprehension articles into four
facets:

• The activity describes what is being performed or contributed [e.g., view
reconstruction or tool surveys].

• The target reflects the type of programming language(s) or platform(s) to
which the approach is shown to be applicable [e.g., legacy or web-based
systems].

• The method describes the dynamic analysis methods that are used in con-
ducting the activity [e.g., filtering or concept analysis].

• The evaluation outlines the manner(s) in which the approach is validated
[e.g., industrial studies or controlled experiments].

Note that the goal of an article is captured in the activity facet.
Within each facet one can distinguish a series of generic attributes: the ex-

amples given above (in brackets) are in fact some of the attributes that we use
in our framework. With this attribute framework, the papers under study can
be characterized in a comprehensive fashion.

The goal of our survey is the systematic selection and characterization of
literature that concerns program comprehension through dynamic analysis.
Based on the four facets mentioned above, we derive attribute sets to charac-
terize the articles of interest by following a structured approach that involves
four main phases and two pilot studies. While our initial focus is on a se-
lection of 14 relevant venues and on the last decade, we include additional
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literature by following the references therein. The resulting overview offers
insight in what constitutes the main contributions of the field and supports
the task of identifying gaps and opportunities. We discuss the implications of
our findings and provide recommendations for future work. Specifically, we
address the following research questions:

1. Which generic attributes can we identify to characterize the work on
program comprehension through dynamic analysis?

2. How is the attention for each of these attributes distributed across the
relevant literature?

3. How are each of the main activities typically evaluated?

4. Which recommendations on future directions can we distill from the
survey results?

Section 2.2 presents an introduction on dynamic analysis for program com-
prehension. The protocol that lies at the basis of our survey is outlined in
Figure 2.1, which distinguishes four phases that are described in Sections 2.3
through 2.6. Section 2.7 evaluates our approach and findings, and in Sec-
tion 2.8 we conclude with a summary of the key contributions of this chapter.

2.2 Program Comprehension through Dynamic Anal-
ysis

To introduce the reader to the field of program comprehension through dy-
namic analysis, we first present a historical overview of the literature in the
field, in which we distinguish between early literature and research conducted
in the last decade. In doing so, we employ the definitions of program compre-
hension and dynamic analysis as provided in the introduction of this thesis
in Chapter 1. We then motivate the need to perform a literature survey.

2.2.1 Early research

From a historical perspective, dynamic analysis was initially used for debug-
ging, testing and profiling. While the purpose of testing is the verification
of correctness and while profiling is used to measure (and optimize) perfor-
mance, debugging is not used to merely locate faults, but also to understand
the program at hand.

As programs became larger and more complex, the need to understand
software became increasingly important. Originating from the discipline of
debugging, the use of dynamic analysis for program comprehension purposes
steadily gained more interest. As program comprehension is concerned with
conveying (large amounts of) information to humans, the use of visualization
attracted considerable attention.
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Our study of this field showed that the first paper that can be labeled as
“program comprehension through dynamic analysis” can be traced back to as
early as 1972, when Biermann and Feldman synthesized finite state machines
from execution traces (Biermann, 1972). (While their paper is not about re-
verse engineering, it does concern the creation of abstracted models from
runtime behavior.) Since then, this type of research has steadily gained mo-
mentum, resulting in several important contributions throughout the 1980s
and 1990s, which we summarize below.

In 1988, Kleyn and Gingrich (1988) proposed structural and behavioral
views of object-oriented programs. Their tool, called TraceGraph, used trace
information to animate views of program structures.

Five years later, De Pauw et al. (1993, 1994, 1998) started their extensive
(and still on-going) research on program visualization, introducing novel views
that include matrix visualizations, and the use of “execution pattern” nota-
tions to visualize traces in a scalable manner. They were among the first
to reconstruct interaction diagrams (Jacobson, 1992) from running programs,
and their work has later resulted in several well-known tools, most notably
Jinsight and the associated Eclipse plug-in, TPTP1.

Wilde and Scully (1995) pioneered the field of feature location in 1995 with
their Software Reconnaissance tool. Feature location concerns the establish-
ment of relations between concepts and source code, and has proven a pop-
ular research interest to the present day. Wilde et al. continued the research
in this area in the ensuing years with a strong focus on evaluation (Wilde and
Casey, 1996; Wilde et al., 2001, 2003). At the same time, Lange and Nakamura
(1995b,a) integrated static and dynamic information to create scalable views
of object-oriented software in their Program Explorer tool.

Another visualization was presented by Koskimies and Mössenböck (1996)
in 1996, involving the reconstruction of scenario diagrams from execution
traces. The associated tool, called Scene, offers several abstraction techniques
to handle the information overload. Sefika et al. (1996) reasoned from a higher
level of abstraction in their efforts to generate architecture-oriented visualiza-
tions.

In 1997, Jerding et al. proposed their well-known ISVis tool to visualize
large execution traces (Jerding et al., 1997; Jerding and Rugaber, 1997). Two
linked views were offered: a continuous sequence diagram, and the “infor-
mation mural” (Jerding and Stasko, 1998): a dense, navigable representation
of an entire trace.

Walker et al. (1998) presented their AVID tool a year later, which visualizes
dynamic information at the architectural level. It abstracts the number of
runtime objects and their interactions in terms of a user-defined, high-level
architectural view (cf. Reflexion (Murphy et al., 2001)).

Finally, in 1999, Ball (1999) introduced the concept of frequency spectrum
analysis. He showed how the analysis of frequencies of program entities in
execution traces can help software engineers decompose programs and iden-
tify related computations. In the same year, Richner and Ducasse (1999) used

1The Eclipse Test & Performance Tools Platform Project, http://www.eclipse.org/tptp/
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static and dynamic information to reconstruct architectural views. They con-
tinued this work later on (Richner and Ducasse, 2002), with their focus shifting
to the recovery of collaboration diagrams with Prolog queries in their Collab-
oration Browser tool.

2.2.2 Research in the last decade

Around the turn of the millennium, we witness an increasing research effort
in the field of program comprehension through dynamic analysis. The main
activities in existing literature were generally continued, i.e., there do not
seem to have emerged fundamentally new subfields. Due to the sheer size
of the research body of the last decade, we limit ourselves to a selection of
notable articles and discuss them in terms of their activities.

As program comprehension is primarily concerned with conveying infor-
mation to humans, the use of visualization techniques is a popular approach
that crosscuts several subfields.

One such purpose is trace analysis. A popular visualization technique in this
respect is the UML sequence diagram, used by (e.g.) De Pauw et al. (2001),
Systä et al. (2001), and Briand et al. (2006). Most of these approaches offer
certain measures to address scalability issues, such as metrics and pattern
summarization. Popular trace compaction techniques are offered by Reiss
and Renieris (2001) and by Hamou-Lhadj et al. (Hamou-Lhadj et al., 2004;
Hamou-Lhadj and Lethbridge, 2004, 2006).

From a higher level perspective, there have been several approaches to-
ward design and architecture recovery. Among these efforts are influential articles
by Heuzeroth et al. (2002, 2003), who combine static and dynamic analyses
to detect design patterns in legacy code. Also of interest is the work on ar-
chitecture reconstruction by Riva (Riva and Rodriguez, 2002; Riva and Yang,
2002), and the DiscoTect tool that constructs state machines from event traces
in order to generate architectural views (Yan et al., 2004; Schmerl et al., 2006).

Another portion of the research body can be characterized as the study
of behavioral aspects. The aforementioned work by Heuzeroth et al. analyzes
running software by studying interaction patterns. Other notable approaches
include a technique by Koskinen et al. (2006), who use behavioral profiles
to illustrate architecturally significant behavioral rules, and an article by Cook
and Du (2005) in which thread interactions are exposed in distributed systems.
Furthermore, recently there has been considerable effort in the recovery of
protocols (Quante and Koschke, 2007), specifications (Lo et al., 2008), and
grammars (Walkinshaw et al., 2008).

The final subfield that we distinguish is feature analysis. While in this context
there exist fundamental analyses of program features such as those by Greevy
et al. (2005, 2006a) and by Kothari et al. (2007), particularly the activity of
feature location has become increasingly popular since the aforementioned
work by Wilde and Scully (1995). Influential examples include techniques
by Wong et al. (2000) (using execution slices), Eisenbarth et al. (2003) (using
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formal concept analysis), Antoniol and Guéhéneuc (2006) (through statistical
analyses), and Poshyvanyk et al. (2007) (using complementary techniques).

2.2.3 Structuring the field

The increasing research interest in program comprehension and dynamic anal-
ysis has resulted in many techniques and publications, particularly in the last
decade. To keep track of past and current developments and to identify future
directions, there is need for an overview that structures the existing literature.

Currently, there exist several literature surveys on subfields of the topic at
hand. In 2004, Hamou-Lhadj and Lethbridge (2004) discussed eight trace ex-
ploration tools in terms of three criteria: trace modeling, abstraction level, and
size reduction. In the same year, Pacione et al. (2003) evaluated five dynamic
visualization tools on a series of program comprehension tasks. He later ex-
tended this selection in his Ph.D. thesis with 14 more tools and discussed
a series of methods for evaluating such tools and techniques(Pacione, 2005).
Greevy’s Ph.D. thesis from 2007 summarized several directions within pro-
gram comprehension, with an emphasis on feature analysis (Greevy, 2007).
Also from 2007 is a study by Reiss (2007), who described how visualization
techniques have evolved from concrete representations of small programs to
abstract representations of larger systems.

However, the existing surveys have several characteristics that limit their
usability in structuring the entire research body on program comprehension
and dynamic analysis. First, they do not constitute a systematic approach
because no explicit literature identification strategies and selection criteria are
involved, which hinders the reproducibility of the results. Second, the surveys
do not utilize common evaluation or characterization criteria, which makes it
difficult to structure their collective outcomes. Third, their scopes are rather
restricted, and do not represent a broad perspective (i.e., all types of program
comprehension activities).

These reasons have inspired us to conduct a systematic literature survey
on the use of dynamic analysis for program comprehension. In doing so, we
follow a structured process consisting of four phases. Figure 2.1 shows the
tasks involved, which are discussed in the following sections.

2.3 Article Selection

This section describes the first phase, which consists of a pilot study, an initial
article selection procedure, and a reference checking phase.

2.3.1 Initial article selection

Since program comprehension is a broad subject that has potential overlaps
with such fields as debugging, a clear definition of the scope of our survey is
required.
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Figure 2.1 Overview of the systematic survey process.

Identification of research

Search strategies in literature surveys often involve automatic keyword sear-
ches (e.g., Beecham et al. (2008); Dyba and Dingsøyr (2008)). However, Br-
ereton et al. (2007) recently pointed out that (1) current software engineering
digital libraries do not provide good support for the identification of relevant
research and the selection of primary studies, and that (2) in comparison to
other disciplines, the standard of abstracts in software engineering publica-
tions is poor. The former issue exists because in software engineering and
computer science, keywords are not consistent across different venues and
organizations such as the ACM and the IEEE. Moreover, the field of program
comprehension does not have a usable keyword standard.

Similar to Sjøberg et al. (2005), we therefore employ an alternative search
strategy that involves the manual selection of articles from a series of highly
relevant venues.

Given our context, we consider the five journals and nine conferences in
Table 2.1 to be the most closely related to program comprehension, software
engineering, maintenance, and reverse engineering. Our focus is primarily on
the period of July 1999 to June 2008; the initial research body thus consists of
4,795 articles that were published at any of the relevant venues as a full paper
or a short paper.

Selection criteria

Against the background of our research questions, we define two selection
criteria in advance that are to be satisfied by the surveyed articles:
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Type Acronym Description Total no. art.
July 1999 -
June 2008

Journal TSE IEEE Transactions on Softw. Eng. 583

TOSEM ACM Transactions on Softw. Eng. & Methodology 113

JSS Journal on Systems & Softw. 965

JSME Journal on Softw. Maintenance & Evolution 159

SP&E Softw. – Practice & Experience 586

Conf. ICSE Int. Conf. on Softw. Eng. 429

ESEC/FSE European Softw. Eng. Conf. / Symposium on the
Foundations of Softw. Eng.

240

FASE Int. Conf. on Fundamental Approaches to Softw.
Eng.

198

ASE Int. Conf. on Automated Softw. Eng. 233

ICSM Int. Conf. on Softw. Maintenance 413

WCRE Working Conf. on Reverse Eng. 254

IWPC/ICPC Int. Workshop/Conf. on Program Comprehen-
sion

218

CSMR European Conf. on Softw. Maintenance and
Reeng.

270

SCAM Int. Workshop/Working Conf. on Source Code
Analysis and Manipulation

134

Table 2.1 Venues involved in the initial article selection.

1. The article exhibits a profound relation to program comprehension. The
author(s) must state program comprehension to be a goal, and the eval-
uation must demonstrate the purpose of the approach from a program
comprehension perspective. This excludes such topics as debugging and
performance analysis.

2. The article exhibits a strong focus on dynamic analysis. For this criterion
to be satisfied, the article must utilize and evaluate one or more dynamic
analysis techniques, or concern an approach aimed at the support of
such techniques (e.g., surveys).

The suitability of the articles is determined on the basis of these selection
criteria, i.e., through a manual analysis of the titles, abstracts, keywords, and
(if in doubt) conclusions (Brereton et al., 2007); borderline cases are resolved
by discussion amongst the authors of this chapter.2

2.3.2 Selection pilot study

While the selection criteria being used may be perfectly understandable to the
authors of this survey, they could be unclear or ambiguous to others. Follow-
ing the advice of Kitchenham (2004) and Brereton et al. (2007), we therefore
conduct a pilot study in advance to validate our selection approach against the
opinion of domain experts. The outcomes of this study are used to improve
the actual article selection procedure that is performed later on.

2In this chapter, “the authors” actually refers to the authors of the publication associated with
this chapter (Cornelissen et al., 2009a).
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To conduct the pilot study, the first two authors randomly pre-selected
candidate articles, i.e., articles from relevant venues and published between July
1999 and June 2008, of which the titles and abstracts loosely suggest that they
are relevant for the survey. Note that this selection also includes articles that
are beyond the scope of the survey and should be rejected by the raters.3

The domain experts that serve as raters in the pilot are the last three au-
thors of this survey. Since they were involved in neither the article selection
procedure nor in the design thereof, they are unbiased subjects with respect
to this study.

Each of the subjects is given the task of reading these articles in detail and
identifying, on the basis of the selection criteria defined above, the articles
that they feel should be included.

The outcomes are then cross-checked with those of the first two authors,
who designed the selection procedure. Following these results, any discrep-
ancies are resolved by discussion and the selection criteria are refined when
necessary.

Pilot study results

The results of the pilot study were favorable: out of the 30 article selections
performed, 29 yielded the same outcomes as those produced by the selection
designers. These figures suggest that our selection criteria are largely unam-
biguous. The article that was assessed differently by a one subject concerned
the field of impact analysis, which, following a discussion on its relation to
program comprehension, was considered beyond the scope of this survey.

2.3.3 Reference checking

As previously mentioned, the initial focus of this survey is on selected venues
in the period of July 1999 to June 2008. To cover articles of interest published
before that time or in alternative venues, we (non-recursively) extend the ini-
tial selection with relevant articles that have been cited therein, regardless of
publication date and venue but taking the selection criteria into account. This
procedure minimizes the chance of influential literature being missed, and
results in a final article selection.

2.3.4 Article selection results

The initial selection procedure resulted in 127 relevant articles that were pub-
lished between July 1999 and June 2008 in any of the 14 venues in Table 2.1.
The reference checking yielded another 45 articles (and 17 additional venues),
which were subsequently included in the selection. This resulted in a research
body that comprises 172 articles. The full listing of these articles is available
online4 and in a technical report (Cornelissen et al., 2008c). Figure 2.2 shows

3This latter characteristic intentionally makes the task more challenging for the raters.
4http://swerl.tudelft.nl/bin/view/Main/ProgCompSurvey
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Figure 2.2 Distribution of the final article selection across the different venues.
Bars in black denote journals; grey bars denote conferences.

the distribution of all surveyed articles across the venues from which at least
three articles were selected.

2.4 Attribute Framework

As shown in Figure 1, the step after identifying the papers of interest is the
construction of an attribute framework that can be used to characterize the
selected papers. In this section we describe the process we used to arrive at
such a framework, as well as the resulting framework.

2.4.1 Attribute identification

As stated in Section 2.1, our framework distinguishes four facets of interest:
the activity performed, the type of target system analyzed, the method developed
or used, and the evaluation approach used. The goal of our attribute identi-
fication step is to refine each of these four facets into a number of specific
attributes.

In a first pass, we study all papers, and write down words of interest that
could be relevant for a particular facet (e.g., “survey”, or “feature analysis”
for the activity facet). This data extraction task is performed by the first two
authors of this survey. The result after reading all articles is a (large) set of
initial attributes.
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Note that to reduce the reviewer bias, we do not assume to know any
attributes or keywords in advance.

2.4.2 Attribute generalization

After the initial attribute sets have been identified, we generalize them in or-
der to render their number manageable and to improve their reusability. This
is achieved through a discussion between the first three authors of this survey.
Regarding the target facet, for example, the attributes “Java” and “Smalltalk”
can intuitively be generalized to “object-oriented languages”. After this data
synthesis task, the resulting attribute sets are documented.

2.4.3 Resulting attribute framework

The use of our attribute framework on the article selection has resulted in
seven different activities, six targets, 13 methods, and seven evaluation types.
Table 2.2 lists the attributes and their descriptions.

The activity facet distinguishes between five established subfields within pro-
gram comprehension: design and architecture recovery, visualization, feature
analysis, trace analysis, and behavioral analysis. Each of these five attributes
encapsulates a series of closely related activities, of which some were scarcely
found: for example, very few authors propose new dynamic slicing tech-
niques5, and only a handful of articles aim at the reconstruction of state ma-
chines for program comprehension. In addition to the five major subfields, we
have defined attributes for surveys and general purpose activities. The latter
attribute denotes a broad series of miscellaneous activities that are otherwise
difficult to generalize, e.g., solutions to the year 2000 problem, new dynamic
slicing techniques, or visualizations with no specific focus.

The target facet contains six different types of programming platforms and
languages. While we found it interesting to discern “legacy” software, this
turned out to be difficult in practice, as such a classification depends greatly
on one’s perspective. For instance, a legacy system could have been written in
Fortran or COBOL, lack any documentation, or simply be over 20 years old;
on the other hand, it could also be a modern system that is simply difficult to
maintain. Therefore, with respect to the legacy attribute, we rely on the type
of the target platform as formulated by the authors of the papers at hand.
Other targets include procedural languages, object-oriented languages, web
applications, distributed systems, and software that relies heavily on multi-
threading.

The method facet is the most versatile of facets, and contains 13 different
techniques. Note that we have chosen to distinguish between standard and
advanced visualizations: the former denotes ordinary, widely available tech-
niques that are simple in nature, whereas the latter represents more elabo-
rate approaches that are seldomly used (e.g., OpenGL) or simply not publicly

5There exist numerous papers on dynamic slicing, but we found only two that use it in a
program comprehension context.
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Facet Attribute Description
Activity survey a survey or comparative evaluation of existing approaches

that fulfill a common goal.
design/arch. the recovery of high-level designs or architectures.
views the reconstruction of specific views, e.g., UML sequence di-

agrams.
features the analysis of features, concepts, or concerns, or relating

these to source code.
trace analysis the understanding or compaction of execution traces.
behavior the analysis of a system’s behavior or communications, e.g.,

protocol or state machine recovery.
general gaining a general, non-specific knowledge of a program.

Target legacy legacy software, if classified as such by the author(s).
procedural programs written in procedural languages.
oo programs written in object-oriented languages, with such

features as late binding and polymorphism.
threads multithreaded systems.
web web applications.
distributed distributed systems.

Method vis. (std.) standard, widely used visualization techniques, e.g., graphs
or UML.

vis. (adv.) advanced visualization techniques, e.g, polymetric views or
information murals.

slicing dynamic slicing techniques.
filtering filtering techniques or selective tracing, e.g., utility filtering.
metrics the use of metrics.
static information obtained through static analyses, e.g., from

source code or documentation.
patt. det. algorithms for the detection of design patterns or recurrent

patterns.
compr./summ. compression, summarization, and clustering techniques.
heuristics the use of heuristics, e.g., probabilistic ranking or sampling.
fca formal concept analysis.
querying querying techniques.
online online analysis, as opposed to post mortem (trace) analysis.
mult. traces the analysis or comparison of multiple traces.

Evaluation preliminary evaluations of a preliminary nature, e.g., toy examples.
regular evaluations on medium-/large-scale open source systems

(10K+ LOC) or traces (100K+ events).
industrial evaluations involving software, or people, from industry.
comparison comparisons of the authors’ approach with existing solu-

tions.
human subj. the involvement of human subjects, i.e., controlled experi-

ments & questionnaires.
quantitative assessments of quantitative aspects, e.g., speed, recall, or

trace reduction rate.
unknown/none no evaluation, or evaluations on systems of unspecified size

or complexity.

Table 2.2 Attribute framework.

available (e.g., information murals (Jerding and Stasko, 1998)). The remaining
attributes represent a variety of largely orthogonal techniques that are often
used in conjunction with others.

The evaluation facet distinguishes between seven types of evaluations. The
“preliminary” attribute refers to early evaluations, e.g., on relatively small
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programs or traces. By contrast, the “regular” predicate indicates a ma-
ture validation that involves medium- to large-sized systems (typically open
source) or answers actual research questions. Additionally, we have defined
an attribute that captures case studies of an industrial nature: these typically
relate to commercial software, legacy systems, or the involvement of actual
developers for evaluation purposes. Furthermore, comparisons refer to eval-
uation types in which an approach is compared to existing solutions side-by-
side; the involvement of human subjects measures the impact of an approach
from a cognitive point of view; and quantitative evaluations are aimed at the
assessment of various quantifiable aspects of an approach (e.g., the reduction
potential of a trace reduction technique).

2.5 Article Characterization

The third phase comprises the assignment of attributes to the surveyed arti-
cles, and the use of the assignment results to summarize the research body.

2.5.1 Attribute assignment

Using our attribute framework from the previous section, we process all arti-
cles and assign appropriate attribute sets to them. These attributes effectively
capture the essence of the articles in terms of the four facets, and allow for a
clear distinction between (and comparison of) the articles under study. The
assignment process is performed by the first two authors of this survey.

When assigning attributes to an article, we do not consider what the au-
thors claim to contribute, but rather judge for ourselves. For example, papers
on sequence diagram reconstruction are not likely to recover high-level archi-
tectures; and we consider an approach to target multithreaded systems if and
only if this claim is validated through an evaluation or, at the very least, a
plausible discussion.

2.5.2 Summarization of similar work

Certain articles might be extensions to prior work by the same authors. Com-
mon examples are journal publications that expand on earlier work published
at conferences or workshops, e.g., by providing extra case studies or by em-
ploying an additional method, while maintaining the original context. While
in our survey all involved articles are studied and characterized, in this report
they are summarized to reduce duplication in frequency counts.

We summarize two or more articles (from the same authors) if they con-
cern similar contexts and (largely) similar approaches. This is achieved by
assigning the union of their attribute subsets to the most recent article, and
discarding the other articles at hand. The advantage of this approach is that
the number of articles remains manageable at the loss of virtually no infor-
mation. The listing and characterization of the discarded articles are available
in the aforementioned technical report and website.
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2.5.3 Characterization pilot study
As previously mentioned, the attributes were defined and documented by the
first two authors of this survey. Since the actual attribute assignment proce-
dure is performed by the same authors, there is a need to verify the quality
of the framework because of reviewer bias: the resulting attributes (and by
extension, the resulting article characterization) may not be proper and un-
ambiguous. In other words, since the process is subject to interpretation,
different reviewers may envision different attribute subsets for one and the
same article.

We therefore conduct another pilot study to assess the attribute quality
and the attribute assignment procedure. The approach is similar to that of the
first pilot. From the final article selection, a subset of five articles are randomly
picked and given to the domain experts (the last three authors of this survey),
along with (an initial version of) the attribute framework in Table 2.2.

The task involves the use of the given framework to characterize each of the
five articles. A comparison of the results with those of the first two authors
again yields a measure of the interrater agreement, upon which we discuss
any flaws and strengthen the attribute sets and their descriptions.

2.5.4 Characterization pilot results & implications
The results of the characterization pilot resulted in generally high agreement
on the activity, target, and evaluation facets. Most disagreement occurred
for the method facet, which is also the one with the most attributes. This
disagreement can be partly attributed to the fact that one rater tried to assign
the single most suitable attribute only, whereas the others tried to assign as
many attributes as possible. In the ultimate attribute assignments (discussed
in the next section), we adopt the latter strategy: for each article, we select all
attributes that apply to the approach at hand.

In several cases, the action taken upon interrater disagreement was to ad-
just the corresponding attributes or their descriptions. These adjustments
have already been incorporated in Table 2.2. The following measures were
taken:

Activity

• It was unclear what constitutes a framework, and whether the associated
attribute covers contributions such as IDEs. We therefore extended the
“framework” attribute to include models, environments, platforms, and
architectures.

• At the request of the raters, the “communication” attribute was renamed
to “behavior” and extended to include the recovery of state machines.

Target

• The raters had difficulty in assigning the “legacy” attribute, as the term
“legacy software” is rather vague. For this reason, in each article we
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decided to rely on the classification of the target platform (legacy or
non-legacy) as specified by the author(s).

Method

• The “trace comparison” attribute was renamed to “multiple traces”, thus
broadening its scope as it now covers all techniques that involve two or
more traces.

• Whereas formerly there were distinct attributes for compression, merg-
ing, and clustering techniques, these are now covered by the newly cre-
ated “compression/summarization” attribute since they are often hard
to distinguish.

• Similarly, the distinct attributes for (a priori) “selective tracing” and (a
posteriori) “filtering” were merged to “filtering”, as the difference is
generally subtle and largely dependent on the manner in which these
techniques are described by their authors.

• The description of the “online analysis” attribute was refined to prevent
this method from being confused with online approaches in machine
learning (often used in state machine recovery), in which “online” de-
notes so-called active analysis algorithms.

Evaluation

• The former “performance” attribute was renamed to “quantitative anal-
ysis” to prevent confusion with software performance analysis, and was
adjusted such that it not merely concerns measurements in terms of
speed but also in such terms as recall and precision.

• The “human subjects” attribute was extended to include questionnaires.

• The distinction between open source and industrial studies was strength-
ened through the addition of the “open source” property to the “regu-
lar” attribute.

2.5.5 Measuring attribute coincidence

To further evaluate our attribute framework, we analyze the degree to which
the attributes in each facet coincide. Against the background of our charac-
terization results, we examine if there are certain attributes that often occur
together, and whether such attributes in fact exhibit such an overlap that they
should be merged.

We measure this by determining for each attribute how often it coincides
with each of the other attributes in that facet. This results in a fraction between
0 and 1 for each attribute combination: 0 if they never coincide, and 1 if each
article that has the one attribute also has the other.
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2.5.6 Characterization results

The characterization and summarization of the 172 selected articles resulted in
an overview of 110 articles, shown in Tables A.2 through A.4 in Appendix A.
The second column denotes the number of underlying articles (if any) by the
same author; the third column indicates whether we could find a reference
to a publicly available tool in the article. In rare cases, none of our attributes
fitted a certain aspect of an article; in such cases the value for the facet at
hand can be considered “other”, “unknown”, or “none”. The characterization
of all 172 articles is available online and in the aforementioned technical report
(Cornelissen et al., 2008c); in the remainder of this survey, however, we talk
only in terms of the 110 summarized articles because they constitute unique
contributions.

As previously mentioned, in each article we have focused on its achieve-
ments rather than its claims. On several occasions the titles and abstracts
have proven quite inaccurate or incomplete in this respect. However, such
occasions were not necessarily to the disadvantage of the author(s) at hand:
for example, occasionally the related work section is of such quality that it
constitutes a respectable survey (e.g., Briand et al. (2006); Liu et al. (2007)).

The overview in Tables A.2 through A.4 serves as a useful reference when
seeking related work in particular subfields. For example, when looking for
literature on trace visualization, one need only identify the articles that have
both the “views” and the “trace analysis” attributes. In a similar fashion, one
can find existing work on (e.g.) the use of querying and filtering techniques
for architecture reconstruction, or learn how fellow researchers have assessed
the quantitative aspects of state machine recovery techniques.

Our attribute coincidence measurements yielded no extraordinary results:
while certain high fractions were found, none of these merited merges be-
tween the attributes involved because these attributes were obviously different
in nature. Table A.1 in Appendix A shows the coincidences for the attribute
combinations of which the fraction value exceeded 0.5.

Figure 2.3 shows for each facet the distribution of the attributes across the
summarized articles, which we discuss in the next section.

2.6 Avenues for Future Research

Given the article selection and attribute assignments of Tables A.2 through A.4,
our final survey step (see Figure 2.1) consists of interpreting our findings:
what patterns can we recognize, what explanations can we offer, which lessons
can we learn, and what avenues for further research can we identify? To con-
duct this step, we analyze the tables, looking for the most and least common
attributes, and for interesting attribute combinations. In this section, we offer
a selection of the most important outcomes of this analysis.
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attribute frequency
views 64
general 45
features 29
behavior 19
trace 19
design/arch. 13
survey 9
oo 75
procedural 29
threads 11
web 8
distributed 7
legacy 7
vis. (std.) 59
filtering 57
static 55
compr./summ. 38
metrics 36
patt. det. 29
vis. (adv.) 25
querying 25
mult.traces 24
heuristics 23
slicing 10
fca 5
online 5
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Figure 2.3 Attribute distribution in each facet across the summarized articles.

2.6.1 Most common attributes

Understanding the most common attributes (as displayed in Figure 2.3) gives
an impression of the most widely investigated topics in the field.

Starting with the first facet, the activity, we see that the view attribute is
the most common. This is not surprising as program comprehension deals
with conveying information to humans, and particularly in dynamic analysis
the amounts of information are typically large (Zaidman and Demeyer, 2004).
We also found many articles to concern general activities, i.e., miscellaneous
purposes that could not be generalized to a major subfield.

Moving on to the next facet, object-oriented software turns out to be the
most common target in the research body: 75 out of the 110 articles propose
techniques for, or evaluate techniques on, systems written in (predominantly)
Java or Smalltalk. We are not sure why this is the case. Reasons might include
ease of instrumentation, the suitability of certain behavioral visualizations
(e.g., UML sequence diagrams) for OO systems, the (perceived) complexity
of OO applications requiring dynamic analysis, or simply the fact that many
researchers in this area have a strong interest in object-orientation.

Regarding the third facet, the method, we observe that standard visualiza-
tions occur more than twice as often as advanced ones. This may have sev-
eral reasons, among which are the accessibility of standard tools (for graphs,
sequence diagrams, and so forth) and possibly the belief that traditional visu-
alizations should suffice in conjunction with efficient abstractions techniques
(e.g., filtering). Furthermore, we observe that half of the surveyed articles em-
ploy static information. This is in accordance with Ernst’s plea for a hybrid
approach in which static and dynamic analysis are combined (Ernst, 2003).

Finally, within the evaluation facet, we note that regular evaluations (typ-
ically using open-source case studies) are the most typical, and that compar-
isons, industrial case studies, and involvements of human subjects (discussed
later on) are rather uncommon. Furthermore, while the assessment of a tech-
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nique’s quantitative aspects is not very commonplace, this evaluation type
does appear to be gaining momentum, as more than half (18 out of 30) such
evaluations were carried out in the last three years. Interestingly, more than
half of these evaluations involved the feature location activity; this is further
discussed in Section 2.6.5.

Paraphrasing, one might say that the most popular line of research has
been to work on dynamic visualization of open-source object-oriented sys-
tems. In the remainder of this section we will look at some of the less popular
topics, analyze what the underlying causes for their unpopularity might be,
and suggest areas for future research.

2.6.2 Least common activities

In the activity facet, surveys and architecture reconstruction occurred least.
As discussed in Section 2.2.3, the fact that a satisfactory survey of the field

was not available was the starting point for our research, so this did not come
as a surprise. Nevertheless, nine papers are labeled as survey, also since we
marked papers containing elaborate discussions of related work as surveys
(as explained in Section 2.5.6).

In our survey are 13 papers dealing with the use of dynamic analysis to
reconstruct software architectures and designs. Some of these papers make
use of fairly general traces capturing, e.g., method calls, from which occur-
rences of design patterns such as the Observer or Mediator can be identified
(Heuzeroth et al., 2003).

Another line of research makes use of architecture-aware probing, and aims
at visualizing system dynamics in terms of architectural abstractions, such as
connectors, locks, dynamically loaded components, client-server configura-
tions, and so on (Sefika et al., 1996; Schmerl et al., 2006; Israr et al., 2007).
While there are not many papers addressing these topics, the initial results do
suggest that successful application is possible. We expect that the importance
of this field will grow: for complex adaptive systems or dynamically orches-
trated compositions of web services, dynamic information may be the only
way to understand the runtime architecture.

2.6.3 Least common targets

Web applications

We were surprised that web applications were encountered rather sporad-
ically as a target platform. While traditional web sites consisting of static
HTML pages can be easily processed using static analysis alone, modern web
applications offer rich functionality for online banking, shopping, e-mailing,
document editing, and so on. The logic of these applications is distributed
across the browser and the web server, and written using a range of technolo-
gies (such as PHP, Javascript, CSS, XSLT, etc.). While this severely complicates
static analysis, dynamic analysis might still be possible, for example by mon-
itoring the HTTP traffic between the client and the server.
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One complicating factor might be that web applications require user inter-
action, and hence, user input. Several solutions to this problem exist, such
as the use of webserver log files of actual usage, or the use of capture and
playback tools. Furthermore, techniques have been developed to analyze web
forms and to fill them in automatically based on a small number of default
values provided by the software engineer (Benedikt et al., 2002).

The growing popularity of Javascript in general and Ajax (Asynchronous
Javascript and XML) in particular, is another argument in favor of dynamic
analysis of web applications. With Javascript, events can be programmatically
attached to any HTML element. In this setting, even determining the seem-
ingly simple navigation structure of the web application can no longer be
done statically, as argued by Mesbah et al. (2008). To deal with this problem,
they propose a “crawler” capable of executing Javascript, identifying clickable
elements, and triggering clicks automatically: a solution that can also serve
as the starting point for dynamic analysis in which client-side logic is to be
executed automatically.

Distributed systems

As it turns out, the understanding of distributed systems has received little
attention in literature: no more than seven articles are concerned with this
target type. Such systems are, however, becoming increasingly popular, e.g.,
with the advent of service-orientation. Gold et al. (2004) paraphrase the core
issue as follows: “Service-oriented software lets organizations create new soft-
ware applications dynamically to meet rapidly changing business needs. As
its construction becomes automated, however, software understanding will
become more difficult”. Furthermore, distributed systems often behave differ-
ently than intended, because of unanticipated usage patterns that are a direct
consequence of their dynamic configurability (Moe and Carr, 2001). This in-
creases the need to understand these systems, and due to their heterogeneous
nature, dynamic analysis constitutes a viable approach.

Multithreaded applications

In recent years, multicore CPUs have become mainstream hardware and mul-
tithreading has become increasingly important. The evolution towards multi-
threaded software is in part evidenced by the foundation of the International
Workshop on Multicore Software Engineering (IWMSE), first held at ICSE in
2008: in the proceedings of this workshop it is stated by Pankratius et al.
(2008) that in the near future “every programmer will be confronted with
programming parallel systems”, and that in general “parallel components are
poorly understood”.

The importance of understanding multithreading behavior is not reflected
by the current research body: a total of 11 articles are explicitly targeted at
multithreaded applications. The use of dynamic analysis on such systems
has the important benefit that thread management and interaction can be un-
derstood at runtime. A problematic issue in multithreaded systems can be
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reproducing behavior: does replaying the same scenario result in the same
trace? An interesting route to deal with this is to explore the use of multiple
traces and suitable trace comparison techniques to highlight essential differ-
ences between traces. According to our findings, this is largely unexplored
territory: there are only few papers combining the multithreading and trace
comparison attributes in our tables.

Legacy systems

Legacy systems are often in need of a reverse engineering effort, because their
internals are poorly understood. Nevertheless, our survey shows that very
few papers explicitly mention legacy environments as their target, meaning
that dynamic analysis is rarely applied to legacy software systems. This can
be partly explained by (1) the fact that researchers do not have access to legacy
systems, (2) a lack of available instrumentation tools for legacy platforms, or
(3) the fact that instrumented versions of the application are difficult to deploy
and, subsequently, run. Another hindering factor is the difficulty of integrat-
ing the instrumentation mechanism into the legacy build process, which is
often heterogeneous, i.e., with several kinds of scripting languages in use,
and few conventions in place (Zaidman et al., 2006).

2.6.4 Least common evaluations

Industrial studies

In our survey we have distinguished between evaluations on industrial and
open-source systems. Industrial systems may differ from open-source systems
in terms of the way of working, size, complexity, and level of interaction
with other systems. Furthermore, industrial systems may share some of the
problems of legacy systems as just discussed (Demeyer et al., 2003).

We found industrial evaluations to be uncommon, with a total of 11 articles
involving industrial cases. Most of these are conducted within the context of
research projects with industrial partners, in which the industrial partners
have a particular need for reverse engineering.

We have also observed that the degree to which developers or maintain-
ers are involved in the validation is generally low, as their feedback is often
limited to answering several general questions, if given at all. This may be a
consequence of a lack of time on the part of the developers, or because the
industry is not fully aware of the potential benefits of dynamic analysis. This
may be resolved by familiarizing practitioners with the benefits, e.g., through
the development environment (IDE), as proposed by Röthlisberger et al. (2008)
who provide dynamic information during programming tasks.

Another impediment for industrial involvement in publications can be fear
for disclosing proprietary material. Apart from open discussions with man-
agement about the mutual interest, anonymizing traces or presenting aggre-
gated data only might be an option, although obfuscated traces will be even
harder to understand.
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Finally, a more technical obstacle is the lack of resources, be it memory
or processor cycles for the tracing mechanism or disk space for the stor-
age of execution traces. A potential solution to these problems is found in
lightweight tracing techniques (e.g., Reiss (2003b)) or capture/replay tech-
niques (e.g., Joshi and Orso (2007); Xu et al. (2007)).

Involvement of human subjects

In the field of program comprehension, an evaluation that involves human
subjects typically seeks to measure such aspects as the usability of a technique
in practice. The involvement of human subjects is important in this field
because it deals with conveying information to humans. Moreover, dynamic
analyses are particularly notorious for producing more information than can
be comprehended directly (Zaidman, 2006).

In spite of its importance, this type of evaluation was used in no more than
six articles. Bennett et al. (2008) use four experts and five graduate students to
assess the usefulness of reverse engineered UML sequence diagrams in nine
specific comprehension tasks. Quante (2008) reports on a controlled experi-
ment with 25 students that involves the use of “object process graphs” in a
program comprehension context. Röthlisberger et al. (2008) preliminarily as-
sess the added value of dynamic information in an IDE by having six subjects
conduct a series of tasks; the authors remain unclear as to the background
of the subjects and the nature of the tasks at hand. Hamou-Lhadj and Leth-
bridge (2006) report on a questionnaire in which the quality of a summarized
execution trace is judged by nine domain experts; however, no real compre-
hension tasks are involved. Finally, Wilde et al. (2003) and Simmons et al.
(2006) conduct experiments to assess the practical usefulness of different fea-
ture location techniques in legacy Fortran software and in a large 200 kLOC
system, respectively.

The design and execution of a controlled experiment is quite elaborate,
and requires a great deal of preparation and, preferably, a substantial number
of test subjects. Nonetheless, such efforts constitute important contributions
to the field of program comprehension and must therefore be encouraged,
particularly in case of (novel) visualizations. On a positive note, the fact that
three out of the six experiments mentioned above were conducted in 2008

could suggest that this type of evaluation is already gaining momentum.

Comparisons

Comparisons (or comparative evaluations) are similar to surveys in the sense
that the article at hand involves one or more existing approaches. The differ-
ence in terms of our attribute framework is that the authors of side-by-side
comparisons do not merely discuss existing solutions, but rather use them to
evaluate their own. Such a comparison can be more valuable than the evaluation
of a technique by itself through anecdotal evidence, as it helps to clarify where
there is an improvement over existing work.
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Our survey has identified a total of 12 comparative evaluations. The ma-
jority of these comparisons was conducted in the context of feature location.
As an example, Eaddy et al. (2008) discuss two recently proposed feature lo-
cation techniques, devise one of their own, and subject combinations of the
three techniques to a thorough evaluation. Similar approaches are followed
by Antoniol and Guéhéneuc (2006) and by Poshyvanyk et al. (2007); in the
same context, Wilde et al. (2003) offer a comparison between a static and a
dynamic technique.

Apart from the field of feature location, in which complementary tech-
niques have already proven to yield the best results, the degree to which
existing work is compared against is generally low. One can think of several
causes (and solutions) in this context.

First, it must be noted that work on program comprehension cannot always
be easily compared because the human factor plays an important role. The
aforementioned feature location example is an exception, since that activity
typically produces quantifiable results; Evaluations of qualitative nature, on
the other hand, may require hard to get domain experts or control groups, as
well as possibly subjective human interpretation and judgments.

Second, we have determined that only 14 out of the 110 articles offer pub-
licly available tools. The lack of available tooling is an important issue, as
it hinders the evaluation (and comparison) of the approaches by other re-
searchers. In our discussion of existing trace reduction techniques in Chap-
ter 4, for example, we resort to our own implementations, which may result
in interpretation errors (thus constituting a threat to the internal validity of
the experiments). We thus encourage researchers to make their tools available
online, and advocate the use of these tools to compare new solutions against.

Third, the comparison of existing approaches is hindered by the absence
of common assessment frameworks and benchmarks, which, as Sim et al.
(2003) observed, can stimulate technical progress and community building. In
the context of program comprehension through dynamic analysis, one could
think of using common test sets, such as execution trace repositories, and
common evaluation criteria, such as the precision and recall measures that
are often used in the field of feature location (e.g., Eaddy et al. (2008)). Also
of importance in this respect is the use of open-source cases to enable the
reproducibility of experiments.

We will discuss examples of the above in Chapter 4.

2.6.5 How activities are evaluated

In the historical overview in Section 2.2 we identified five main subfields in
program comprehension: feature analysis, visualization, trace analysis, de-
sign and architecture recovery, and behavioral analysis, which correspond to
the activity facet of our attribute framework. Here we consider these fields
from the perspective of the evaluation facet.

The literature on feature analysis mostly deals with feature location, i.e.,
relating functionality to source code. What is interesting is not only that this
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field has received significant attention from 1995 to the present day, but also
that comparative evaluations are a common practice in this field, as noticed in
Section 2.6.4. The introduction of common evaluation criteria (i.e., precision
and recall) may have contributed to this development. Furthermore, feature
analysis accounts for seven out of the 11 industrial evaluations identified in
this survey, and for four out of the six evaluations that involve human subjects.

Visualization is a rather different story: for reasons mentioned earlier, the
effectiveness of visualization techniques is more difficult to assess, which hin-
ders their comparison and their involvement in industrial contexts. Further-
more, there is still a lot of experimenting going on in this field with both
traditional techniques and more advanced solutions. As an example of the
former, consider the reverse engineering of UML sequence diagrams: this has
been an important topic since the earliest of program comprehension articles
(e.g., De Pauw et al. (1993); Koskimies and Mössenböck (1996)) and has only
recently been the subject of an actual user study (Bennett et al., 2008). In gen-
eral, the evaluation of visualizations through empirical studies is quite rare,
as are industrial studies in this context.

Execution trace analysis, and trace reduction in particular, has received
substantial attention in the past decade. This has seldomly resulted in indus-
trial studies and never in controlled experiments. Furthermore, while com-
parisons with earlier approaches are not very common either, Chapter 4 will
discuss our first efforts at the (quantitative) evaluation of existing reduction
techniques.

Finally, behavioral analysis and architecture recovery are somewhat dif-
ficult to assess: the latter has been treated in only five articles, while the
former is a rather heterogeneous subfield that comprises various similar, but
not equal, disciplines. They are mostly small and involve limited numbers of
researchers, and generally these areas of specialization cannot be compared
with each other. However, as a behavioral discipline receives more attention in
literature, it may grow to become a subfield on its own: the automaton-based
recovery of protocols, for example, is a recent development that is adopting
common evaluation criteria and thorough comparisons (Quante and Koschke,
2007; Lo et al., 2008).

2.7 Evaluation

In the previous sections we have presented a series of findings based on our
paper selection, attribute framework, and attribute assignments. Since con-
ducting a survey is a largely manual task, most threats to validity relate to the
possibility of researcher bias, and thus to the concern that other researchers
might come to different results and conclusions. One remedy we adopted
is to follow, where possible, guidelines on conducting systematic reviews as
suggested by, e.g., Kitchenham (2004) and Brereton et al. (2007). In particu-
lar, we documented and reviewed all steps we made in advance (per pass),
including selection criteria and attribute definitions.
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In the following sections, we successively describe validity threats pertain-
ing to the article selection, the attribute framework, the article characteriza-
tion, and the results interpretation, and discuss the manners in which we
attempted to minimize their risk.

2.7.1 Article selection

Program comprehension is a broad subject that, arguably, has a certain over-
lap with related topics. Examples of such topics are debugging and impact
analysis. The question whether articles of the latter categories should be in-
cluded in a program comprehension survey is subject to debate. It is our opin-
ion that the topics covered in this survey are most closely related to program
comprehension because their common goal is to provide a deeper understand-
ing of the inner workings of software. Following the advice of Kitchenham
(2004) and Brereton et al. (2007), we enforced this criterion by utilizing pre-
defined selection criteria that clearly define the scope, and evaluated these
criteria through a pilot study that yielded positive results (Section 2.3.2).

In the process of collecting relevant articles, we chose not to rely on key-
word searches. This choice was motivated by a recent paper from Brereton
et al. (2007), who state that “current software engineering search engines are
not designed to support systematic literature reviews”; this observation is
confirmed by Staples and Niazi (2007). For this reason, we have followed an
alternative search strategy that comprises the manual processing of relevant
venues in a certain period of time.

The venues in Table 2.1 were chosen because they are most closely related
to software engineering, maintenance, and reverse engineering. While this
presumption is largely supported by the results (Figure 2.2), our article se-
lection is not necessarily unbiased or representative of the targeted research
body. We have addressed the threat of selection bias by utilizing the afore-
mentioned selection criteria. Furthermore, we have attempted to increase the
representativeness of our selection by following the references in the initial ar-
ticle selection and including the relevant ones in our final selection. We found
a non-recursive approach sufficient, as checking for citations within citations
typically resulted in no additional articles. As a result, we expect the number
of missed articles to be limited; particularly those that have proven influential
have almost certainly been included the survey, as they are likely to have been
cited often.

2.7.2 Attribute framework

We acknowledge that the construction of the attribute framework may be the
most subjective step in our approach. The resulting framework may depend
on keywords jotted down in the first pass, as well as on the subsequent gen-
eralization step. However, the resulting framework can be evaluated in terms
of its usefulness: Specifically, we have performed a second pilot study, and
measured the degree to which the attributes in each facet coincide. Both of
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these experiments yielded favorable results and demonstrate the applicability
of our framework.

2.7.3 Article characterization

Similar to the construction of the attribute framework, the process of applying
the framework to the research body is subjective may be difficult to reproduce.

We have addressed this validity threat through a second pilot study (Sec-
tion 2.5.3), of which the results exposed some discrepancies, mostly within the
method facet. The outcomes were discussed among the authors of this survey
and resulted in the refinement of several attributes and their descriptions.

In order to identify topics that have received little attention in the literature,
we counted the occurrences of all attributes in the selected articles (Figure 2.3).
A threat to validity in this respect is duplication among articles and experi-
ments: one and the same experiment should not be taken into account twice,
which is likely to occur when considering both conference proceedings and
journals. We have addressed this threat by summarizing the article selection
and using the summarized articles for the interpretation phase, while making
the full selection available online and in a technical report.

2.7.4 Results interpretation

A potential threat to the validity of the results interpretation is researcher bias,
as the interpretation may seek for results that the reviewers were looking for.
Our countermeasure has been a systematic approach towards the analysis of
Tables A.2 through A.4: in each facet we have discussed the most common and
least common attributes. In addition, we have examined the relation between
activities and evaluations in particular, as this combination pertains to one of
our research questions.

2.8 Conclusion

In this chapter we have reported on a systematic literature survey on program
comprehension through dynamic analysis. We have characterized the work
on this topic on the basis of four main facets: activity, target, method, and
evaluation. While our initial focus was on nine conferences and five journals
in the last decade, the use of reference checking to include earlier articles
and alternative venues yielded a research body that comprises 31 venues, and
relevant articles of up to thirty years old.

Out of 4,795 scanned articles published between July 1999 and June 2008

in 14 relevant venues, we selected the literature that strongly emphasizes the
use of dynamic analysis in program comprehension contexts. The addition
of relevant articles that were referenced therein resulted in a final selection
of 172 articles. Through a detailed reading of this research body, we derived
an attribute framework that was consequently used to characterize the arti-
cles under study in a structured fashion. The resulting systematic overview
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is useful as a reference work for researchers in the field of program compre-
hension through dynamic analysis, and helps them identify both related work
and new research opportunities in their respective subfields.

In advance, we posed four research questions pertaining to (1) the identi-
fication of generic attributes, (2) the extent to which each of these attributes
is represented in the research body, (3) the relation between activities and
evaluations, and (4) the distillation of future directions.

The identified attributes are shown in Table 2.2. While being generic in the
sense that they characterize all of the surveyed articles, they are sufficiently
specific for researchers looking for related work on particular activities, target
system types, methods, and evaluation types.

The characterization of the surveyed articles is shown in Tables A.2 through
A.4. The frequencies of the attributes are provided by Figure 2.3, which clearly
shows the distribution of the attributes in each facet across the research body.
We discussed the results, highlighted research aspects that have proven pop-
ular throughout the years, and studied the manners in which the major sub-
fields are evaluated.

Based on our analysis of the results, we report on three lessons learned that
we consider the most significant. First, we have observed that the feature loca-
tion activity sets an example in the way research results are evaluated: a great
deal of effort is put in comparing and combining earlier techniques, which
has led to a significant technical progress in the past decade (Section 2.6.5).
Second, we conclude that standard object-oriented systems may be overem-
phasized in the literature, at the cost of web applications, distributed software,
and multithreaded systems, for which we have argued that dynamic analy-
sis is very suitable (Section 2.6.1 and Section 2.6.3). Third, with regard to
evaluation, we have learned that in activities other than feature location, com-
parisons and benchmarking do not occur as often as they should. To support
this process, we encourage researchers to make their tools publicly available,
and to conduct controlled experiments for visualization techniques because
these are otherwise difficult to evaluate (Section 2.6.4).

In summary, the work described in this chapter makes the following con-
tributions:

1. A historical overview of the field of program comprehension through
dynamic analysis.

2. A selection of key articles in the area of program comprehension and
dynamic analysis, based on explicit selection criteria.

3. An attribute framework that can be used to characterize papers in the
area of program comprehension through dynamic analysis.

4. An actual characterization of all selected articles in terms of the at-
tributes in this framework.

5. A series of recommendations on future research directions.
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Chapter

3
Sequence Diagram Reconstruction?

In this chapter, we elaborate on our first efforts in supporting the program com-
prehension process by means of dynamic analysis. Our focus here is on traditional
visualization techniques, as they are readily available and because we expect most
people to be accustomed to them. Inspired upon the popularity of testing during,
e.g., Agile software development methods, we focus on a system’s test suite as a
starting point for knowledge gathering. We propose to use a variant of UML se-
quence diagrams to visualize the information obtained from the execution of such
a test suite, and employ a series of abstraction techniques to make the resulting
diagrams more scalable. Our approach is implemented in two different tool im-
plementations, and then validated through case studies that involve two different
systems.

3.1 Introduction

When implementing and maintaining software systems, testing is of vital im-
portance. The advent of Agile software development methods such as eX-
treme Programming (XP) (Beck, 1999), Scrum (Schwaber and Beedle, 2001),
and DSDM (Stapleton, 1997) has ensured that testing is given much atten-
tion. In these processes, testing serves two distinct purposes. Not only is
testing considered essential when implementing and maintaining software to
help increase the quality and correctness of code, but (unit) tests are also a
means of documentation (van Deursen, 2001; Marick, 2004; Miller, 2004; De-
meyer et al., 2003; Forward and Lethbridge, 2002). Test-driven development
(Beck, 2003), which is related to Agile software development, implies creating
and maintaining an extensive test suite in order to guarantee that the various
components work correctly, both individually (by means of unit tests) and as
a whole (through use of acceptance tests).

Various testing methodologies have been devised for a broad range of pro-
gramming languages. Among these approaches are the well-known xUnit
frameworks that were originally based on the JUnit design by Beck and Gamma
(1998). JUnit allows for the specification of both unit tests and acceptance
tests, and is relatively easy to use. A JUnit test case consists of several steps:
the creation of a fixture, exercising the method(s) under test, comparing the
results (i.e., assertions), and the teardown. Typically, a set of test cases is run
as a test suite.

?This chapter is a significant extension of our publication in the Proceedings of the 11
th Eu-

ropean Conference on Software Maintenance and Reengineering (Cornelissen et al., 2007b). It is
co-authored by Arie van Deursen, Leon Moonen, and Andy Zaidman.



3.1.1 Visualizing test suites

Although most test cases might seem easily comprehensible at first sight, they
quickly tend to become relatively complex for someone who desires a quick
look “under the hood”. For example, when considering object-oriented sys-
tems, it is difficult to keep track of the numerous objects that are typically
involved. Therefore, we propose to visualize test cases in a manner that is
sufficiently detailed for comprehension purposes and that remains human
readable at the same time. As such, the general approach we follow can be
described as either analyzing or tracing the test cases, applying certain abstrac-
tions and, finally, presenting the results. Such visualizations can be particularly
helpful in the context of Agile software development, in which tests serve as
documentation.

UML sequence diagrams (OMG, 2003; Rumbaugh et al., 1998) are a useful
means to visualize a system’s behavior (De Pauw et al., 2001). A scenario dia-
gram is a somewhat simplified version of a sequence diagram that describes
a single scenario, i.e., depicting one particular execution path. Scenario di-
agrams provide detailed information on interactions at either the class level
or the object level, and are easy to read because the chronological order is
intuitive. However, if no abstractions are applied, scenario diagrams tend to
become too large: the entire execution of a sizable software system could re-
sult in a scenario diagram that contains more information than the reader can
handle (De Pauw et al., 1998).

3.1.2 Goal

The goal of this research is the design and evaluation of tools that support the
understanding of unfamiliar software. Specifically, we focus on the support
of change requests and feature requests. We propose that users build up the
required knowledge by studying reconstructed scenario diagrams from JUnit

test suites. Our choice for using test cases as scenarios is inspired by three
major factors:

1. XP and Agile software development in general advocate the use of tests
as a form of documentation (Marick, 2004; Miller, 2004; Demeyer et al.,
2003; Forward and Lethbridge, 2002).

2. Finding relevant scenarios for executing software and performing dy-
namic analysis on them (e.g., constructing visualizations) is not straight-
forward when domain knowledge is lacking (Zaidman, 2006).

3. Scalability problems can in part be overcome by the careful selection of
relatively concise execution scenarios, such as test cases. This also fits
the as-needed reverse engineering strategy that is often advocated in
dynamic analysis (Zaidman, 2006).
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3.1.3 Research questions

To structure our investigation toward our goals, we define the following re-
search questions:

• Are tests as typically written in JUnit a suitable starting point for pro-
gram comprehension?

• Do scenario diagrams obtained from these tests offer insight in the way
an application works?

• Which abstractions do we need to make these diagrams more easily
understandable?

• JUnit can be used to write tests focused on one class or method (which
are true unit tests), as well as for creating high level test cases which act
more like system or acceptance tests. Should these be treated differently
when leveraging test suites for program comprehension?

In order to address these questions and to validate our techniques, we de-
sign a sequence diagram reconstruction framework and propose two tool im-
plementations. We then conduct case studies on two systems, JPacman and
Checkstyle, both of which feature extensive test suites that render them suit-
able for our research.

This chapter is structured as follows. The next section discusses the issues
and design choices. Based on this discussion, Section 3.3 presents our frame-
work for sequence diagram reconstruction. This framework is implemented
in two different prototype tools. Our first prototype, Sdr, is presented in Sec-
tion 3.4 and evaluated in Section 3.5. Section 3.6 proposes our second tool
implementation, called JRET, which is evaluated in Section 3.7. Related work
is described in Section 3.8, and we conclude with final words in Section 3.9.

3.2 Design Options and Requirements

In the course of converting test suites to scenario diagrams, we face several
challenges. This section addresses the most prominent issues and require-
ments.

3.2.1 Design options

Static versus dynamic approaches
In obtaining scenario diagrams from test cases, we can choose whether to
capture the system’s behavior by means of static analysis (i.e., analyzing the
code) or through dynamic analysis (i.e., tracing the execution). The well-known
benefits of a static approach are the genericity and compactness, whereas a
dynamic technique potentially offers more details on important aspects such
as late binding.
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A frequently mentioned drawback of dynamic analysis is the need for sce-
narios to exercise the system. However, these scenarios come for free when
using test cases to drive the comprehension process. Another drawback of
dynamic analysis is that the information derived represents only part of the
system’s behavior. Yet, we argue that in our context, having more detailed
information pertaining directly to test cases is to be favored over genericity.

Recognizing stages in a scenario
The second issue that arises is how one can distinguish between particular stages
during the execution of a scenario. In particular, we are interested in recog-
nizing the various stages in executing a test case, i.e., the test initialization,
test execution, result validation and teardown1. Being able to separate these
stages provides a more focused view on the execution of a test case and allows
the viewer to skip a stage (if desired), or to put stages in separate diagrams.
Furthermore, as we will see later, recognizing which methods and objects play
a role in the various stages allows for particular filtering and abstraction tech-
niques. For example, the assertions made during the result validation stage
of a (unit) test are generally of less interest in the context of comprehending
the inner workings of a software system.

Class versus object level
Another design choice concerns whether we want to trace the interactions at
the class level or at the object level. The former is simpler because it does not
require an administration of all runtime objects, whereas being able to dis-
tinguish between objects provides detailed information on object interactions,
and exposes occurrences of polymorphism and late binding, for which sce-
nario diagrams are very suitable. However, with diagrams at the class level
already being susceptible to size problems, one will definitely encounter scal-
ability issues with additional object information.

Scalability
Despite the fact that (in general) the execution of a unit test is relatively short,
scalability problems are inevitable as systems and test case executions grow
larger. Most simple unit tests will presumably fit on a single screen, but
more complex test cases (i.e., acceptance tests) induce too many interactions to
simply put in a diagram without applying any form of abstraction. Therefore,
we need trace reduction techniques that are both efficient and useful: we must
determine which interactions are presumably irrelevant and can therefore be
combined or omitted for an initial view.

3.2.2 Requirements

In order to create a flexible tool that can aid in the understanding of a variety
of software systems, we define the following requirements:

1The earlier naming conventions for these stages were replaced by annotations in JUnit 4.
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Obliviousness: The system under analysis should not require any changes
to its implementation to enable its examination.

Extensibility: The framework should support the addition and customiza-
tion of (1) event listeners to capture (dynamic) system behavior, (2) reduction
techniques to combine or omit information, and (3) output handling to fa-
cilitate flexible visualization and embedding in other environments (e.g., a
software development environment like Eclipse).

Interactivity: The framework should allow the interactive exploration of
reconstructed diagrams. We take the position that a human in the loop is a
necessity as no automated analysis can capture which improvements in com-
prehensibility are achieved when trace reductions are employed. The user
should remain in control of the level of detail.

Comprehensibility: When talking about generating “understandable” sce-
nario diagrams, naturally we reason from the perspective of humans: we
strive to minimize the effort involved in understanding the diagrams. To this
end, we need criteria that capture comprehensibility to shape our visualization re-
quirements. In the realm of visual programming languages, Yang et al. (1997)
propose two properties to determine when a diagram is understandable:

1. Accessibility of related information. Viewing related information in close prox-
imity is essential. When two screen objects are not in close proximity,
there is the psychological claim that these objects are not tightly related
to each other or are not dedicated to solving the same problem.

2. Use of screen real estate. The term “screen real estate” refers to the size
of a physical display screen and connotes the fact that screen space is a
valuable resource. Making optimal use of the available screen real estate
is necessary to save the user time when locating information.

We aim for these properties to be essential criteria in our visualization design.

3.3 Framework

Based on the design options and issues discussed earlier, we have designed a
framework for the reconstruction of sequence diagrams from execution traces.
Figure 3.1 provides an overview of the approach. It is an extensible framework
in that there is a clear separation between the tracing part, the abstraction part,
and the rendering of scenario diagrams. In the remainder of this section we
will discuss and motivate various features of the framework.

3.3.1 Tracing test cases

There exist several methods to obtain execution traces, among which the most
commonly used are manually instrumenting code (e.g., using InsectJ2), using

2InsectJ, http://insectj.sourceforge.net/
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Figure 3.1 Overview of the reconstruction framework.

a debugger or profiler (Zaidman et al., 2005), and instrumentation through
aspects3. The advantages and shortcomings these techniques are mostly well-
known (and, for example, discussed by Zaidman (2006)).

Our framework uses Aspect Oriented Programming (AOP) because aspects
are easily customizable and therefore constitute a flexible solution in our con-
text (Kiczales et al., 2001). Moreover, the use of AOP satisfies our requirement
of obliviousness: the system under analysis does not require any changes to
enable its examination. Aspects allow us to specify very accurately which
parts of the execution are to be considered, where tracing must start and stop,
and what type of post-processing is needed. In addition, aspects can obtain
detailed information on all interactions, such as the unique objects that are in-
volved, the runtime arguments, and the actual return values in case of method
and constructor calls.

Finally, most aspect languages allow for patterns in the definition of which
classes and interactions are to be traced (i.e., pointcuts). This enables a dis-
tinction of the various stages in a test case by exploiting the naming conventions
or annotations used for these stages within xUnit frameworks. These are illus-
trated in Listing 3.1.

public class MonsterMoveTest extends MoveTest {

MonsterMove monsterMove;

@Before
public void setUp() {
theMonster = (Monster) monsterCell.getInhabitant();

}

@Test
public void testSimpleGetters() {
...

}

@Test
public void testT1_outOfBorder() {
...

}

...
}

Listing 3.1 Test stage annotations in JUNIT.

3AspectJ, http://www.eclipse.org/aspectj/
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Figure 3.2 Trace metamodel.

Our traces are captured in a common format describing the events that can
take place during the execution of a system. We maintain a distinction be-
tween the beginnings and endings of method calls, static method calls, and con-
structor calls. An execution trace consists of a series of events, each type of
event having its own characteristics. Associated with each method start, for
example, is a method identifier, two objects (i.e., the caller and the callee), a
signature, and zero or more (runtime) parameters; a method end-event features
a method identifier and the actual return value.

Figure 3.2 shows the model describing our traces. Details for static method
calls and constructor calls are omitted, but these are similar to those of the
regular calls that are shown in the figure.

3.3.2 Trace reduction

In order to make large scenario diagrams easier to read, we need several ab-
straction and filtering techniques to reduce the amount of information. In
the context of scenario diagrams, one intuitively thinks of omitting or joining
objects, classes or combining interactions to shrink the dimensions of the di-
agram. But which messages and objects can be removed or combined while
ensuring that the essence of the test case is preserved? Below, we collect and
discuss a catalog of reduction techniques that we have identified in the context
of scenario diagrams based on test cases.

• Constructor hiding. Omit all constructors and their control flows. This is
especially applicable in the initialization stages of complex test cases.
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• Selective constructor hiding. Omit irrelevant constructors, i.e., those pertaining
to objects that are never used. This enables the reduction of a diagram’s
dimensions without loss of essential information. The selection in one
particular stage can also be based on objects that appear in certain other
stages of the scenario. This can, for example, be used to filter objects
created for result validation in test cases.

• Maximum stack depth. Omit all interactions that occur above a certain stack
depth threshold. Intuitively, this filters low level messages that tend
to be too detailed, at least for an initial viewing. This is illustrated by
Figures 3.3 and 3.4. A similar abstraction was applied by Rountev and
Connell (2005), who (in a static context) consider the length of a call
chain.

• Minimum stack depth. Omit all interactions below a certain depth threshold,
i.e., remove high level interactions. This can be used to omit “control
messages” that start up a certain scenario.

• Fragment selection by using stack depths. Choose a set of methods of interest
and, by selecting appropriate minimum and maximum stack depths,
highlight its direct environment. Method selection can be done by, e.g.,
using the techniques described by Zaidman et al. (2005).

• Fragment selection by zooming. Zoom in on areas of interest (Sharp and
Rountev, 2005).

• Pattern recognition. Summarize recurrent patterns (De Pauw et al., 2001;
Systä et al., 2001). Patterns may be identical or very similar (sets of)
method calls.

• Object merging (clustering). Merge lifelines of closely related (or manually
selected) objects, thereby hiding their mutual interactions (Riva and Ro-
driguez, 2002).

• Colors. Use color techniques (e.g., graying out, or using different col-
ors for various fragments) to “distinguish” between (ir-)relevant parts
(Sharp and Rountev, 2005).

• Getters and setters. Omit simple getters and setters. We will see this ab-
straction applied in the case studies.

• Textual techniques. (1) Omit return values in case of void methods, (2)
abbreviate full parameters, and/or (3) abbreviate return values.

3.4 First Implementation: SDR

The design in the previous section has been implemented in a prototype tool,
which we call the Sequence Diagram Reconstruction (Sdr) tool. It is implemented in
Java, AspectJ, and Perl, and was used to conduct the first case study described
later in the chapter.
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Figure 3.3 Reconstructed scenario diagram with a restricted stack depth.

3.4.1 Scenario diagram metamodel

The scenario diagram metamodel that we use in this implementation is loosely
based on the UML 1.1 standard for sequence diagrams (OMG, 2003). It is a
simplified version in that we do not focus on genericity: a scenario diagram
corresponds to the execution of one particular scenario (one test case). As
such, constructs such as conditions and repetitions are omitted in our model,
whereas detailed information such as runtime parameters and actual return
values are included in each diagram. A distinction is made between various
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Figure 3.4 Diagram from Figure 3.3, with the stack depth reduced to 2.

types of events.
The model is depicted in Figure 3.5, and illustrates the definition of a sce-

nario diagram as a sequence of messages between objects. Each message is as-
sociated with a corresponding method, has zero or more actual parameters and
sometimes an actual return value.

3.4.2 Tracing

Tracers are implemented by specializing the abstract tracing aspect Abstract-
Tracer that specifies the common (default) behavior. Upon initialization, it
starts an event listener and contains only one advice: it notifies the current
listener before and after the startingPoint() pointcut is encountered. In case
of test suites, this pointcut is useful for defining a test case’s top level methods.
This pointcut, along with pointcuts for the events that need to be traced and
the type of listener, are all abstract and can be defined in specific tracers for
specific cases, so as to provide maximum flexibility.

The prototype currently offers several “stock” tracers that can be extended
for specific cases, e.g., SimpleTracer for capturing basic method and construc-
tor calls and ObjectTracer for doing so while distinguishing between objects.
As an example, consider the situation in which one merely wants to capture
all method and constructor calls. In this case, the SimpleTracer must be ex-
tended in a custom tracer that contains definitions for the abstract pointcuts
(Listing 3.2).

import sdr.tracers.SimpleTracer;

public abstract aspect CustomTracer extends SimpleTracer {

protected pointcut theConstructors() :
call(org.package..*.new(..));

protected pointcut theCallers() :
call(* org.package..*.*(..));

protected pointcut startingPoint() :
execution(* org.package..*.myStartMethod(..));

}

Listing 3.2 Extending an existing tracer to capture method and constructor calls.
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3.4.3 Listening to events

Attached to each tracer is an event listener. In event listeners, one can de-
fine how to process the captured events. They implement the EventListener
interface and, as such, define routines for starting and stopping the listening
phase, and for processing generic events.

Our prototype features listeners that perform various tasks, among which
are simply printing all events, writing trace files, and gathering statistics. Se-
lecting a certain event listener is done by extending the tracer containing the
pointcuts and specifying the listener of choice.

3.4.4 Handling test cases

For the purpose of tracing test cases, our framework includes a tracer, Per-
StartTracer, that distinguishes between top level methods, i.e., the test cases
in a test suite. It is an extension to the ObjectTracer and, as such, identifies
unique objects. It is extended by a custom tracer, in which the startingPoint()
is typically defined as a pattern that matches testclasses that have “Test” in
their names. This way, the listener will be informed whenever a (new) test
case in a testclass is executed.

The SequenceListener is responsible for turning trace events into scenario
diagrams. It keeps track of all method and constructor calls and performs the
mapping between the trace metamodel and the scenario diagram metamodel.
The output consists of a collection of scenario diagrams: one diagram for
each of the top level methods in the test cases that are being executed. The
data is visualized as scenario diagrams using Sequence, a publicly available
visualization tool.4

3.5 Case Study: JPacman

The objective of our first case study is the evaluation of Sdr. It is exploratory
in nature: we attempt to verify the usefulness of test case visualization, and
to determine which abstractions are needed and how they are to be applied.

This is achieved by studying the JPacman 1.8.1 application and its test suite.
It is a fairly simple Java (1.5) application consisting of approximately 20 classes
and 3000 LOC, which implements a rudimentary version of the well known
Pacman game. JPacman is used for teaching purposes in a software testing
course at Delft University of Technology. In their lab work, students have to
extend both the test suite and the functionality of JPacman using a test-driven
/ test-first approach, and make use of such tools as Eclipse, Ant, and the code
coverage tool Clover

5.
JPacman features a JUnit test suite of approximately 1000 LOC. The test

cases have been derived systematically using various strategies mostly ob-
tained from Binder (2000), including branch coverage (100%), exercising do-

4Sequence, http://sequence-src.dev.java.net/
5Clover, http://www.cenqua.com/
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Figure 3.5 SDR’s scenario diagram metamodel.

main boundaries at on points as well as off points, testing class diagram multi-
plicities, deriving tests from decision tables (describing, e.g., whether moves
on the board are possible), and state and transition coverage (in the state ma-
chine describing the overall game behavior). The test suite consists of 60 test
cases in total, divided over 15 high level acceptance tests exercising the top
level public interface only, as well as 45 class level unit tests, all implemented
in JUnit (version 4.1).

We have investigated the role that scenario diagrams recovered from these
test cases can play when implementing two change requests into JPacman.
The first is adding an undo feature to JPacman, so that users can get back to
life if they missed a food element or unintendedly bumped into a monster.
Relevant test cases include moving a player or a monster, as well as losing a
game. The second change request is turning JPacman into a multi-level game
including a stack of mazes growing in complexity. Relevant test cases here
deal with winning and restarting the game with a different board.

We used Sdr to derive scenario diagrams from all 60 test cases, and ana-
lyzed them in light of the above change scenarios.6 Below we describe our
findings, formulate a number of observations, and establish a connection be-
tween the scenario diagrams and program comprehension.

3.5.1 Unit tests

Descriptive statistics for the JPacman case study are shown in Table 3.1, in-
cluding such data as the number of constructors, objects and methods, as well
as the maximum and most common stack depth.

6A selection of these diagrams has been included in the most recent JPacman distribution.
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Unit Tests Acceptance Tests
Min Max Median 0.75-Perc. Min Max Median 0.75-Perc.

# Constructors 0 22 1 1 0 543 1 3

# Methods 2 177 13 43 55 1,791 73 170

# Objects 1 32 4 8 39 578 13 14

Max. depth 1 7 4 5 7 9 8 8

Most common depth 1 5 1 3 3 6 5 6

Table 3.1 Descriptive statistics for the JPACMAN case study.

The data presented was derived from the actual tests themselves, i.e., they
do not include the setup phases, in which the fixture is created in which the
method under test can be invoked. For that reason, the number of construc-
tors is much lower than the number of objects involved.

A first observation from this table is that most unit tests are fairly simple in
terms of the number of objects and method calls. Half of the unit test cases use
four or less objects (median 4), and three quarters of the test cases use fewer
than 8 objects (0.75-percentile). Likewise, three quarters of the test cases have
fewer than 43 method calls.

Observation P1 : Without any abstractions, three quarters of the unit test cases result in
scenario diagrams that are small enough to be comprehensible.

A typical example of such a small diagram is shown in Figure 3.6. The dia-
gram shows how the test method first occupies a given cell, and then verifies
that the result is as desired, i.e., that the inhabitant of the cell is indeed equal
to the food item that was placed there.

A more complex example that just falls within the 0.75 percentile is shown
in Figure 3.7. Although the diagram is large, it is still useful for one of our
change requests, namely adding undo functionality. The diagram at hand
illustrates a basic player move, which involves creating a Move object that is
linked to the source and target cells, followed by the invocation of the apply()
method to actually conduct the move (here, the Command design pattern is
used (Gamma et al., 1994)). The diagram also shows how the particular sub-
classes are used, such as a PlayerMove (inheriting from Move) and a Player
(inheriting from Guest). In this way, the actual method bodies executed are
shown, rather than the abstract methods from the superclass.

While Figure 3.7 is understandable in itself, it also demonstrates several
opportunities for applying abstractions:

• The diagram contains several simple getters, which merely result in an
self-arrow to the currently active lifeline. Since these do not exhibit any
object interactions (unless they result in nested calls), they can often be
safely omitted.

• The diagram contains several recurrent patterns. For example, there are
four fairly large blocks in which the first three objects interact in order to
determine the current state of the game (which may affect whether the
player move is allowed at all). All four blocks contain the same sequence
of calls and interactions, and there is no need to unfold them all.
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Figure 3.6 Scenario diagram for a typical unit test.

• The diagram includes the interactions for conducting the move, as well
as for asserting that the move was indeed applied successfully. In under-
standing how moves are implemented, there is no need for the detailed
interactions involved in checking the results. Omitting all interactions
obtained from JUnit’s assert methods results in the omission (or summa-
rization) of two of the recurrent blocks mentioned above.

Observation P2 : The abstractions “Omit Getters”, “Collapse Recurrent Patterns”, and
“Omit Asserts” can be applied without loss of essential information required for change re-
quests.

With these abstractions in place, the scenario diagrams for most JPacman

unit tests become sufficiently small. While this will not be the case for unit
tests in general, we expect a similar result to hold for other systems:

Observation P3 : The abstractions in Observation 2 are sufficient to make 90% of the
scenario diagrams of unit test cases understandable.

A final observation that should be made concerning the unit tests, is that
according to the XP and test-driven methodologies, tests should run instanta-
neously. That is, it should be possible to run the full test suite within several
seconds at most, in order not to discourage developers from running the tests
continuously. Performance, scalability, system, or acceptance tests that take
longer should not be included in the unit test suite, but in a different suite that
should be run at regular intervals (one or more times per day) automatically
on the basis of a checkout from the revision system.

As a result, we actually expect such metrics as the number of objects and
methods involved in unit tests to be low. In the JPacman case, we encountered
several test cases in which these metrics were unexpectedly high. The reason
turned out to be an error in the loading of maps: the default map (inherited
from a superclass of this test case) was always loaded first, and then imme-
diately overwritten by a custom map. Since the default maze was large, and
the custom map was deliberately chosen to be small for testing purposes, this
was easily derived from the metrics (i.e., the number of constructors involved).
While the code was exercised by the test cases, the unnecessary loading was
never observed, so no failure was generated.

Observation P4 : Dynamically obtained test case metrics can help to identify faults and
refactoring opportunities.
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Figure 3.7 Scenario diagram for a player move.
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Stack depth 1 2 3 4 5 6 7 8 9

Frequency 13 29 105 210 614 1035 245 88 4

Table 3.2 Depth frequencies in the longest acceptance test.

3.5.2 Acceptance tests

When looking at acceptance tests, obviously the figures are substantially larger
than those of the unit tests. This is due to the many interactions taking place,
and the fact that these tests require more elaborate fixtures, i.e., more objects.
This is illustrated by the rightmost portion of Table 3.1.

However, the figures for the tests would have been far greater had the test
stages not been separated. This holds true especially for the acceptance tests,
as in JPacman these require the construction of large fixtures, e.g., a map with
certain dimensions.

Observation P5 : Separation of the test case stages leads to more readable diagrams without
loss of essential information.

By filtering out these phases, we obtain a smaller diagram that enables us
to fully concentrate on the test case being executed. In case the viewer is
interested in the initialization or the assertions, it can be viewed in a separate
diagram.

Observation P6 : In light of Observation P5, half of the acceptance tests lead to readable
scenario diagrams without use of abstractions.

Among the 15 acceptance tests is a relatively large test case (543 construc-
tors and 1,791 methods) that involves several consecutive movements and
game restarts, making it the most complex test case by far. If we look closer at
the metrics for this test case – the stack depth frequencies in particular – we
obtain the figures of Table 3.2.

Based on these metrics and an initial viewing of the scenario diagram, we
applied two abstractions: hiding the control flow of constructors, and lim-
iting the stack depth to 2 (Figure 3.8). This diagram effectively depicts the
essence of the test case at hand: instantiating the Pacman-class (which would
normally induce a large number of interactions), starting the Engine, and con-
ducting the moves. For a more detailed view, one can increase the maximum
stack depth to 3, resulting in a diagram that (according to Table 3.2) features
approximately 100 more calls. It is from these detailed diagrams that the nec-
essary information can be derived for gaining insight into the map loading
procedure: this knowledge supports our change request regarding multiple
maps.

Observation P7 : Using more advanced abstractions such as stack depth limitation and
hiding control flows of constructors, all of JPacman’s acceptance tests lead to readable scenario
diagrams.
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Figure 3.8 Scenario diagram with a max. stack depth of 2.

3.5.3 Discussion & future improvements

The JPacman study has taught us several lessons.
First of all, the dynamically obtained scenario diagrams contain lots of de-

tail, such as runtime parameters, actual return values, and occurrences of late
binding. While this is useful, especially for change requests that require de-
tailed knowledge, we often obtain diagrams that are too large to comprehend.
This holds true especially in the case of acceptance tests, making abstractions
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essential in this context.
Separating the test case stages was clearly a useful measure, as most sce-

nario diagrams became significantly smaller when leaving phases (e.g., the
setup) to distinct diagrams.

Several abstractions have been successfully applied in viewing the dia-
grams obtained from the JPacman test suite. Hiding constructors, omitting
assertions and stack depth limitation have proven useful to shrink the dia-
grams without losing the essence of the test cases at hand. The viewer is
constantly in control of these abstractions and, by changing the diagram’s
specifications, can always adjust the abstraction parameters and regenerate
the diagram.

With many of the proposed abstraction techniques, however, it is preferable
to use them in an interactive fashion, i.e., apply them on demand. One could
think of making messages and objects clickable, and subject to (un-)collapsing.
Using metrics to automatically apply abstractions is a good starting point, but
the viewer must ultimately be in control of what information to show and
what to hide.

The treatment of the test cases in our study was an iterative process, result-
ing in improvements in both our technique and the test cases at hand. Various
mistakes (such as duplicate setups) were exposed and have been resolved in
the next version.

3.6 Second Implementation: JRET

Following the findings of our earlier efforts on scenario diagram reconstruc-
tion, we set out to improve the tool design and to evaluate it on a more rep-
resentative system two years later. This work was carried out in close col-
laboration with Roland Voets, whose Master’s thesis (Voets, 2008) provides
an extensive description and evaluation of the new tool, called JRET (Java Re-
verse Engineering Tool).

In this section we highlight the most important improvements. We then
report on the new case study in Section 3.7.

3.6.1 Scenario diagram metamodel

JRET follows a similar approach to Sdr in that it maintains an internal repre-
sentation of a scenario diagram that can be manipulated by use of abstraction
mechanisms. The internal representation is an instance of a new scenario
diagram metamodel. Several modifications have been made to the original
metamodel described earlier, resulting in the model in Figure 3.9. There are
two main improvements, which both relate to the need to represent abstrac-
tions for traces (see Section 3.3.2). First, the notion of labels is defined, which
serves to annotate messages with such information as the corresponding test
case stage. Second, the new model explicitly defines patterns of messages to
support pattern summarization.

54 3.6. Second Implementation: JRET



diagram_metapackage Data[   ]

sequence diagram

message

method

value

pattern

label

object

repetition value

1
repetition value 1

return value 0..1

actual parameters 0..*

receiversender

successor
1..*

0..1

0..*

*

Figure 3.9 JRET’s scenario diagram metamodel.

3.6.2 Tool implementation

Contrary to Sdr, JRET is entirely written in AspectJ and Java and no longer
relies on Perl scripts. Furthermore, to render the new tool more accessible
to the research community, JRET has a user-friendly interface and has been
implemented as an Eclipse plugin. It is properly documented and is publicly
available online7. Figure 3.10 shows JRET’s user interface. The main advantage
of the GUI is that it allows for an overview and easy customization of the
available trace reduction techniques. The tool offers implementations of the
following abstractions:

• Object or class level tracing.

• Filtering interactions with JDK classes.

• Abbreviation of method identifiers, runtime parameters, and return val-
ues.

• Removal of getters and/or setters (with or without control flows).

• Removal of constructors (with or without control flows).

• Removal of JUnit asserts.

• Removal of internal messages within classes (with or without control
flows).

• Stack depth limitation.

7JRET 1.0, http://sourceforge.net/projects/jret/
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Figure 3.10 JRET’s graphical user interface.

• Pattern summarization.

In particular, the pattern summarization technique is a potentially powerful
asset, as our earlier experiments suggested the presence of numerous rep-
etitions in execution traces. The algorithm used in JRET detects recurring
contiguous patterns (similar to Hamou-Lhadj and Lethbridge (2002)) and vi-
sualizes them as repetition constructs, which contain a number that signifies
the number of repetitions involved (Figure 3.11). Additionally, JRET offers
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Figure 3.11 Summarizing recurrent patterns in JRET.

support for two different scenario diagram visualization tools: Sequence (also
used in Sdr), and SDedit

8. The latter visualization tool was found to have sev-
eral important advantages during experimentation, the most important being
its support for labels, pattern visualization, and zooming. It is also more flex-
ible in terms of output formats, and allows for the visualization of multiple
diagrams at once (using tabs). The latter feature may prove useful in studying
several test case executions or test case stages at once.

The case study in the following section provides examples of scenario dia-
grams generated by JRET.

3.7 Case Study: Checkstyle

Checkstyle
9 is an open-source tool that validates Java code. It uses a set of cod-

ing standards that can be extended by third party developers. The program
contains 57 kLOC and consists of 310 classes distributed over 21 packages.
Checkstyle is an interesting case study not merely for its representative size,
but also because of the test suite that contains almost 500 unit tests. Unfortu-
nately, the developers have notified us that no acceptance tests are available,
nor will they be in the short term.

The case study consists of two parts. First, we identify the need for ab-
stractions through a brief study of certain quantitative aspects of Checkstyle,
and apply the necessary abstractions to reduce the scenario diagrams in Sec-
tion 3.7.1. Next, once more we take the perspective of a developer who is
faced with two change requests, and assess how JRET’s scenario diagrams
support these tasks (Section 3.7.2).

8SDedit, http://sourceforge.net/projects/sdedit/
9Checkstyle 4.3, http://checkstyle.sourceforge.net/
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Metric (per test case) Min Max Median 0.75-Perc.
# Constructors 0 3,834 139 259

# Methods 3 69,031 2,571 5,512

# Objects 3 5,748 425 812

Max. stack depth 2 42 15 18

# Getters 0 31,205 1,189 2,781

# Simple getters 0 21,098 1,124 2,674

# Setters 0 598 13 14

# Simple setters 0 595 10 10

# Internal messages 0 14,389 521 1,218

# Simple internal messages 0 6,157 37 91

Table 3.3 Descriptive statistics for the CHECKSTYLE case study.

In the following, we provide a summarization of the most important find-
ings: the reader is referred to (Voets, 2008) for more detailed descriptions and
additional observations.

3.7.1 Quantitative evaluation

In this experiment we instrument and execute Checkstyle’s test suite, and
measure key aspects such as the maximum stack depth and number of con-
structors and methods involved in the unit tests. These measurements may
provide hints as to the abstraction techniques that could prove the most use-
ful in reducing the resulting scenario diagrams. The next step is the actual
application of JRET’s abstraction mechanisms, and determining the extent to
which they are successful.

Table 3.3 shows descriptive statistics that were derived from the instru-
mented execution of Checkstyle’s 493 unit tests. Note that we distinguish
between getters and simple getters: the latter are trivial as they entail merely
one event, whereas getters of the former type lead to multiple events.

From the measurements, it becomes clear that half of the test cases use
more than 425 objects (median), and that one quarter of the test cases uses
more than 812 objects (0.75-percentile). Likewise, one quarter of the test cases
induces more than 5,512 method calls. These figures show that Checkstyle

is far more challenging than JPacman: in order to reduce the traces such that
they can be visualized as scenario diagrams, we need powerful abstractions.

Observation C1 : Without any abstractions, the majority of Checkstyle’s test cases
result in scenario diagrams that are too large to be comprehensible.

The table also shows that the test cases contain a relatively large number
of getters compared to the number of setters: three quarters of the cases have
fewer than 2,781 getters, compared to only 14 setters. This implies that the
removal of getters could prove a potentially effective abstraction technique in
this case.
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Observation C2 : The execution of Checkstyle’s test suite yields numerous getters, the
omission of which could prove a powerful abstraction mechanism.

To quantitatively evaluate JRET’s abstraction mechanisms, we first apply
them consecutively on each of the 493 traces. Table 3.4 shows the results for
a representative sample, i.e., one test case for each package. It depicts the
number of remaining calls in each test case after the consecutive application
of several automatic abstractions.

As it turns out, only two out of the 18 test cases displayed in Table 3.4
are small enough to be comprehended without abstractions. The remaining
test cases contain more than a hundred calls and thus require abstractions for
them to become human-readable. Fortunately, the table shows that JRET’s ab-
stractions were successful for all 18 test cases. As for the entire test suite, only
54 out of the 493 test cases are sufficiently small to be comprehended directly.
In other words, 89% of Checkstyle’s test suite is in need of abstractions.

Observation C3 : 89% of Checkstyle’s test cases require abstractions to render them
comprehensible.

Table 3.5 shows the effectiveness of each abstraction technique by itself, i.e.,
when applied separately rather than consecutively. It shows the same sample
of 18 test cases, and provides average values for the entire test suite.

We observe that the removal of getters is indeed a powerful abstraction
technique for Checkstyle, yielding an average reduction of 51%. Removing
internal messages and limiting the stack depth to 1 seem even more effec-
tive, yielding average reductions of 90% and 95%, respectively. However, we
note that in contrast to getters and setters, the former techniques may remove
too many essential calls: for example, the apparent effectiveness of internal
message removal is presumably the result of many test cases being initiated
by internal messages, meaning that their removal will filter the entire control
flows as well. Therefore, a qualitative evaluation is needed to assess the value
of reduction techniques in practice.

Observation C4 : Stack depth limitation and the removal of internal messages and getters
are the most effective abstraction techniques for Checkstyle’s test suite.

3.7.2 Qualitative evaluation

With a proper set of scenario diagrams in place, we proceed with a qualitative
evaluation of JRET. Specifically, we consider a maintenance context in which
a sufficient knowledge of Checkstyle’s checks is needed to implement a new
check. We employ JRET to support this understanding process. (Another
experimental context involved understanding Checkstyle’s output handling,
and is covered by Voets (2008).)
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Total Remove Remove Remove Remove Limit Remove
Calls Asserts Constr. Getters Setters Stack Patterns

Depth (Class)

DefaultComesLastCheckTest.testIt 1,451 1,449 1,305 491 434 96 84

UncommentedMainCheckTest.testDefaults 3,871 3,867 3,585 1,376 1,310 96 70

AvoidStarImportTest.testDefaultOperation 4,340 4,336 4,062 1,630 1,573 96 70

Newline [...] testNoNewlineAtEndOfFile 344 342 266 154 136 76 65

Table 3.6 The number of calls after the consecutive application of JRET’s abstrac-
tions to four test cases.

Selecting suitable diagrams

Checks are the subject of most of Checkstyle’s unit tests, so we may choose
from many test cases. We have selected a sample of four test cases to study:

• checks.coding.DefaultComesLastCheckTest.testIt

• checks.UncommentedMainCheckTest.testDefaults

• checks.imports.AvoidStarImportTest.testDefaultOperation

• checks.NewlineAtEndOfFileCheckTest.testNoNewlineAtEndOfFile

These test cases concern checks that (1) have names that clearly suggest their
functionality, and (2) reside in different packages. Specifically, they involve
testing if default succeeds the last case in a switch statement, testing for un-
commented main() methods, testing if there are import statements using an
asterisk, and testing if a Java file ends with a newline character, respectively.

Comparing different checks

Table 3.6 shows the number of calls after the consecutive application of JRET’s
abstractions to our selection of test cases. Note that the first three diagrams
contain identical numbers of calls after the stack depth limitation: we there-
fore study these diagrams and the fourth diagram separately.

Looking at the scenario diagrams of the first three test cases, they indeed
appear to follow a similar pattern. This pattern is shown in Figure 3.12 and
consists of 11 steps:

1. A Checker object is created and configured by the test class.

2. A listener is added to the Checker object.

3. The Checker object executes a fireAuditStarted() method on itself.

4. The Checker object notifies its listener using an auditStarted(AuditEvent)
method call.

5. The Checker object executes a process(File[]) method on a TreeWalker
object.

6. The TreeWalker object invokes several calls, among which are parse(File-
Contents) and walk(DetailAST, FileContents).

7. The Checker object destroys the TreeWalker object.
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Figure 3.12 Visualization of the UncommentedMainCheckTest.testDefaults test
case.
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Figure 3.13 Control flow of process(File) within the first three test cases.

8. The Checker object performs a fireAuditFinished() method call.

9. The Checker object notifies its listener using an auditFinished(AuditEvent)
method call.

10. An error message is built.

11. The Checker object is destroyed.

The execution of the fourth test case differs with respect to step 5: the process-
(File) method is invoked on the NewLineAtEndOfFileCheck (Figure 3.13) rather
than on the TreeWalker object (Figure 3.14), resulting in an alternative pattern
for step 6:

1. filter(File[])

2. fireFileStarted(String)

3. endsWithNewLine(RandomAccessFile)

4. log(..)

5. fireErrors(String)

6. fireFileFinished(String)

A closer inspection of the source code suggests that the former three checks
involve walking an Abstract Syntax Tree (AST) that is generated from the
contents of the file being audited, whereas the fourth check does not.

Observation C5 : The side-by-side comparison of similar scenario diagrams can reveal
essential differences.
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Figure 3.14 Control flow of process(File) within the fourth test case.

Summary of findings

Following our findings in the previous section, we studied additional test
cases in a similar fashion. This study confirmed our assumption that there
exist two types of checks:

• AST checks: checks that rely on ASTs. The AST is walked upon, thereby
retrieving and inspecting tokens. Typical checks that belong to this cate-
gory include checking if a package declaration exists, checking if default
comes after the last case in a switch statement, and checking if there ex-
ists an uncommented main() method.

• non-AST checks: checks that can be performed directly on the contents of
the Java files to be audited. Typical checks that belong to this category
include checking if a file ends with a newline character, and checking if
a file contains tab characters.

In order to implement a new check in Checkstyle, one must determine the
appropriate check type. Furthermore, a closer investigation of the scenario
diagrams involved (Voets, 2008) has resulted in a “recipe” for creating new
checks:

• AST checks:

1. Create a new class that extends the Check class.

2. Define and implement the getDefaultTokens()method, which spec-
ifies the token types of interest.

3. Define and implement the visitToken(DetailAST)method, in which
the token types of interest are retrieved using methods of the
DetailAST class. Consequently, this method can be used to check
the tokens. Also, errors can be logged using the log(..) function.
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4. Optional. Define and implement the beginTree(DetailAST) method,
in which initialization is performed prior to walking the AST.

5. Optional. Define and implement the finishTree(DetailAST) method,
which is executed after the AST is walked. For example, it can be
used to log errors using the log(..) function.

• non-AST checks:

1. Create a new class that extends the AbstractFileSetCheck class.
2. Define a process(File[]) method which has a void return type.

All methods in the following steps should be defined within this
process(File[]) method.

3. Add the methods that filter the File[] object, and retrieve the
MessageDispatcher object.

4. Create a loop that retrieves all files in the file array.
5. Add the method that performs the fireFileStarted(String)method

call prior to the actual check.
6. Write the code that performs the check, preferably in a separate

method, which should be executed on each retrieved file.
7. Add the log(..) function that logs the errors in case the check

returns false.
8. Add the methods that perform the fireErrors(String) and the
fireFileStarted(String) method calls.

This case study has illustrated how the use of reverse-engineered sequence
diagrams can assist in understanding a system’s inner workings: through a
study of relevant test cases it can be derived how specific functionalities are
implemented, which supports maintainers during modifications or change
requests.

3.7.3 Threats to validity
The case studies in this chapter have certain limitations that hinder the gen-
eralization of our conclusions.

First, in spite of its extensive test suite, JPacman is a relatively small system,
which means that the observations and conclusions made do not necessar-
ily hold for larger systems. We addressed this threat by conducting another
case study on a system that is more representative in terms of size. Still, real
life software may involve traces of larger sizes and of a different nature: for
example, whereas the stack depth limitation technique works quite well for
recurrent patterns, it may remove too many essential events in case of recur-
sion.

Second, our approach relies on test suites because they provide the neces-
sary execution scenarios. JPacman and Checkstyle are well-maintained appli-
cations that feature test suites with a high code coverage. This does not nec-
essarily hold true for real life cases: for example, if a certain industrial system
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does not provide test cases that pertain to a certain feature, then this func-
tionality cannot be studied through test case visualization. Furthermore, the
fact that Checkstyle only offers unit tests means that the applicability of our
tools to acceptance tests remains unclear, at least for large programs. Additional
research involving representative systems with both unit and acceptance tests
is needed for further exploration.

3.8 Related work

Using dynamic analysis for program comprehension purposes is an active
field of research. This section provides a short overview of related work.

3.8.1 General approaches

Various approaches reconstruct scenario and interaction diagrams based on
static analysis of program code (Rountev and Connell, 2005; Kollmann and
Gogolla, 2001a; Rountev et al., 2005; Kollmann et al., 2002). The techniques
that are used vary from mapping of control flow graphs (Rountev et al., 2005)
to interprocedural dataflow analysis (Rountev and Connell, 2005). A compar-
ison of various approaches is presented by Kollmann et al. (2002).

3.8.2 Sequence diagrams

UML sequence diagrams (and variations thereof) have since long been used to
visualize dynamically obtained information from a system. We now provide
a selection of the existing research in this area.

De Pauw et al. (2001) propose several abstractions in reconstructing se-
quence diagrams. Among these techniques is pattern recognition, and they
introduce the concept of execution pattern notation (De Pauw et al., 1998).
Their techniques (formerly implemented in Jinsight) are used in a plugin that
is part of Eclipse’s Test & Performance Tools Platform (TPTP) project10.

Systä et al. (2001) aid in the understanding of Java systems in an environ-
ment called Shimba, which uses both static analysis and dynamic informa-
tion. The Shimba environment considers static and dynamic information to
be complementary and uses static information to bring focus to dynamically
generated diagrams, and vice versa.

Jerding et al. (1997) have developed the ISVis (Interactive Scenario Visual-
izer) environment. Its main purpose is to alleviate the architecture localization
problem, or the problem of finding the exact location in a system’s architec-
ture where a specific enhancement can be inserted. Most of the abstraction
techniques that are being used are not fully automatic.

Briand et al. (2006) reverse engineer UML sequence diagrams for (1) pro-
gram understanding in the face of incomplete documentation, and (2) quality

10TPTP, http://www.eclipse.org/tptp/
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assurance, when reverse engineered diagrams are compared with existing de-
sign sequence diagrams. Their major contribution lies in the fact that they
are among the first to tackle the reverse engineering of UML sequence dia-
grams from distributed (Java) systems. However, they do not reason from the
viewpoint of test suites, and abstractions play a minor role.

3.8.3 General visualizations

Riva and Rodriguez (2002) combine static and dynamic analysis to reconstruct
message sequence charts. In their trace-based approach, they provide an ab-
straction mechanism based on the decomposition hierarchy that is extracted
from the system’s source code. It is not described how the scenarios are de-
fined, and in dealing with large diagrams, they only offer manual abstraction
techniques.

Furthermore, Pacione et al. (2003) make a comparison of dynamic visual-
ization techniques, and Hamou-Lhadj and Lethbridge (2004) discuss a series
of trace visualization tools from literature.

3.9 Conclusions and Future Work

Testing is an essential part of the software life cycle. Not only are tests impor-
tant to guarantee correctness: in the context of Agile methods and eXtreme
programming, test cases are used as documentation as well. Moreover, by
understanding a system’s test suite, one can gain a great deal of knowledge
about its inner workings. It is for this reason that visualizing both units tests
and acceptance tests can be of great help in program comprehension.

To this end, we have employed dynamic analysis and scenario diagrams.
By gathering knowledge of a system’s test suite, we gain more insight into the
way the application works. We have discussed the issues and design choices
that we encountered and, through several examples, elaborated on our choices
for these techniques.

To address the scalability issues associated with dynamic analysis and sce-
nario diagrams, we have established a set of metrics that recommend a num-
ber of abstractions that should be used to keep the scenario diagram (for each
test case stage) readable, while preserving the desired amount of detail. In
a second iteration, we developed a more robust and user-friendly tool and
made it available online.

We performed two case studies in which we sought to answer the research
questions that were posed in the introduction. Based on our experiences, we
can now formulate answers to these questions:

• JUnit tests are a useful starting point for program comprehension. They
induce scenarios that effectively decompose a system’s functionalities.

• The scenario diagrams that are obtained from these tests offer knowl-
edge about a system’s inner workings. Our case studies suggest that
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through the application of several abstractions, scenario diagrams effec-
tively visualize how test cases (and the associated functionalities) work,
which aids in the planning of change requests.

• The number and types of abstractions that are necessary to make the sce-
nario diagram of a test case sufficiently understandable, depend greatly
on the type of tests. We have listed several abstraction techniques, imple-
mented them in our tool implementations, and quantitatively evaluated
their effectiveness in our second case study.

• Our experiences indicate that in case of unit tests, simple techniques
such as the omission of getters and setters and the collapsing of recur-
rent patterns suffice, whereas more complex acceptance tests require
more complicated filterings such as stack depth limitation and control
flow hiding.

Having answered our research questions, we now conclude this section by
listing our contributions:

• We have presented a technique to effectively trace the various stages of
a JUnit test case.

• We have listed a broad range of abstractions in the context of scenario
diagrams, some existing and some new. These have been implemented
as a publicly available Eclipse plugin, called JRET.

• By means of two case studies, we have collected preliminary evidence of
the usefulness of our approach for test suite and program understand-
ing.

Future work

Developing visualizations that are specifically optimized for test suite com-
prehension is a relatively new field of research. Besides investigating existing
general purpose visualizations, we have established a number of research di-
rections that we wish to pursue in the future.

First, it could be argued that our approach provides an insight into the
workings of test cases rather than of a system’s functionalities: For example,
certain features may only be exhibited by long sequences of user interactions
that are not captured by any of the system’s test cases. Therefore, more work
is needed to investigate and characterize this duality.

Second, we proposed preliminary list of trace reduction techniques in (Sec-
tion 3.3.2), but there is a need for further research into their comparative
performance and applicability in different subject systems. As it stands, such
assessments are not available in the literature. We will examine trace reduc-
tion techniques in more detail in the next chapter.

Third, while our case studies yielded promising results, focusing on more
complex systems or adverse circumstances will undoubtedly raise new issues.
Issues one could think of are (1) how to deal with threads, (2) how to handle
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incomplete test suites, and (3) how to deal with software systems that have
no clear unit testing approach and rely merely on integration and acceptance
tests (e.g., Apache Ant (Van Geet and Zaidman, 2006)).
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Chapter

4
An Assessment Methodology for
Trace Reduction Techniques?

In the previous chapter, we proposed the use of a traditional visualization tech-
nique to convey a system’s runtime information to the user. Although various
trace reduction techniques have been proposed in the literature to address the
scalability concerns involved in such approaches, their applicability in different
contexts often remains unclear because extensive comparisons are lacking. In this
chapter, we propose an assessment methodology for the evaluation and compari-
son of trace reduction techniques. We illustrate the methodology using a selection
of four types of reduction methods found in literature, which we evaluate and
compare using a test set of seven large execution traces. Our approach enables
a systematic assessment of trace reduction techniques, which eases the selection
of suitable reductions in different settings, and allows for a more effective use of
dynamic analysis tools in software maintenance.

4.1 Introduction

The use of dynamic analysis has become increasingly popular in various
stages of the software development process. Among the areas of interest is
program comprehension, which constitutes an essential part of many mainte-
nance tasks (Basili, 1997; Corbi, 1989): the engineer must sufficiently under-
stand the program at hand before any action can be undertaken. In doing so,
a mental map is built that bridges the gap between the program’s high-level
concepts and its source code (von Mayrhauser and Vans, 1995; LaToza et al.,
2006).

There exist various approaches to gain knowledge of a software system.
Static analyses focus on such artifacts as source code and documentation, and
potentially cover all of the program’s execution paths. Dynamic analysis,
on the other hand, concerns the examination of the program’s behavior at
runtime, which offers the ability to reveal object identities and occurrences of
late binding (Ball, 1999). One of the main issues with dynamic techniques,
however, is the huge amounts of data that need to be analyzed (Zaidman,
2006).

In recent years, many solutions have been proposed to tackle the scalability
issues that are associated with large execution traces. Unfortunately, an ef-
fective comparison of such techniques is hampered by three factors. First,

?This chapter is based on our publication in the Proceedings of the the 24
th International Con-

ference on Software Maintenance (Cornelissen et al., 2008a). It is co-authored by Leon Moonen
and Andy Zaidman.



the evaluations of the techniques by their authors mostly concern limited
numbers of software engineering contexts. Second, the evaluation criteria
being used across these evaluations are typically different. Third, different
researchers use their own sets of execution traces to evaluate their techniques
on, i.e., no two techniques have been tested on one and the same trace. As
a consequence, the evaluation results have limited generalizability, which
makes it unclear for an engineer which reduction technique best fits a par-
ticular context.

In this chapter, we propose an assessment methodology for trace reduc-
tion techniques. The purpose of this methodology is to enable the commu-
nity to subject such techniques to a systematic evaluation process, in order
to provide end-users with sufficient information to choose the most suitable
technique in their respective contexts. We illustrate our methodology by ap-
plying it to a selection of trace reduction techniques encountered in literature,
which we evaluate and compare using context-specific criteria. We argue how
such assessments enable the reasoning about the applicability of a reduction
technique in certain analysis contexts, which leads to a more effective use of
dynamic analysis tools during maintenance tasks.

The remainder of this chapter is organized as follows. Section 4.2 provides
an outline of the problem area and the challenges involved therein. Next, in
Section 4.3, we elaborate on our assessment methodology. We then illustrate
the use of this methodology by discussing four existing reduction techniques
in Section 4.4, which we then assess in Section 4.5. Our findings are discussed
in Section 4.6, after which we present conclusions and future directions in
Section 4.7.

4.2 Background

Our intent to support software engineers in discerning the most effective re-
duction techniques in specific contexts is motivated by the research commu-
nity’s growing interest in dynamic analysis. These analyses are often charac-
terized by huge amounts of data: Reiss and Renieris, for example, report on
an experiment in which one gigabyte of trace data was generated for every
two seconds of executed C/C++ code or every ten seconds of Java code (Reiss
and Renieris, 2001).

Being able to cope with such amounts of run time data is beneficial to many
areas in software engineering. These include such tasks as debugging and
performance optimization, and tasks related to software understanding, such
as feature analysis, trace understanding, and visualization. Unfortunately, in
many such tasks, the analyses have upper bounds on the amount of data that
can be handled. In Chapter 3, for example, we reconstructed UML sequence
diagrams from event traces (Cornelissen et al., 2007b). Clearly, from a cogni-
tive point of view, such diagrams in themselves do not scale up to thousands
of events. In Chapter 5 we will propose novel visualization techniques with
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Category Examples
Summarization Execution pattern notation (De Pauw et al., 1998)

Pattern summarization (Reiss and Renieris, 2001; Systä et al., 2001;
Hamou-Lhadj and Lethbridge, 2002; Safyallah and Sartipi, 2006)
Object & event clustering (Gargiulo and Mancoridis, 2001; Riva and Ro-
driguez, 2002)
Monotone subsequence summarization (Kuhn and Greevy, 2006)

Metrics-based
filtering

Frequency spectrum analysis (Ball, 1999; Zaidman and Demeyer, 2004)
Utilityhood measure (Hamou-Lhadj et al., 2005)
Webmining (Zaidman et al., 2005)
Stack depth limitation (De Pauw et al., 1998; Cornelissen et al., 2007b)

Language-based
filtering

Package filtering (Gargiulo and Mancoridis, 2001; Salah and Mancoridis,
2004)
Visibility specifiers (Hamou-Lhadj and Lethbridge, 2006)
Getters & setters (Hamou-Lhadj and Lethbridge, 2006; Cornelissen et al.,
2007b)
Constructor hiding (Hamou-Lhadj and Lethbridge, 2006; Cornelissen
et al., 2007b)

Ad hoc Sampling (Chan et al., 2003; Dugerdil, 2007)
Fragment selection (Salah and Mancoridis, 2004; Vasconcelos et al., 2005)

Table 4.1 Categories of automatic trace reduction techniques.

a strong focus on scalability; still, a tool’s performance generally deteriorates
as the amount of data being visualized exceeds certain thresholds.

The huge amounts of data involved in dynamic analysis necessitate the use
of trace reduction techniques to render the information suitable for analysis. In
this chapter we consider (very) large traces, and therefore focus on automatic
rather than manual techniques in achieving initial data reductions. Many
such techniques have been proposed in literature over the recent years, each
targeting different aspects of execution traces. To provide an overview of the
approaches in literature, we distinguish four different categories:

(a) Summarization techniques attempt to shorten a trace by replacing part of
its contents by more concise notations. Typical summarization targets
include recurrent patterns.

(b) Metrics-based filtering is centered around the use of certain metrics. Ex-
amples of such metrics are the stack depth, and degrees of fan-in and
fan-out.

(c) Language-based filtering techniques are targeted at the omission of such
constructs as getters and setters, private methods, and so forth.

(d) Ad hoc approaches concern the use of “black-box” techniques that do
not consider the trace contents.

Table 4.1 shows the categories, along with various example techniques and
pointers to literature.
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4.3 Assessment Methodology

The main issue with the reduction techniques being offered is that they are
seldomly compared side-by-side by their respective authors. For lack of a
common assessment framework, the different techniques are generally not
evaluated

• in the same software engineering contexts;

• by the same evaluation criteria; and

• on the same test set (i.e., execution traces).

The absence of a benchmark hinders technical progress in this field (Sim et al.,
2003), and engineers faced with large amounts of trace data have the difficult
task of selecting the most suitable reduction technique(s) in their specific con-
texts.

To address this issue, we propose an assessment methodology that is aimed
at a thorough evaluation and comparison of trace reduction mechanisms.
Such assessments are important because they enable a side-by-side compari-
son of both existing and future techniques. The key aspect of our methodol-
ogy is the use of a common context, common evaluation criteria, and common
test set.

Given a set of trace reduction techniques that are to be assessed, our method-
ology distinguishes the following steps:

1. Context: the establishment of a context, i.e., a certain task, and the role
of reduction techniques therein.

2. Criteria: the definition of a set of evaluation criteria that are relevant to
the context.

3. Metrics: the definition of set of metrics that enables the reasoning about
the techniques in terms of the aforementioned criteria.

4. Test set: the selection of a series of execution traces on which to evaluate
the techniques.

5. Application: the application of the techniques on the test set while ex-
tracting the previously defined metrics.

6. Interpretation: the interpretation and comparison of the measurements,
in terms of the evaluation criteria.

Our methodology is applicable in any context that involves the need for trace
reductions, and to any of the trace reduction techniques in Table 4.1. Further-
more, the evaluation criteria can be chosen such that the end-user’s require-
ments are met. Note that the first three steps of our methodology correspond,
respectively, to the goal, the question, and the metric in the Goal-Question-
Metric (GQM) paradigm (Basili et al., 1994).
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The methodology can be used in various cases. Examples are the develop-
ment of new (or more effective use of existing) analysis tools that require the
reduction of certain amounts and types of trace data, and the development of
new reduction techniques that should be compared to existing solutions with
respect to certain criteria. The use of our methodology in these cases ensures
that the relevant aspects of reduction techniques can be properly compared,
which helps end-users to estimate the applicability of those techniques in spe-
cific contexts.

4.4 Four Reduction Techniques

We demonstrate our methodology on a selection of four trace reduction tech-
niques from the literature. Our choice for these particular techniques is moti-
vated by the categorization in Section 4.2, in the sense that we select one tech-
nique from each of the four categories. The techniques under study are sub-
sequence summarization, stack depth limitation, a combination of language-
based filtering techniques, and sampling.

For lack of available implementations of these techniques, we have created
versions of our own. These are based on their descriptions in literature; be-
low we provide relevant implementation details to ensure the reproducibility
of our experimental results. Furthermore, for reasons of scalability, in our
implementations the traces are processed on the fly rather than read entirely
into memory.

4.4.1 Subsequence summarization

The first reduction mechanism that we put to the test is a summarization
technique by Kuhn and Greevy (2006). It is based on the grouping of trace
events according to some criterion, with each group (or “subsequence”) being
represented in the output trace by that group’s first event. The projected result
is a trace that generally contains a significantly smaller number of events.
The authors of this technique have named it monotone subsequence summarization,
and while they use it to represent traces as signals in time, the technique is
essentially a trace reduction mechanism.

The grouping criterion used by this technique is based on nesting level dif-
ferences between trace events: the algorithm assigns consecutive events that
have equal or increasing nesting levels to the same group. As soon as a level
decrease is encountered and the difference exceeds a certain threshold, called
the gap size, a new group is initiated. Considering the fact that the nesting level
typically fluctuates during the execution of a system, the number of resulting
events is smaller than the number of original events, and can be controlled
by changing the gap size. Our implementation follows an iterative approach:
initially setting the gap size to 0, the algorithm repeatedly increments its value
until the projected output size meets the requirements.
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Stack depth 0 1 2 3 4 5

Frequency 607 674 890 1,584 2,115 2,142

Table 4.2 Stack depth frequencies during an example scenario.

4.4.2 Stack depth limitation

The second technique is centered around metrics-based filtering and is called
stack depth limitation. This form of reduction has been used both in static con-
texts (Rountev and Connell, 2005), and in Chapter 3 of this thesis, in which
encouraging results were attained in the removal of implementation details
from test case executions. The variant discussed here revolves around the
definition of a maximum depth: events taking place at depths higher than this
threshold are removed from the original trace. The maximum depth depends
on the maximum size of the output trace and on the stack depth progression
in the original trace, i.e., the program’s nesting behavior.

For this technique to obtain the necessary stack depth information, the al-
gorithm first collects the number of events at each depth. Next, given the
maximum output size M, the value of the maximum depth d can be auto-
matically determined, by use of which the trace is consequently reduced. For
instance, the example stack depth progression in Table 4.2 implies that for M
= 4,000, the d must be 3 (as the number of events until this depth is 3,755). The
value of M is this technique’s only parameter and can be increased if need be.

4.4.3 Language-based filterings

From the third category of reduction mechanisms we consider a combination
of language-based filtering techniques. Since initial experiments have pointed out
that these techniques by themselves are generally not successful in the signif-
icant reduction of large traces, we consider three consecutive filtering steps:

(i) Removal of getters/setters and their control flow.

(ii) Removal of private and protected method calls.1

(iii) Removal of constructors and their control flow.

Depending on the maximum output size, either of these mechanisms can be
applied “on demand” in the given order.

4.4.4 Sampling

The fourth category of reduction techniques is represented in our experiment
by sampling, an ad hoc reduction method that is used, among others, by Chan
et al. (2003) in reducing the dynamic information used by their AVID visual-
izer. The variant that we use in our experiment is simple: given an execution

1 Note that we preserve the control flows of private and protected methods since these are
generally of interest, e.g., private initialization and processing methods within a main method.
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trace, we keep every n-th event. We call n the sampling distance, which is
automatically determined based on the maximum size of the output trace.

4.5 Experimental Setup

Our demonstration assessment aims at a thorough evaluation of the trace
reduction techniques in the previous section. The design of the experiment
follows our methodology, with each of the six steps being described in the
following sections.

4.5.1 Context

In this experiment, we consider a use case in which an engineer is faced with
the task of understanding a system’s execution through the visualization of its
execution traces. We assume his main interest to concern events taking place
at high and medium abstraction levels, i.e., low-level details are considered
less important. To make this example representative of real life situations, we
assume the traces at hand to contain several tens of thousands or even millions
of events. Furthermore, the intended visualization offers the opportunity to
understand the temporal aspects of the trace, and is interactive in the sense
that one can dynamically alter the size of the input data if need be.

4.5.2 Evaluation criteria

The context of our experiment entails a set of requirements that must be suffi-
ciently met by a candidate reduction technique. In particular, we distinguish
three evaluation criteria: reduction success rate, performance, and informa-
tion preservation. These criteria are largely representative of actual use cases
in the sense that they are often applicable in practice, particularly the first and
third criteria.

Reduction success rate: the degree to which the techniques attain the desired
reductions. We say that a reduction fails if the size of a reduced trace does
not satisfy some threshold on the output size. The reduction success rate is
relevant, as it depends greatly on the trace aspects exploited by a technique,
and the degree to which these aspects occur in the trace.

Performance: a measure for the computational effort that is involved in the
reduction. This is relevant in our context because the interactive nature of the
reference visualization implies that modifications of the trace data should be
processed as quickly as possible. For example, if during an interactive session
the engineer decides that the trace data should be reduced further, it is not
desirable if it takes several minutes for the visualization to refresh its views.

Information preservation: the extent to which information from the original
trace is kept after reduction. While the application of a reduction generally
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implies that certain information is lost, it is important to quantify this loss
and to study how it relates to the information needed for the context.

We explore two directions for measuring information preservation. The
first route involves a generic approach from information theory that does not
use background information regarding the data that is compared; the second
route concerns a domain-specific analysis of information preservation that
is tailored to the comparison of traces, with respect to the context sketched
earlier. In the latter case, we distinguish three event types in a trace: (1) high-
level events, which intuitively correspond to the control routines in a trace;
(2) low-level events, which intuitively correspond to implementation details
(e.g., utilities); and (3) medium-level events that comprise the remainder and
intuitively concern business logic.

4.5.3 Metrics

In order to reason about the relevant aspects of the reduction techniques in
terms of the criteria discussed above, we define a set of metrics. The first two
metrics below are directly related to the measurement of reduction success
rate and performance, respectively. The last two metrics correspond to the
two routes to measuring information preservation.

Actual output size: the actual size of the output dataset after reduction,
in calls. This metric allows for a discussion on the reduction success rate
in each run. The measurements reflect the degree to which the reduction
was successful (if at all), on the basis of which an average success rate can be
calculated for each technique. For example, if a trace must be reduced to
1,000 events, the success rate is 90% in case of an output of 900 events, and
0% if the reduction fails.

Computation time: the amount of time spent on the reduction, in seconds.
This metric allows for a comparison of the techniques in terms of perfor-
mance. Since the reduction techniques represent different approaches, in each
run we measure the total time spent on all subtasks. These include such tasks
as reading the trace (multiple times if need be), determining the appropriate
value for the technique’s parameter, and the actual reduction.

Normalized compression distance (NCD): a generic similarity metric (Cili-
brasi and Vitányi, 2005) that uses standard compression algorithms to com-
pute a practical approximation of the non-computable but optimal “normal-
ized information distance” (NID) (Li et al., 2004). This metric has its origins
in the field of information theory and is based on the notion of Kolmogorov
complexity. NCD has been successfully applied in various areas, ranging
from text corpora to handwriting recognition, genome sequences, and pieces
of music. The NCD can be used to measure information preservation: a re-
duced trace that is shown to have a high similarity to the original trace implies
that little information has been lost.
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Preservation of events per type: for each event type, we measure the per-
centage of events that remains after reduction, relative to the number of events
in the original trace for that type. While there are various options for defining
such types (e.g., utilityhood (Hamou-Lhadj and Lethbridge, 2006)), we de-
fine the high-, medium-, and low-level types without loss of generality as (1)
events with no fan-in, (2) events with no fan-out, and (3) remaining events for
our demonstration experiment. As events we consider the method signatures,
and fan-in/fan-out rates are determined on the basis of the original trace.2

4.5.4 Test set

Systems under study

The test set in our example assessment consists of seven different execution
traces from six different Java systems. For this test set to be as representa-
tive as possible, in our systems selection we have taken into account such
characteristics as system size, typical trace size, and multithreading.

JPacman is a small application used for educational purposes at Delft Uni-
versity of Technology. The program is an implementation of the well-known
Pacman game in which the player can move around on a graphical map while
eating food and evading monsters.

Cromod is a medium-size, multithreaded industrial system that regulates
the environmental conditions in greenhouses. Given a set of sensor inputs
at the command line, it calculates for a series of discrete points in time the
optimal values for such parameters as heating, windows, and shutters. Since
these calculations are performed for a great number of points in time, a typical
scenario involves massive numbers of events.

Checkstyle
3 is a medium-size source code validation tool. From the com-

mand line it takes a set of coding standards to process one or more input files,
while systematically looking for violations and reporting these to the user.

JHotDraw
4 is a medium-size tool for graphics editing. It was developed as

a showcase for design pattern usage and is acknowledged to be well-designed.
It provides a GUI that offers various graphical features such as the insertion
of figures and drawings.

Azureus
5 is a large-size, multithreaded peer-to-peer client that implements

the BitTorrent protocol. Its GUI can be used to exchange files by use of
so-called torrents, which are files containing metadata on the files being ex-
changed.

Apache Ant
6 is a medium-size, Java-based build tool. It is command line

based and owes much of its popularity to its ability to work cross-platform.

2 Alternatively, one could use the system’s static call graph, as in (Hamou-Lhadj and Leth-
bridge, 2006).

3 Checkstyle 4.3, http://checkstyle.sourceforge.net/
4 JHotDraw 6.0b, http://www.jhotdraw.org/
5 Azureus 2.5.0.0, http://azureus.sourceforge.net/
6 Apache Ant 1.6.1, http://ant.apache.org/
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Trace Sys. kLOC # calls # threads Description
checkstyle-
short

57 31,237 1 The processing of a small input file
that contains 50 lines of commented
Java code.

pacman-
death

3 139,582 1 The start of a game, several player and
monster movements, player death,
start of a new game, and quit (Cor-
nelissen et al., 2007a).

jhotdraw-
3draw5fig

73 161,087 1 The creation of a new drawing in
which five different figures are in-
serted, after which the drawing is
closed. This process is repeated two
times (Cornelissen et al., 2008b).

cromod-
assignment

51 266,337 11 The execution of a typical assignment
that involves the calculation of green-
house parameters for two days for
one greenhouse section (Cornelissen
et al., 2008b).

checkstyle-
3c

57 1,173,914 1 The processing of three Java source
files that are between 500 and 1000

lines in size each.
azureus-
newtorrent

436 3,144,785 172 The program’s initialization, and in-
vocation of the “new torrent” func-
tionality on a small file before exiting.

ant-
selfbuild

99 12,135,031 1 The execution of the program, having
specified the non-trivial task of build-
ing Apache Ant itself (Zaidman et al.,
2005).

Table 4.3 Description of the test set.

The execution trace for this system was obtained through fellow researchers
(Zaidman et al., 2005).

Execution scenarios

For each system we define a typical execution scenario. We then instrument
the systems, run the scenarios, and register the entries and exits of all con-
structor and (static) method calls on the class level, and the threads in which
these events take place. This results in seven execution traces that size from
several tens of thousands of events to several millions of events.7 The de-
scriptions and sizes of the traces are given in Table 4.3. Figure 4.1 shows the
progression of the stack depth in each of the traces, on which the subsequence
summarization and stack depth limitation technique are dependent.

4.5.5 Application

Each of the four techniques is applied on all seven traces. The task being per-
formed during each run is the reduction of the input trace while conforming

7 The traces are available online and may be downloaded from
http://swerl.tudelft.nl/bin/view/Main/TraceRepos.
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Figure 4.1 Progression of the stack depth in each of the seven traces.
(a) checkstyle-short; (b) pacman-death; (c) jhotdraw-3draw5fig; (d) cromod-
assignment; (e) checkstyle-3c; (f) azureus-newtorrent; (g) ant-selfbuild.

to a certain threshold. The threshold is the maximum output size of the trace,
and reflects use cases in which a certain degree of reduction is necessary for
a certain task.

As an example of such a use case, consider the trace visualization in Fig-
ure 4.2. It shows the similarities within a trace as a matrix: the horizontal
and vertical axes symbolize the trace (progressing from left-to-right and top-
to-bottom, respectively), and similar events are denoted by colored dots (with
each color symbolizing a certain recurring event).8. A major issue with this
trace comparison technique was that it could handle at most 50,000 events (ap-
prox.) in our experimental setup, because it has complexity O(n2) with respect
to the trace size n. Therefore, the trace must be reduced prior to processing
and visualization.

We employ seven different output thresholds with values between 1,000

and 1,000,000 calls. This yields a total of 196 runs, which we perform on

8A detailed description of this visualization technique is provided in (Cornelissen and Moo-
nen, 2007).
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Figure 4.2 Visualization of an execution trace as a similarity matrix.

a Linux system with an Intel Pentium M 1.6 GHz processor and 2 GB of
memory.

4.5.6 Interpretation

The final stage of the assessment concerns the interpretation of the results. By
focusing on the measurements in each of the 196 runs, we discuss the results
of the techniques in terms of our evaluation criteria. Finally, based on our
observations, we conclude with a comparison of the techniques.

4.6 Results & Discussion

The results of the experiment are shown in Table 4.4, which shows the mea-
surements for each of the four techniques across the relevant runs.9 Reduc-
tions that were unsuccessful are denoted by dashes; furthermore, the percent-
ages of preserved events have been rounded upwards so as to distinguish
very small fractions from zeroes. Finally, the NCD values for information
preservation were omitted in this table since they proved unreliable for the
trace sizes used in the experiment; this is discussed in Section 4.6.3.

Figure 4.3 shows the average reduction success rate of each technique
across the entire test set. The percentages are based on the measurements
of all relevant runs.

Figures 4.4 through 4.6 demonstrate the performance of each technique in
terms of computation time. We have selected the cases that exhibit the clearest

9 Runs with thresholds higher than the input trace sizes were omitted.
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Figure 4.3 Average reduction success rates.

differences (i.e., the largest traces) and that have high numbers of successful
reductions, being cromod-assignment, checkstyle-3c, and ant-selfbuild. Note
that the latter two diagrams employ logarithmic scales for the computation
time.

Finally, Table 4.5 summarizes each technique’s achievements relative to
those of the other techniques.

In the following sections we discuss our findings, which are structured
according to the three criteria.

4.6.1 Reduction success rate

In terms of the first evaluation criterion, we observe that the sampling tech-
nique achieved the best results: it is the only method that yielded successful
reductions under all circumstances, with the output sizes mostly being close
to the thresholds. This is presumably due to its ad hoc nature, as execution
traces can always be sampled such that the maximum output size is satisfied,
regardless of the size and composition of the trace.

The summarization and stack depth limitation techniques are both depen-
dent on stack depth progression (Figure 4.1), and show results that are sim-
ilar to one another, with both methods mostly having difficulties with the
azureus-newtorrent trace. The cause is most likely found in the abundance of
active threads during this program’s execution, in which (1) there occur many
thread interactions, which hinders the grouping algorithm used during sum-
marization; and (2) many threads exhibit low nesting levels, which renders
depth limitations less effective. Furthermore, when faced with strict trace size
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Figure 4.4 Performance for the Cromod trace.

limits, the summarization technique occasionally produces very small traces
because in such cases the gap size is large out of necessity.

Finally, the combination of language-based filtering techniques proves dis-
appointing with nearly half of the reductions having been unsuccessful. A
noteworthy exception is the cromod-assignment trace, in which 98 out of ev-
ery 100 events concern constructors, which are all filtered given any of the
thresholds in Table 4.4.

Note that alternative definitions may be considered: e.g., a reduction may
not necessarily have “failed” in case the result contains only several events
too many.

4.6.2 Performance

With regard to performance, our measurements show that all four techniques
were capable of reducing traces smaller than one million events within one
minute (Figure 4.4). When looking at larger traces, however, there exist clear
differences: here we observe that sampling easily outperforms any of the
other techniques (Figures 4.5 and 4.6). We assume the principal cause to be
that the sampling distance can be determined a priori, after which the trace
needs to be processed only once. For the same reason, the computational
effort involved in this approach is independent of the thresholds.

The same holds for the stack depth limitation technique, but here a trace
must be processed twice because the stack depth frequencies must first be col-
lected. Moreover, the interpretation of the stack depth at each event requires
additional parsing effort in comparison to the black-box approach used by the
sampling technique.

Concerning the language-based filtering techniques, there is little timing
data available due to the many failed reductions. The data that is available,
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Figure 4.5 Performance for the checkstyle-3c trace.

however, suggests that this approach is significantly slower than the afore-
mentioned techniques. One can think of several reasons for this slowdown.
Since the filterings are applied on demand and one by one, low thresholds
require that the trace at hand is processed up to four times, i.e., once for each
filter type, and once more to read and write the traces. Moreover, the stack
depths and signatures of each event must be parsed in order to acquire the
information that is targeted by the filters.

The subsequence summarization technique typically requires a trace to be
processed multiple times, as the gap size must be repeatedly incremented
(starting at 0) until a suitable projected output size has been found. This
iterative process yields significant overheads if the threshold is much smaller
than the size of the trace, with the effort involved in each iteration being
proportional to the trace size. Moreover, the number of necessary iterations
also depends on the stack depth progression in the trace. The overall result
is that the summarization approach is clearly the slowest technique in our
experiment, particularly for large traces.

4.6.3 Information preservation

The assessment of our final criterion yields mixed results. Unfortunately, the
values computed by the NCD metric proved unreliable in practice due to the
trace sizes that were used in our experiment. To explain the issue, we need
to provide some background on this metric. NCD is based on the notion that
two objects are close to each other if we can significantly compress one object
given the information in the other (Cilibrasi and Vitányi, 2005). In practice,
this translates to compressing the concatenation of the original and reduced
traces and comparing its size to that of the compressed original trace. How-
ever, it turns out that standard compression tools split their input in “com-
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Figure 4.6 Performance for the ant-selfbuild trace.

pression windows” within which the compression information is shared. As
the size of the concatenation of the original and reduced trace exceeds the size
of the compression window, that particular compressor can no longer be used
to determine the NCD between those traces (since we are no longer compress-
ing one object given the information in the other). Personal communication
with R. Cilibrasi, the metric’s first author (Cilibrasi and Vitányi, 2005), con-
firmed these issues and suggested their circumvention by writing a dedicated
compressor. Since the metric only serves as an example in our experiment,
this is left as a direction for future work.

For the domain-specific assessment of information preservation, we focus
on high-level and medium-level events since those are required by our context
(Section 4.5.1).

Subsequence summarization typically attains the best results: the percent-
ages of preserved high-level events are significantly higher than those of the
medium-level events which, in turn, are often higher than those of the low-
level events. This is because each group is represented by its first event, and
using our depth-based grouping criterion this event is likely to reside at rela-
tively high levels.

The stack depth limitation and language-based filtering techniques show
comparable results: the percentages of preserved high-level events are gen-
erally higher than those of other event types, with the depth limitation tech-
nique attaining the highest percentages in this respect. In several reductions,
however, the fractions of preserved medium-level events are not always higher
than those of low-level events. Examples are checkstyle-3c for depth limita-
tion, and azureus-newtorrent for filtering. This implies that the use of these
two techniques sometimes causes the preservation of low-level events at the
cost of those at the medium-level, which is undesirable in the given context.
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Subseq. summariz. Stack depth lim. Lang.-based filt. Sampling
reduction success rate o o − +
performance − o o +
information preservation + o o −

Table 4.5 Assessment summary with respect to the example context.

The sampling technique mostly exhibits similar fractions of preserved events
across all three event types, particularly in large traces. This means that all
event types are equally represented in the reduced traces. We attribute this to
the technique’s ad hoc nature, which implies that low-level events are neither
identified, nor removed. This makes sampling the least useful technique in
preserving high-level and medium-level events in our context.

On an interesting note, the measurements for the ant-selfbuild trace sug-
gest that all of its high-level events are often preserved. However, it turns
out that our definition of high-level events implies that this trace has only one
high-level event.

4.6.4 Threats to validity

A potential threat to the internal validity concerns the test set in our experi-
ment. As with most evaluations in literature, certain implications were based
on the properties of our test set, e.g., systems with multiple threads running
the risk that stack depth-based reductions may have limited applicability (Sec-
tion 4.6.1). Such observations do not necessarily hold true for any program
or trace, as threading and nesting behavior can vary from system to system.
We have addressed this issue by using a test set that is above average in terms
of size and composition, and that contains systems and traces with different
sizes and characteristics.

An additional threat to the internal validity concerns the fact that reduc-
tion techniques in literature could be subject to different interpretations. To
address this threat, we have described our implementation choices to allow
validation by others and to ensure the reproducibility of our results.

Concerning the external validity, we note that the reduction techniques
considered in this chapter are automatic in nature. The assessment of reduc-
tion methods is more difficult if other factors come into play; e.g., when a
technique relies heavily on additional information, such as domain knowl-
edge. Furthermore, most reduction techniques can be implemented in dif-
ferent manners: for instance, in terms of performance, the summarization
algorithm used in our experiment could benefit from a higher initial gap size
in case of large traces or low thresholds.

Finally, alternative contexts may require other evaluation criteria in addi-
tion to those used in our example assessment. For example, the evaluation
of a memory-intensive technique warrants a discussion on spatial complexity.
However, we argue that our example criteria are generic to a great extent: in
particular, the notions of reduction success rate and information preservation
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are applicable in many alternative assessment contexts, which renders our
experimental results useful in those cases.

4.7 Concluding Remarks

Program comprehension is an important aspect of the software development
process. While the use of dynamic analysis in this process has become increas-
ingly popular, such analyses are often associated with large amounts of trace
data, which has led to the development of numerous trace reduction tech-
niques in recent years. Unfortunately, the different techniques being offered
are generally not evaluated (1) in the same software engineering contexts, (2)
by the same evaluation criteria, and (3) on the same test sets. As a result, it is
often unclear to which extent a certain technique is applicable in a particular
context, if at all.

We addressed this challenge by proposing an assessment methodology that
uses a common context, common evaluation criteria, and a common test set to
ensure that the reduction techniques under study can be properly compared.
To illustrate its use in practice, we applied the methodology on a selection of
four types of reduction techniques, being subsequence summarization, stack
depth limitation, language-based filtering, and sampling. Using a test set
of seven large execution traces (made available online), we evaluated and
compared these approaches in terms of context-specific criteria, leading to
an overview (Table 4.5) that is valuable for software maintainers in similar
contexts.

In summary, the work described in this chapter makes the following con-
tributions:

• An assessment methodology for the evaluation and comparison of trace
reduction techniques.

• The demonstration of this methodology through the implementation,
evaluation, and comparison of four types of trace reduction techniques
used in literature.

Future work

As a direction for future work one could consider the application of our
methodology to additional traces and reduction techniques. In particular, the
extent could be determined to which the assessment results can be general-
ized, i.e., whether the achievements of a technique are representative for other
techniques in the same category (Table 4.1). This includes the use of larger
test sets and the consideration of alternative contexts, which could involve
different evaluation criteria (e.g., with more emphasis on qualitative aspects).

Another direction for future work concerns adapting the compressor that
is used to compute the NCD metric, such that it no longer suffers from the
“compression window” limitations that were discussed in Section 4.6.3. This
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enables its applicability to realistically-sized traces, and renders it an interest-
ing alternative for measuring information preservation.

Finally, an interesting future direction could be to investigate whether cer-
tain trace characteristics (similar to those in (Hamou-Lhadj and Lethbridge,
2005)) can help in predicting the effectiveness of certain reduction techniques.
The Cromod trace in our experiment is a good example, as its many construc-
tors were the key to the success of the constructor filtering technique in that
case.
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Chapter

5
Advanced Trace Visualization with
Extravis?

An alternative to traditional visualization techniques is the use of more advanced
visualizations. Such techniques are a potentially powerful means to tackle the
scalability issues associated with program comprehension and dynamic analysis,
particularly when designed with these challenges in mind. In this chapter, we pro-
pose two such visualizations: the massive sequence view and the circular bundle
view, both reflecting a strong emphasis on scalability. They have been imple-
mented in a tool called Extravis. By means of distinct usage scenarios that were
conducted on three different software systems, we show how our approach is ap-
plicable in three typical program comprehension tasks: trace exploration, feature
location, and top-down analysis with domain knowledge.

5.1 Introduction

Software engineering is a multidisciplinary activity that has many facets to
it. In particular, in the context of software maintenance, one of the most
daunting tasks is to understand the software system at hand. During this task,
the software engineer attempts to build a mental map that relates the system’s
functionality and concepts to its source code (Renieris and Reiss, 1999; LaToza
et al., 2006).

Understanding a system’s behavior implies studying existing code, docu-
mentation, and other design artifacts in order to gain a level of understanding
that is sufficient for a given maintenance task. This program comprehension pro-
cess is known to be very time-consuming, and Basili reports that 50 to 60%
of the software engineering effort is spent on understanding the software sys-
tem at hand (Basili, 1997). Thus, considerable gains in overall efficiency can be
obtained if tools are available that facilitate this comprehension process. The
greatest challenge for such tools is to create an accurate image of the entities
and relations in a system that play a role in a particular task.

Dynamic analysis

Dynamic analysis, or the analysis of data gathered from a running program,
has the potential to provide an accurate picture of a software system: e.g.,
in the context of object-oriented systems it can reveal object identities and

?This chapter is based on our publication in the Journal of Systems & Software in Decem-
ber 2008 (Cornelissen et al., 2008b). It is co-authored by Andy Zaidman, Danny Holten, Leon
Moonen, Arie van Deursen, and Jarke J. van Wijk. Danny Holten was responsible for the imple-
mentation of the tool as well as the design of the visualization techniques involved.



occurrences of late binding. Furthermore, through the careful selection of
an execution scenario, a goal-driven program comprehension strategy can be
followed (Zaidman et al., 2005). The data is obtained through the instrumen-
tation and execution of a system, which (in the case of a post mortem analysis)
results in one or more execution traces that are to be analyzed.

Challenges & goal

The main issue in the context of dynamic analysis approaches for program
comprehension is the enormous amount of data that is collected at runtime,
since it gives rise to scalability issues (Zaidman, 2006). Particularly in the
case of a sizable program, the main challenge for any dynamic analysis based
technique is to convey both the program’s large structure and its many in-
terrelationships to the user, such that the available screen real estate is used
efficiently. This is not a trivial task, and straightforward visualizations typi-
cally do not suffice because they often require two-dimensional scrolling, thus
hindering the comprehension process (Yang et al., 1997). An example of such
visualizations are UML sequence diagrams which we reconstructed in Chap-
ter 3.

The goal of this chapter is the development of new techniques that allow
the visualization of dynamically gathered data from a software system in a
condensed way, while still being highly scalable and interactive.

Visualization approach

We attempt to achieve our goal by presenting two synergistic views of a soft-
ware system. The first view is the circular bundle view that projects the system’s
structural elements on the circumference of a circle and visualizes the call
relationships in between. The second view, the massive sequence view, provides
an interactive, high-level overview of the traced events. These techniques are
implemented in our tool Extravis (EXecution TRAce VISualizer).

To characterize our approach, we use the framework introduced by Maletic
et al. (2002):

1. Task: Why is the visualization needed? The amount of trace data that often
results from dynamic analysis, calls for a visualization that represents
an execution trace in a concise and interactive manner. More specifically,
we describe how our approach is useful for three representative program
understanding scenarios:

• trace exploration;

• feature location; and

• top-down program comprehension with domain knowledge.

2. Audience: Who will use the visualization? The target audience consists of soft-
ware developers and re-engineers who are faced with understanding
(part of) an unknown software system.
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3. Target: What low level aspects are visualized? Our main aim is to represent
information pertaining to call relationships, and the chronological order
in which these interactions occur. This information is augmented with
static data to establish the system’s structural decomposition.

4. Representation: What form of representation best conveys the target information to the
user? We strive for our visualization to be both intuitive and scalable. To
optimize the use of screen real estate, we represent a system’s structure
in a circular view. Moreover, our massive sequence view presents an
interactive overview.

5. Medium: Where is the visualization rendered? The visualization is built up from
two synchronized views that are rendered on a single computer screen.

Our approach enables software engineers to quickly gain an understanding
of unfamiliar software systems, thus enabling related tasks such as software
maintenance to be performed more efficiently. We illustrate this through the
application of our tool implementation in the context of trace exploration, fea-
ture location, and top-down analysis. These studies involve two open source
programs and an industrial system.

Contributions

This chapter makes the following contributions.

• A novel approach to execution trace visualization that is based on two
linked views: (1) the circular bundle view that displays the structural
elements and bundles their call relationships, and (2) the massive se-
quence view that provides an interactive overview.

• The application of our tool implementation on three distinct software
systems in three different program comprehension contexts.

Structure of this chapter

In Section 5.2 we discuss the existing visualization techniques that our ap-
proach relies on, while Section 5.3 provides a detailed description of our own
approach. Section 5.4 introduces our experimental setup and case studies,
while Sections 5.5 through 5.7 deal with the three case studies that we have
performed. Section 5.8 discusses benefits and drawbacks of our approach
and Section 5.9 outlines related work. Section 5.10 summarizes our work and
provides pointers for future work.

5.2 Existing work

The two synergistic views that we propose in our approach are based on a
number of existing information visualization techniques. In this section we
briefly introduce these existing techniques and point out how our approach
differs from their original application.
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Figure 5.1 Call relations within a program shown using linear edges (left) and using
hierarchical edge bundles (right).

5.2.1 Circle approach
In order to address the issue of visualizing the large number of structural
entities that constitute a software system, we propose to employ a circle ap-
proach in which all structural elements are projected on the circumference of
the circle.

Hierarchical edge bundles

To depict a system’s structural information we use the circle approach from
Holten (2006), who proposed to project all of a system’s structural entities on
the outline of a circle and to draw their relations in the middle. The entities are
presented in a nested fashion on the circle in order to convey their hierarchical
properties, e.g., package structures or architectural layers.

Within the circle the relationships between the structural elements are drawn.
These relations are depicted by bundled splines (Figure 5.1): the visual bund-
ling of relations helps to reduce visual clutter, and also shows the implicit
relationships that exist between parent elements resulting from explicit calls
between their respective children. These hierarchical edge bundles were used by
Holten (2006) to depict static dependencies; we enrich this visualization so
that it can show dynamic information.

5.2.2 Message sequence charts
The technique that we propose to use for the interactive visualization of time-
ordered events builds upon the notion of message sequence charts. Message
sequence charts are commonly used to visualize a series of chronologically
ordered interactions between the entities of a system (Briand et al., 2006).
Their main advantage is readability: the fact that the events are ordered from
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top to bottom makes the diagrams intuitive for humans. Scalability, however,
is an important limitation for this technique: the charts rapidly become hard
to navigate when dealing with too much information, which makes them less
suitable for large amounts of entities and interactions.

Information murals

To tackle the scalability issue in visualizing large amounts of dynamic infor-
mation, Jerding and Stasko (1998) proposed the “information mural”. This
technique creates a two-dimensional miniature version of the information
space and is appropriately scaled to fit on one screen. In this chapter, we
use a similar technique to visualize large-scale message sequence charts: we
show a system’s entire (nested) structure on the horizontal axis, while plotting
the interactions as rectangles along the vertical axis. The rectangles are ap-
propriately colored to indicate the directions of the calls. The purpose of the
resulting view is to provide a navigable overview of an execution trace.

5.2.3 Visualization criteria

When constructing new techniques to visualize large amounts of data in a
comprehensible way, we need criteria that capture “comprehensibility”. Taken
from the realm of visual programming languages, we discuss two properties
that express these criteria and represent a set of important requirements (Yang
et al., 1997).

Accessibility of related information

It is essential that related information is viewed in close proximity. When
considering two objects in a visualization that are not close to each other, there
is the psychological claim that these objects are not closely related, or are not
dedicated to solving the same problem. Translated to the field of software
visualization, we observe two dimensions that pertain to this criterion:

1. Structural entities that are related according to some criterion should
be visualized in close proximity to each other. Example criteria include
parent-child and composition relationships.

2. Structural entities that participate in the execution in a particular time
interval should be visualized in close proximity to each other.

Use of screen real estate

The term “screen real estate” refers to the size of a physical display screen
and connotes the fact that screen space is a valuable resource. During infor-
mation comprehension tasks, it is of great importance to make optimal use of
the available screen real estate in order to prevent excessive scrolling and to
reduce the effort from the user’s part.
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Keeping these criteria in mind, any trace visualization technique faces a two-
fold challenge: it must depict (1) a potentially large number of structural
entities, all the while keeping related entities relatively close together, and (2)
massive amounts of runtime information without confusing the viewer, e.g.,
preferably without the need for scrolling.

5.3 Our Approach

The techniques that we described in the previous section have been imple-
mented in a prototype tool called Extravis. Given an execution trace (or part
thereof), Extravis presents two linked views:

• The circular bundle view shows the system’s structural decomposition (us-
ing a parent-child relationship) and the nature of its interactions during
(part of) an execution trace.

• The massive sequence view provides a concise and navigable overview of the
consecutive calls between the system’s entities in a chronological order.

The tool’s user interface is depicted in Figure 5.2, which illustrates the actual
views in the context of a large execution trace1. Both views offer multiple
interaction methods and detailed textual information on demand, and a syn-
chronized mode of operation ensures that changes in the one view are propa-
gated to the other. In this section, we discuss the metamodel used by Extravis

and describe the two views in more detail.

5.3.1 Metamodel

Extravis is based on a metamodel that describes the structural decomposition
of the system (a parent-child relationship or contains-hierarchy) and a time-
stamped call relation. Optionally, additional relations can be supplied which
contain more detailed information.

Structural information
To visualize the structure of a program, the tool requires a type of relation that
defines the system’s structural decomposition. In this context, one could think
of package or directory structures, or architectural layers. The remainder of
this chapter assumes a parent-child relationship.

Basic call relations
The second mandatory part of the metamodel is a series of call relations which
are extracted from an execution trace. The input thus contains information on
the caller and callee’s classes, the method signatures, and the chronological
order of the calls (by means of an increment). Additionally, to link with the

1The figures in this chapter are also available in hi-res at http://swerl.tudelft.nl/
extravis/.
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Figure 5.2 Extravis’ interface. A full view of an entire Cromod trace is shown.

source code, the method signatures contain pointers to the source files (if
available) and include the relevant line numbers.

Detailed call relations
In case the execution trace is rich in the sense that detailed call information is
available, the metamodel also allows the specification of such data as object
identifiers, runtime parameters, and actual return values.
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5.3.2 Circular bundle view

The first of the two views, the circular bundle view, offers a detailed visual-
ization of the system’s structural entities and their interrelationships. At the
basis of this view lie the techniques that were proposed in Section 5.2.1:

• The projection of the software system’s structural elements on the cir-
cumference of a circle, including their hierarchical structuring.

• The visual bundling of the relationships between these elements in the
circle.

Furthermore, we have made several enhancements to further facilitate the
comprehension process.

First, the high-level structural entities can be collapsed to enable focusing
on specific parts of the system. As is illustrated in Figure 5.4, collapsing an
element hides all of its child elements and “lifts” the relations pertaining to
these child elements to the parent element, thus providing a straightforward
abstraction mechanism. The (un-)collapsing process is fully animated for the
user to maintain a coherent view of the system, i.e., to facilitate the cognitive
linking of the “pre” and “post” view.

Secondly, the circular bundle view provides a snapshot in time that corre-
sponds to the part of the execution trace that is currently being viewed. As
such, the hierarchical edge bundles visualize the interactions occurring during
a certain time interval. Edges are drawn between the elements that commu-
nicate with each other, and the thickness of an edge indicates the number of
calls between two elements, thus providing a measure for their degree of cou-
pling. Furthermore, textual information related to the underlying source code
is provided by means of call highlighting (i.e., by hovering over an edge) and
by providing direct links to the relevant source parts.

Finally, with respect to the coloring, the user can choose from either the
directional or the temporal mode. In the former case, a color gradient along the
edge indicates its direction. The latter mode colors the edges such that the
calls are ordered from least recent (light) to most recent (dark).

5.3.3 Massive sequence view

To support users in navigating through traces and identifying parts of interest,
Extravis offers the massive sequence view. Being a derivative of the informa-
tion mural, it provides an overview of (part of) an execution trace in which
the directions of the relations (caller-to-callee) are color coded using a gradi-
ent (green-to-red; see Figure 5.2). Additionally, the massive sequence view
allows to zoom in on parts of the execution trace by the selection of a fragment
that needs closer inspection.

Importance-Based Anti-Aliasing
When visualizing information murals and large-scale message sequence charts
in particular, it becomes apparent that the number of available pixel lines on a
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Figure 5.3 Using Importance-Based Anti-Aliasing (IBAA) to visualize outlier calls.

normal display is not sufficient. Rather than visualizing every event, one typ-
ically resorts to such measures as abstraction and linear anti-aliasing (Jerding
et al., 1997). While being useful in maintaining the big picture, certain poten-
tially useful outlier calls may not “survive” these measures.

To keep the loss of such calls to a minimum, we propose a new anti-aliasing
technique that uses an importance-based blending mode to calculate a pixel
line’s average color. Calls are weighted depending on the frequency with
which they appear within a certain time frame, and calls with small fre-
quencies are emphasized. This technique is called Importance-Based Anti-Aliasing
(IBAA) and ensures that outlier calls remain visible in the proximity of thou-
sands of calls, thus ensuring that potentially important calls are not missed by
the user. Figure 5.3 illustrates the technique; a detailed description is provided
by Holten et al. (2007).

5.3.4 View interaction

An important strength of our approach is the synergy between the two views.
The views are linked in the sense that user interactions in the one view are
visible in the other. This ensures that the user maintains a coherent view of
the system during all view interactions.

An example is the collapsing process that was described earlier. Collaps-
ing a structural entity in the circular view hides its interrelationships and
aggregates its relations with other entities; this results in an abstraction that
is propagated to the massive sequence view, in which the structural hierarchy
and the series of calls are modified accordingly. Additionally, the user may
zoom in on part of the massive sequence view, thus reducing the time frame
under consideration in both views.
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Another example that illustrates the usefulness of the linked views con-
cerns highlighting. In the circular view, the viewer can select a structural
element, upon which the massive sequence view shows the interactions in-
volving this element by graying out the other calls. Selecting two elements,
on the other hand, highlights their mutual interactions. Hovering over a call in
either of the two views shows its occurrence(s) in the other view, and spawns
a tooltip that describes its nature (e.g., the method signature and call site
information).

5.3.5 Implementation

This section focuses on the technologies that were used to build Extravis.
The front-end of Extravis is written in Delphi and makes heavy use of

OpenGL. For extracting a system’s class decomposition from its directory
structure, we make use of a simple Perl script. As for the dynamic part, we
trace a system’s execution by monitoring for (static) method and constructor
invocations, and registering the objects that are involved. We achieve this by
extending the Sdr framework from Chapter 3, which incorporates a tracer that
employs AspectJ2 for the instrumentation. During an execution, this tracer
registers unique objects, method and constructor names, information on the
call sites (i.e., source filenames and line numbers), runtime parameters, and
actual return values, while a custom-built event listener converts the events to
our tool’s input format.

As it stands, Extravis does not support multithreaded systems. While our
tracer is capable of registering thread information, our visualization technique
is not currently attuned to multiple threads.

Extravis is available for download and requires a modern Windows PC to
run3. A recent graphics card is highly recommended in order to fully benefit
from the importance-based anti-aliasing.

5.4 Case Studies

To illustrate the effectiveness of our techniques, we have conducted three dis-
tinct case studies. Each of these studies is centered around a specific use case
for our techniques, and is representative for program comprehension chal-
lenges that are faced by software engineers in everyday life. While in certain
cases there is some a priori knowledge regarding the user-level functionality
of the system at hand, no implementation details are known in advance.

Trace exploration (Section 5.5)

• Context: The system is largely unknown, but an execution trace is avail-
able. No (or little) up-front knowledge is present.

2AspectJ, http://www.eclipse.org/aspectj/
3Extravis, http://swerl.tudelft.nl/extravis/.
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• Task: Identify the phases that constitute the system’s execution, and
study its fan-in and fan-out characteristics.

• Goal: Get an initial feeling of how the system works, as a basis for a more
focused examination.

Feature location (Section 5.6)

• Context: The user-level functionality of the system is known. The na-
ture of the system is such that the features can be invoked at the user’s
discretion.

• Task: The execution of a scenario in which a set of features is invoked,
and the visual detection of these features in the resulting trace.

• Goal: The establishment of relations between feature invocations and the
corresponding source code elements.

Top-down program comprehension with domain knowledge (Section 5.7)

• Context: The system is unknown, and the user has little control over its
functionality since it concerns a batch execution. However, the system’s
description provides clues as to the behavioral aspects (i.e., the execution
phases) that are to be expected.

• Task: Using domain knowledge, formulate a hypothesis describing a set
of conceptual phases, and validate it through the analysis of a typical
trace.

• Goal: The use of a top-down approach to gain and refine (detailed)
knowledge of a system’s inner workings.

Each of these use cases is exemplified by means of a typical usage scenario
that involves a medium-scale Java system4.

5.5 Case Study 1: Trace Exploration

5.5.1 Motivation
When a system is largely unknown and an execution trace is available, being
able to globally understand the control flow in the trace can be of great help
in understanding the system. Particularly in the context of a legacy system
that lacks a thorough documentation, any information on the system’s inner
workings is welcome. However, since execution tracing tends to result in large
amounts of data, the exploration of such traces is by no means a trivial task. To
illustrate how our techniques facilitate this process, we explore an industrial
system called Cromod.

4Note that although these experiments involve Java because our tool-chain is optimized for
Java systems, we are confident that our technique is applicable to other (non-object-oriented)
languages.
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5.5.2 Cromod

Cromod is an industrial Java system that predicts the environmental condi-
tions in greenhouses. The system is built up from 145 classes that are dis-
tributed across 20 packages. According to the manual, it takes a greenhouse
configuration (e.g., four sections, 15 shutters, and 40 lights) and a weather
forecast as its input; it then calculates the optimal conditions and determines
how certain parameters such as heating, lights, and shutters should be con-
trolled; and then writes the recommended values. Since the calculations are
done for a large number of discrete time frames, they typically induce mas-
sive numbers of interactions, which makes this system an interesting subject
for trace visualization.

5.5.3 Obtaining the trace

The trace that results from a typical Cromod execution contains millions of
events, of which a large part can be attributed to logging. At the recommen-
dation of the developers, we have run the program at a log level such that the
resulting trace contains roughly 270,000 method and constructor calls. This
trace captures the essence of the execution scenario, and in terms of size,
the visualization and comprehension of this trace remain a challenge. We
conclude the setup with the extension of the trace with information on the
system’s hierarchical decomposition in terms of its package structure.

5.5.4 Analyzing the trace

Loading the trace into Extravis provides us with the initial views that are
shown in Figure 5.2.

Studying fan-in and fan-out behavior

The circular view of the trace shows Cromod’s structural decomposition and
(the frequency of) the calls that occurred during execution. For example, we
can see several edges that are thicker than usual, which suggests that most of
the activity is centered around these particular calls. What is also noteworthy
is that in the vicinity of certain packages the edges are predominantly colored
red, which indicates a high degree of fan-in: the only outgoing calls here seem
to be directed toward classes within the package. Examples of such packages
are util.fileio and model: Figure 5.4 confirms our assumption by collapsing
these packages, which results in aggregated relations that are clearly incoming
in nature. From this observation, we draw the conclusion that these packages
fulfill a library or utility role.

Identifying phases

The massive sequence view indicates that there are three major “phases” in
the execution scenario. The first and third phases are characterized by two
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Figure 5.4 Collapsing the model and util.fileio packages in the Cromod trace.

small beams; in between we observe a long segment that appears to be some-
what broader, and shows a very consistent coloring. At this point in time,
we made the hypothesis that the three stages concern (1) an input phase, (2)
a calculation phase, and (3) an output phase. We attempt to validate this
hypothesis in the following steps.

The first phase that we can visually discern looks like an almost straight
vertical “beam”. We zoom in on this phase by selecting a suitable interval,
thus reducing the time frame under consideration. Now, Extravis only visu-
alizes the interactions within the chosen time frame in both views. Turning
our attention to the circular view (Figure 5.5), we learn that this first phase
merely involves a limited number of classes and packages, and judging by the
names of the packages and classes involved (e.g., inputcontroller.ReadCromod-
Forecast and fileio.InputFileScanner), this phase mainly concerns I/O activ-
ity with an emphasis on input processing.

A quick glance through the second phase reveals a massive number of
recurrent calls within the model package. The phase is mainly made up from
the construction of model.advancedradiation.Sun objects by model.advanced-
radiation.SolarModel, and the creation of model.Time instances by model.Time-
Value. Indeed, out of the 270,000 events in this execution scenario, 260,000

events concern calls to constructors. From these findings we conclude that
this phase is concerned with the Cromod’s main functionality, i.e., the model
calculations.

Another noteworthy observation in the second phase is the occasional ap-
pearance of very thin lines in the massive sequence view of Figure 5.2. A
closer look reveals that the aforementioned construction processes are inci-
dentally interleaved with short fragments that involve readers of Cromod’s
XML inputs. Focusing on one such fragment (Figure 5.6), we learn that
util.PeriodicThread.run() is invoked on inputcontroller.ReadCromodForecast,
which results in a call to util.fileio.InputFileScanner.scanForFiles(). This
example illustrates the purpose of our anti-aliasing technique: without the
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Figure 5.5 Circular view of Cromod’s initialization phase.

use of IBAA, on a typical display that offers 1,200 pixel lines, and given a
trace size of 270,000 calls, the odds of two calls ending up in the resulting
massive sequence view would have been less than 1%.

The third phase is similar to the first phase: here we observe interac-
tions between maincontroller.tasks.CurrentValuesGenerator and util.fileio-
.OutputFile which again suggests I/O activity, focused on output rather than
input. This provides strong evidence for the validation of the hypothesis for-
mulated earlier.

5.5.5 Discussion

In this experiment, we explored a typical execution trace of an industrial sys-
tem of which we had very little knowledge in advance. Our visualization
techniques proved to be very useful in this context, and rapidly helped us
gain a certain degree of knowledge of the system.

More specifically, the circular bundle view showed (1) Cromod’s fan-in
and fan-out behavior, and (2) the distribution of the events across the sys-
tem. Moreover, the collapsing of packages aggregates the interrelationships
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Figure 5.6 Zoomed massive sequence view of Cromod’s second phase, focusing
on a periodic fragment.

of these packages, rendering both the circular and the massive sequence view
easier to read.

The massive sequence view provided an overview of the trace and indi-
cated the existence of three major phases in the execution. We used zooming
and call highlighting to learn more about the nature of these phases. The use
of IBAA pointed out a series of outlier calls.
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5.6 Case Study 2: Feature Location

5.6.1 Motivation

A significant portion of the effort in a maintenance task is spent on determin-
ing where to start looking within the system. In the context of specific features,
this process is called feature location (Wilde et al., 1992). Its purpose is to relate a
system’s features to its source code, which enables an engineer to focus on the
code fragments that are relevant to a feature’s implementation (e.g., to handle
change requests). While research into feature location is often concerned with
automatic techniques such as concept analysis (Eisenbarth et al., 2001) and
Latent Semantic Indexing (Poshyvanyk et al., 2007), we will attempt to visu-
ally locate certain features in an execution trace (similar to Kuhn and Greevy
(2006)). In this context, we consider a feature to be a user-triggerable unit of
functionality (Eisenbarth et al., 2003).

5.6.2 JHotDraw

JHotDraw
5 is a well-known, highly customizable Java framework for graphics

editing. It was developed as a “design exercise” and is generally considered
to be well-designed. It comprises 344 classes and 21 packages. Running the
program presents the user with a GUI in which there is a set of features
that may be invoked at the user’s discretion, such as opening a file, inserting
predefined figures or manual sketches, and adding textual information. While
the authors are familiar with JHotDraw’s user-level functionality, its inner
workings are unknown in advance.

5.6.3 Obtaining the trace

To generate a suitable feature trace, we use an execution scenario that involves
several major features that we want to detect: the creation of a new drawing,
and the insertion of five different types of figures therein. These figures include
rectangles, rounded rectangles, ellipses, triangles, and diamonds. To make the
localization of the “new drawing” and the “insert figure” features easier, we
invoke the aforementioned scenario a total of three times (Figure 5.7).

Since JHotDraw registers all mouse movements, the trace that results from
our scenario is bound to contain a lot of noise. We have therefore filtered
these mouse events to obtain a trace that is somewhat cleaner. The resulting
trace contains a little over 180,000 events.

5.6.4 Analyzing the trace

Figure 5.8(a) shows the massive sequence view of the entire execution trace,
in which we can immediately observe several recurrent patterns.

5JHotDraw 6.0, http://www.jhotdraw.org/
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Figure 5.7 Execution scenario for JHotDraw, in which five different figures are in-
serted in three distinct drawings.

Locating the “new drawing” feature

Since in our trace scenario we invoked the “new drawing” feature three times,
we are looking for a pattern that has the same number of occurrences. Finding
these patterns in the massive sequence view is not very difficult: we can
discern three similar blocks, all of which are followed by fragments of roughly
the same length. This leads us to the assumption that the blocks concern the
initialization of new drawings, and that the subsequent fragments pertain to
the figure insertions. As a means of verification, we zoom in on these patterns
to gather more evidence.

Locating the “insert figure” feature

Figure 5.8(b) presents a zoomed view of such a fragment, in which we can see
the alleged initialization of the drawing in the top fraction. What follows is
a series of five patterns that look very similar: a closer look reveals the most
prominent difference to be the destinations of certain outgoing calls, which
seem to differ especially in the fourth and fifth patterns. These calls are part
of an intermitting series and in the latter patterns they are directed toward
classes in different packages. To determine the identities of these classes, we
zoom in on the third and fourth patterns and, in each case, refer to the circular
view. Comparing the two views points out the differences: at the bottom of
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Figure 5.8 (a) Full trace of the JHotDraw scenario. (b) Zooming in on the “new
drawing” feature and the subsequent figure insertions.

the first figure in Figure 5.9(b) we observe calls toward three different figure
types in the figures package (the result of the three figures that are drawn
at this point) whereas in the rightmost portion of the second figure there is
also an additional call toward contrib.TriangleFigure. Repeating this task for
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(a)

(b)

Figure 5.9 Circular bundle views of two alleged figure drawings, indicating very
subtle differences.

the fifth pattern reveals another new figure: contrib.DiamondFigure, the fifth
figure that was drawn in our scenario. These observations confirm that each
of the five fragments concerns a figure insertion.

Taking into consideration that JHotDraw is an open-source project, the
division between the figures can be explained as follows: RectangleFigure,
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RoundRectangleFigure, and EllipseFigure are standard figures in JHotDraw

and therefore reside in figures, whereas TriangleFigure and DiamondFigure
are in the contrib package because they were contributed by third parties.

5.6.5 Discussion

In this experiment, we have instrumented and executed a medium-sized, GUI-
based program according to a scenario that involves certain user-triggerable
features. We then visualized the resulting execution trace and pinpointed the
locations of these features. The results are promising: choosing an appropri-
ate scenario establishes a strong focus in recognizing the patterns associated
with the features, which consequently requires little effort. The feature loca-
tion process serves as an important first step toward understanding how the
system’s features are implemented (Wilde et al., 1992).

Our study has pointed out how the massive sequence view serves as an
excellent basis for the (visual) recognition of recurrent patterns. While it does
not allow for an easy extraction of more detailed information, selecting a suit-
able interval requires little effort. Consequently, the circular bundle supports
the user in learning more about the events at hand, e.g., by enabling the iden-
tification of rather subtle differences in recurrent patterns.

5.7 Case Study 3: Top-down Program Comprehen-
sion with Domain Knowledge

5.7.1 Motivation

A common situation that developers often find themselves in is when they are
not familiar with a specific software system, but that they do have a general
knowledge concerning the system’s background. Such domain knowledge
may have been gained through experience with similar projects in the past.
The existence of this up-front domain knowledge means that, a priori, a num-
ber of hypotheses about the software system can be formulated and then vali-
dated and refined in a top-down fashion (von Mayrhauser and Vans, 1995). In
the process, we form auxiliary hypotheses and receive help from beacons that
can direct us. Examples of such beacons are design patterns, and identifiers
that have meaningful names. The findings lead to a greater understanding
of the system under study, and form a basis for the refinement of the initial
hypotheses. The subject system in this experiment is Checkstyle.

5.7.2 Checkstyle

Checkstyle
6 is an open-source tool that validates Java code. At the basis of this

process lies a set of coding standards that can be extended by third parties,
and while formerly the focus was on code layout issues, nowadays it also

6Checkstyle 4.3, http://checkstyle.sourceforge.net/

110 5.7. Case Study 3: Top-down Program Comprehension with Domain Knowledge

http://checkstyle.sourceforge.net/


addresses such issues as design problems and bug patterns. The program
consists of 21 packages that contain a total of 310 classes and offers both a
graphical and a command line user interface. From a user’s perspective, its
functionality comprises taking a set of coding standards and a Java file as its
input, and subsequently presenting a report. Since the system utilizes a batch
execution, unlike in the previous case study we can only control the execution
very indirectly.

5.7.3 Obtaining the trace

The generation of an execution trace is achieved by instrumenting and run-
ning Checkstyle from the command line. The input for our scenario consists
of an XML file specifying Sun’s Java coding conventions 7, and a typical, well-
documented Java file that defines one class with 20 methods (300 LOC). Note
that while Checkstyle also offers a GUI, in this case study we focus on its
command line interface in order to fully concentrate on its core functionality.
Executing and tracing this scenario yields an execution trace of nearly 200,000

events.

5.7.4 Comprehension hypothesis

The main advantage in this case study is the presence of domain knowledge:
based on our knowledge of typical source code analysis tools we can speculate
about certain properties of Checkstyle. In this experiment, the focus is on its
phases of execution. In particular, we specify a set of characteristic phases that we
expect during the execution of our scenario:

1. Initialization. As with most programs, we expect the initial phase to be
concerned with initializations tasks such as command line parsing and
input reading.

2. AST construction. Since tools dealing with source code structures typi-
cally make use of Abstract Syntax Trees (ASTs), we anticipate that Check-
style exhibits a similar behavior. The first step in such approaches is the
creation of an AST.

3. AST traversal. Once the AST has been generated, the standard procedure
for programs in this context is to traverse its nodes and to take action
when necessary.

4. Report generation. We expect the final phase to involve the generation of
a report and its presentation to the user.

The hypothesis can be considered as a definition of conceptual phases. The aim
in this experiment is to map these phases onto Checkstyle’s actual execution.

7Code Conventions for the Java Programming Language, http://java.sun.com/docs/
codeconv/
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5.7.5 Analyzing the trace

The leftmost view in Figure 5.10 shows the massive sequence view for the full
execution trace. Based on the initial view (i.e., at the highest level of granu-
larity) we can roughly discern five major phases. For each of these phases, we
report and interpret our findings in the next sections.

First major phase

Based on the initial massive sequence view, we choose to zoom in on the
first phase (events 1 through 6,400). As it turns out, we are actually dealing
with two subphases: this is demonstrated by the first of the zoomed views in
Figure 5.10.

First subphase
A quick glance through the first subphase reveals a strong activity among a
limited set of objects, being ConfigLoader and DefaultConfiguration.

Second subphase
The second subphase appears to be more interesting: here we witness an in-
terleaving of sequences of similar calls. The main differences between these
sequences are the objects on the receiving end, all of which seem to be located
within the checks package. This is where the circular view proves helpful:
in its temporal mode, browsing through the sequences reveals how all of the
checks are processed one by one. This is illustrated in Figure 5.11, in which
the calls are shown in a yellow-to-black (old-to-recent) fashion. Indeed, upon
highlighting these calls, the tooltips tell us that the calls pertain to interactions
between DefaultConfiguration and such checks as checks.naming.PackageName-
Check and checks.header.HeaderCheck. As a side note, we suspect the reason
for the seemingly clockwise trend of the calls in Figure 5.11 to be the al-
phabetic order in which the checks are processed, which corresponds to the
similarly alphabetically ordered packages and classes in the circular view.

Interpretation
From the many interactions involving configuration classes, we conclude that
we are indeed dealing with initialization and configuration tasks. As such, we
map Checkstyle’s first phase onto the “initialization” phase in our hypothesis.

Second major phase

The second major phase that we consider is a series of 91,000 events, of
which the largest part displays a very local behavior (second zoomed view
in Figure 5.10). Referring to the circular view in this interval, we learn
that most of the activity is concentrated in the grammars package, and in
grammars.GeneratedJavaLexer in particular. To determine what caused this
chain of events, we focus on the transition between this phase and the pre-
vious phase (Figure 5.12). Browsing through a limited set of events while
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Figure 5.10 Massive sequence view of the entire CHECKSTYLE trace (left), and
zoomed views of each of its five phases (right).
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Figure 5.11 Full view of a recurrent sequence in CHECKSTYLE’s first phase, in
which the circular view indicates the receiving classes and the order in which they
are processed.

scanning for events that have interesting identifier names, leads us to a call
that bears the signature api.DetailAST TreeWalker.parse(api.FileContents).

Interpretation
The signature of the aforementioned call suggests that this phase is concerned
with parsing the input file and building an AST. The reason that we are not
witnessing the explicit creation of the tree (i.e., node creations) is assum-
ably because we have not instrumented external libraries such as the ANTLR
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Figure 5.12 Focusing on the transition between CHECKSTYLE’s first and second
phase. The tooltips provide information on the call sites.

Parser Generator. In conclusion, this phase maps seamlessly onto the “AST
construction” phase in our hypothesis.

Third major phase

The next phase is a sequence that is characterized by a very consistent shape
and coloring, which indicates a great degree of similarity between its 18,000

calls. By examining the earliest calls, we learn that the signatures of the
initial calls are void TreeWalker.walk(api.DetailAST, api.FileContents) and
void TreeWalker.notifyBegin(api.DetailAST, api.FileContents). However, as
pointed out by the zoomed view of this third phase in Figure 5.10, we are
actually dealing with roughly three subphases: two relatively short parts, and
a much longer one in between.
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First subphase
This subphase consists of 1,300 events and starts off with a series of dou-
ble calls, in which the TreeWalker repeatedly invokes void api.Check.setFile-
Contents(api.FileContents) and void api.Check.beginTree(api.DetailAST) on
a series of different Check subclass instances. Most of these calls lead to no fur-
ther interactions, with the exception of checks.TodoCommentCheck (very short,
broad “box” at the beginning of the zoomed view) and checks.GenericIllegal-
RegexpCheck (somewhat longer box).

Second subphase
In the second subphase, the receiver of the aforementioned calls is checks-
.whitespace.TabCharacterCheck. The result is the involvement of this class in
no less than 15,000 similar interactions, constituting most of the events in this
phase. Judging by the method names and the return values that are being
passed (e.g., getLines() and getTabWidth()), we are witnessing the processing
of tab characters in the input Java file.

Third subphase
The third subphase is initially similar to the first subphase: more Check sub-
classes receive double calls. Furthermore, in the case of checks.sizes.Line-
LengthCheck the result is a total of 1,100 comparable calls of a line processing
nature.

Interpretation
The rather meaningful names of the first few calls in this phase lead to the ini-
tial assumption that we are witnessing the traversal of the AST. However, this
does not fully explain the peculiar shape of the massive sequence view in this
stage. Class highlighting provides the answer as it reveals that api.DetailAST
is completely absent in the interactions, which means that the aforementioned
checks are not reliant on ASTs to fulfill their tasks. This can be explained by
the fact that such formatting-oriented checks merely require a lexical analysis
of the input file. In terms of our hypothesis, we conclude that this phase is not
covered.

Fourth major phase

The fourth zoomed view in Figure 5.10 shows Checkstyle’s fourth major
phase, amounting to a total of 78,000 events. The phase is initiated by a
call with the signature boolean TreeWalker.useRecursiveAlgorithm(), which
returns false. The next call is void TreeWalker.processIter(api.DetailAST).
By highlighting the third event – void TreeWalker.notifyVisit(api.DetailAST)
– we learn that this particular call frequently occurs throughout the entire
phase.

Another observation is the interleaving of two types of activities: a recur-
rent pattern with interactions spreading across a broad range of classes in the
checks package, and an intermitting series of 16 vertical “beams”. By high-
lighting the calls that constitute these beams and by referring to the circular
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view, we learn that these interactions are exclusively concerned with classes
in the checks.javadoc package.

Interpretation
Judging by the source code associated with boolean TreeWalker.useRecursive-
Algorithm(), the decision of the program to use an iterative algorithm rather
than a recursive algorithm can be attributed to Checkstyle’s configuration
during the execution. Furthermore, the frequent calls to void TreeWalker-
.notifyVisit(api.DetailAST) (and the ensuing interactions involving Check
subclasses) lead to believe that the “Visitor” design pattern (Gamma et al.,
1994) is used during the AST traversal. Finally, we discovered that 16 out of
20 method definitions in our input file are preceded by Javadoc entries, which
we presume accounts for the 16 Javadoc call sequences that we encountered.

Based on our observations in this phase, we conclude that this phase maps
to the “AST traversal” phase in our hypothesis.

Fifth major phase

The fifth and final phase as seen in the last zoomed view in Figure 5.10 con-
tains nearly 15,000 events and actually starts with a main subphase and fin-
ishes with a small endphase.

First subphase
The initiating call here is void TreeWalker.fireErrors(java.lang.String), with
the actual parameter being “Game.java”, our input Java file. Since a brief
glance through the ensuing interactions does not prove very meaningful, we
double-click on the initial call to view the source code at this call site (Fig-
ure 5.13), in which the Javadoc entry states “Notify all listeners about the
errors in a file”.

Second subphase
Checkstyle’s final phase starts off with Checker invoking the void api.File-
SetCheck.destroy() method on TreeWalker. What follows is a series of api-
.Check.destroy() calls toward each of the Check subclasses; near the end,
the most noteworthy event is DefaultLogger.closeStreams() as it precedes the
writing of Checkstyle’s output to the shell.

Interpretation
The source code associated with void TreeWalker.fireErrors(java.lang.String)
leads us to believe that the first subphase is responsible for presenting the ac-
cumulated errors to the user, whereas the second subphase handles the pro-
gram’s termination. This phase maps perfectly onto the “report generation”
phase in our hypothesis.

5.7.6 Discussion
In this case study we have focused on a medium-sized software system that,
while being unknown to us in advance, has a functionality that we are familiar
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Figure 5.13 Looking up associated source code fragments.

with. We have used this domain knowledge to formulate a hypothesis that
specifies a set of conceptual phases in a typical execution scenario. Table 5.1
summarizes the results.

The experiment was quite successful: with the exception of Checkstyle’s
third phase, each of the five phases that we discerned through the use of Ex-
travis could be mapped onto a conceptual phase. In particular, the massive
sequence view allows to rapidly identify the essential events, i.e., calls that are
responsible for phase transitions. The circular bundle view is an aid when a
more detailed visualizations of certain call sequences are required, and offers
an easy link to the system’s source code. While the third phase came unex-
pected, in retrospect it is perfectly understandable that certain aspects of an
input file’s source code are treated differently since the associated checkers
have no need of ASTs.
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Ph
as

e

#C
al

ls

Notable calls Prominent classes Description Maps to
1 6.4K - ConfigurationLoader

DefaultConfigura-
tion
checks.*

Interactions between
various configuration
classes and checks.

Initialization

2 91K TreeWalker.parse() grammars.-
GeneratedJavaLexer
TreeWalker

Local activity in the
grammars package,
presumably involving
external libraries.

AST con-
struction

3 18K TreeWalker.walk()
TreeWalker.notifyBegin()

TreeWalker
FileContents
4 Check-subclasses

Non-AST related
activities involving
four specific check
subclasses.

-

4 60K TreeWalker.processIter()
TreeWalker.notifyVisit()

TreeWalker
api.DetailAST
remaining checks

Interleaving between
various check-related
events and Javadoc
processing.

AST traver-
sal

5 8K TreeWalker.fireErrors()
TreeWalker.destroy()

TreeWalker
checks.*

Processing of errors
and termination of the
program.

Report gen-
eration

Table 5.1 Results of the CHECKSTYLE experiment.

The experiment took only a few hours, and illustrates how domain knowl-
edge and a top-down approach can lead to a significant level of understanding
of the system under study. Moreover, additional (sub-)phases can be observed
by means of zooming, which in turn can be used to refine initial hypotheses
in an iterative fashion (cf. Reflexion models (Murphy et al., 2001)) until a
sufficient level of understanding has been obtained for the task at hand.

5.8 Discussion

The case studies in Sections 5.5 through 5.7 have pointed out a series of po-
tential applications of our approach in the context of understanding large exe-
cution traces and, by extension, understanding software systems. This section
lists a number of important characteristics of our techniques and discusses
both the advantages and limitations.

5.8.1 Advantages

Common trace visualization tools use UML sequence diagrams (or variants
thereof) to display a system’s structure and the detailed interactions between
its components (e.g., De Pauw et al. (1993) and Briand et al. (2006)). Although
sequence diagrams are very intuitive, they typically become difficult to navi-
gate when the number of components or the time period under consideration
become too large: situations where two-dimensional scrolling is necessary to
grasp even relatively simple functionalities can rapidly occur, which easily
disorients and confuses the user. Extravis, on the other hand, uses a scalable
circular view that fits on a single screen. All of the system’s components are
hierarchically projected on a circle, and entities that are of no immediate in-
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terest can be collapsed, which improves readability and ensures that the user
is not overwhelmed by too much information.

Moreover, the calling relationships between elements are visualized using
bundling, which greatly improves the overall readability in case of many si-
multaneous relations. Through the use of colors, there is the ability to either
(1) show these relationships in a chronological order, or (2) indicate the fan-in
and fan-out behavior of the various entities.

The massive sequence view, which provides a concise overview of an entire
execution trace, allows the user to easily zoom in on parts of the trace. This
reduces the time period under consideration in both views and eases the navi-
gation. Another benefit of this view is that it is easy to recognize patterns and
phases on the macroscopic level and, by use of zooming, on the fine-grained
level as well.

Finally, our techniques are aimed at the optimal use of screen real estate.
The observation that a circular representation does not fit on a standard (rect-
angular) screen is valid; however, it is a matter of positioning the tool controls
and settings in the unused space for the screen to be optimally used. Such
improvements could be included in future versions of Extravis.

5.8.2 Limitations

While our techniques effectively visualize large execution traces that are nor-
mally too difficult to understand, the size of the input trace is limited in
terms of our prototype tool. The reason for this is twofold: not only does
Extravis require a substantial amount of computational resources – i.e., memory
to keep track of all elements and relations, and CPU cycles to perform calcula-
tions, counts etc. – but visualizing large systems also requires a considerable
amount of screen real estate. The latter problem exists because not all events can
be visualized in the massive sequence view in a non-ambiguous fashion in
case there are more events than there are horizontal pixel lines. It must be
noted, however, that Extravis is not necessarily a stand-alone tool; it could
well be used as part of a tool chain, e.g., after some abstraction phase.

Moreover, while the circular bundle view is a useful means to display cer-
tain characteristics of a program without the need for scrolling, it can be fairly
difficult to grasp the temporal aspect. When considering a small time frame
(e.g., 50 calls), the circular approach’s temporal mode does not make for a
visualization that is as readable and intuitive as a sequence diagram, since
it requires the interpretation of colors rather than a top-to-bottom reading.
In other words, while the display of the system’s entire structure is useful in
such applications as fan-in and fan-out analysis, this information is not always
needed.

Finally, threads are currently not supported. While adding a functional-
ity to Extravis for switching between threads seems feasible, actually being
able to show interactions between these threads is not trivial. As threads typi-
cally convey important information on the (interleaving of) distinct processes
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Criterion Extravis implementation

Overview Massive sequence view
Zooming Zooming in the massive sequence view
Filtering Collapsing of elements
Details-on-demand Highlighting of elements / relations
Relate Circular view (with bundling)
History Forward / back buttons
Extract Save / load current state

Table 5.2 Shneiderman’s GUI criteria.

within running software, an effective visualization thereof certainly warrants
future investigations.

5.8.3 Shneiderman criteria

Shneiderman (1996) introduced seven criteria for assessing the graphical user
interfaces of information visualizations. Table 5.2 outlines how the two syn-
chronized views of Extravis satisfy each of these seven criteria.

5.8.4 Threats to validity

The case studies that we have presented are representative for real-life sit-
uations that software developers encounter on a daily basis. The trace ex-
ploration, feature location, and top-down analysis scenarios that we used to
study and understand the subject software systems are realistic and, as was
mentioned in the motivational sections of the studies, occur in various con-
texts. Nevertheless, there are a number of aspects in which our experiments
may differ from real-world situations. We now address the factors that we
feel are the most influential.

First, in our experiments we have occasionally relied on identifiers having
meaningful names. In Checkstyle, for example, we often used the method’s
signatures to get an indication of the intended functionality. It must be noted
that the presence of meaningful identifier names is by no means a guarantee
in everyday software systems.

Secondly, with respect to our feature location study, we have stated that
our definition of a feature is a user-triggerable unit of functionality. While
this is a common assumption in this problem area (e.g., (Eisenbarth et al.,
2003)), our visual form of feature location is more difficult if the features at
hand can not be invoked directly. When considering Cromod, for example,
it is hard to control the execution of its distinct features because it concerns
a batch execution based on a set of complex input files. In other words, the
applicability of our techniques in feature location tasks depends on the nature
of the system’s execution.
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Finally, the initial traces in two of the case studies were inexplicably huge.
Closer inspection revealed that these traces contained massive numbers of
events that can be attributed to non-functional requirements, such as logging
(e.g., the Cromod case) or registering mouse events (e.g., in JHotDraw). As-
suming that mouse movements and logging are not particularly interesting
in grasping a system’s general functionality, we carefully filtered out these
particular events in a preprocessing step, so as to prevent the traces and the
resulting visualizations from becoming unnecessarily complex. It should be
noted that this task is rather delicate, and in performing similar experiments
one must be careful not to accidentally filter any events that pertain to func-
tionalities that the user considers to be relevant.

5.9 Related Work

Research into trace visualization has resulted in various techniques and tools
over the years. Most related articles are concerned with explaining the visual-
ization tools and techniques by example; in contrast, we have reported on the
use of our techniques in several real-world scenarios.

De Pauw et al. (1993) are known for their work on IBM’s Jinsight, a tool for
visually exploring a program’s runtime behavior. Many features of this proto-
type tool have since found their way into Eclipse as plug-ins, more specifically,
the Test & Performance Tools Platform (TPTP). Though being useful for program
comprehension purposes, scalability remains worrisome. To this end, the au-
thors have introduced the execution pattern notation (De Pauw et al., 1998), which
unfolds the graph from a typical sequence diagram (or any variant of a Ja-
cobson interaction diagram (Jacobson, 1992)) into tree structures. This layout
emphasizes the progression of time and not so much the thread of control.

Lange and Nakamura (1995b) report on Program Explorer, a trace visual-
ization tool targeted at C++ software. Several views are available, of which the
class graph plays a central role. Through such abstractions as merging, prun-
ing, and slicing, the tool attempts to reduce the search space when studying
execution traces; however, the degree of automation of these abstractions is
unclear. Furthermore, the tool does not offer a comprehensive view of all
the packages and classes that are involved, and selecting a trace interval for
detailed viewing does not seem feasible.

Jerding et al. (1997) present ISVis, a tool that features two simultaneous
views of a trace: a continuous sequence diagram, and a mural view that is
similar to our massive sequence view. ISVis’ main strength lies in automatic
pattern detection, which allows to summarize common execution patterns,
and reduces the size of the trace considerably. Our approach differs from
ISVis in that the latter deals from the perspective of sequence diagrams (which
cannot contain a large number of structural elements), whereas our tool is
centered around a scalable circular view.

AVID, a visualization tool by Walker et al. (1998), aims at exploring a sys-
tem’s behavior by manually defining a high-level model of a system and then
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enriching it with trace data collected during the system’s execution. This is
a manual step that involves multiple iterations, thus incrementally improving
the user’s comprehension of the system. At the basis of this operation lies
the Reflexion process (Murphy et al., 2001). Although there is support for the
(sampling-based) selection of a scenario fragment, the tool faces a significant
scalability issue as scenarios still induce a potentially large amount of trace
data that cannot be directly visualized.

Reiss and Renieris (2001) note that execution traces are typically too large
to visualize directly and therefore propose to select, compact, and encode the
trace data.

Jive, also by Reiss (2003b), is a Java front-end that visualizes a program’s
behavior while it is running, rather than analyzing its traces in a post mortem
fashion. While the runtime visualization and relatively small overheads ren-
der it an attractive tool, it is hard to visualize entire executions. It does,
however, provide a view on the classes that are active during a specific phase
of the software’s execution, and it also allows to perform a rudimentary per-
formance analysis.

Systä et al. (2001) present Shimba, an environment that uses sequence di-
agrams to visualize interactions between user-specified components. Pattern
recognition is applied to cope with the scalability problems that are often as-
sociated with these diagrams: in particular, the authors have employed the
Boyer-Moore string matching algorithm. Furthermore, the structural entities
of the system under analysis are clustered according to some criterion: For
example, by clustering classes to packages, less structural entities and rela-
tionships need to be shown, which renders the trace far more tractable.

Richner and Ducasse (2002) propose to use their Collaboration Browser to
reconstruct the various object collaborations and roles in software systems.
This is achieved by selecting a class and then specifying queries to learn more
about the interactions in which this class is involved. Iteratively studying the
results of these queries and refining or adding new queries leads to a deeper
understanding of the subject software system.

Ducasse et al. (2004) use polymetric views to visualize certain metrics that
are collected at runtime, resulting in a significant reduction of information.
Their approach is mainly aimed at recognizing those entities in a system that
are actively allocating new objects, or that are frequently calling other classes.
Although their approach works offline, there are similarities with the way in
which Reiss projects dynamic metrics in his Jive-tool (Reiss, 2003b).

Kuhn and Greevy (2006) correlate feature traces with the help of “signals in
time”: they visualize traces as signals, of which the amplitude is determined
on the basis of the stack depth at points during the execution. The idea is
that similar traces exhibit comparable sequences of amplitude values, and
that these similarities can be visually detected. Their work focuses solely on
feature location and not so much on more general program comprehension.
Similar work by Zaidman and Demeyer (2004) uses the relative frequency of
method executions to compare regions in traces, as opposed to using stack
depths.
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Greevy et al. (2006b) present a 3D visualization of a software system’s exe-
cution. The visualization metaphor that they use to display large amounts of
dynamic information is that of growing towers, with towers becoming taller
as more instances of a type are created. The authors aim to (1) determine
which parts of the system are actively involved in a particular (feature) sce-
nario execution, and (2) identify patterns of activity that are shared among
different features of the system.

Hamou-Lhadj et al. (2005) report on a technique to recover behavioral de-
sign models from execution traces. Starting with a complete trace, they deter-
mine which classes are utility classes, or classes having a high level of fan-in
and low (or non-existent) fan-out. Once these classes are removed from the
trace, the resulting trace is visualized in the Use Case Map (UCM) notation.
UCMs provide a compact and hierarchical view of the main responsibilities
per class combined with architectural components. However, UCMs do not
provide a global overview of the application, are not easily navigable, and are
more targeted toward understanding very specific parts of a system.

5.10 Conclusions

Dynamic analysis is generally acknowledged to be a useful means to gain in-
sight about a system’s inner workings. A major drawback of dynamic analysis
is the huge amounts of trace data that are collected and need to be analyzed.
As such, designing an effective trace visualization that (1) is able to cope with
these huge amounts of data, and (2) does not confuse the viewer, remains a
challenge.

The solution that we propose to tackle this scalability issue is centered
around two synchronized views of an execution trace. The first view, which
we call the circular bundle view, shows all the system’s structural elements
(e.g., classes and packages) and their dynamic calling relationships in a bun-
dled fashion. The second view, the massive sequence view, shows a large-scale
message sequence chart that uses a new anti-aliasing technique and that pro-
vides an interactive overview of an entire trace. The linking of the two views
creates a synergy that ensures the easy navigation and analysis of large exe-
cution traces. Our approach is implemented in a publicly available tool called
Extravis.

To illustrate the broad range of potential usage contexts of our approach,
we conducted three typical usage scenarios on three different software sys-
tems. More specifically, we performed (1) trace exploration, (2) feature loca-
tion, and (3) top-down program comprehension with domain knowledge. For
each of these scenarios, we have presented anecdotal evidence on how our
approach helped us to gain different levels of understanding of the software
systems under study. Finally, we have reported on the strengths and limi-
tations of our tool, discussed the threats to validity in our case studies, and
outlined the added value over related work.

To summarize, our contributions in this chapter are:
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• A novel approach to visualizing execution traces that employs two syn-
chronized views, namely (1) a circular bundle view for displaying the
structural elements and bundling their call relationships, and (2) a mas-
sive sequence view that provides an interactive overview.

• The application of our tool, based on this approach, on three distinct
software systems in three program comprehension contexts: trace ex-
ploration, feature detection, and top-down analysis.

5.10.1 Future work
There are many potential directions for future work, primarily in terms of
improving our techniques and subjecting them to more thorough evaluations.

Among the improvements is to facilitate the comparison of execution traces:
for example, observing two traces side by side (and thereby detecting correla-
tions) might make feature location considerably easier.

Furthermore, we want to investigate the role of threads in our visualization,
and come up with techniques to effectively display both the threads and their
interactions.

Future applications include not only the visualization of larger execution
traces, but also the detection of outliers. Outlier detection concerns the reve-
lation of call relationships that are not allowed to exist for some reason, e.g.,
because the elements at hand belong to non-contiguous layers. The circular
view, with its ability to show relations from entire traces in a bundled fashion,
provides an excellent basis for the detection of such relationships.

With respect to further evaluations, we need to collect real evidence of our
techniques’ usefulness in practice. Specifically, in the context of a software
system with large traces, we envision a controlled experiment that involves
Extravis, a series of comprehension tasks, and several test subjects who are
not familiar with the system. These tasks would have to be performed by the
subjects, part of whom have access to our tool whereas others have not. The
results of such an experiment will provide valuable information with respect
to the practical applicability of our techniques. The next chapter discusses the
design and execution of such an experiment.
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Chapter

6
Trace Visualization: A Controlled
Experiment?

The previous chapter presented Extravis, our tool for supporting program com-
prehension through the visualization of large traces. Similar to other trace visu-
alization techniques in the literature, our tool was validated through anecdotal
evidence, but should also be quantitatively evaluated to assess its added value to
existing solutions. In this chapter, we report on a controlled experiment concern-
ing trace visualization for program comprehension. We designed eight typical
tasks aimed at gaining an understanding of a representative subject system, and
measured how a control group (using the Eclipse IDE) and an experimental group
(using both Eclipse and Extravis) performed in terms of correctness and time
spent. The results are statistically significant in both regards, showing a 21%
decrease in time and a 43% increase in correctness for the latter group.

6.1 Introduction

A major challenge in software maintenance is to understand the software at
hand. As software is often not properly documented, up to 60% of the main-
tenance effort is spent on gaining a sufficient understanding of the program
(Corbi, 1989; Basili, 1997). Thus, the development of techniques and tools that
support the comprehension process can make a significant contribution to the
overall efficiency of software development.

Common approaches in the literature can be roughly broken down into
static and dynamic approaches (and combinations thereof). Whereas static
analysis relies on such artifacts as source code and documentation, dynamic
analysis focuses on a system’s execution. An important advantage of dynamic
analysis is its preciseness, as it captures the system’s actual behavior. Among
the drawbacks are its incompleteness, as the gathered data pertains solely to
the scenario that was executed; and the well-known scalability issues, due to
the often excessive amounts of trace data.

To cope with the issue of scalability, a significant portion of the literature on
program comprehension has been dedicated to the reduction (Reiss and Re-
nieris, 2001; Hamou-Lhadj and Lethbridge, 2006) and visualization (De Pauw
et al., 1993; Jerding et al., 1997) of execution traces. Among our share of these
techniques and tools is Extravis, a tool that offers two interactive views of
large execution (Chapter 5). Through a series of case studies we illustrated

?This chapter is based on our publication in the Proceedings of the 17
th International Confer-

ence on Program Comprehension (Cornelissen et al., 2009b). It is co-authored by Andy Zaidman,
Bart van Rompaey, and Arie van Deursen.



how Extravis can support different types of common program comprehension
activities. However, in spite of these efforts, there is no quantitative evidence
of the tool’s usefulness in practice: to the best of our knowledge, no such ev-
idence is offered for any of the trace visualization techniques in the program
comprehension literature.

The purpose of this chapter is the design of a controlled experiment to
assess the usefulness of trace visualization for program comprehension, and
the execution of this experiment to validate Extravis. Furthermore, to gain
insight into the nature of its added value, we attempt to identify which types
of tasks benefit most from trace visualization and from Extravis. To fulfill
these goals, we perform a controlled experiment in which we measure how
the tool affects (1) the time that is needed for typical comprehension tasks,
and (2) the correctness of the answers given during those tasks.

The remainder of this chapter is structured as follows. Section 6.2 provides
a background on dynamic analysis and trace visualization, and motivates
our intent to conduct controlled experiments. Section 6.3 offers a detailed
description of the experimental design. Section 6.4 discusses the results, and
threats to validity are treated in Section 6.5. Section 6.6 outlines related work,
and Section 6.7 offers conclusions and future directions.

6.2 Background

6.2.1 Execution trace analysis

The use of dynamic analysis for program comprehension has been a popular
research activity in the last decades. In our literature survey in Chapter 2,
we identified a total of 172 articles on this topic that were published between
1972 and June 2008. More than 30 of these papers concern execution trace analysis,
which has often shown to be beneficial to such activities as feature location,
behavioral analysis, and architecture recovery.

Understanding a program through its execution traces is not an easy task
because traces are typically too large to be comprehended directly. For exam-
ple, Reiss and Renieris (2001) report on an experiment in which one gigabyte
of trace data was generated for every two seconds of executed C/C++ code or
every ten seconds of Java code. For this reason, there has been significant
effort in the automatic reduction of traces to make them more tractable (e.g.,
Reiss and Renieris (2001); Zaidman and Demeyer (2004); Hamou-Lhadj and
Lethbridge (2006)). Another common approach is the visualization of execution
traces: key contributions on this subject include Jinsight by De Pauw et al.
(1993), Scene from Koskimies and Mössenböck (1996), ISVis by Jerding et al.
(1997), and Shimba from Systä et al. (2001).
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6.2.2 Extravis

Our own contributions to the field of trace understanding include Extravis, a
publicly available1 tool for the visualization of large execution traces (Chap-
ter 5). Extravis provides two linked, interactive views. The massive sequence
view is essentially a large-scale UML sequence diagram (similar to the Infor-
mation Mural by Jerding and Stasko (1998)), and offers an overview of the
trace and the means to navigate it (Figure 5.8 on page 108). The circular bundle
view hierarchically projects the program’s structural entities on a circle and
shows their interrelationships in a bundled fashion (Figure 5.1 on page 94).
We qualitatively evaluated the tool in various program comprehension con-
texts, including trace exploration, feature location, and top-down program
comprehension. The results confirmed Extravis’ benefits in these contexts,
the main advantages being its optimal use of screen real estate and the im-
proved insight into a program’s structure. However, we hypothesized that the
relationships in the circular view may be difficult to grasp.

6.2.3 Validating trace visualizations

Trace visualization techniques in the literature have been almost exclusively
evaluated using anecdotal evidence: there has been no effort to quantita-
tively measure the usefulness of trace visualization techniques in practice,
e.g., through controlled experiments. Moreover, most existing approaches
involve traditional visualizations (Chapter 2), i.e., they rely on UML, graph,
or tree notations, to which presumably most software engineers are accus-
tomed. By contrast, Extravis uses non-traditional visualization techniques,
and Storey argues that advanced visual interfaces are not often used in devel-
opment environments because they tend to require complex user interactions
(Storey, 2005). These reasons have motivated us to empirically validate Ex-
travis through a controlled experiment, in which we seek to assess its added
value in concrete maintenance contexts.

6.3 Experimental Design

The primary purpose of this experiment is a first quantitative evaluation of
trace visualization for program comprehension. To this end, we define a series
of typical comprehension tasks and measure Extravis’ added value to a tradi-
tional programming environment: in this case, the Eclipse IDE2. Our choice
for Eclipse as a baseline is motivated by its popularity among researchers and
practitioners, who use it for both development and maintenance purposes.
Similar to related efforts (e.g., Lange and Chaudron (2007); Quante (2008)) we
maintain a distinction between time spent and correctness.

Furthermore, we seek to identify the types of tasks to which the use of
Extravis, and trace visualization in general, is the most beneficial.

1Extravis, http://swerl.tudelft.nl/extravis
2Eclipse IDE, http://www.eclipse.org
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6.3.1 Research questions & hypotheses

Based on our motivation in the previous section, we distinguish the following
research questions:

1. Does the availability of Extravis reduce the time that is needed to com-
plete typical comprehension tasks?

2. Does the availability of Extravis increase the correctness of the answers
given during those tasks?

3. Based on the results, which types of tasks can we identify that benefit
most from the use of Extravis?

Associated with the first two research questions are two null hypotheses,
which we formulate as follows:

• Hypothesis H10 : The availability of Extravis does not impact the time
needed to complete typical comprehension tasks.

• Hypothesis H20 : The availability of Extravis does not impact the
correctness of answers given during those tasks.

The alternative hypotheses that we use in the experiment are the following:

• Hypothesis H1: The availability of Extravis reduces the time needed
to complete typical comprehension tasks.

• Hypothesis H2: The availability of Extravis increases the correctness
of answers given during those tasks.

The rationale behind the first alternative hypothesis is the fact that Extravis

provides a broad overview of the subject system on one single screen, which
may guide the user to his or her goal more easily.

The second alternative hypothesis is motivated by the inherent preciseness
of dynamic analysis with respect to actual program behavior: For example,
the resolution of late binding may result in more accurate answers.

To test hypotheses H10 and H20, we define a series of comprehension tasks
that are to be addressed by both a control group and an experimental group.
The difference in treatment between these groups is that the former group
uses a traditional development environment (the “Eclipse” group), whereas
the latter group also has access to Extravis (the “Ecl+Ext” group). We maintain
a between-subjects design, meaning that each subject is either in the control
or in the experimental group.

Sections 6.3.2 through 6.3.6 provide a detailed description of the experi-
ment.
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Activity Description
A1 Investigating the functionality of (a part of) the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating dependencies between artifacts
A5 Investigating runtime interactions in the system
A6 Investigating how much an artifact is used
A7 Investigating patterns in the system’s execution
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system

Table 6.1 Pacione’s nine principal activities.

6.3.2 Object & task design
Designing a controlled experiment for evaluating a visualization technique is
not trivial because of several important challenges. (North, 2006): for exam-
ple, while multiple choice questions may steer a test subject toward a certain
answer, the answers to open questions are more difficult to score; and time
constraints that are too strict may leave little room for deep insights. In the
following, we describe how we attempt to meet these challenges.

The system that is to be comprehended by the subject groups is Checkstyle,
an open source tool that employs “checks” to verify if source code adheres to
specific coding standards. Our choice for Checkstyle as the object of this
experiment was motivated by the following factors:

• Checkstyle comprises 310 classes distributed across 21 packages, con-
taining a total of 57 KLOC.3 This makes it tractable for an experimental
session, yet representative of real life programs.

• It is written in Java, with which many potential subjects are sufficiently
familiar.

• The researchers involved in the design and execution of our experiment
are familiar with its internals as a result of earlier experiments (Zaidman
et al., 2008; Van Rompaey and Demeyer, 2008; Cornelissen et al., 2008b).
Furthermore, the lead developer was available for feedback.

To obtain the necessary trace data for Extravis, we instrument Checkstyle and
execute it according to two scenarios. Both involve typical runs with a small
input source file, and only differ in terms of the input configuration, which in
one case specifies 64 types of checks whereas the other specifies only six. The
resulting traces contain 31,260 and 17,126 calls, respectively, and are too large
to be comprehended without tool support.

With respect to the comprehension tasks that are to be tackled during the
experiment, the main criteria are for them to be (1) representative of real main-
tenance contexts, and (2) not biased towards any of the tools being used. To

3Measured using sloccount by David A. Wheeler, http://sourceforge.net/projects/
sloccount/.
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Task Activities Description
T1 A{1,7,9} globally understanding the main stages in a typ-

ical Checkstyle scenario
T2.1 A{4,8} identifying three classes with a high fanin and a

low fanout
T2.2 A{4,8} identifying a class in package X with a strong

coupling to package Y
T3.1 A{1,2,5,6} describing the life cycle of check X during execu-

tion
T3.2 A{3,4,5} listing the identifiers of all interactions between

check X and class Y
T3.3 A{3,4,5,9} listing the identifiers of additional interactions in

case of check Z
T4.1 A{1,3} providing a detailed description of the violation

handling process
T4.2 A{1,5} determining whether check X reports violations

Table 6.2 Descriptions of the comprehension tasks.

this end, we use the framework by Pacione et al. (2004), who argue that “a set
of typical software comprehension tasks should seek to encapsulate the principal activities typ-
ically performed during real world software comprehension”. They distinguish between
nine principal activities that focus on both general and specific reverse engi-
neering tasks and that cover both static and dynamic information (Table 6.1).
The latter aspect significantly reduces a bias towards either of the two tools
used in this experiment.

Guided by these criteria, we created four representative tasks (subdivided
into eight subtasks) that highlight many of Checkstyle’s aspects at both high
and low abstraction level. Table 6.2 provides outlines of the tasks and shows
how each of the nine activities from Pacione et al. is covered by at least one
task: for example, activity A1, “Investigating the functionality of (part of) the system”,
is covered by tasks T1, T3.1, T4.1, and T4.2; and activity A4, “Investigating
dependencies between artifacts“, is covered by tasks T2.1, T2.2, T3.2, and T3.3.

To render the tasks even more representative of real maintenance situations,
we have opted for open questions rather than multiple choice. The researchers
can award up to four points for each task to accurately reflect the (partial)
correctness of the subjects’ answers. While at the same time open questions
prevent the subjects from guessing, it should be noted that the answers are
more difficult to judge, especially because the authors of this chapter were not
involved in Checkstyle’s design or development. For this reason, we called
upon Checkstyle’s lead developer, who was willing to review and refine our
concept answers. The resulting answer model is provided in Appendix B. Fol-
lowing the experiment, the first two authors of this chapter select the answers
of five random subjects, review them using the answer model, and compare
the scores to verify the soundness of the reviewing process.
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Figure 6.1 Average expertises of the subject groups.

6.3.3 Subjects

The subjects in this experiment are 14 Ph.D. candidates, five M.Sc. students,
three postdocs, one associate professor, and one participant from industry.
The resulting group thus consists of 24 subjects, and is quite heterogeneous in
that it represents eight different nationalities, and M.Sc. degrees from thirteen
universities. The M.Sc. students are in the final stage of their study, and the
Ph.D. candidates represent different areas of software engineering, ranging
from software inspection to fault diagnosis. Our choice of subjects aims at
mitigating concerns from Di Penta et al. (2007), who argue that “a subject group
made up entirely of students might not adequately represent the intended user population”
(discussed in further detail in Section 6.5.2). Participation is on a voluntary
basis, so the subjects can be assumed to be properly motivated. None of them
have experience with Extravis.

In advance, we distinguished five fields of expertise that could strongly
influence the individual performances. They represent variables that are to
be controlled during the experiment, and concern knowledge of Java, Eclipse,
reverse engineering, Checkstyle, and language technology (i.e., Checkstyle’s
domain). The subjects’ levels of expertise in each of these fields were mea-
sured through a (subjective) a priori assessment: we used a five-point Likert
scale, from 0 (“no knowledge”) to 4 (“expert”). In particular, we required mini-
mum scores of 1 for Java and Eclipse (“beginner”), and a maximum score of
3 for Checkstyle (“advanced”). Appendix B provides a characterization of the
subjects.
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The assignments to the control and experimental group were conducted
manually to evenly distribute the available knowledge. This is illustrated by
Figure 6.1: in each group, the expertises are chosen to be as equal as possible,
resulting in average expertises of 2.08 for the Eclipse group and 2.00 for the
Ecl+Ext group.

6.3.4 Experimental procedure

The experiment is performed through eight sessions, most of which take place
at Delft University of Technology. The sessions are conducted on workstations
that have similar characteristics, i.e., at least Pentium 4 processors and more
or less equal screen resolutions (1280x1024 or 1600x900).

Each session involves three subjects and features a short tutorial on Eclipse,
highlighting the most common features. The experimental group is also given
a 10 minute Extravis tutorial that involves a JHotDraw execution trace used in
Chapters 4 and 5. All sessions are supervised, enabling the subjects to pose
clarification questions, and preventing them from consulting others and from
using alternative tools. The subjects are not familiar with the experimental
goal.

The subjects are presented with a fully configured Eclipse that is readily
usable, and are given access to the example input source file and Checkstyle

configurations described in Section 6.3.2. The Ecl+Ext group is also provided
with two Extravis instances, each visualizing one of the execution traces men-
tioned earlier. All subjects receive handouts that provide an introduction,
Checkstyle outputs for the two aforementioned scenarios, the assignment, a
debriefing questionnaire, and reference charts for both Eclipse and Extravis.
The assignment is to complete the eight comprehension tasks within 90 min-
utes. The subjects are required to motivate their answers at all times. We
purposely refrain from influencing how exactly the subjects should cope with
the time limit: only when a subject exceeds the time limit is he or she told
that finishing up is, in fact, allowed. The questionnaire asks for the subjects’
opinions on such aspects as time pressure and task difficulty.

6.3.5 Variables & analysis

The independent variable in our experiment is the availability of Extravis

during the tasks.
The first dependent variable is the time spent on each task, and is measured

by having the subjects write down the current time when starting a new task.
Since going back to earlier tasks is not allowed and the sessions are super-
vised, the time spent on each task is easily determined.

The second dependent variable is the correctness of the given answers. This
is measured by applying our answer model on the subjects’ answers, which
specifies the required elements and the associated scores (between 0 and 4).

To test our hypotheses, we can choose from parametric and non-parametric
tests. Whereas the former are more reliable, the latter are more robust: com-

134 6.3. Experimental Design



mon examples include Student’s t-test and the Mann-Whitney test, respec-
tively. For the t-test to yield reliable results, two requirements must be met:
the sample distributions must (1) be normal, and (2) have equal variances.
These conditions can be tested using, e.g., the Kolmogorov-Smirnov test and
Levene’s test, respectively. These requirements are tested during our results
analysis, upon which we decide whether to use the t-test or the more robust
Mann-Whitney test.

Following our alternative hypotheses, we employ the one-tailed variant of
each statistical test. For the time as well as the correctness variable we main-
tain a typical confidence level of 95% (α=0.05), which means that statistical
significance is attained in cases where the p-value is found to be lower than
0.05. The statistical package that we use for our calculations is SPSS.

6.3.6 Pilot studies

Prior to the experimental sessions, we conducted two pilots to optimize sev-
eral experimental parameters. These parameters included the number of
tasks, their clarity, feasibility, and the time limit. The pilot for the control
group was performed by one of the authors of this chapter, who had initially
not been involved in the experimental design; the pilot for the experimental
group was conducted by a colleague. Both would not take part in the actual
experiment later on.

The results of the pilots have led to the removal of two tasks because the
time limit was too strict. The removed tasks were already taken into account
in Section 6.3.2. Furthermore, the studies led to the refinement of several tasks
in order to make the questions clearer. Other than these ambiguities, the tasks
were found to be sufficiently feasible in both the Eclipse and the Ecl+Ext pilot.

6.4 Results & Discussion

This section describes our interpretation of the results. We first discuss the
time and correctness aspects in Section 6.4.1 and 6.4.2, and then take a closer
look at the scores from a task perspective in Section 6.4.3.

Table 6.3 shows descriptive statistics of the measurements, aggregated over
all tasks.4

Wohlin et al. (2000) suggest the removal of outliers in case of extraordinary
situations, such as external events that are unlikely to reoccur. We found two
outliers in our correctness data, but could identify no such circumstances.

As an important factor for both time and correctness, we note that one of
the subjects gave up when his 90 minutes had elapsed with one more task to
go, resulting in two missing data points in this experiment (i.e., the time spent
by this subject on task T4.2 and the correctness of his answer). Seven others
did finish, but only after the 90 minutes had expired: i.e., six subjects from

4The measurements themselves are available as a spreadsheet on http://www.st.ewi.
tudelft.nl/˜cornel/results.xlsx.
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the Eclipse group and one subject from the Ecl+Ext group spent between 97

and 124 minutes to complete all tasks.
For this reason, we shall disregard the last two tasks in our quantitative analyses:

not taking tasks T4.1 and T4.2 into account, only two out of the 24 subjects
still exceeded the time limit (by 7 and 12 minutes, respectively), which is
acceptable. At the same time, this strongly reduces any ceiling effects in our
data that may have resulted from the increasing time pressure near the end
of the assignment. The remaining six tasks still cover all of Pacione’s nine
activities (Table 6.2).

6.4.1 Time results

We start off by testing null hypothesis H10, which states that the availabil-
ity of Extravis does not impact the time that is needed to complete typical
comprehension tasks.

Figure 6.2(a) shows a box plot for the total time that the subjects spent
on the first six tasks. Table 6.3 indicates that on average the Ecl+Ext group
required 20.51% less time.

The Kolmogorov-Smirnov and Levene tests succeeded for the timing data,
which means that Student’s t-test may be used to test H10. As shown in
Table 6.3, the t-test yields a statistically significant result. The average time
spent by the Ecl+Ext group was clearly lower and the p-value 0.016 is smaller
than 0.05, which means that H10 can be rejected in favor of the alternative
hypothesis H1, which states that the availability of Extravis reduces the time
that is needed to complete typical comprehension tasks. The non-parametric
Mann-Whitney test confirms these findings.

The lower time requirements for the Extravis users could be attributed to
several factors. First, all information offered by Extravis is shown on a single
screen, which negates the need for scrolling. In particular, the overview of
the entire system’s structure saves much time in comparison to conventional
environments, in which typically multiple files have to be studied at once.
Second, the need to imagine how certain functionalities or interactions work
at runtime represents a substantial cognitive load on the part of the user.
This is alleviated by trace analysis and visualization tools, which show the
actual runtime behavior. Examples of these assumptions are discussed in
Section 6.4.3.

On the other hand, several factors may have had a negative impact on the
the time requirements of Extravis users. For example, the fact that Extravis is
a standalone tool means that context switching is necessary, which may yield
a certain amount of overhead on the part of the user. This could be solved
by integrating the trace visualization technique into Eclipse (or other IDEs),
with the additional benefit that the tool could provide direct links to Eclipse’s
source code browser. However, it should be noted that Extravis would still
require a substantial amount of screen real estate to be used effectively.

Another potential factor that hindered the time performance of the Ecl+Ext
group is that these subjects may not have been sufficiently familiar with Ex-
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Figure 6.2 Box plots for time spent and correctness.

travis’ features, and were therefore faced with a time-consuming learning
curve. This is partly supported by the debriefing questionnaire, which indi-
cates that four out of the 12 subjects found the tutorial too short. A more
elaborate tutorial on the use of the tool could help alleviate this issue.

6.4.2 Correctness results

We now test null hypothesis H20, which states that the availability of Extravis

does not impact the correctness of answers given during typical comprehen-
sion tasks.

Figure 6.2(b) shows a box plot for the scores that were obtained by the
subjects on the first six tasks. Note that we consider overall scores rather than
scores per task (which are left to Section 6.4.3). The box plot shows that the
difference in terms of correctness is even more explicit than for the timing
aspect. The answers given by the Ecl+Ext subjects were 43.14% more accurate
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(Table 6.3), averaging 18.25 out of 24 points compared to 12.75 points for the
Eclipse group.

Similar to the timing data, the requirements for the use of the parametric
t-test were met. Table 6.3 therefore shows the results for Student’s t-test. At
0.001, the p-value is very low and implies statistical significance. Since the
difference is clearly in favor of the Ecl+Ext group, it follows that hypothesis
H20 can be easily rejected in favor of our alternative hypothesis H2, which
states that the availability of Extravis increases the correctness of answers
given during typical comprehension tasks. The Mann-Whitney test confirms
our findings.

We attribute the added value of Extravis to correctness to several factors.
First, the inherent preciseness of dynamic analysis could have played a crucial
role: the fact that Extravis shows the actual objects involved in each call makes
the interactions easier to understand. Section 6.4.3 discusses this in more
detail through an example task.

Second, the results of the debriefing questionnaire (Table 6.4) show that
the Ecl+Ext group used Extravis quite often: the subjects estimate the per-
centage of time they spent in Extravis at 60% on average. While in itself this
is meaningless, we also observe through the questionnaire that on average,
Extravis was used on 6.8 of the 8 tasks, and that on average the tool proved
useful in 5.1 of those tasks (75%). This is a strong indication that the Ecl+Ext
subjects generally did not experience a resistance to using Extravis (resulting
from, e.g., a poor understanding of the tool) and were quite successful in their
attempts.

The latter assumption is further reinforced by the Ecl+Ext subjects’ opin-
ions on the speed and responsiveness of the tool, which averaged a score of
1.4 on a scale of 0-2, which is between “pretty OK: occasionally had to wait for infor-
mation” and “very quickly: the information was shown instantly”. Furthermore, all 24

subjects turned out to be quite familiar with dynamic analysis: in the ques-
tionnaire they indicated an average knowledge level of 2.4 on a scale of 0-4
on this topic, which is between “I’m familiar with it and can name one or two benefits”
and “I know it quite well and performed it once or twice”.

Note that similar to a related study (Quante, 2008), we could not identify a
correlation between the subjects’ performances and their (subjective) expertise
levels.

6.4.3 Individual task scores

To determine if there are certain types of comprehension tasks that benefit
most from the use of Extravis, we examine the performances per task in more
detail. Figure 6.3 shows the average scores and time spent by each group
from a task perspective. While we focus primarily on correctness, timing data
is also considered where appropriate.

The groups scored equally well on tasks T1 and T3.1 and required similar
amounts of time. According to the motivations of their answers, for task T1

the Extravis users mostly used the massive sequence view for visual phase
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Eclipse Eclipse+Extravis
Mean Stdev. Mean Stdev.

Misc.
Time pressure (0-4) 2.17 1.27 2.08 0.51

Dynamic analysis expertise (0-4) 2.33 1.15 2.50 1.24

Task difficulty (0-4)
T1 1.00 0.74 1.58 0.67

T2.1 2.67 1.23 1.08 0.67

T2.2 2.50 1.24 1.50 0.90

T3.1 2.08 0.90 2.25 0.75

T3.2 2.08 0.90 1.50 0.80

T3.3 1.92 0.90 1.50 1.00

T4.1 2.50 0.67 2.83 0.83

T4.2 1.58 1.00 1.64 1.12

Average 2.04 1.74

Use of Extravis
No. of tool features used 6.42 2.68

No. of tasks involved (0-8) 6.75 1.14

No. of tasks success (0-8) 5.08 1.31

% of time spent in tool (est.) 60.00 26.71

Perceived tool responsiveness (0-2) 1.42 0.51

Table 6.4 Results of the debriefing questionnaire. Ratings shown are subjective.

detection, whereas the Eclipse group typically studied the main() method.
The results of the latter approach were generally a little less accurate, because
such important phases as the building and parsing of an AST are not directly
visible in main(). As for task T3.1, both groups often missed the explicit
destruction of each check at the end of execution, which is not easily observed
in Eclipse nor in Extravis.

The only task on which the Ecl+Ext group was outperformed is T4.1, in
terms of time as well as correctness. The Eclipse group rated the difficulty of
this task at 2.5, which is between “intermediate” and “difficult”, whereas Extravis

users rated the difficulty of this task at 2.8, leaning toward “difficult”. An
important reason might be that Extravis users did not know exactly what to
look for in the trace, whereas most Eclipse users used one of the checks as a
starting point and followed the violation propagation process from there. The
latter approach is typically faster: the availability of Extravis may have been a
distraction rather than an added value in this case.

The Extravis users scored significantly higher on five tasks: the differences
for tasks T2.1, T2.2, T3.2, T3.3, and T4.2 ranked between 0.8 and 1.6 points.

The rather decent results from the Ecl+Ext group on tasks T2.1 and T2.2
are presumably explained by Extravis’ circular view, from which all classes
and their interrelationships can be directly interpreted. In T2.1, the Eclipse
group mostly went looking for utility-like classes, while in T2.2 a common
approach was to search for specific imports. The former task required quite
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Figure 6.3 Averages per task.

some exploration for Eclipse users and was therefore time-consuming, and the
approach does not necessarily yield optimal results. The latter task required
less time, presumably because a more specific search was possible.

Task T3.2 involved inheritance: the fact that the check at hand is an exten-
sion of a superclass that is an extension in itself, forced the Eclipse group to
distribute its focus across each and every class in the check’s type hierarchy.
Extravis users often selected check X and class Y in the tool, which highlights
all mutual interactions. As evidenced by Figure 6.3, the latter approach is
both faster and more accurate. In task T3.3, the Extravis users could follow
the same routine whereas in Eclipse the required elements are easily missed.

In task T4.2, the Ecl+Ext group therefore mostly searched the execution
traces for communication between check X and the violation container class.
The Eclipse group had several choices. A few subjects tried to understand
the check and apply this knowledge on the given input source file; others
tried to relate the check’s typical warning message (once it was determined)
to the given example outputs; yet others used the debugger, e.g., by inserting
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breakpoints or print statements. With the exception of debugging, most of
the latter approaches are quite time-consuming, if successful at all. Still, we
observe no large difference in time spent: the fact that six members of the
Eclipse group had already exceeded the time limit at this point may have
reduced the amount of effort invested in this task.

6.5 Threats to Validity

This section discusses the validity threats in our experiment and the man-
ners in which we have addressed them. We maintain the common distinction
between internal validity, which refers to the cause-effect inferences made
during the analysis, and external validity, which concerns the generalizability
of the results to different contexts.

6.5.1 Internal validity

Subjects

There exist several internal validity threats that relate to the subjects used
in this experiment. First of all, the subjects may not have been sufficiently
competent. We have reduced this threat through the a priori assessment of the
subjects’ competence in five relevant fields, which pointed out that all subjects
had at least an elementary knowledge of Eclipse and no expert knowledge of
Checkstyle.

Second, their knowledge may not have been fairly distributed across the
control group and experimental group. This threat was alleviated by grouping
the subjects such that their expertise was evenly distributed across the groups.

Third, the subjects may not have been properly motivated, or may have had
too much knowledge of the experimental goal. The former threat is mitigated
by the fact that they all participated on a voluntary basis; as for the latter, the
subjects were not familiar with the actual research questions or hypotheses
(although they may have guessed).

Tasks

The comprehension tasks were designed by the authors of this chapter, and
therefore may have been biased towards Extravis (as this tool was also de-
signed by several of the authors). To avoid this threat, we have involved an
established task framework (Pacione et al., 2004) to ensure that many aspects
of typical comprehension contexts are covered: as a result, the tasks concerned
both global and detailed knowledge, and both static and dynamic aspects.

Another threat related to the tasks is that they may have been too difficult.
We refute this possibility on the basis of the correctness results, which show
that maximum scores were occasionally awarded in both groups for all but
one task (T3.1), which in the Eclipse group often yielded 3 points but never 4.
However, the average score for this task was a decent 2.67 (stdev. 0.7) in both
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groups. Our point of view is further reinforced by the subjects’ opinions on
the task difficulties: the task they found hardest (T4.1) yielded good average
scores, being 3.25 for the Eclipse group and 2.92 for the Ecl+Ext group.

Also related to the tasks is the possibility that the subjects’ answers were
graded incorrectly. This threat is often overlooked in the literature, but was
reduced in our experiment by creating concept answers in advance and by
having Checkstyle’s lead developer review and refine them. This resulted in
an answer model that clearly states the required elements (and corresponding
points) for each task. Furthermore, to verify the soundness of the reviewing
process, the first two authors of this chapter independently reviewed the an-
swers of five random subjects: on each of the five occasions the difference was
no higher than one point (out of the maximum of 32 points).

Miscellaneous

The results may have been influenced by time constraints that were too loose
or too strict. We have attempted to circumvent this threat by performing two
pilot studies, which led to the removal of two tasks. Still, not all subjects
finished the tasks in time; however, the average time pressure (as indicated
by the subjects in the debriefing questionnaire) was found to be 2.17 in the
Eclipse group and 2.08 in the Ecl+Ext group on a scale of 0-5, which roughly
corresponds to only a “fair amount of time pressure”. Furthermore, in our results
analysis we have disregarded the last two tasks, upon which only two out of
the 24 subjects still exceeded the time limit.

Furthermore, our statistical analysis may not be completely accurate due to
the missing data points that we mentioned in Section 6.4. This concerned only
one subject, who did not finish task T4.2. Fortunately, the effect of the two
missing timing and correctness data points on our calculations is negligible:
had the subject finished the task, his total time spent and average score could
have been higher, but this would only have affected the analysis of all eight
tasks whereas our focus has been on the first six.

Lastly, it could be suggested that Eclipse is more powerful if additional
plugins are used. However, as evidenced by the results of the debriefing ques-
tionnaire, only two subjects named specific plugins that would have made the
tasks easier, and these related to only two of the eight tasks. We therefore
expect that additional plugins would not have had a significant impact.

6.5.2 External validity
The generalizability of our results could be hampered by the limited repre-
sentativeness of the subjects, the tasks, and Checkstyle as a subject system.

Concerning the subjects, the use of professional developers rather than
(mainly) Ph.D. candidates and M.Sc. students could have yielded different
results. Unfortunately, motivating people from industry to sacrifice two hours
of their precious time is quite difficult. Nevertheless, against the background
of related studies that often employ students, we assume the expertise lev-
els of our 24 subjects to be relatively high. This assumption is reinforced by
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the (subjective) a priori assessment, in which the subjects rated themselves
as being “advanced” with Java (avg. 3.08, stdev. 0.6), and “regular” at using
Eclipse (avg. 2.29, stdev. 0.8). We acknowledge that our subjects’ knowledge
of dynamic analysis may have been greater than in industry, averaging 2.42

(Table 6.4).
Another external validity threat concerns the comprehension tasks, which

may not reflect real maintenance situations. This threat is largely neutralized
by our reliance on Pacione’s framework (Pacione et al., 2004), that is based on
activities often found in software visualization and comprehension evaluation
literature. Furthermore, the tasks concerned open questions, which obviously
approximate real life contexts better than do multiple choice questions.

Finally, the use of a different subject system (or additional runs) may have
yielded different or more reliable results. Checkstyle was chosen on the ba-
sis of several important criteria; finding an additional system of appropriate
size and of which the experimenters have sufficient knowledge is not trivial.
Moreover, an additional case (or additional run) imposes twice the burden
on the subjects or requires more of them. While this may be feasible in case
the groups consist exclusively of students, it is not realistic in case of Ph.D.
candidates (or professional developers) because they often have little time to
spare, if they are available at all.

6.6 Related Work

To the best of our knowledge, there exist no earlier studies in the literature
that offer quantitative evidence of the added value of trace visualization tech-
niques for program comprehension. We therefore describe the experiments
that are most closely related to our topic.

In a recent article, Bennett et al. (2008) summarized the state of the art in
tool features for dynamic sequence diagram reconstruction. Based on this sur-
vey, they proposed a new tool that implemented these features. Rather than
measuring its added value, they sought to characterize the manner in which
the tool is used in practice. To this end, they had six subjects perform a series
of comprehension tasks, and measured when and how the tool features were
used. Among their findings was that tool features are not often formally eval-
uated in literature, and that heavily used tool features may indicate confusion
among the users. Another important observation was that much time was
spent on scrolling, which supports our hypothesis that Extravis saves time as it
shows all information on a single screen.

Quante (2008) performed a controlled experiment to assess the benefits of
Dynamic Object Process Graphs (DOPGs) for program comprehension. While
these graphs are built from execution traces, they do not actually visualize en-
tire traces. The experiment involved 25 students and a series of feature loca-
tion5 tasks for two subject systems. The use of DOPGs by his experimental

5Feature location is a reverse engineering activity that concerns the establishment of relations
between concepts and source code.
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group led to a significant decrease in time and a significant increase in correct-
ness in case of the first system; however, the differences in case of the second
system were not statistically significant. This suggests that evaluations on ad-
ditional systems are also desirable for Extravis and should be considered as
future work. Also of interest is that the latter subject system was four times
smaller than the former, but had three DOPGs associated with it instead of
one. This may have resulted in an information overload on the part of the
user, once more suggesting that users are best served by as little information
as possible.

Hamou-Lhadj and Lethbridge (2006) proposed the notion of summarized
traces, which provide an abstraction of large traces to grasp a program’s main
behavioral aspects. The paper presents quantitative results with regard to the
effectiveness of the algorithm. The traces were also qualitatively evaluated
through a questionnaire among software developers. The actual usefulness
in practice, i.e., its added value to conventional techniques in actual program
comprehension contexts, was not measured.

6.7 Conclusion

In this chapter, we have reported on a controlled experiment that was aimed
at the quantitative evaluation of Extravis, our tool for execution trace visual-
ization. We designed eight typical tasks aimed at gaining an understanding
of a well-known code validation program, and measured the performances
of a control group (using the Eclipse IDE) and an experimental group (using
both Eclipse and Extravis) in terms of correctness and time spent.

The results clearly illustrate Extravis’ usefulness for program comprehen-
sion. With respect to time, the added value of Extravis was found to be sta-
tistically significant: on average, the Extravis users spent 21% less time on the
given tasks. In terms of correctness, the results turned out even more convinc-
ing: Extravis’ added value was again statistically significant, with the Extravis

users scoring 43% more points on average. These results testify to Extravis’
benefits compared to conventional tools: in this case, the Eclipse IDE.

To find out which types of tasks are best suited for Extravis or for trace
visualization in general, we looked in more detail at the group performances
per task. While inferences drawn from one experiment and only eight tasks
cannot be conclusive, the experimental results do provide a first indication
as to Extravis’ strengths. First, questions that require insight into a system’s
structural relations are solved relatively easily due to Extravis’ circular view,
as it shows all of the system’s structural entities and their call relationships
on one single screen. Second, tasks that involve inheritance seem to benefit
greatly from the fact that Extravis shows the actual objects involved in each in-
teraction. Third, questions that require a user to envision a system’s runtime
behavior are clearly easier to tackle when traces are provided (in a compre-
hensible manner). The latter two observations presumably hold for most trace
visualization techniques.
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This chapter demonstrates the potential of trace visualization for program
comprehension, and paves the way for other researchers to conduct similar
experiments. The work in this chapter makes the following contributions:

• The reusable design of a controlled experiment for the quantitative eval-
uation of trace visualization techniques for program comprehension.

• The execution of this experiment on a group of 24 representative sub-
jects, demonstrating a 21% decrease in time effort and a 43% increase in
correctness.

• A first indication as to the types of tasks for which Extravis, and trace
visualization in general, are best suited.

Directions for future work include replications of the experiment on different
subject systems. Furthermore, we seek collaborations with researchers to eval-
uate other existing trace visualization techniques, i.e., to assess and compare
their added values for program comprehension.
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Chapter

7
Conclusion

Program comprehension is a challenging task for developers who are faced with
maintaining a software system. In particular, the lack of sufficient knowledge of a
system’s internals means that a time-consuming examination is required in order
to properly understand it. The study of a system’s runtime behavior, known as
dynamic analysis, has the potential to facilitate this process. Unfortunately, most
of the literature on this topic does not provide thorough empirical validations.
In this thesis, we sought to raise the bar with respect to the evaluation of tech-
niques for program comprehension through dynamic analysis. We systematically
surveyed the existing work, defined reusable frameworks, conducted extensive
case studies, provided publicly available tools, and quantitatively measured the
added value of one of these tools compared to a traditional IDE. Our contribu-
tions demonstrate the benefits of dynamic analysis for program comprehension
and enable fellow researchers to better evaluate their own solutions in this field.

7.1 Summary of Contributions

Each of the core chapters in this thesis offers several contributions, which we
summarize as follows.

• A systematic survey of the literature on program comprehension through
dynamic analysis, with a detailed characterization of 172 articles and a
reusable attribute framework as a result.

• A thorough analysis of the survey results, resulting in the identification
of underemphasized topics of which we motivated the importance in
the near future.

• A novel approach toward the understanding of program behavior, that
involves tracing and abstracting test case executions and their visualiza-
tion as UML sequence diagrams.

• The implementation of this approach into a publicly available tool, and
its validation through two case studies involving different subject sys-
tems and program comprehension tasks.

• A methodology for the assessment of execution trace reduction tech-
niques, enabling a side-by-side comparison of both new techniques and
existing solutions from the literature.

• The application of this methodology on a set of four reduction tech-
niques from the literature, using a test set of seven large traces (made
available online).



• A novel approach toward the understanding of program behavior using
Extravis, a tool for the advanced visualization of large execution traces
(made available online).

• The evaluation of this approach by means of three different case studies,
each involving different subject systems and distinct program compre-
hension activities.

• The reusable design of a controlled experiment aimed at assessing the
benefits of trace visualization during typical program comprehension
tasks (fully documented in this thesis).

• The execution of this experiment on Extravis with a group of 24 rep-
resentative subjects, demonstrating a 21% decrease in time effort and a
43% increase in correctness.

7.2 Research Questions

Research Question 1

How can we structure the available literature on program comprehension and
dynamic analysis, and which topics need additional consideration the near future?

We addressed our first research question by conducting a systematic liter-
ature survey (Chapter 2). We started off with the decomposition of typical
program comprehension articles into four facets: activity, target, method, and
evaluation, each representing an important aspect of such papers on the basis
of which they can be distinguished and compared. Next, we defined explicit
selection criteria, and systematically selected 127 out of 4,795 articles from
14 relevant venues in the period of July 1999 to June 2008. The references in
these articles were checked, resulting in another 45 papers (from 17 additional
venues) that were subsequently included in the selection.

Through a detailed reading of this research body, we derived an attribute
framework that lists the different attributes that were distinguished in each
facet (Table 2.2). This framework was used to characterize all 172 articles in
a structured fashion, and to summarize their contributions into 110 articles.
Tables A.2 through A.4 show the characterization of the summarized papers,
whereas the full research body has been made available online.

The resulting overview is useful as a reference for researchers in the field of
program comprehension through dynamic analysis, and helps them identify
related work and new research opportunities in their respective subfields.

Our own study of the results focused on the identification of attributes that
have received relatively little attention in the literature (Figure 2.3). Among
the findings was the apparent lack of comparisons and benchmarks in most
subfields, and the observation that very few articles offer publicly available
tools, which hinders the use of existing solutions in current developments
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and the adoption of such tools in industry. We also expressed our concerns
about the lack of controlled experiments, which we feel are crucial in the
field of program comprehension. Finally, we identified four types of target
applications that have been underemphasized in literature, being web ap-
plications, distributed systems, multithreaded applications, and legacy sys-
tems. We stressed the importance of the above aspects, discussed the issues
involved, and offered a series of potential solutions and recommendations.

Research Question 2
Given the excessive amounts of data involved in dynamic analysis, are abstraction
techniques sufficient to render traditional visualizations such as UML sequence
diagrams useful for program comprehension?

In our first attempt to support software understanding through the visu-
alization of dynamically gathered data, we designed a framework for the re-
construction of UML sequence diagrams from test case executions in Chap-
ter 3. The approach involved explicit metamodels for execution traces and
sequence diagrams. Since the traces are often too large to visualize directly,
we identified a series of trace reduction techniques, of which several were
implemented in Sdr, our initial tool implementation. The prototype was eval-
uated on a small subject system that involved two concrete maintenance tasks.
In a second iteration, we proposed JRET, a more mature tool implementation
that features several improvements over its predecessor, and evaluated it on
a medium-scale open source application. While the use of test cases as exe-
cution scenarios and their visualization as sequence diagrams proved useful
as a starting point for program comprehension, we opted for a more thor-
ough investigation of trace reduction techniques because their effectiveness
and applicability in general remained unclear.

The goal of Chapter 4, therefore, was the evaluation of such techniques. To
enable side-by-side comparisons of the numerous techniques offered in liter-
ature, we proposed an assessment methodology that distinguishes six steps:
context, criteria, metrics, test set, application, and interpretation. The use
of our methodology was demonstrated through an experiment that involved
a test set of seven large traces – three of which were larger than one mil-
lion events in size – and the implementation of four different reduction tech-
niques from the literature (for which no publicly available tools were avail-
able). These included subsequence summarization, stack depth limitation,
language-based filterings, and sampling. Our example experiment showed
how a fair comparison of existing techniques can be achieved as long as simi-
lar contexts, criteria, and test sets are used.

Research Question 3
How can program comprehension through dynamic analysis be effectively sup-
ported by more advanced visualizations?

Another manner in which we sought to tackle the scalability issues associ-
ated with dynamic analysis was the design and evaluation of more advanced

Chapter 7. Conclusion 149



visualizations, i.e., techniques not based on traditional visualizations such
as trees and UML. To this end, we employed two novel views in the con-
text of large execution traces. The circular bundle view, originally used for
the visualization of static relationships (Holten, 2006), hierarchically projects
a program’s structural entities on a circle and shows their interrelationships
in a bundled fashion (Figure 5.1 on page 94). The massive sequence view
provides a navigable overview of a trace by chronologically visualizing each
event as a colored line (Figure 5.8 on page 108). The views are linked and
fully interactive, fit on a single screen, and are implemented in a tool called
Extravis.

We initially evaluated the tool through a series of three case studies. The
studies involved different subject systems (one industrial and two open source)
and distinct program comprehension contexts, including trace exploration,
feature location, and top-down program comprehension. The results pro-
vided a strong indication as to Extravis’ benefits, the main advantages being
its optimal use of screen real estate and the easy insight into a program’s
structure. However, we did hypothesize that the relationships in the circular
view could be difficult to grasp: indeed, whereas the use of traditional vi-
sualizations such as UML is widespread, more advanced techniques warrant
extensive validations to assess their understandability and usefulness (Storey,
2005).

For this reason, we conducted a controlled experiment to measure Extravis’
added value to an existing solution, the Eclipse IDE (Chapter 6). We designed
eight typical tasks aimed at gaining an understanding of a representative sub-
ject system, and measured how a control group (using the Eclipse IDE) and
an experimental group (using both Eclipse and Extravis) performed in terms
of correctness and time spent. The results were statistically significant in both
regards, showing a 21% decrease in time and a 43% increase in correctness for
the latter group. The design and execution of this experiment have demon-
strated the potential of trace visualization for program comprehension, and
have paved the way for other researchers to conduct similar experiments.

Research Question 4

How can we evaluate techniques for program comprehension and dynamic anal-
ysis, and how can we compare their added value to existing solutions?

One of our main objectives was to raise the bar with respect to the manner
in which dynamic analysis techniques for program comprehension should be
evaluated. To this end, we have put a strong emphasis on the evaluation
quality in our experiments. As described below, this objective crosscuts all of
the core chapters in this thesis.

Our literature survey in Chapter 2 involved a systematic approach with an
emphasis on reproducibility. The selection of relevant articles through explicit
selection criteria and the derivation of a reusable attribute framework enables
fellow researchers to replicate our findings and compare existing work. More-
over, both of these tasks involved pilot studies to ensure their soundness. The
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resulting literature overview allows researchers to easily identify relevant ar-
ticles in their respective subfields.

The reconstruction of UML sequence diagrams in Chapter 3 was initially
evaluated through a case study on a relatively small program. Later on, we
proposed a more robust tool to perform another case study on a more rep-
resentative system. Both studies revolved around comprehension tasks that
stem from realistic software maintenance problems. The tool, called JRET, is
implemented as an Eclipse plugin and is publicly available online for fellow
researchers to download and experiment with.

In Chapter 4 we sought to address the lack of (comparative) evaluations
in the literature on trace reduction techniques. We introduced an assessment
methodology, the first of its kind, that enables a fair side-by-side comparison
of such techniques. The methodology is fully documented in Chapter 4. Fur-
thermore, the public availability of the traces and reduction technique imple-
mentations involved in our example experiment (1) ensures the reproducibil-
ity of our findings, and (2) supports fellow researchers in performing similar
assessments of different reduction techniques.

Chapter 5 presented two advanced execution trace views, which were im-
plemented in Extravis. The tool was thoroughly evaluated through a series of
three extensive case studies, each involving distinct program comprehension
contexts and representative subject systems of which one was industrial. Fur-
thermore, the tool is documented and publicly available online to enable its
involvement in similar experiments.

Finally, the rather exotic nature of Extravis’ visualizations motivated us to
measure its cognitive impact on humans, and led to the design and successful
execution of a reusable controlled experiment, involving eight comprehension
tasks based on a framework in the literature. Chapter 6 and Appendix B
contain all the necessary information for the replication our experiment, and
allow for similar experiments with different visualization techniques.

7.3 Evaluation

Our study of the literature, combined with our own experiences, have led
to us to believe that dynamic analysis techniques for program comprehen-
sion should be more rigorously evaluated than is typically the case: Indeed,
the scientific progress in this community could benefit greatly from improve-
ments to the evaluation quality. With respect to the manner in which new
techniques should be validated, we envision the following process:

• Multiple case studies. The proposition of a new dynamic analysis tech-
nique should be accompanied by multiple case studies. Depending on
the activities it aims to support, these studies should involve different
program comprehension contexts. To ensure a certain degree of gener-
alizability, the studies should concern multiple subject systems that are
representative in terms of the (typically large) amounts of data that are
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to be processed in dynamic analysis. The results provide a first indica-
tion as to the technique’s benefits and limitations.

• Comparison to existing solutions. After a new dynamic analysis technique
has been sufficiently evaluated in itself through anecdotal evidence, the
next step should be to compare its performance to existing solutions.
Such a comparison allows the authors to reason about the technique’s
added value for the program comprehension community. In particular,
in a program comprehension context the following should be taken into
account:

– Most approaches in program comprehension require controlled ex-
periments for their quantitative evaluation. This especially holds
for dynamic analysis techniques, as they often involve an informa-
tion overload that humans cannot cope with directly. The design of
a controlled experiment can be elaborate, but can be reused if it is
sufficiently documented and generic in nature.

– Comparisons require existing solutions to have publicly available
tools associated with them, as this saves researchers a great deal of
reimplementation effort and prevents interpretation mistakes (e.g.,
in case of complex algorithms). In certain cases, such as advanced
visualizations, the duplication of an existing technique may not
even be impossible.

• Industrial involvement. Ideally, the final stadium of the validation of a
program comprehension technique should involve a case study in an in-
dustrial context. Examples include evaluations on industrial software, or
the involvement of actual developers in (controlled) experiments. This
ensures that the added value of novel techniques can be expressed in
industrial terms, which could support the adoption of such tools in in-
dustry.

In light of the contributions in this thesis, we believe our work to be a signif-
icant step toward such a rigorous evaluation process. However, we acknowl-
edge that several aspects have not yet received the attention they deserve.

First, while we feel that our Extravis tool has been sufficiently validated,
the evaluation of our efforts on UML sequence diagram reconstruction needs
more work. Two case studies involving different tasks and subject systems
were conducted with encouraging results, but the usefulness of the approach
in practice remains unclear, and we do not yet know how it performs relative
to other solutions. On the other hand, the fact that our approach was imple-
mented in a publicly available tool means that the research community can
involve it in comparative evaluations in the near future.

Second, our work does not exhibit a strong link with industry: we had
only one industrial application at our disposal, which we used as a subject
system in Chapter 5 and as an execution trace in Chapter 4. While our project
involved several industrial partners, having them actively participate in the
research turned out to be difficult. We can think of several potential reasons,
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some technical (e.g., difficulties in instrumenting and tracing industrial soft-
ware, as discussed in Section 2.6.4) and some motivational (e.g., lack of time,
focus, or interest). Possible solutions to the technical issues were proposed in
Chapter 2, but are subject to future investigation.

7.4 Future Work

With the evolution of software systems and their regular modification in prac-
tice, program comprehension has become an increasingly important activity
in software development. The literature and this thesis have shown dynamic
analysis to be a powerful asset during such activities, as the extension of
static (source code) information with behavioral knowledge provides devel-
opers with a very complete picture of the software they are working on. As
systems grow ever larger and more complex in practice, we expect the need
for techniques and tools to effectively support program comprehension activ-
ities to grow ever more in the near future.

Program comprehension through dynamic analysis is ultimately about con-
veying (large amounts of) information to users, and should therefore be eval-
uated on actual human subjects. It is for this reason that user studies and
controlled experiments should be an important focus in the near future to
advance the state of the practice. As an example, we believe that the experi-
mental design proposed in Chapter 6 can be used to measure the added value
of any tool that aims to support program comprehension.

Since it is often difficult to obtain sufficient numbers of suitable subjects
for such experiments, it must be investigated how potential test subjects can
be identified and properly motivated. Ideally, such groups should not be
composed exclusively of students but also of practitioners (Di Penta et al.,
2007). As an example solution, we suggest that a separate budget be defined
in research projects on program comprehension to enable (financial) compen-
sations for test subjects, as is already customary in the fields of medicine
and psychology. Moreover, the participation of actual developers from indus-
try (who actually constitute the target audience) could be established in this
manner.

Another important focus in the near future should be the adoption of dy-
namic analysis tools in industry. While the research community has been
working on dynamic analysis for several decades, they are seldomly used in
practice. It could be argued that software developers are generally unfamil-
iar with the benefits; however, runtime debugging (e.g., using breakpoints)
is essentially a form of dynamic analysis and is often used. Future research
should be aimed at identifying new ways to stimulate the use of dynamic
analysis in practice: For example, we hypothesize that additional (success-
ful) controlled experiments may help convince industry of the added value of
dynamic analysis tools.

Finally, several activities and target application types have received rela-
tively little attention in the literature thus far, in spite of their importance in
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the near future (Section 2.6). These activities are architecture recovery, pro-
viding valuable views of applications on the architectural level; and surveys,
which provide overviews of the state of the art. The target applications that
deserve more attention are (1) web applications, because they have grown
increasingly difficult to analyze, particularly using static methods; (2) dis-
tributed systems, which are receiving increasing interest from industry due
to the advent of service-oriented architectures; (3) multithreaded applications,
because multicore CPUs are becoming mainstream; and (4) legacy systems,
which are typically in need of reverse engineering efforts because their inter-
nals are often poorly understood. We expect these aspects to play an impor-
tant role in the near future, and therefore opt for additional efforts into their
investigation.
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Appendix

A

Literature Survey: Coincidence
Measurements & Article
Characterization

This appendix presents the results of the attribute coincidence experiment in
Chapter 2. The ensuing pages provide an extensive characterization of the 110

summarized articles.

Facet Attribute #1 Attribute #2 Fraction
Activity general views 0.72

design/arch. views 0.71

survey views 0.60

behavior views 0.52

views general 0.50

trace views 0.50

survey general 0.50

Target threads oo 0.68

Method compr./summ. vis. (std.) 0.60

fca filtering 0.50

fca mult. traces 0.60

fca static 0.70

fca vis. (std.) 0.90

filtering vis. (std.) 0.58

heuristics metrics 0.61

mult. traces filtering 0.54

mult. traces metrics 0.57

online compr./summ. 0.62

online static 0.62

online vis. (adv.) 0.62

patt. det. vis. (std.) 0.60

querying filtering 0.54

querying static 0.59

querying vis. (std.) 0.59

slicing static 0.88

slicing vis. (std.) 0.76

static vis. (std.) 0.60

vis. (adv.) filtering 0.54

vis. (std.) static 0.54

Evaluation comparison quantitative 0.82

comparison regular 0.82

human subj. regular 0.62

industrial regular 0.53

quantitative regular 0.95

Table A.1 Attribute coincidence measurements.
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uéhéneuc,

2
0
0
4)

o
.

.
o

.
.

.
o

.
.

o
.

.
.

o
.

.
o

.
o

.
o

.
.

o
o

.
.

o
.

.
.

.
.

(H
am

ou-Lhadjet
al.,

2
0
0
4)

5
.

.
o

.
o

.
.

.
o

o
.

.
.

o
.

.
o

o
.

o
o

.
.

.
.

.
.

o
.

.
.

o
o

(H
am

ou-Lhadjand
Lethbridge,

2
0
0
4)

o
.

.
.

o
.

.
.

.
o

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o
(H

am
ou-Lhadjand

Lethbridge,
2
0
0
6)

1
.

.
o

.
o

o
.

.
.

o
.

.
.

o
.

.
o

o
o

.
o

.
.

.
.

.
.

o
.

.
o

o
.

(H
endrickson

et
al.,

2
0
0
5)

1
.

.
o

.
.

o
.

.
o

.
o

.
o

o
.

.
.

.
.

.
.

o
.

o
.

.
.

o
.

.
.

.
.

(H
euzeroth

et
al.,

2
0
0
3)

1
.

o
.

.
.

o
.

o
.

o
.

.
.

.
.

.
o

.
o

o
.

.
.

.
.

.
.

o
.

.
.

o
.

(H
uang

et
al.,

2
0
0
5)

.
o

.
.

.
o

.
.

.
o

.
.

.
.

.
.

o
.

o
o

.
.

.
o

.
o

.
o

.
.

.
o

.
(Israr

et
al.,

2
0
0
7)

.
o

.
.

o
.

.
.

.
o

.
.

.
.

.
.

.
.

.
o

o
.

.
.

.
o

.
o

.
.

.
.

.
(Jerding

and
R

ugaber,
1
9
9
7)

2
.

.
o

.
o

.
.

.
o

o
.

.
.

o
o

.
o

.
o

o
.

.
.

.
.

.
.

o
.

.
.

.
.

(Jiang
et

al.,
2
0
0
7)

.
.

.
.

.
o

.
.

o
.

.
.

.
o

.
.

o
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o
(Jiang

et
al.,

2
0
0
6)

.
.

.
o

.
.

.
.

o
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o
.

.
.

.
(Jiang

et
al.,

2
0
0
8)

.
.

.
.

o
.

.
.

.
o

.
.

.
.

.
.

.
o

.
.

o
o

.
.

.
.

.
o

o
o

.
o

.
(K

elsen,
2
0
0
4)

.
.

o
.

.
.

o
.

.
o

.
.

.
o

.
.

.
.

o
.

.
.

.
.

.
.

.
.

.
.

.
.

o
(K

leyn
and

G
ingrich,

1
9
8
8)

.
.

o
.

.
.

o
.

.
o

.
.

.
o

.
.

.
.

o
.

.
.

.
.

.
.

.
o

.
.

.
.

.
(K

ollm
ann

and
G

ogolla,
2
0
0
1b)

.
.

.
.

.
.

o
.

.
o

.
.

.
o

.
.

.
.

o
.

.
.

.
.

.
.

o
.

.
.

.
.

.
(K

oreland
R

illing,
1
9
9
8)

1
.

.
.

.
.

.
o

.
o

.
.

.
.

o
o

o
.

.
o

.
o

.
.

.
.

.
o

.
.

.
.

.
.

Table
A

.2
A

rticle
characterization

results.

156



ac
ti

vi
ty

ta
rg

et
m

et
ho

d
ev

al
ua

ti
on

add’larticles

toolavail.

survey

design/arch.

views

features

trace

behavior

general

legacy

procedural

oo

threads

web

distributed

vis.(std.)

vis.(adv.)

slicing

filtering

metrics

static

patt.det.

compr./summ.

heuristics

fca

querying

online

mult.traces

preliminary

regular

industrial

comparison

humansubj.

quantitative

unknown/none

(K
os

ch
ke

an
d

Q
ua

nt
e,

2
0
0
5

)
o

.
.

o
o

.
.

.
.

o
.

.
.

.
o

.
.

o
o

o
.

.
.

o
.

.
o

.
o

.
o

.
o

.
(K

os
ki

m
ie

s
an

d
M

ös
se

nb
öc
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Appendix

B

Controlled Experiment: Subject
Characterization & Handouts

This appendix provides the expertise assessment presented to all 24 subjects
who participated in the controlled experiment in Chapter 6, a characterization
of the subjects, the handouts that they received, and the answer model used
to grade their answers.

B.1 Expertise assessment

Please rate your expertise in the following fields.

• Java

1. none: difficulty in reading Java, and never written a line
2. beginner: can read Java, but has trouble in writing
3. regular: can easily read Java and write basic programs
4. advanced: familiar with most paradigms; worked on more ad-

vanced Java programs
5. expert: years of experience

• Eclipse

1. none: never used it
2. beginner: incidentally used it, mostly for browsing
3. regular: familiar with several features (e.g., checking for dependen-

cies)
4. advanced: experience with most features
5. expert: years of experience

• Checkstyle

1. none: never used it, not familiar with its user-level functionality
2. beginner: used it one or two times, or familiar with user-level func-

tionality
3. regular: used it occasionally, familiar with a few implementation

details
4. advanced: very frequent user, wrote own extensions/checkers
5. expert: years of experience



• Language technology, parsing, grammars, etc.

1. none: no knowledge
2. beginner: only some theoretical knowledge
3. regular: applied it once or twice during student assignments
4. advanced: frequently applied the theory in practice
5. expert: years of experience

• Reverse engineering, software inspection/understanding

1. none: no knowledge
2. beginner: only some theoretical knowledge
3. regular: did it once or twice during student assignments
4. advanced: frequently performed these activities
5. expert: years of experience

B.2 Subject characterization

Expertise (0-4) Performance (T1-T3)
Subject # Affil. M.Sc. Avg Java Eclipse Checkstyle Lang.tech. Rev. Eng. Time Correctness

1 CWI UvA 3.2 4 4 1 4 3 56 7

2 SIG UU 3.0 3 3 3 3 3 55 14

3 CWI UvA 2.8 4 3 3 2 2 38 16

4 TUD UU 2.8 4 4 0 4 2 68 20

5 TUD TUD 2.8 4 3 2 2 3 70 18

6 TUD KUN 2.2 3 3 1 3 1 59 18

7 TUD (Por) 2.2 3 2 0 3 3 37 11

8 UA (Bel) 2.0 3 2 0 2 3 84 14

9 TUD (Fra) 2.0 3 2 0 2 3 81 19

10 MCQ (Aus) 2.0 2 2 0 4 2 77 15

11* UT UT 2.0 3 1 1 3 2 70 14

12* TUD TUD 2.0 3 3 0 2 2 70 13

13 VIT (Fin) 2.0 4 1 1 0 4 70 22

14 TUD TUD 1.8 3 3 0 3 0 97 14

15* TUD TUD 1.8 3 2 0 2 2 72 22

16 TUD RUG 1.8 3 2 0 3 1 38 20

17 TUD TUD 1.8 3 2 0 3 1 36 19

18 TUD (Spa) 1.8 3 2 0 2 2 58 19

19* TUD TUD 1.8 3 2 0 2 2 66 19

20 TUD UU 1.6 2 1 0 3 2 88 15

21* TUD TUD 1.6 3 2 0 2 1 70 18

22 TUD (Ger) 1.4 3 2 0 2 0 97 7

23 TUD TUD 1.4 3 2 0 1 1 69 13

24 UA (Bel) 1.2 2 2 0 1 1 102 5

Table B.1 Characterization of the subjects and their performances, ordered by av-
erage expertise. Students are denoted by asterisks.
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B.3 Handouts
Introduction

Thank you for your willingness to participate in this experiment! Empirical
studies are not very common in the field of software understanding because
this field has a strong cognitive aspect that is difficult to measure. This makes
controlled experiments (such as the one in which you are now participating)
all the more valuable. I hope you will find it an interesting experience.

The context of this experiment concerns a (fictive) developer who is asked
to perform certain maintenance tasks on a system, but who is unfamiliar with
its implementation. The focus of the experiment is not on performing these
maintenance tasks, but rather on gaining the necessary knowledge and measur-
ing the effort that is involved therein.

The case study in this experiment is Checkstyle. From the Checkstyle site:

Checkstyle is a development tool to help programmers write Java code that adheres
to a coding standard. It automates the process of checking Java code to spare
humans of this boring (but important) task. This makes it ideal for projects that
want to enforce a coding standard.

In short, Checkstyle takes as inputs a Java source file, and an XML configu-
ration file that specifies the coding standards that must be enforced, i.e., the
checks that are to be used.

Most people are not familiar with Checkstyle’s implementation. However,
IDEs (such as Eclipse) and effective tools may be able to assist in understand-
ing Checkstyle’s inner workings, and most of the source code is fairly docu-
mented.

You are given 90 minutes for four comprehension tasks, which have been
structured according to their maintenance contexts. Each task involves several
related subtasks, some of which designed to help you on your way. The task
ordering implies a top-down approach: we start by building a general knowl-
edge of the system and then drill down to a more detailed understanding. For
each of the subtasks, you are asked to write down the following items:

• Your answer.

• A motivation of your answer. In most cases it suffices to briefly describe
how your answer was obtained.

• The time at which you started this subtask (important!).

Furthermore, you are asked (1) to not consult any other participants, (2) to
perform the tasks in the order specified, and (3) to not return to earlier tasks
because it affects the timing. Finally, while there is an online documentation
available for Checkstyle, you are kindly requested not to use this, because we
want to simulate a real life case in which up-to-date documentation is often
lacking. Using the Internet is allowed only for Java-related resources (e.g.,
APIs).
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We start off by describing the tools at your disposal. You are then presented
with the comprehension tasks, at which point your 90 minutes start ticking.
The experiment is concluded with a short questionnaire.

Using the Eclipse IDE

Eclipse is the IDE that you will be using to perform the tasks. You are expected
to have a basic knowledge of Eclipse, but a quick “reference chart” is provided
nonetheless. While this chart only shows the basic features, of course you
are encouraged to use more advanced functionalities if you are familiar with
them.

Your Eclipse setup contains a project with Checkstyle’s source (and links
to its external libraries). Several aspects are worth mentioning:

• Checkstyle’s testsuite is not available to you. This reflects real life cases
in which the testsuite is not complete, out of date, or non-existent at all.

• The experiment will not be concentrating on Checkstyle’s GUI.

• You may compile and run the application if so desired.

Finally, you have at your disposal an input source file, Simple.java; and two
different configuration XML-files, many checks.xml and several checks.xml. The
resulting outputs of running Checkstyle with these inputs are given on the
next few pages.

Should you have trouble using Eclipse, please refer to the reference chart,
or consult me (Bas).

Using Extravis (optional handout)

In addition to the Eclipse IDE, you will also have access to Extravis during
the experiment. Extravis is a dynamic analysis tool, which means it provides
information on the system’s runtime behavior. In this experiment, this is done
through execution traces, which were obtained by instrumenting Checkstyle and
then having it run a certain execution scenario. Such traces contain:

1. A chronological ordering of all method and constructor calls that occurred
during execution. Typically this amounts to thousands or even millions
of events for each scenario.

2. The actual class instances (objects) on which these methods and construc-
tors were invoked. This means that (e.g.) if class A inherits method a()
from some superclass B, the trace will show the receiver of the call A.a()
to be A, not B.

Extravis visualizes these execution traces and the program’s package de-
composition, and provides means to navigate this information.

A quick reference chart of Extravis has been provided as part of the hand-
outs. In addition to depicting all method and constructor calls that occurred
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in the scenario, Extravis also shows the actual parameters and actual return values
for those calls. The developer is thus provided with a rich and accurate source
of information with respect to the scenario at hand.

You have two execution traces at your disposal: simple-many checks and
simple-several checks. The former trace is the result of Checkstyle’s execu-
tion with Simple.java and many checks.xml as its parameters; the latter trace
was also obtained using Simple.java, but with several checks.xml as the con-
figuration file.

Finally, some aspects that are worth noting:

• Only Checkstyle’s core functionalities were instrumented, which means
that the resulting traces do not contain calls to, or from, external libraries
or the JDK.

• Extravis provides two linked views: changes made in the one view are
propagated toward the other.

• The leftmost view concentrates on visualizing the target system’s struc-
ture and its (runtime!) interrelationships, whereas the rightmost view
focuses more on navigating the trace.

In other words, Extravis answers questions related to a program’s actual
execution, and aims to provide insight in the interactions that take place.

You are free to use Extravis during your tasks whenever you see fit. Should
you have trouble using the tool, please refer to the reference chart, or consult
me (Bas).

Appendix B. Controlled Experiment: Subject Characterization & Handouts 163



Checkstyle outputs

bas@laptop:˜/checkstyle-4.4$ java -jar checkstyle-all-4.4.jar

-c several_checks.xml Simple.java

Starting audit...

Simple.java:11: Line has trailing spaces.

Simple.java:17:1: Line contains a tab character.

Simple.java:18:1: Line contains a tab character.

Simple.java:19:1: Line contains a tab character.

Simple.java:20:1: Line contains a tab character.

Simple.java:21:1: Line contains a tab character.

Simple.java:23:1: Line contains a tab character.

Simple.java:24:1: Line contains a tab character.

Simple.java:25:1: Line contains a tab character.

Simple.java:26:1: Line contains a tab character.

Simple.java:27:1: Line contains a tab character.

Simple.java:28:1: Line contains a tab character.

Simple.java:29: Line has trailing spaces.

Simple.java:29:1: Line contains a tab character.

Simple.java:30:1: Line contains a tab character.

Simple.java:31:1: Line contains a tab character.

Simple.java:32:1: Line contains a tab character.

Simple.java:33:1: Line contains a tab character.

Simple.java:34:1: Line contains a tab character.

Simple.java:35:1: Line contains a tab character.

Simple.java:36:1: Line contains a tab character.

Simple.java:37:1: Line contains a tab character.

Simple.java:38:1: Line contains a tab character.

Simple.java:40:1: Line contains a tab character.

Simple.java:40:9: Missing a Javadoc comment.

Simple.java:41:1: Line contains a tab character.

Simple.java:42:1: Line contains a tab character.

Simple.java:43:1: Line contains a tab character.

Simple.java:44:1: Line contains a tab character.

Simple.java:45:1: Line contains a tab character.

Simple.java:46:1: Line contains a tab character.

Simple.java:47:1: Line contains a tab character.

Audit done.

bas@laptop:˜/checkstyle-4.4$ java -jar checkstyle-all-4.4.jar

-c many_checks.xml Simple.java

Starting audit...

/home/bas/checkstyle-4.4/package.html:0: Missing package documentation file.

Simple.java:11: Line has trailing spaces.

Simple.java:17:1: Line contains a tab character.

Simple.java:17:9: Missing a Javadoc comment.

Simple.java:18:1: Line contains a tab character.

Simple.java:18:9: Missing a Javadoc comment.

Simple.java:19:1: Line contains a tab character.

Simple.java:19:9: Missing a Javadoc comment.

Simple.java:19:23: ’<’ is not preceded with whitespace.

Simple.java:19:24: ’<’ is not followed by whitespace.

Simple.java:19:31: ’>’ is not preceded with whitespace.

Simple.java:20:1: Line contains a tab character.

Simple.java:20:9: Missing a Javadoc comment.

Simple.java:21:1: Line contains a tab character.

Simple.java:21:9: Missing a Javadoc comment.

Simple.java:23:1: Line contains a tab character.

Simple.java:24:1: Line contains a tab character.

Simple.java:25:1: Line contains a tab character.
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Simple.java:26:1: Line contains a tab character.

Simple.java:27:1: Line contains a tab character.

Simple.java:28:1: Line contains a tab character.

Simple.java:29: Line has trailing spaces.

Simple.java:29:1: Line contains a tab character.

Simple.java:30:1: Line contains a tab character.

Simple.java:31:1: Line contains a tab character.

Simple.java:32:1: Line contains a tab character.

Simple.java:33:1: Line contains a tab character.

Simple.java:34:1: Line contains a tab character.

Simple.java:34:21: Parameter map should be final.

Simple.java:35:1: Line contains a tab character.

Simple.java:36:1: Line contains a tab character.

Simple.java:37:1: Line contains a tab character.

Simple.java:38:1: Line contains a tab character.

Simple.java:40:1: Line contains a tab character.

Simple.java:40:9: Method ’initialize’ is not designed for extension - needs

to be abstract, final or empty.

Simple.java:40:9: Missing a Javadoc comment.

Simple.java:41:1: Line contains a tab character.

Simple.java:41:38: ’<’ is not preceded with whitespace.

Simple.java:41:39: ’<’ is not followed by whitespace.

Simple.java:41:46: ’>’ is not preceded with whitespace.

Simple.java:41:47: ’>’ is not followed by whitespace.

Simple.java:42:1: Line contains a tab character.

Simple.java:43:1: Line contains a tab character.

Simple.java:44:1: Line contains a tab character.

Simple.java:45:1: Line contains a tab character.

Simple.java:46:1: Line contains a tab character.

Simple.java:47:1: Line contains a tab character.

Audit done.

Tasks

1. Gaining a general understanding

The first thing the developer might desire is a first impression of how Check-
style works, especially in case domain knowledge is lacking.

• Task 1. [ current time: . . : . . ]
Having glanced through the available information for several minutes,
which do you think are the main stages in a typical (non-GUI) Check-
style scenario? Formulate your answer from a high-level perspective: re-
frain from using identifier names and stick to a maximum of six main
stages.

2. Identifying refactoring opportunities

In certain cases (not necessarily Checkstyle) it is desirable to modify the pro-
gram’s package hierarchy. Examples include the movement of tightly coupled
classes to the same package, and the movement of classes with high fan-in and
(almost) no fan-out to a utility package.
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The fan-in of a class is defined as the number of distinct methods/construc-
tors directed toward that class, not counting self-calls. Its fan-out is defined as
the number of distinct methods/constructors directed toward other classes.

• Task 2.1. [ current time: . . : . . ]
Name three classes in Checkstyle that have a high fan-in and (almost)
no fan-out.

Assume that a tight coupling is characterized by a relatively large number of
different method calls between two structural entities (e.g., classes or packages).

• Task 2.2. [ current time: . . : . . ]
Name a class in the default package (i.e., classes not in any package)
that could be a candidate for movement to the api package because of
its tight coupling with classes therein.

3. Understanding the checking process

Checkstyle’s purpose is the application of checks on its input source file. These
checks each have their own class and are located in the checks-package. They
can be written by a developer and contributed to the Checkstyle package: For
example, one could write a check to impose a limit on the number of methods
in a class. If our developer wants to write a new check, one way to gain the
necessary knowledge is to study existing checks (i.e., learning by example).

Let’s assume that we want to know how
checks.whitespace.TabCharacterCheck interacts with the rest of the program,
and that this check is part of the current configuration (and will therefore be
applied).

• Task 3.1. [ current time: . . : . . ]
In general terms, describe the life cycle of this check during execution:
when is it created, what does it do and on whose command, and how
does it end up?
Do not go into details yet, and use no more than five sentences.

The TreeWalker class plays an important role in Checkstyle’s inner workings
and interacts extensively with the checks. We now take a closer look at the
protocol between TreeWalker and the various checks.

• Task 3.2. [ current time: . . : . . ]
List the identifiers of all method/constructor calls that typically oc-
cur between TreeWalker and a checks.whitespace.TabCharacterCheck in-
stance, and the order in which they are called. Make sure you also take
inherited methods/constructors into account.

• Task 3.3. [ current time: . . : . . ]
In comparison to the calls listed in Task 3.2., which additional calls occur
between TreeWalker and checks.coding.IllegalInstantiationCheck? Can
you think of a reason for the difference?
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4. Understanding the violation reporting process

Once the developer has written a new check, he/she would like to know if
it works, i.e., whether it reports warnings when appropriate. Consider the
situation in which some check has encountered a violation.

• Task 4.1. [ current time: . . : . . ]
How is the check’s warning handled, i.e., where/how does it originate,
how is it internally represented, and how is it ultimately communicated
to the user?

Verifying whether a check actually found violations is not trivial: most of
the warnings that are reported in Checkstyle’s output (provided a few pages
back) cannot be traced back directly to the checks from which those warnings
originate. Some reported warnings may even be quite confusing.

• Task 4.2. [ current time: . . : . . ]
Given Simple.java as the input source and many checks.xml as the con-
figuration, does
checks.whitespace.WhitespaceAfterCheck report warnings? Specify how
your answer was obtained.

Debriefing Questionnaire [ current time: . . : . . ]

The experiment is concluded with a short questionnaire in which we ask for
your opinions on several experimental aspects. You may fill in your answers
on the handouts themselves.

• On a scale of 1 to 5, how did you feel about the time pressure?

1. too much time pressure: could not cope with it, regardless of task
difficulty

2. fair amount of time pressure: could certainly have done better with
more time

3. not so much time pressure: hurried a bit, but it was OK

4. very little time pressure: felt quite comfortable

5. no time pressure at all

• Regardless of the time given, how difficult would you rate the tasks?
Please mark the appropriate difficulty for each of the tasks:
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impossible difficult intermediate simple trivial
Task 1
Task 2.1
Task 2.2
Task 3.1
Task 3.2
Task 3.3
Task 4.1
Task 4.2

• Which particular Eclipse features did you frequently use?

– Package explorer

– Open declaration

– Open type hierarchy

– Open call hierarchy

– Text search

– other:
...
...

• Do you feel that additional Eclipse plugins (that you know of) could
have helped during the experiment? If so, please name those plugins
and briefly explain how they would have assisted you.
...
...

• “Dynamic analysis” is the study of a program through its runtime be-
havior. Are you familiar with dynamic analysis and its benefits?

1. Never heard of it

2. I know what it is, more or less

3. I’m familiar with it and could name one or two benefits

4. I know it quite well and performed it once or twice

5. I’ve used it on multiple occasions

And finally, several questions on your use of Extravis:

• During which tasks did you use Extravis, and in which of these tasks
did you actually find it helpful? Please fill in the following table:
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used it used it successfully
Task 1
Task 2.1
Task 2.2
Task 3.1
Task 3.2
Task 3.3
Task 4.1
Task 4.2

• Can you give a rough estimate of the percentage of time that you spent
on using Extravis?
...

• Which particular Extravis features did you use more than once? Please
mark those features on your reference chart.

• Which (types of) Extravis features did you feel were missing?

– Compare multiple traces side-by-side

– Interactiveness in terms of the input (e.g., support for creating and
visualizing own traces)

– More readable / intuitive views of detailed interactions

– Direct link from actual calls to their source code locations

– Search capabilities

– other:
...
...

• On a scale of 1 to 3, how did Extravis perform in terms of speed and
responsiveness?

1. Quite sluggishly: I got impatient very often

2. Pretty OK: occasionally had to wait for information

3. Very quickly: the information was shown instantly

• Did you experience a certain “resistance” to using Extravis and, instead,
stuck to Eclipse as much as possible? If so, how would you explain this
tendency? (multiple answers possible)

– Time pressure
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– I’m so comfortable or skilled with Eclipse that I prefer to use Eclipse
whenever I can

– I felt that the tasks simply did not require more than Eclipse /
source code

– I’m not sufficiently familiar with Extravis (tutorial was too short)

– I’m not (sufficiently) familiar with the benefits of using runtime
information in general

– Extravis is standalone rather than embedded in Eclipse, and I’m
not comfortable with context switching

– other:
...
...

B.4 Answer model
Task 1
The following stages largely capture a typical Checkstyle scenario, and repre-
sent the minimum for this question. We can be somewhat flexible since the
task deals from a very high level perspective.

Assign one point for each stage that is contained by the given answer. Ad-
ditional stages are permitted but do not yield additional points. Motivations
are not necessary if the answer is meaningfully-named or self-explanatory.

• Initialization: command line parsing, or config reading, or environment
setup (creation of checkers, listeners etc.)

• Source parsing: source input file is read/parsed, or AST construction

• Checking: input file is checked, or AST traversal

• Error reporting/Termination/results logging: conveyance of warnings,
and teardown of application

Task 2.1
The second list below is alphabetically ordered and shows all classes of which
the fanin is higher than the fanout. (Classes not in this list are obviously
incorrect.) We were looking for classes with a (relatively) high fanin and a
low fanout, so award points in case of appropriate proportions between the
two. Examples include fanin 5 + fanout 0, fanin 10 + fanout 1, fanin 15 +
fanout 2, etc. (flexible scale).

Each correct class receives one point; award four points in case all classes
have appropriate fanins and fanouts of 0 or 1. In case no plausible motivation
is given, award no points.
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Task 2.2
The first list below shows all classes in the default package, and their degrees
of coupling with the api package. The coupling values in this list were stati-
cally derived; it is defined as the sum of the no. of distinct calls from, and the
no. of calls to, classes in the api package.

TreeWalker and Checker receive 4 points because in the context of the ques-
tion (i.e., our definition of ”coupling”) they have the strongest api-coupling
by far. The next four classes are awarded 2 points; all others receive none.

For certain alternative classes it can be argued that they have a strong cou-
pling with the api because they communicate exclusively with the api (and
with external libraries). While this is reasonable, it is not according to the
given definition of coupling, and therefore receives only 2 points. Award one
point in case one went looking in the api-package.

Task 3.1
The following elements largely capture the lifecycle of a TabCharacterCheck
instance during the specified execution scenario. Again we can be a bit flexible
due to the high-level perspective, but the elements below must be mentioned
because they answer the four implicit sub-questions (where does it originate,
what does it do, on whose command, how does it end up). Assign one point
for each element that is contained in the given answer.

• The check is created/configured during config reading / init. / envi-
ronment setup / in setupChild() / by ModuleFactory / by PackageOb-
jectFactory.

• The check scans (the file contents of) the input source for tab character
occurrences (which may lead to the creation of warning messages).

• The above happens at the command of TreeWalker (as it commences
processing the input source). (mentioning beginTree is sufficient)

• The check is explicitly destroyed (by TreeWalker).

Task 3.2
Listed below are the eight calls that occur between TreeWalker and TabCharac-
terCheck during this specific scenario. Assign one point for every two correct
calls (in the right order). Subtract one point for every two incorrect calls (and
in case of one single incorrect call).

Note that in fact there is one more call, destroy(), but a bug in Extravis pre-
vents this call from being shown in the MSV, even at 100visibility. Therefore,
the reviewer should not take this call into consideration in either of the two
subject groups.

Note that if the answer specifies nested calls within correct calls, they may
be ignored by the reviewer as long as it is clear that they are nested.
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contextualize
configure
init
getTokenNames
getDefaultTokens
setFileContents
beginTree
finishTree
destroy (not considered due to Extravis bug)

Task 3.3

visitToken
leaveToken

One correct: 2 points. Both correct: another point.
Subtract one point for each incorrect call. Also allow implementation-based
reasoning.
Award 1 ”bonus” point in case the motivation specifies that IllegalInstan-
tionCheck actually visits/checks for tokens (in the AST), whereas TabCharac-
terCheck does not (because it processes the file contents directly) – regardless
of (in)correctness of the abovementioned identifiers.

Task 4.1
The following elements largely capture the essence of the error handling pro-
cess. Assign one point for each element that is contained in the given answer.
Note that mentioning the check’s ”mMessages”-field implies knowledge of
both 2. and 3., and therefore yields points for both of these elements.

• A violation results in a call to log(), or in a read of message.properties
for a human-readable format.

• The warning is internally stored/represented as an api.LocalizedMessage.

• The LocalizedMessage is added to the api.LocalizedMessages field (called
”mMessages”) of its Checker (in this case, TreeWalker) – note that there
are multiple such repositories, not a global one!

• At the *end* of execution, the messages are relayed to the listeners
(which each convert the messages to different output types – human
readable format / xml / etc.). Mentioning fireErrors() and its effect is
also sufficient.

Task 4.2
The answer is no, which yields two points. The remaining points depend on
the soundness of the motivation. The following are correct examples:

172 B.4. Answer model



• Look for communication between the check and api.LocalizedMessage(s)
in an execution trace.

• or: look for communication between the check and api.DetailAST.

• or: investigate the actual effect of visitToken().

• or: find out what kind of human-readable message should result from
violations in this check, and match this message with Checkstyle’s (ex-
ample) output. The true conclusion should be that there is no match:
none of the warnings in this scenario’s output relate to the check at
hand.

• or: run and debug the application (e.g., using print statements, break-
points, etc.).

If the answer is solely based on the interpretation of the ws.notFollowed
file, the answer is partly correct because this trail will run cold – award two
points in case the conclusion was ”no”, one point in case of a ”yes”.

Only two points are awarded if the reasoning is based on an understanding
of what the check is looking for, and on the fact that the input source file con-
tains no occurrences of whitespaces after tokens. No full score here because
through this reasoning it cannot be determined that the check actually works.

Coupling measurements

Acquired through an automated analysis of the static call graph.

43 TreeWalker
35 Checker
------------------------
8 XMLLogger
6 CheckStyleTask
6 DefaultLogger
6 DefaultConfiguration
------------------------
4 ConfigurationLoader$InternalLoader
3 PackageNamesLoader
2 ConfigurationLoader
2 DefaultContext
2 Main
1 PackageObjectFactory
1 PropertyCacheFile

Fanin/Fanout measurements

This list is left to the technical report (Cornelissen et al., 2009c).
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Summary

Evaluating Dynamic Analysis Techniques for Program Comprehension
Bas Cornelissen

Introduction
Software evolution has become an increasingly important aspect of the soft-
ware development process. As software systems grow larger and their de-
velopment becomes more expensive, they are constantly modified rather than
rebuilt from scratch. As a result, a great deal of resources is spent on per-
forming software maintenance. An important prerequisite for maintenance is
a sufficient level of understanding of the software at hand. Unfortunately,
this knowledge is not always readily available because documentation is of-
ten lacking or outdated. Thus, the necessary knowledge must be gathered
through the analysis of the software itself, also known known as program com-
prehension. This activity is the main focus of this dissertation.

Program comprehension typically comprises the study of static artifacts
such as source code, also known as static analysis. However, as dealing with
source code involves a mental mapping between a system’s code and its func-
tionality, it is often difficult to interpret code directly because of its size or
complexity, and the maintainer may have difficulties in coping with the re-
sulting cognitive overload. As a consequence, program comprehension is a
rather time-consuming activity, and may take up to 60% of the time spent on
software maintenance tasks.

Since program comprehension is so expensive, the development of tech-
niques and tools that support this activity can significantly increase the over-
all efficiency of software development. While most of these techniques tradi-
tionally focus on static analysis, the use of dynamic analysis has been relatively
underemphasized. Dynamic analysis studies a software system’s actual be-
havior rather than its source code, and has the important advantage that it
provides rather precise information on a system’s runtime functionality. This
type of analysis is central to this dissertation.

Challenges
The use of dynamic analysis for program comprehension poses several chal-
lenges. In this dissertation, we identify and address four such issues.

Existing literature. In the past decades, the field of program comprehen-
sion through dynamic analysis has witnessed the development of numerous
techniques every year, which has led to a large research body with multiple
subfields. The absence of a broad overview of the state of the art has made it in-
creasingly difficult for researchers to put new techniques into perspective. An



inventory and characterization of the research efforts to date would enable the
comparison of existing work, and would assist the community in such tasks
as finding related work and identifying new research opportunities.

Traditional visualization. Visualization is a popular means to convey in-
formation to the user. Among the traditional visualization techniques in our
context are UML sequence diagrams, which have been proposed in the dy-
namic analysis literature on several occasions. Associated with this approach
are three important issues. First, one must come up with appropriate exe-
cution scenarios for dynamic analysis data to be useful. Second, considering
UML sequence diagrams are prone to scalability problems, the large amounts
of data (typically running in the thousands of events) often cannot be visual-
ized efficiently. Third, for lack of thorough empirical studies in the literature,
there exists little convincing evidence of the applicability of such diagrams
during actual program comprehension tasks. For these reasons, we argue
that the use of UML sequence diagrams in this context should (1) involve
efficient abstraction techniques, and (2) be rigorously evaluated.

Advanced visualization. In contrast to traditional visualizations, the litera-
ture also offers a number of advanced visualization techniques. Most of these
visualizations are quite scalable, which renders them useful for dynamic anal-
ysis. On the other hand, the intended target audience may not be so easily
accustomed to advanced visualizations as it is to traditional ones. Moreover,
particularly on the subject of execution trace visualization, the existing work
mostly provides anecdotal evidence of their usefulness, rather than evalua-
tions that involve human subjects and actual comprehension tasks. Therefore,
the focus of a novel visualization technique should not be merely on the de-
velopment of the technique but also on its thorough empirical validation.

Evaluation. Finally, we observe that the evaluation quality of approaches on our
topic could be subject to improvement. In order to raise the bar in this respect,
our own manners of validation must meet certain standards. For example,
we opt for multiple case studies that each involve different software systems
and program comprehension activities. Moreover, if we are to compare our
techniques to existing solutions and if fellow researchers are to compare their
future techniques to ours, we need to introduce methodologies and reusable
experimental designs to facilitate the comparison process.

Results & Implications

Literature survey. In this dissertation, we started off by reporting on a liter-
ature survey on program comprehension and dynamic analysis. The survey
involved 172 articles that were selected from 4,795 articles on this topic and
the references therein. The characterization of this research body resulted in
an overview that is useful as a reference for researchers in the field of pro-
gram comprehension through dynamic analysis, and that helps them identify
related work and new research opportunities in their respective subfields.
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Our study of the results revealed an apparent lack of comparisons and
benchmarks in most subfields, and the fact that very few articles offer pub-
licly available tools, which hinders the use of existing solutions in current
developments and the adoption of such tools in industry. We also expressed
our concerns about the lack of controlled experiments, which we feel are cru-
cial in the field of program comprehension. Finally, we identified four types of
target applications that have been underemphasized in literature, being web
applications, distributed systems, multithreaded applications, and legacy sys-
tems. We stressed the importance of the above aspects, discussed the issues
involved, and offered a series of potential solutions and recommendations.

Sequence diagram reconstruction. Our next step was the design of a frame-
work for the reconstruction of UML sequence diagrams. We used test cases as
execution scenarios, as these effectively decompose a system’s functionality
into tractable parts. The approach was initially implemented in our Sdr tool
and was evaluated on a small subject system involving two concrete mainte-
nance tasks. In close collaboration with an M.Sc. student we then proposed
JRET, a more mature tool implementation featuring several key improvements,
and evaluated it on a medium-scale open source application.

The use of test cases as scenarios and their visualization as sequence dia-
grams proved useful as a starting point for program comprehension. How-
ever, our approach makes extensive use of abstraction techniques to counter
scalability issues, and we opted for a more thorough investigation into the
abstractions used in literature because their effectiveness and applicability in
practice remained unclear.

To enable side-by-side comparisons of the numerous abstraction techniques
offered in literature, we proposed an assessment methodology that distin-
guishes six steps: context, criteria, metrics, test set, application, and interpre-
tation. The use of our framework was demonstrated through an experiment
that involved a test set of seven large traces – three of which were larger
than one million events in size – and the implementation of four different
abstraction techniques from the literature. The use of this framework enables
the proper evaluation of abstraction techniques and provides a deeper under-
standing of the applicability of such techniques in specific contexts.

Extravis. Another manner in which we sought to tackle the scalability issues
associated with dynamic analysis was the design and evaluation of more ad-
vanced visualizations, i.e., techniques not based on traditional visualizations
such as trees and UML. To this end, we employed two novel views in the con-
text of large execution traces. The circular bundle view hierarchically projects
a program’s structural entities on a circle and shows their interrelationships in
a bundled fashion. The massive sequence view provides a navigable overview
of a trace by chronologically visualizing each event as a colored line. The
views are linked and fully interactive, fit on a single screen, and are imple-
mented in a tool called Extravis, which is the result of a collaboration with
visualization experts from Eindhoven University of Technology.

We initially evaluated the tool through a series of three case studies. The
results provided a strong indication as to Extravis’ benefits, the main advan-
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tages being its optimal use of screen real estate and the easy insight into a
program’s structure. However, we did hypothesize that the relationships in
the circular view could be difficult to grasp: indeed, whereas the use of tradi-
tional visualizations such as UML is widespread, more advanced techniques
warrant extensive validations to assess their understandability and usefulness.

For this reason, we conducted a controlled experiment to measure Extravis’
added value to an existing solution, the Eclipse IDE. We designed eight typical
tasks aimed at gaining an understanding of a representative subject system,
and measured how a control group (using the Eclipse IDE) and an experimen-
tal group (using both Eclipse and Extravis) performed in terms of correctness
and time spent. The results showed a statistically significant decrease in time
and increase in correctness for the latter group.

The design and execution of this experiment have demonstrated the po-
tential of trace visualization for program comprehension, and have paved the
way for other researchers to conduct similar experiments.

Emphasis on evaluation quality. The evaluation quality has been an impor-
tant point of interest in our experiments. This objective can be traced back to
each of the core chapters in this dissertation.

Our literature survey concerned a systematic approach to ensure the re-
producibility of the results. The use of explicit article selection criteria and
the derivation of a reusable article characterization framework enables fellow
researchers to replicate our findings and compare existing work. Both of these
tasks involved pilot studies to reduce the risk of author bias.

The reconstruction of UML sequence diagrams was performed using two
novel tools, which we evaluated in case studies. While the subject system
in our initial study is rather small, the second study involved a more repre-
sentative program. Both studies revolved around comprehension tasks that
stem from realistic software maintenance problems. Our second tool was im-
plemented as an Eclipse plugin and is publicly available online for fellow
researchers to download and experiment with.

Our assessment framework for abstraction techniques is fully documented,
and the traces and abstraction technique implementations used in our exam-
ple experiment are publicly available online. This ensures the reproducibility
of our findings, and supports fellow researchers in performing similar assess-
ments of different abstraction techniques.

Extravis was thoroughly evaluated through a series of three extensive case
studies. Each of these studies involved a distinct program comprehension
context and a distinct subject system that is representative in terms of size,
and of which one was industrial. Furthermore, the tool is documented and
available online to enable its involvement in similar experiments.

Finally, our controlled experiment was designed to be reusable. We de-
signed eight comprehension tasks that were based on a framework in the
literature, and have taken several measures to reduce any bias as much as
possible. We provided all the necessary information for the replication our
experiment, which enables similar experiments to be conducted with differ-
ent visualization techniques in the future.
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Samenvatting

Evalueren van Dynamische Analysetechnieken voor Softwarebegrip
Bas Cornelissen

Introductie
Software-evolutie wordt een steeds belangrijker aspect van het softwareont-
wikkelingsproces. Naarmate softwaresystemen groter worden en hun ontwik-
keling duurder wordt, worden zij niet langer telkens opnieuw gebouwd maar
continu aangepast. Als gevolg hiervan wordt veel tijd en geld geı̈nvesteerd in
het uitvoeren van onderhoud. Een belangrijke vereiste voor het plegen van soft-
wareonderhoud is dat er voldoende kennis beschikbaar is van het systeem in
kwestie. Helaas is deze informatie niet altijd voorhanden, bijvoorbeeld door-
dat documentatie vaak ontbreekt of is verouderd. De benodigde kennis zal
in zulke gevallen moeten worden verkregen via een analyse van de softwa-
re, een proces dat bekendstaat softwarebegrip. Dit is het centrale thema van dit
proefschrift.

Softwarebegrip omvat meestal het bestuderen van statische artefacten zoals
broncode, ook wel statische analyse geheten. Bij het interpreteren van broncode
staat het maken van een vertaalslag van broncode naar functionaliteit centraal.
Dit is een lastige taak: hoe omvangrijker en complexer een softwaresysteem
is, des te moeizamer wordt het om deze vertaalslag te maken doordat de
onderhoudsmonteur meer informatie moet verwerken dan mogelijk is. Om
deze reden is softwarebegrip vaak een behoorlijk tijdrovende activiteit die tot
60% van de onderhoudsinspanningen kan vertegenwoordigen.

De hoge prijs van softwarebegrip betekent dat de ontwikkeling van on-
dersteunende technieken en gereedschappen het softwareontwikkelingspro-
ces als geheel aanzienlijk kunnen versnellen. Hierbij wordt traditioneel ge-
bruikgemaakt van statische analyse. Relatief onderbelicht is dynamische analy-
se, het bestuderen van het daadwerkelijke gedrag van een systeem in plaats
van zijn broncode. Dynamische analyse heeft als belangrijk voordeel dat het
zeer nauwkeurige informatie verschaft over functionaliteiten terwijl zij wor-
den uitgevoerd. Het is deze soort analyse waarop we ons in dit proefschrift
concentreren.

Uitdagingen

Het gebruik van dynamische analyse voor softwarebegrip brengt een aantal
uitdagingen met zich mee. In dit proefschrift identificeren en adresseren we
vier belangrijke aandachtspunten.
Bestaande literatuur. In de laatste jaren heeft het onderzoek naar software-
begrip via dynamische analyse een sterke groei doorgemaakt. Dit heeft geleid



tot een grote hoeveelheid literatuur waarin meerdere deelgebieden zijn te on-
derscheiden. Het ontbreken van een breed overzicht van de huidige staat van
de wetenschap maakt het steeds moeilijker voor onderzoekers om nieuwe tech-
nieken in perspectief te plaatsen. Een inventarisatie en karakterisering van
alle inspanningen tot nu toe zou onderzoekers in staat stellen om vergelijkin-
gen te maken met bestaande oplossingen, en zou de onderzoeksgemeenschap
ondersteunen bij zaken als het vinden van gerelateerde werken en het identi-
ficeren van nieuwe kansen.

Traditionele visualisatie. Visualisatie is een populaire manier om informatie
over te dragen naar de gebruiker. Een van de traditionele oplossingen in dit
verband zijn UML sequence diagrammen. Hoewel deze meermaals zijn toe-
gepast in dynamische analysecontexten, zijn er drie belangrijke problemen.
Ten eerste moeten er geschikte uitvoeringsscenario’s worden gevonden om de
dynamisch verkregen informatie nuttig te kunnen maken. Ten tweede wordt
dynamische analyse veelal in verband gebracht met (zeer) grote hoeveelheden
informatie, wat de visualisatiestap in sterke mate bemoeilijkt, zeker bij UML
sequence diagrammen omdat deze toch al gevoelig zijn voor schaalbaarheids-
problemen. Ten derde ontbreekt er uitvoerig empirisch bewijsmateriaal voor
de bruikbaarheid van dergelijke diagrammen (verkregen via dynamische ana-
lyse) tijdens typische softwareonderhoudstaken. Om deze redenen zou het
gebruik van dynamisch verkregen UML sequence diagrammen gepaard moe-
ten gaan met effectieve abstractietechnieken enerzijds, en rigoureuze evalua-
ties anderzijds.

Geavanceerde visualisatie. Naast traditionele visualisaties biedt de litera-
tuur ook verscheidene geavanceerde visualisatietechnieken. Het merendeel hier-
van is redelijk schaalbaar, wat hen in principe geschikt gemaakt voor dyna-
mische analyse. Aan de andere kant gaan geavanceerde visualisaties gepaard
met een zekere leercurve omdat het beoogde publiek er nog geen ervaring
mee heeft. Bovendien vinden we in de literatuur voornamelijk indirect be-
wijsmateriaal van hun bruikbaarheid, en worden er zelden proefpersonen en
echte softwareonderhoudstaken bij de evaluatie betrokken, vooral bij de visu-
alisatie van executie-traces (een soort logboeken van het daadwerkelijke gedrag
van een systeem). Het is dus zaak dat bij het bedenken van nieuwe typen
visualisaties de focus niet alleen ligt bij hun ontwerp maar zeker ook bij hun
uitvoerige empirische validatie.

Evaluatie. Tot slot vormt de evaluatiekwaliteit een belangrijk punt van aan-
dacht in het kader van softwarebegrip via dynamische analyse. Om in dit
opzicht de lat hoger te kunnen leggen zullen onze eigen validatiemethoden
moeten voldoen aan zekere maatstaven. Zo streven wij ernaar om meerdere
case studies uit te voeren waarin meerdere softwaresystemen en onderhouds-
taken de revue passeren. Ook zullen we de mogelijkheid moeten bieden om
onze technieken te vergelijken met bestaande oplossingen en vice versa. Bij
het verwezenlijken van deze ambities is er een behoefte aan herbruikbare ex-
perimentele ontwerpen en methodologieën.
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Resultaten & Implicaties

Literatuuronderzoek. De aanvankelijke aandacht in dit proefschrift was
gevestigd op een literatuuronderzoek. Dit onderzoek betrof 172 wetenschap-
pelijke publicaties die werden geselecteerd uit 4795 artikels op het gebied
van softwarebegrip via dynamische analyse. Onze karakterisering van deze
literatuur heeft geresulteerd in een beknopt overzicht dat dient als een refe-
rentiekader voor onderzoekers op dit gebied, en dat hen ondersteunt bij het
zoeken naar gerelateerde onderzoeken en bij het vinden van onderzoekskan-
sen in hun respectievelijke deelgebieden.

Het bestuderen van de resultaten heeft een duidelijk tekort aan vergelijkin-
gen en benchmarks blootgelegd. Noemenswaardig was ook dat de literatuur
zelden publiek beschikbare gereedschappen biedt, wat niet alleen het gebruik
van dergelijke oplossingen in een onderzoekscontext bemoeilijkt, maar zeker
ook het uitproberen ervan door het bedrijfsleven. Verder hebben we onze zor-
gen uitgesproken over het beperkte aantal gecontroleerde experimenten, die
juist cruciaal zijn als het aankomt op softwarebegrip. Tot slot hebben we vier
typen applicaties en platformen onderscheiden, t.w. web-applicaties, gedistri-
bueerde systemen, “multithreaded” software, en zogeheten legacy-systemen.
We hebben hun belang in de nabije toekomst beargumenteerd, de belangrijke
knelpunten besproken, en een reeks mogelijke oplossingen en aanbevelingen
gepresenteerd.
Sequence diagram reconstructie. De volgende stap behelsde het ontwerp
van een raamwerk voor het reconstrueren van UML sequence diagrammen.
We hebben testcases gebruikt als executiescenario’s omdat de functionaliteit
van een programma zodoende effectief wordt verdeeld. Deze benadering leid-
de aanvankelijk tot ons Sdr-gereedschap, en werd geëevalueerd op een klein
systeem met twee concrete onderhoudstaken. In samenwerking met een af-
studeerder presenteerden we vervolgens JRET, een volwassener implementatie
met een aantal belangrijke verbeteringen, en haar evaluatie op een applicatie
van een realistische omvang.

Het gebruik van testcases en hun visualisatie als UML sequence diagram-
men bleek bruikbaar als een startpunt voor softwarebegrip. Echter, we maak-
ten hierin veelvuldig gebruik van abstractietechnieken om de schaalbaarheids-
problemen op te lossen, en concludeerden dat een uitvoeriger onderzoek naar
de beschikbare abstracties nodig was omdat hun effectiviteit en toepasbaar-
heid in de praktijk onduidelijk bleef.

Om de vele abstractietechnieken in de literatuur grondig met elkaar te
kunnen vergelijken, presenteerden we een evaluatiemethodologie waaraan
zes stappen ten grondslag liggen: context, criteria, metrieken, testomgeving,
toepassing, en interpretatie. Het gebruik van dit raamwerk werd gedemon-
streerd aan de hand van een experiment met vier bestaande abstractietech-
nieken en een testomgeving met zeven grote traces, waarvan er drie groter
waren een miljoen regels. Dit raamwerk maakt het mogelijk om abstractie-
technieken grondig te evalueren, en verschaft zodoende een beter begrip van
de toepasbaarheid van zulke technieken in concrete contexten.
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Extravis. Een andere manier waarop we de schaalbaarheidsproblemen van
dynamische analyse hebben aangepakt was het ontwerp en de evaluatie van
meer geavanceerde visualisaties, d.i. technieken die niet zijn gebaseerd op tra-
ditionele visualisaties zoals bomen en UML. Hiertoe hebben twee nieuwe aan-
zichten gebruikt voor het visualiseren van traces. De “circular bundle view”
projecteert de hiërarchische structuur van een softwaresysteem op een cirkel
en toont de relaties binnen het systeem via gebundelde lijnen. De “massive
sequence view” verschaft een navigeerbaar overzicht van een trace dat alle ge-
beurtenissen in chronologische volgorde visualiseert als gekleurde lijnen. De
twee aanzichten zijn met elkaar verbonden en zijn geheel interactief; verder
passen ze op één beeldscherm en zijn ze geı̈mplementeerd in een gereedschap
genaamd Extravis. Dit gereedschap is het resultaat van een samenwerking
met visualisatie-experts van de Technische Universiteit Eindhoven.

In eerste instantie hebben we Extravis geëvalueerd door middel van een
drietal case studies. De resultaten duidden op een aantal belangrijke voor-
delen, waaronder het optimale gebruik van het beeldscherm en het geboden
inzicht in programmastructuren. We stelden echter vast dat de relaties in
het cirkelaanzicht mogelijk lastig zijn te begrijpen: immers, waar traditione-
le visualisaties zoals UML algemeen bekend zijn, roepen meer geavanceerde
technieken om uitvoerige validaties om hun begrijpbaarheid en bruikbaarheid
te bepalen.

Om deze reden was onze volgende stap om via een gecontroleerd experiment
de meerwaarde van Extravis te meten ten opzichte van een bestaande op-
lossing, de Eclipse ontwikkelomgeving. Hiertoe hebben we acht kenmerken-
de taken ontworpen die zijn gericht op het begrijpen (en onderhouden) van
een representatief softwaresysteem. Vervolgens maten we hoe een controle-
groep (gebruikmakend van Eclipse) en een experimentele groep (gebruikma-
kend van zowel Eclipse als Extravis) presteerden in termen van correctheid
en tijdsinvestering. De statistisch significante resultaten tonen aan dat de
Extravis-gebruikers aanzienlijk minder tijd nodig hadden en nauwkeurigere
antwoorden gaven.

Het ontwerp en de uitvoering van dit experiment hebben het potentieel
van trace-visualisatie gedemonstreerd en hebben de weg vrijgemaakt voor
soortgelijke experimenten door andere onderzoekers.

Nadruk op evaluatiekwaliteit. De evaluatiekwaliteit was in onze experi-
menten een belangrijk aandachtspunt. Deze doelstelling doorsnijdt elk van
de kernhoofdstukken van dit proefschrift.

Ons literatuuronderzoek behelsde een systematische benadering om de re-
produceerbaarheid van onze resultaten te waarborgen. Het gebruik van ex-
pliciete selectiecriteria en het afleiden van een herbruikbaar raamwerk zor-
gen ervoor dat collega-onderzoekers onze bevindingen kunnen repliceren en
bestaand werk kunnen vergelijken. Om bevooroordeling onzerzijds zoveel
mogelijk te vermijden zijn beide onderdelen getoetst door middel van pilot
studies.

De reconstructie van UML sequence diagrammen werd bewerkstelligd door
middel van twee nieuwe gereedschappen die beide zijn geëvalueerd via ca-
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se studies. Hoewel het proefsysteem in onze aanvankelijke studie tamelijk
klein was, betrof het vervolgexperiment een representatief softwaresysteem.
In beide studies draaide het om begripstaken die voortkomen uit realisti-
sche softwareonderhoudsproblemen. Ons tweede gereedschap is bovendien
geı̈mplementeerd als een Eclipse-uitbreiding en is online beschikbaar gesteld
opdat collega-onderzoekers ermee kunnen experimenteren.

Ons evaluatieraamwerk voor abstractietechnieken is volledig gedocumen-
teerd, en de traces en technieken die we gebruikten in ons voorbeeldexperi-
ment zijn online beschikbaar. Hiermee is de reproduceerbaarheid van onze
bevindingen gewaarborgd, en worden collega-onderzoekers ondersteund in
het uitvoeren van soortgelijke experimenten met andere abstractietechnieken.

Extravis hebben we uitvoerig geëvalueerd via drie uitgebreide case studies.
Elk van deze studies betrof een verschillende softwarebegripscontext en een
eigen softwaresysteem dat qua omvang representatief was, en waarvan er één
industrieel was. Ook is het gereedschap gedocumenteerd en online beschik-
baar gesteld zodat het bij andere experimenten kan worden betrokken.

Het gecontroleerde experiment, tot slot, was ontworpen met het oog op
herbruikbaarheid. We hebben acht taken bedacht die zijn gebaseerd op een
raamwerk uit de literatuur, en hebben maatregelen getroffen om de mate van
bevooroordeling zoveel mogelijk terug te dringen. We hebben alle informatie
beschikbaar gesteld die is vereist voor de replicatie van het experiment, en
hebben de onderzoeksgemeenschap zodoende in staat gesteld om soortgelijke
experimenten uit te voeren met andere visualisatietechnieken.
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N. Trčka. Silent Steps in Transition Sys-
tems and Markov Chains. Faculty of
Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans for
Complex Manufacturing Systems. Faculty
of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in Time.
Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving the
Quality of Modeling: A Series of Empir-
ical Studies about the UML. Faculty of
Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based Con-
figuration, Integration and Delivery. Fac-
ulty of Natural Sciences, Mathe-
matics, and Computer Science,UvA.
2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-
16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty of
Mathematics and Computer Science,
TU/e. 2007-18



M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Under-
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