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A Hybrid Analysis Framework to Evaluate Runtime Behavior of OO Systems

Azin Ashkan and Ladan Tahvildari
Department of Electrical and Computer Engineering
University of Waterloo, Ontario, Canada, N2L 3G1

{aashkan, ltahvild}@uwaterloo.ca

Abstract

Since software is often deployed in safety critical appli-
cations, there is a constant need to know whether a system is
behaving correctly and reliably in its environment. This re-
search work integrates concepts of static and dynamic anal-
yses to verify the behavioral correctness of a Java software
system based on certain safety properties. We also apply
the proposed framework on a sample Java application.

1 Introduction

Software plays an important role in our economy, govern-
ment, and military, and since software is often deployed in
safety critical applications, there is a constant need to know
whether a system is behaving reliably in its environment.
Traditional methods, testing and verification [3], are not
enough to guarantee that the current execution of a running
system is correct. Testing may scale well and check im-
plementation directly, but it is mostly informal and it does
not guarantee completeness. Verification is formal and may
guarantee completeness, but it does not scale well and deals
mostly with design instead of implementation. An approach
of continuously monitoring and checking a running system
with respect to particular specifications can be used to fill
the gap between these two approaches.

Research has followed three directions for runtime mon-
itoring and analysis. The first direction modifies byte code
of a target program (byte code instrumentation). [7] uses a
script-driven automated byte code instrumentation of Java
programs and sends the monitored information to an ob-
server while Java-Mac [9] provides a full automated pro-
cess and modifies the byte code too. The second direction
of approaches instruments source code. [10] uses a speci-
fication logic to define security policies and instruments the
source code. [4] embeds temporal logic assertions to the
source code. DynaMICs [6] specifies constraints as event-
condition-action rules and checks them anytime a change
is made to the values of constraint variables. All these ap-
proaches need to change the source code and therefore they
need a special compiler for every language they use. The

third direction builds a monitoring module and configures it
to generate events at desirable points in the code. The pro-
gram code is not modified during the process. JassDA [2]
is a framework which generates events during the program
runtime and analyzes them using a CSP-like specification.

Our research work follows the third direction. It pro-
poses a framework that integrates concepts of reverse engi-
neering and runtime monitoring. The framework is a syn-
ergy between static and dynamic analyses. It confirms that
a target Java system is running correctly with respect to the
OCL [12] based specification of certain safety properties.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the proposed framework. Some
concepts, which are used in the paper, are defined in Sec-
tion 3. In Section 4, we introduce our approach and, in
Section 5, we present the results obtained by applying the
framework on a Java case study. Finally, Section 6 summa-
rizes the contributions of this work and outlines directions
for further research.

2 The Proposed Framework

As illustrated in Figure 1, the proposed framework is com-
prised of four stages:

• Extracting Architecture : Reverse engineering tech-
niques are used to extract a meta-model of a Java
legacy system by utilizing graph representation of the
system model.

• Seeding Objectives :Safety properties are defined in
OCL (Object Constraint Language) as specifications
for the behavioral analysis. Information required for
filtering runtime events is also obtained in this stage.

• Monitoring Runtime : Runtime behavior of the sys-
tem is monitored according to the output of the previ-
ous stages.

• Analysis : Information obtained from the last stage is
analyzed and verified based on safety properties.

The first and the second stages are static while the third
and the fourth stages are dynamic. The following sections
elaborate further on this process.
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Figure 1. The Framework Architecture

3 Terminology and Concepts

The following definitions and terminologies will help read-
ers understand the concepts in details.

Definition 3.1 An Attributed Graph is a directed graph
AG(V, E) in which:

• V = Vm ∪ Vd that Vm and Vd are calledmain and
datanodes respectively

• E = El ∪ Ea that El andEa are calledlink andat-
tribute edges respectively such that:

? El = {(u, v) | u, v ∈ Vm}
? Ea = {(u, v) | (u ∈ Vm) ∧ (v ∈ Vd)}

Terminology 1 Consider set of all languages in the world
as L and set of all data types of these languages asTL.
An object-oriented software systemS is implemented in a
languagel where l ∈ L. We denote any class type and
class attribute of the languagel with ct and ca classifiers
respectively.Tl is the set of all data types ofl whereTl ⊂
TL. For example,TJava = {int, short, long, double, float,
boolean, byte, char, string}.
Definition 3.2 A set of relations R over the systemS in the
languagel is defined on a setD, whereD = {ct, ca} ∪ Tl.
Consideringti is a data type of languagel whereti ∈ Tl

andi ∈ {1, ..., |Tl|}, R includes:

• depends-on : the dependency relation (such as as-
sociation and aggregation according to the UML 2.0
specification) between any two class entities ofS. It is
denoted asct depends-on ct

• has-attr : the attribute ownership of a class. It is
denoted asct has-attr ca

• has-type : the relation between a data type and an
attribute defined over that type. It is denoted asca

has-type tl
Definition 3.3 A Schema Attributed Abstract Graphof a
languagel, namelySAAG(V, E), is an AG over the set of
data typesTl such that:

• Vm = {ct, ca}
• Vd = Tl

• El = {(ct, v) | [(ct depends-on v) iff (v = ct)] ∨
[(ct has-attr v) iff (v = ca)]}

• Ea = {(ca, t) | (t ∈ Tl) ∧ (ca has-type t)}
Definition 3.4 A Schema Attributed Instance Graphof the
systemS, namelySAIG(V, E), is defined over theSAAG
where S is implemented in the same languagel. The
SAIG(V, E) is equipped with a pair of morphism functions
µV : V SAIG → V SAAG andµE : ESAIG → ESAAG such
that:

• Vm is the set of all classes or the attributes of the
classes

• Vd ⊆ Vd
SAAG

• El ⊆ El
SAAG

• Ea ⊆ Ea
SAAG

• We know that for an AG(V, E),V = Vm ∪ Vd and
E = El ∪ Ea. While anySAIG is considered as
AG, morphism functionsµV and µE can be defined
as follows:

? ∀ v ∈ V :
¦ if v ∈ Vm andv is a class of the systemS,

thenµV (v) = ct wherect ∈ V SAAG

¦ if v ∈ Vm and v is a class attribute of the
systemS, then µV (v) = ca where ca ∈
V SAAG

¦ if v ∈ Vd, thenµV (v) = v whereVd ⊆
Vd

SAAG andv ∈ V SAAG

? ∀ e ∈ E : µE(e) = e whereE ⊆ ESAAG and
e ∈ ESAAG

The SAIG has a lower level of abstraction than the
SAAG and is actually instantiated from it.

Definition 3.5 AnAdjacency Functionof a directed graph
G(V, E), namelyAdjG : V → P (V ), returns the set of out-
edge nodes for each node ofG whereP (V ) or 2V , namely
power set ofV , is the set of all subsets ofV .

Terminology 2 A Safety Propertyconstrains the permitted
actions, and, therefore, the permitted state changes of a sys-
tem [11].
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4 Hybrid Analysis

Runtime monitoring and analysis require certain informa-
tion about a target system. Such information is obtained
through the static analysis in a way that does not modify the
source code. For that reason, we have combined static and
dynamic analyses in our framework described below.

4.1 Static Analysis

Traditional reverse engineering techniques can extract the
structure of the target system while OCL can define some
safety properties as the objectives in behavioral analysis.

4.1.1 Extracting Architecture
We have two goals in this stage: i) modelling the structure
of the system, and ii) describing the model in a graph rep-
resentation that could be extendible for future extensions.
There are two main processes in this stage:

• Parsing : A Java program is parsed to extract abstract
source code models which describe the Java class,
package, and source file. These models are essential
for representing the system at the source code level.
We form them as a UML-compliant model on which
the OCL constraints will be applied later.

• Modeling : This process generates a SAIG (Schema
Attributed Instance Graph) of the system based on the
obtained source code models. This graph is our exten-
sion to attributed graphs [5] as defined in definition 3.4.
We export the SAIG as XML documents that can be
easily queried and traversed in subsequent stages.

4.1.2 Seeding Objectives
The runtime information we receive, can be very large for
the analysis. We must reduce this by narrowing down to the
required information. Our monitoring technique has access
to all objects, their attributes, methods entrances, methods
exits, and so on. We reduce them to those objects and at-
tributes which are involved in OCL-based safety properties.
Therefore, in this stage, we have two main goals: i) iden-
tifying safety properties as OCL rules on the UML model
of the system, and ii) extracting patterns of required events
to reduce and filter generated events during monitoring the
runtime. There are three main processes in this stage:

• Adding OCL constraints to the UML model : Here
we specify the objectives of the behavioral analysis.
These are the safety properties on the behavior of the
system which are described as OCL rules.

• Parsing objectives :The OCL-based safety properties
are parsed in this stage to extract objects and attributes
on which they depend. The extracted information is
represented in a simple dependency graph called the
Objective Dependency Graph (ODG).

• Extracting patterns of required events : Once the
ODG is constructed, a model of required attributes for
dynamic analysis is available. It is still required to
populate this model on the structure of the system to
construct another model called thePattern of Required
Events (PRE)through algorithm 4.1. The PRE helps to
filter generated event traces during monitoring the run-
time and reduce them to what is needed by the analysis
component. As is shown below, the SAIG is traversed
in depth-first order based on the ODG to build the at-
tributes of the PRE. For each common nodev between
the ODG and the SAIG, any out-edge neighbor (v′) of
v in the SAIG and the edge between them (including
v) are copied to the PRE ((v, v′) is added to the PRE).
If v′ is amainnode, it will be also considered for fur-
ther traverse. Otherwise, if it is adata node, there is
no need to do so and theflag2V isitingNode for this
node is set as true since it is only a data node, and has
been already copied to the PRE as the data type ofv.

Algorithm 4.1: Extracting Pattern of Required Events

Input : SAIG , AdjSAIG, andODG of an OO systemS
Output : PRE to monitor the behavior ofS
PRE ← Ø
foreachv ∈ V SAIG do

flag2V isitingNode(v) ← false

while (∃u ∈ Vm
SAIG) and (∼ flag2V isitingNode(u))

do
traverse(u)

Proceduretraverse(v)
begin

flag2V isitingNode(v) ← true
if v ∈ V ODG then

foreachv′ ∈ AdjSAIG(v) do
if ∼ flagV isitingNode(v′) then

if v′ ∈ Vd
SAIG then

PRE ← PRE ∪ {(v, v′)}
flag2V isitingNode(v′) ← true

else
if v′ ∈ V ODG then

PRE ← PRE ∪ {(v, v′)}
traverse(v′)

else
flag2V isitingNode(v′) ← true

end

4.2 Dynamic Analysis
Our monitoring component generates runtime event traces
of a system without the need to do any type of instrumen-
tation. Afterwards, a back-end analysis component carries
out the processing of these traces with respect to the safety
properties. At this time, the monitoring component works
with Java based systems, however the modular architecture
of the framework allows to replace or equip this component
in a way that other OO languages can be supported.
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4.2.1 Monitoring
JPDA [13] is a multi-tiered debugging architecture con-
tained first within Sun Microsystem Java 2 SDK version
1.4.0. It consists of a Java Virtual Machine Debug Inter-
face (JVMDI), and a Java Debug Interface (JDI), as well
as a protocol, Java Debug Wire Protocol (JDWP). We have
used the JDI, which defines and requests information at the
user code level, in order to implement our monitoring com-
ponent. There are two main processes in this stage:

• Handling events : A Java thread has been imple-
mented in this stage which uses the JDI specifications.
It invokes the main class of a Java target program that
has been passed to it. The JDI helps us to generate a
trace of the program’s execution by making access to
dynamic information. For the time being, our frame-
work monitors the values of attributes and the local
variables of primitive types. The reason is that the state
of a program is ultimately contained in the attributes
and variables of primitive types. The PRE from the
previous stage is utilized by this process to filter mon-
itored event traces. Therefore, only those event traces,
which match with the specifications of the PRE, are
passed to the next process.

• Producing states : In this stage, the sequence of gen-
erated traces is formed in a format which is accept-
able by the analysis component. Each event represents
a state of the system at the time that it was extracted
from the running program.

4.2.2 Analysis
There is one process in this stage which uses OCL-based
constraint analysis on the generated events from the previ-
ous stage. We have used an open source tool called USE
(UML-based Specification Environment) developed in Bre-
men University [1]. The main components of this tool are
an animator for simulating UML models and an OCL inter-
preter for constraint checking. System states are snapshots
of a running system. We have adopted some parts of the
source code of USE to be incorporated into our framework
as the analysis component shown in Figure 1. We get the
real data coming from the monitoring component to make
the snapshots of the running system.

During the running time of our framework, the analy-
sis component runs with the specifications (UML model of
the system with the OCL-based safety properties). It starts
with an empty system state where no objects and associa-
tion links exist. The monitoring component provides snap-
shots of system states for the analysis component. OCL
rules are evaluated on those states. If a constraint fails so
that a system state is found to be invalid, it will be reported
as aconflict in the behavior of the system at that time.

5 An Example

This section contains results produced by applying our
framework on a small Java application with 300 lines of
code. It is a trading system borrowed from [8] and extended
based on some requirements that are elaborated further in
this section. Two major classes of the system areStockand
Trader. Some traders instantiated from theTradersubscribe
in a stock instantiated from theStock. The stock has some
items to sell and provides traders with information about
each item, including its price, whenever it is ready for mar-
ket. Each trader decides whether it wants to buy the item or
not, based on its trading policy. If yes, it lets the stock know
about its decision so that nobody else can buy that item.

5.1 Hybrid Analysis

First of all, the SAIG of our Trading application is extracted
and exported as an XML document. The SAIG character-
istics for one of the classes of the system,Trader, are as
follows:

• Vm = {Trader, Stock, name, basePrice, tradePrice,
itemID}

• Vd = {int, long, string}
• El = {depends-on , has-attr }
• Ea = {has-type }
• µV = {(Trader, ct), (Stock, ct), (name, ca),

(basePrice, ca), (tradePrice, ca), (itemID, ca),
(int, int), (long, long), (string, string)}

• µE = {(depends-on , depends-on ), (has-attr ,
has-attr ), (has-type , has-type )}

The objective of our analysis is twofold. First, each
trader should buy an item which is under its base price. Sec-
ond, no two traders can buy the same item. Each objective
is defined as an OCL-based safety property. Both properties
are applied on the context of theTrader class as they only
constraint the behavioral property of this class. We name
themTradingPolicyandTransactionrespectively, as shown
below.

• inv Transaction: Trader.allInstances→ forAll ( t1,
t2: Trader | (t1 <> t2) implies t1.itemID <>
t2.itemID)

• inv TradingPolicy: self.tradePrice<= self.basePrice

The next stage is to parse the two OCL-based properties
to obtain the Objective Dependency Graph (ODG) and ex-
port it as an XML document. In such a document, one or
moreobjectivetags (each corresponding to a safety prop-
erty) give the dependency information of safety properties.
These tags contain one or moreclasstags that contain the
names of classes on which the corresponding properties de-
pend. There is a tag, nameddependencies, after eachclass
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tag. It includes the names of attributes (in one or moreat-
tribute tags) which construct the OCL representation of the
safety property corresponding to the parentobjectivetag.

After applying Algorithm 4.1 on the SAIG and the ODG
of the system, the PRE is obtained and exported as an XML
document. There are one or moreclassNametags in this
document indicating names of the classes whose particu-
lar attributes need to be monitored. Those attributes are
shown byclassAttrtags. Names of these classes and their
attributes come from the ODG to the PRE model. Tracing
through the SAIG, based on the ODG, helps to extract the
package name of each class and the type of each required
attribute. Having names of required classes, their pack-
age names, required attributes of those classes, and types
of those attributes, help the monitoring component to filter
and reduce runtime events.

Safety Property Traders States Conflicts

Transaction
2 174 64
4 223 97

TradingPolicy
2 174 0
4 223 0

Table 1. Results of the Analysis

The monitoring component invokes the main class of the
trading system and generates event traces from the system
based on the PRE. Produced states are given to the analy-
sis component. We have done two experiments for a period
of time that 50 items are sold to the traders, and they only
differ in terms of the the number of traders instantiated in
the system. The results of analysis on the two safety prop-
erties, presented in Table 1, shows the total number of pro-
duced states in each experiment and the number of states
with conflicts for each safety property.

5.2 Discussion on the Obtained Results
According to Table 1, there is no conflict reported for the
TradingPolicysafety property. This is reasonable due to the
way the trading policy was implemented for each trader. It
was a simple selection algorithm based on a threshold price
(calledbasePrice). However, the other property,Transac-
tion, has caused conflicts in some states. This means that,
there are states during the runtime where at least two traders
have bought the same item due to a transactional problem.
The reason for such a transactional problem is the interfer-
ence caused by making access to critical sections mutually
exclusive [11]. As Table 1 summarizes, number of transac-
tion conflicts is greater in the experiment with four traders
than the experiment with two traders. Due to the mutu-
ally exclusive problem, the greater the number of processes
(traders), the greater the number of interferences.

6 Conclusions and Future Work
We proposed a framework utilizing a synergy between static
and dynamic analyses to confirm that a target Java system is

running correctly with respect to the specification of certain
safety properties. Two key features of the proposed frame-
work are: i) the source code of a legacy system is not mod-
ified, and ii) the most parts of the process are automated.
Using the help of reverse engineering techniques through
static analysis (generating the PRE), we have reduced the
large size of runtime information in dynamic analysis. We
narrowed down the information to what is required for the
analysis. At this time, the analysis component detects if
there is any conflict with a safety property. One possible ex-
tension to this research is to report the cause of each conflict
in the analysis component. The trading system is a small ex-
ample, we plan to apply our framework on large Java-based
applications to obtain more concrete results. Another future
direction is to define an evaluation criterion for our moni-
toring technique while the evaluation is done manually at
this time.
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Abstract

One of the key challenges of dynamic analysis ap-
proaches is that they imply a huge volume of data, thus
making it difficult to extract high level views. In this pa-
per we describe a novel approach to trace summarization
by visually representing entire traces as signals in time.
Our technique produces a visualization of the complete
feature space of a system that fits on one page. The fo-
cus of our work is to visually represent individual traces
feature behavior. We assume a one-to-one mapping be-
tween features and traces. We apply the approach on a
case study, and discuss how our visualization supports
the reverse engineer to identify patterns in traces of fea-
tures. Moreover, we show how the visual analysis of our
trace signals reveals that assumed one-to-one mappings
between features and traces may be flawed.

Keywords: reverse engineering, dynamic analysis,
trace summarization, features, visualization.

1. Introduction

Reverse engineering usually implies the abstraction
of high level views that represent different aspects of
a software system. Object-oriented systems are diffi-
cult to understand by browsing the source code due to
language features such as inheritance, dynamic bind-
ing and polymorphism. The behavior of the system can
only be completely determined at runtime. The dynam-
ics of the program in terms of object interactions, as-
sociations and collaborations enhance system compre-
hension [11]. Typically dynamic analysis involves in-
strumenting a program under investigation to record
its runtime events. The context of our dynamic anal-
ysis is feature-centric reverse engineering (i.e. we ex-
ercise a system’s features on an instrumented software
system and capture traces of their runtime behavior).

Interpretation of execution traces is difficult due to
their sheer size, thus filtering or compressing the data

is a crucial step in the construction of high level views.
The main challenge of trace summarization is to reduce
the volume of data without loss of information that
is relevant for a particular analysis goal [9]. Dynamic
analysis together with program visualization may be
used in debugging, evaluating and improving program
performance and in understanding program behavior.

Because of the accuracy and speed with which the
human visual system works, graphic representations
make it possible for large amounts of information to
be displayed in a small space. By making a visual rep-
resentation for the millions of events that make up the
feature traces of an application, quickly discernible re-
lationships and patterns can be obtained.

In this paper, we describe a novel visualization ap-
proach for dynamic analysis that draws an analogy be-
tween execution traces and signals in time. We use the
nesting level to visualize traces as time plots, and pro-
vide a visualization that allows up to two dozen fea-
ture traces to be displayed simultaneously on a single
screen. We show evidence of the visualization’s useful-
ness and how it supports the reverse engineer to in-
terpret and reason about the dynamic information. In
particular, we address the following reverse engineer-
ing questions:

• How do we fit a visualization of many traces on one
screen?

• Can we detect patterns of activity in the traces?

• Do our traces reveal flaws in our definition of fea-
tures?

We use SmallWiki [5] as an example case study. The
same SmallWiki case study has been analyzed in a pre-
vious work by Greevy et al. with a metrics-based ap-
proach [8]. For this paper we traced a total of 18 fea-
ture traces.

Structure of the paper. In Section 2 we draw the analogy
between traces and times series, and visualize trace sig-
nals as time plots. Based on that in Section 3 we intro-
duce a new trace summarization technique. Section 4

Proceedings of the 2nd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'06)

6



Figure 1. An execution trace as signal, showing on the y-axis the nesting level and along the x-axis the se-
quence of execution; summarized with MonotoneSubsequenceSummarizationusinggap size 0.

dives into the details of a case study, while Section 5
discusses the pros and cons of the time series analogy
and the findings of our analysis. In Section 6 we pro-
vide a brief overview of related work in the fields of dy-
namic analysis, visualization and summarization of ex-
ecution traces and time series related work. Finally we
outline our conclusions in Section 7.

2. Traces are Signals in Time

As any chronological sequence of partially ordered
data points qualifies as a signal, we can draw analogy
between traces and signal processing. This done, we
treat traces as if they were signals in time, which in turn
provides us with a rich toolkit of well-established and
ready-to-use algorithms from the field of signal process-
ing and time series.

A key benefit of treating traces as signals is that
we get time plots for free, as shown in Figure 1. Time
plots are well-known from a broad range of applica-
tions, such as from the field of meteorology or stock
markets. They show the change of a signal over time.

A feature trace is a record of the steps a program
takes during the execution of a feature. We adopt the
definition of a feature as a user-triggerable function-
ality of a software system [6]. In the case of object-
oriented applications, a trace records method calls,
whereas for systems implemented in procedural pro-
gramming languages, it records function calls. In this
paper we adopt the object-oriented terminology: we
consider each execution step as a message sent from
the sender to the receiver, whereupon the receiver ex-
ecutes the method selected by the message.

As a formal definition of a trace, we use a chronolog-
ical sequence T of one or more execution events. The
call hierarchy imposes a tree structure on the sequence,
each event en has zero or more child events, with en+1

as its first child, if any. With this definition, the exe-
cution sequence is equivalent to a depth-first traversal
of the call hierarchy. Further, to equip the events with
a partial order, we define the nesting level Level(en) of
an event en as its depth in the call hierarchy.

Typically, an execution event includes information
about execution time. However, in this paper we omit
execution times and retain only the order of events.
As the rise and fall of the signal is preserved even if

all events are spaced equally apart in time, we can ig-
nore execution time of events without loss of general-
ity. The outline of the signal remains the same inde-
pendent of the interval between its data points. There-
fore the summarization technique we present in Sec-
tion 3 retains its results.

3. How to Summarize Traces

In this section we introduce a trace summariza-
tion technique, which is based on the representation of
traces as time signals. We introduce a technique called
Monotone Subsequence Summarization, which makes
use of the fact that a trace signal is composed of mono-
tone subsequences separated by pointwise discontinu-
ities.

The structure of a trace signal as defined in the pre-
vious section is plain simple: beginning at the starting
node the nesting level either

• increases step by step as each event calls its first
child or

• stays constant as subsequent children of the same
event are called, until

• we reach an event without children, in which
case the nesting level suddenly drops as execu-
tion continues with the latest sibling of the pre-
vious events.

The first two cases are monotonally increasing subse-
quences, whereas the latter is a pointwise continuity.

To summarize a trace signal, we cut the signal at its
pointwise discontinuities into monotone subsequences,
and compress each such subsequence into a summa-
rized event chain. Thus the summarization is consider-
ably shorter than the raw trace signal, see Figure 2, and
consists of method-call-chains instead of single method
calls.

The Monotone Subsequence Summarization cuts a
trace signal between each two consecutive events where
the nesting level does not increase

Level(en) 6 Level(en+1)

into pieces c1 . . . cm and these pieces become the
events of the summarized trace. Furthermore, we de-
fine Level(cn) as the minimal nesting level within the
chain cn.
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Figure 2. From top to bottom: 1)The outline of a
trace, rotated by one quadrant such that time is
on the X-axis. 2) We remove method names and
retain the nesting level only, each discontinuity
is marked with a dotted line. 3) Each monotone
subsequence iscompressed intoonemethod-call-
chain, saving a considerable amountof space.

Using this technique, we reduce the length of a trace
signal on average by about 50%. However, we can fur-
ther improve this by taking into account that not each
discontinuity has the same gap size: often the signal
drops only by one or two nesting levels, that is the
execution stays close to the current chain of method
calls, whereas other discontinuities span dozens of nest-
ing levels and thus mark a real break in the execu-
tion. Therefore, we allow small gaps within a chain of
method calls and refine the above expression as

Level(en)− Level(en+1) 6 gap size

Using gap size = 3 it is possible to save up to 90%
of the length of a trace signal. In other words even a
trace with ten thousand events will fit on one screen.

4. Case study: SmallWiki

For our experiments with the techniques described
in the previous sections, we chose SmallWiki [13], an
open-source, fully object-oriented and extensible Wiki
framework. A Wiki is a collaborative web application
that allows users to add content, but also allows any-
one to edit content. Thus SmallWiki provides features
to create, edit and manage hypertext pages on the web.

We identify features of SmalWiki by associating fea-
tures with the links and entry forms of the SmallWiki
pages. We make the assumption that each link or but-
ton on a page triggers a distinct feature. We selected
18 distinct user interactions with the SmallWiki ap-
plication and exercised them on an instrumented sys-
tem to capture 18 distinct execution traces. The fea-
tures we chose represent typical user interactions with
the application such as login, editing a page or search-
ing a web site. Then we apply trace summarization as
described in Section 3, and we represent each feature
trace visually as a time plot on one screen.

4.1. Analyzing the time plots of feature
traces

In the following paragraphs we describe how we an-
alyzed the time plots of the SmallWiki feature traces
and reasoned about these views of feature behavior. As
we have access to the developers of SmallWiki, we are
able to check the findings of our signal processing anal-
ysis techniques with them.

Considering Figure 4, we observe a couple of phe-
nomena exhibited by most or all trace signals of this
feature spaces. We recognize that further research in
the form of more case studies is required before we can
conclude that these phenomena are common to any fea-
ture space, but we assume that these observations hold
true for most trace signals.

All features share a common introduction. We observe
that all features start with the same introduction, see
Figure 3 annotation 1. This introduction corresponds
to the time plot of the resolveURL feature. This makes
sense due to the nature of SmallWiki as a web-based
application. Resolving a given URL is the first step to
be performed in order to execute a user-initiated fea-
ture. This phenomenon is most probably common to
any feature space, as most architecture includes some
top layer which does some preprocessing before execut-
ing the actual feature. This observation reveals that the
traces could be further summarized by removing or fac-
toring out the common introduction part of the trace.

Shared parts may include variations. Although the
same introduction is shared by all trace signals, our
analysis reveals variation points. In Figure 4 we see
that the introduction sequences of the features copy-

child, addfolderchild, addpagechild and removechild include
a variation point, that is they contain a distinct se-
quence which is not present in the other traces, see
Figure 3 annotation 2.

Specific behavior is restricted to small hot-spots. Our
analysis reveals that only a small amount of the over-
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Figure 3. Trace patterns of Figure 4, there is
a shared introduction (1) with slight variations
(2); recurring patterns (3,6) as well as unique se-
quences (4,5,7).

all behavior of a feature is specific to one sole fea-
ture (that is characterized as single-feature[8]). This
might be due to the generic nature of the SmallWiki
application. However we expect to observe this in other
case studies as well, since most applications include se-
quences of common set-up and common tear-down en-
closing the actual functionality of a feature. For exam-
ple, as we exercised user-triggerable actions of Small-
Wiki, all involve exercising common functionality to
handle the http request-response dialog of a web ap-
plication. Recent work of de Pauw et al. in detection
in patterns in traces reveals that the actual number of
distinct patterns in execution traces was small. The re-
sults of their work revealed only 10 distinct patterns in
a 40MB trace [3].

Some features are very similar. Our time series repre-
sentation of feature traces as shown in Figure 4 re-
veals which features are closely related (that is they ex-
hibit common patterns of behavior). The features copy-

child, addfolderchild, addpagechild and removechild are all
invoked from the same page in SmallWiki, see Figure 3
annotation 6. We verified our findings with the devel-
opers and they confirmed that these features actually
exercise the same code.

The features comps, props, stylesheets and edittemplate

reveal similar time plots on Figure 4. Once again the
developers confirmed our findings, as all these features
are concerned with look-and-feel aspects of the system.

Not all features are equally similar. Figure 4 reveals that
the features addFolder, addPage are similar. The feature
editPage appears to be similar to the previous two fea-
tures but then exhibits a strong variation, see Figure 3
annotation 7. The similar parts of these features in-
dicate to the reverse engineer that these features may
be conceptually related. The developers confirmed our

findings.

5. Discussion

In this section we discuss some open issues and lim-
itations of the applied techniques and the signal anal-
ogy itself.

On the choice of the nesting level as Y-axis. To repre-
sent traces as signal in time, we plot the nesting level
of the execution events on the Y-axis. Even though this
yields natural looking time plots, such as those famil-
iar from meteorology or stock markets, we have not
yet investigated if the nesting level is the most useful
property to discriminate the differences between fea-
ture traces. Other information such as method names
or arguments may prove to be more useful or better dis-
criminators.

On the one-to-one mapping between features and traces.
For this analysis, we assume a one-to-one mapping be-
tween feature-traces and features. However, the visu-
alization of the feature space revealed that there is no
a one-to-one mapping between features and traces. We
need to consider a feature, not an execution trace, as
the smallest unit of behavior: traces such as, for exam-
ple the set of copychild, addfolderchild, addpagechild and
removechild seem to implement variations of the same
feature, while traces such as for example editpage seem
to implement multiple features in sequence. It is an
open question, how to best model this graph of rela-
tions between and among features and traces. It is by
performing feature analysis in the first place that we
discover such relationships. Thus, obtaining the best
feature definition for an analysis is based on the analy-
sis itself. This clearly suggests an iterative approach to
feature definition based on the findings of feature anal-
ysis. We plan to investigate this more in the future.

6. Related Work

The basis of our work is directly related to the field
of dynamic analysis [1], in particular in the context of
reverse engineering[14], visualization of runtime infor-
mation [2] and trace summarization techniques [10, 9].

Many approaches to dynamic analysis focus on the
problem of tackling the large volume of data. Many
compression and summarization approaches have been
proposed to support the extraction of high level views
to support system comprehension [8, 9, 14]. This re-
search is directly related to our work.

In the context of reverse engineering and system
comprehension, Zaidman and Demeyer [14] propose an
approach to managing trace volume through a heuris-
tical clustering process based on event execution fre-
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Figure 4.The complete feature spaceof theSmallWiki case studyononepage.

quency. They use a heuristic that divides a trace into
recurring event clusters. They argue that these recur-
ring event clusters represent interesting starting points
for understanding the dynamic behavior of a system.
Their goal is to obtain an architectural insight into
a program using dynamic analysis. The context of our
work is reverse engineering and system comprehension.
We extend this work by exploiting a range of analysis
techniques from the domain of signal processing.

The trace summarization techniques such as that
proposed by Hamou-Lhadj are directly related to our
summarization approach [9]. He describes a trace sum-
marization based on the ideas of text summarization
and proposes that the trace summarization take an en-
tire trace as input and return a summary of the main
executed events as output. Summarization is based on
selection and generalization techniques of text summa-
rization.

A primary contribution of our approach is the abil-
ity to represent entire traces on one screen. Other re-
searchers have addressed this. Jerding et al. propose an
approach to visualizing execution traces as Information
Murals [11]. They define a Execution Mural as a graph-
ical depiction an entire execution trace of the messages
sent during a program’s execution. These murals pro-
vide a global overview of the behavior, They also de-
fine a Pattern Mural which visually represents a sum-
mary of a trace in terms of recurring execution pat-
terns. Both views are interdependent. Our signal views
have the advantage that they reflect the time and se-

quence of dynamic data.
Pattern detection in dynamic behavior is a research

question that has been addressed by many researchers.
Hamou-Lhadj and Lethbridge describe an algorithm
that extracts patterns in execution traces. They present
a set of matching criteria that the use to decide when
two patterns are considered equivalent [10]. De Pauw
et al. apply pattern extraction algorithms to detect re-
curring exection behavior in traces [3]. Recent work
of Nagkpurkar and Krintz [12] describe a technique
whereby they characterize the behavior of programs as
phases. These phases represent repeating patterns in
the trace. They decompose a program into fixed-sized
intervals of events and combine these according to how
similar the intervals are.

7. Conclusions and Future Work

In this paper we drew an analogy between dynamic
analysis and signal processing and we described how to
transform traces into time series. We visualized traces
as time plots, and presented a summarization technique
that reduces the length of the trace signal by 50% to
90%, while preserving information relevant to our re-
search goals.

We implemented our signal visualization in Dy-
naMoose, a dynamic analysis tool integrated with the
Moose reengineering framework [4]. Using time plot vi-
sualization and Monotone Subsequence Summarization
we have been able to fit the complete visualization of
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18 traces containing over 200’000 events on one sin-
gle screen. Furthermore, due to the capacity of the hu-
man visual system in detecting pattern, this visualiza-
tion made possible to discern patterns both within and
between the traces that would other have been obfus-
cated by the vast amount of raw data. We plan to fur-
ther investigate on these promising results, using pat-
tern matching and data mining algorithms.

Analysis of our SmallWiki case study reveals pat-
terns in traces. We recognize that further research in
the form of more case studies is required before we
can conclude that all phenomena observed in this pa-
per are common to any feature space. However we as-
sume that at least some of the observed patterns are
generalizable on most case studies. In our case study,
we observed that all traces share a common introduc-
tion sequence, which however shows slight variations in
some traces. Also we observed that there are large se-
quences shared by multiple traces, and that there are
very few patterns which occur in one sole trace only.

This leads us to our initial question whether our
definition of features is flawed, and in fact, a many-to-
many relationship between traces and features is much
more probable than a simple one-to-one relationship.
For example in our case study, traces such as copychild,
addfolderchild, addpagechild and removechild seem to im-
plement variations of the same feature, while traces
such as for example editpage seem to implement multi-
ple features in sequence. It is an open question, how to
best model this graph of relations between and among
features and traces. We plan to investigate this more
in the future.
Acknowledgments: Wegratefullyacknowledge thefinancial
support of the Swiss National Science Foundation for the
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Abstract

Dynamic analysis of software systems incorporates sev-
eral challenging issues and also requires supporting tools
and techniques to be qualified as a usable and adoptable
approach by the research community. This paper presents
the issues in designing a trace-based dynamic analysis of
software systems and provides a pattern-based dynamic
analysis environment to address these issues. The proposed
approach identifies the implementation of different software
features without any prior knowledge about the implemen-
tation of the subject system. The supporting environment
employs techniques to tackle the large sizes of the execu-
tion traces by using a novel redundant-trace filtering mech-
anism and the application of data mining techniques. The
proposed approach targets specific-features of the software
in order to generate frequent traces as execution patterns
corresponding to the targeted features. Further on, scatter-
ing the patterns over a concept lattice allows us to separate
patterns that correspond to common features from patterns
corresponding to specific features. The proposed environ-
ment is supported by a toolkit called Dynamic Alborz.

KEYWORDS: Dynamic Analysis; Execution Pattern
Mining; Concept Lattice; Feature; Trace; Scenario, Alborz.

1. Introduction

Study of the static properties of the software systems has
been the focus of research in the reverse engineering com-
munity for more than two decades. Techniques such as soft-
ware clustering, pattern-matching, and structure visualiza-
tion have been comprehensively studied. The researchers
now seek novel approaches to push the state of the prac-
tice into more sophisticated techniques that consider dy-
namic properties of software to open additional views for
analyzing and understanding legacy systems [11, 12]. This
rather new research avenue is increasingly important as it
potentially adds behavioral semantics to the static analy-
sis. On the other hand the dynamic analysis as a standalone

technique plays a critical role in program comprehension
through techniques for visualizing the behavior of the sys-
tem [10], clustering the execution traces [20], summarizing
the content of large execution traces [7], interaction among
GUI components [5], feature to code assignment [4, 6], soft-
ware structure evaluation [14], and web mining [19].

In this paper, first we elaborate on some important issues
that are common in most typical dynamic analysis tech-
niques, and then propose an environment for dynamic anal-
ysis that provides solution techniques to address these is-
sues. We also argue that utilizing the discovery nature of
techniques such as: data mining to extract the hidden pat-
terns of execution; concept lattice analysis to visualize the
structure of the relations among execution traces and their
patterns; and string matching algorithms to find redundant
traces; would be of significant aid in better analyzing the
behavior of a software system.

2 Issues in dynamic analysis

The requirements for research in dynamic aspects of
software systems as an activity in software reverse engi-
neering include: devising a proper technique; providing
supporting environment; and defining the procedures
to achieve and evaluate the results. In this section we
elaborate on a number of issues that need to be tackled in
such approaches and then provide sample solutions.

Dealing with large execution traces
A major challenge in the trace-based dynamic analysis ap-
proaches would occur right at the beginning of the analysis,
that is managing very large traces [8, 14, 20]. Execution
of typical task scenarios on a medium size software system
can produce very large traces ranging to thousands or tens
of thousands of function calls which would be an obstacle
in proceeding with the analysis. The effective trace of func-
tion calls for the intended scenario would be cluttered by a
large number of function calls from the operating system,
initialization or termination operations, utilities, repetition
of sequences caused by the loops, and also noise functions

Proceedings of the 2nd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'06)

12



that are interleaved within the main sequence.

We propose three different techniques to deal with large
execution traces. The first technique is based on eliminating
the loop-based repetitions in a trace by representing the ini-
tial sequence of function entry/exit pairs asdynamic call
tree that allows us to perform a top-down program-loop
elimination operation [14]. In a dynamic call tree a function
f can appear at different tree nodes with different IDs pro-
vided that their sub-trees are different. However, the same
functions (as tree-nodes) with identical sub-trees will take
on the same IDs. This allows a top-down analysis for loop
elimination operation by removing tree-nodes with identi-
cal IDs as the children of a tree-node and keep one of them.
The second technique is based on the data mining algorithm
sequential pattern discovery[1] that extracts frequently oc-
curring traces that allows to locate redundant traces such as
program-loops or common software operations (e.g., mouse
movement, user-interface interactions, and utilities) that oc-
cur in different execution traces. Data mining operations by
nature generate a large number of patterns, most of which
are sub-strings of a larger pattern, hence, a further opera-
tion for sub-trace elimination is required to obtained unique
traces. The third technique is based onstring manipulation
algorithms [2] that allow to identify repetitive patterns in an
string of elements.

In the above techniques, we can either eliminate the pat-
terns to reduce the size, or make a record of the identified
patterns as a means for locating close patterns (not exact
patterns), where a pattern sequence is interleaved by other
function calls. In this way, we can identify approximate
matches.

Dynamic analysis to assist static analysis
As mentioned earlier the amalgamation of dynamic analysis
techniques with static analysis of software system (that
include a rather comprehensive collection of techniques)
is considered as a very promising approach [11, 16, 12].
The existing multi-view approaches mostly attempt to
extract (or visualize) the static and dynamic views of
a software system to allow better understanding of the
software properties. These techniques usually produce
independent views, not an integration of both views. We
propose a technique that allows the dynamic analysis to
inject additional information into static analysis based on
the external behavior of the system (task scenarios or use
cases) in order to adjust the static analysis to produce more
sensible results. This approach uses feature to source code
assignment to localize the core functions that implement
specific software operations (features) [14] and then uses
the core functions as the seeds in a software clustering
technique [18] to collect functions into software modules
or components that correspond to specific operations of the
software system [12]. Also, dynamic analysis can be used

to assess the structural merits of a software system. This
is done by mapping between the group of functions that
implement different software features onto the structure of
the system (files or modules) in order to assess the impact
of a feature on the structure of the system [14].

Discovery of patterns
An important aspect of any analysis task (static or dynamic)
is to identify the relevant hidden patterns that assist the
engineer to limit the scope of analysis to particular parts
of the system as opposed to performing a global search
for the desired properties. In this context, the application
of techniques such as data mining and concept lattice
analysis would reveal patterns of relations among the
software entities [3]. Specific data mining techniques such
as association rules discovery has direct application in
static analysis [13] and sequential pattern discovery has
been applied on dynamic analysis for locating the imple-
mentation of software features in source code [14]. The
application of other data mining techniques on software
analysis is yet to be studied. Mathematical concept lattice
analysis is an excellent tool for visualizing the structure
of relations among software entities and has been well
adopted in software reverse engineering for modularization
of a software’s structure [9, 17, 15]. Very few approaches
in dynamic analysis utilize the visualization power of
concept lattice techniques. These techniques must handle
the inherent characteristic of the lattice in the sense that
the lattice easily becomes overwhelmed by the number of
generated concepts. One remedy for such a problem is to
raise the granularity level of the objects and attributes in
defining the context table. We have suggested an approach
that separates the common execution patterns from specific
patterns of a targeted operation [12].

Usability and extendibility
A common problem for most software analysis approaches
is the lack of adequate tool support to warrant durability
of the approach and adoptation by other researchers. Most
software analysis techniques require an environment includ-
ing external applications in order to be operational, and
they possess multi-step processes. Inadequate tool support
would cause interesting approaches to become obsolete or
being used only by their developers. Much effort is needed
to make an interesting approach usable by others. The char-
acteristics of the supporting environment include: i) short
learning curve, usually each step needs to be guided by wiz-
ards with clear explanation of their tasks; ii) extendible and
interoperable with relevant tools to set a working environ-
ment. The interoperability of tools is a key issue in the suc-
cess of a technique. There are standard and open source
technologies available for developing platform independent
environments (e.g., Java and XML), as well as tool inte-
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Figure 1. Components and employed tech-
niques for the proposed dynamic analysis en-
vironment with the features such as trace fil-
tering and pattern discovery.

gration platforms (e.g., Eclipse) that are based on plug-in
technology. Other aspects for success of an approach in-
clude: proper and easy to use documentation and manuals
and on-line help; as well as open architecture to add more
features in future.

In the rest of this paper, first we briefly introduceDy-
namic Alborzwhich is a multi-view, interactive, and wizard-
based dynamic analysis toolkit that takes advantage of the
Eclipse plug-in technology to provide feature extensibility,
and uses GXL format to interoperate with other reverse en-
gineering tools. Next, the snapshots of the Dynamic Alborz
are presented.

3 Dynamic analysis using Alborz Toolkit

Figure 1 illustrates the set of components and their ser-
vices that collectively implement the environment for the
Dynamic Alborz toolkit. The environment takes advantage
of pattern discovery of data mining and concept lattice anal-
ysis and is built as an Eclipse plug-in to be used by the re-
search community. The stages of the toolkit operation in-
clude: trace extraction; pattern mining; pattern analysis;
and structural evaluation. In the rest of this section these
stages are briefly described.

Trace extraction: important features of a software system
are identified by investigating the system’s user man-
ual, on-line help, similar systems in the corresponding

application domain, and also user’s familiarity with
the system. A set of relevant task scenarios are
selected that share a single software feature. We call
this set of scenarios asfeature-specific scenario set.
For example, in the case of a drawing tool software
system, a group of scenarios that share the “move”
operation to relocate a figure on the computer screen
would constitute such a feature-specific scenario set.
In the next step, the software under study is instru-
mented to generate function names at the entrance
and exit of a function execution. By running each
feature-specific scenario against the instrumented
software system a sequence of function invocations
are generated in the form ofentry/exit pairs. To make
the large sizes of the generated traces manageable,
in a preprocessing step we transform the extracted
entry/exit pairs into a sequence of function invocations
and also remove all redundant function calls caused
by the cycles of the program loops. The trimmed
execution traces are then fed into the execution pattern
mining engine in the next stage.

Pattern mining: in this stage, we reveal the common
sequences of function invocations that exist within
the different executions of a program that correspond
to a set of task scenarios. We apply a sequential
pattern mining algorithm [1] on the execution traces
to discover such hidden execution patterns and store
them in the Data Repository for further analysis.

Pattern analysis: each execution pattern is a candidate
group of functions that implement a common feature
within a scenario set. We employ a strategy to locate
functions in execution patterns corresponding to spe-
cific features within a group of scenario sets. This is
performed by identifying those patterns that are spe-
cific to a single software feature within one scenario
set (namelyfeature-specific patterns). Similarly, we
identify the patterns that are common among all sets
of scenarios (namelyomnipresent patterns). Even for
a specific feature, a large group of execution patterns
are generated that must be organized (and some must
be filtered out) to identify core functions of a feature.
We employ two different mechanisms for this purpose:
concept lattice analysis and second sequential pattern
mining techniques. Concept lattice is an ideal tool for
such a task, hence we use the visualization power of
concept lattice to generate clusters of functions within
feature-specific functions and omnipresent functions.
Alternatively, we apply the sequential pattern mining
for the second time on the extracted execution patterns
of the previous steps to separate feature-specific pat-
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Figure 2. The Dynamic Alborz plug-in is in-
stalled in the Eclipse platform; where the
stored-data organization of the analyzed sys-
tems (left), the statistical data on the analyzed
traces (right top), and the execution dialogue
(right bottom) are shown.

terns from omnipresent patterns.

Structural evaluation: in a further operation, by associ-
ating the group of functions that implement specific
feature to the system’s structural modules, i.e., files of
the system, two metrics for measuringmodule cohe-
sionandfeature functional scatteringare obtained that
together provide a means for measuring the impact of
individual features on the structure of the software sys-
tem.

Figure 2 provides a comprehensive overview of the Dy-
namic Alborz plug-in within the Eclipse platform. On the
left side the structures of stored data in theData Repository
for two analyzed systemsPineemail system client andXfig
drawing tool are shown. Eachfeaturehas a set of associated
task scenarios that share the feature and generate the traces.
For each feature the following statistics are provided: i)
number of traces; ii) average trace size with loop-based sub-
traces (entry/exit pairs); iii) average trace size after pruning
the loop-based subtraces; iv) number of the unique execu-
tion patterns; and v) average size of the execution patterns.
These are typical data that can be obtained for the other fea-
tures as well. It can be clearly observed that eliminating

Figure 3. Part of the concept lattice illustrat-
ing the groups of features as family of fea-
tures and corresponding functions.

loop-based subtraces trimmed almost 45% of the function
call traces (entry/exit pairs). Also, extracting patternsdras-
tically reduces the size of the traces to be analyzed (i.e.,
from the range of tens of thousands to the range of hun-
dreds).

Figure 3 illustrates a part of the concept lattice gener-
ated from Xfig data, where “Xfig features” represent “lattice
objects” and the functions in the patterns corresponding to
the features represent “attributes of objects” in the lattice.
The use of lattice allows us to separate the patterns that are
common to the most of scenarios (top of the lattice) from
the patterns that correspond to specific features (bottom of
the lattice). Also, the group of features that are close to each
other in the lattice and share many attributes represents fam-
ilies of features, as illustrated in Figure 3.

4. Conclusions

In this paper, we discussed important problems with re-
gard to the trace-based dynamic analysis of software sys-
tems and proposed possible solutions. These problems in-
clude: handling very large sizes of the generated execution
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traces that are overwhelmed by redundant loop-based sub-
traces; extracting execution trace patterns that allow us to
restrict the scope of analysis to traces that occur frequently
either naturally or by user’s focus on specific features; in-
corporate dynamic analysis with static analysis as a gen-
eral theme to enhance the recovery power of the static tech-
niques; and finally paying more attention to the usability
and extendibility of the analysis environment. We also pro-
posed solutions such as: top-down loop-trace elimination
using dynamic call trees; application of sequential pattern
mining and concept lattice analysis to extract patterns; in-
jecting execution-based semantic information into structure
recovery processes in order to achieve more sensible results.
Finally, we provided an environment and a toolkit (Dy-
namic Alborz) for identifying the implementation of both
specific and common operations of a software system. As
the future extension, we intend to explore new techniques
for amalgamation of dynamic and static views of software
systems.
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Abstract

An integral part of test-driven software development is uti-
lizing testcases to ensure the software’s quality. However,
as testsuites grow larger, they tend to grow beyond control
and are no longer easily comprehended. In this position pa-
per, we propose to employ dynamic analysis and abstrac-
tions in reconstructing scenario diagrams from such test-
suites. We discuss several challenges and suggest solutions
to tackle these issues.

1. Introduction

When implementing and maintaining software systems,
testing is of vital importance to help increase the qual-
ity and correctness of code. Test-driven development [1]
implies creating and maintaining an extensive testsuite in
order to guarantee that the various components work cor-
rectly, both individually (by means of unit tests) and as a
whole (through use of testcases).

A testing framework for Java software that is commonly
used is JUnit [2]. JUnit allows for the specification of both
unit tests and full testcases and is easy to use. A JUnit test-
case consists of several steps: the creation of a fixture, ex-
ercising the method under test, comparing the results, and
the teardown. It can be run as part of a complete testsuite.

Our goal is to help developers in the course of under-
standing and maintaining testsuites, and perhaps even dis-
cover errors or mistakes [3]. To make such testcases easy to
understand, one must come up with a visualization that is
both detailed and human readable. This involves analyzing
or tracing the testcases, applying certain abstractions and,
finally, presenting the results.

UML sequence diagrams [4] are a potentially useful
means to visualize a system’s behavior. A scenario dia-
gram is a somewhat simplified version of a sequence di-
agram that is derived from a specific scenario, i.e., con-
taining one particular control flow. Scenario diagrams pro-
vide detailed information on interactions at either the class
level or the object level, and are very readable because the

chronological order is intuitive. However, if no abstrac-
tions are applied, scenario diagrams tend to become too
large: the complete execution of a sizeable software sys-
tem would result in a scenario diagram that contains more
information than the reader can handle.

In this position paper, we propose to use reconstructed
scenario diagrams for the purpose of making JUnit test-
suites easier to comprehend. We obtain these diagrams by
tracing the execution of a testsuite.

The next section outlines the issues and design choices
that we will encounter. Section 3 discusses several solu-
tions that we are proposing, and Section 4 describes related
work. Finally, we draw conclusions and indicate future di-
rections in Section 5.

2. Challenges

In the course of converting testsuites to scenario dia-
grams, we face several challenges. This section addresses
the most prominent issues and design choices.

Dynamic vs. static In obtaining scenario diagrams from
testcases, we can choose whether to capture the system’s
behavior by static analysis (i.e., analyzing the code) or
through dynamic analysis (i.e., tracing the execution). The
benefits of a static approach are the genericity and compact-
ness, whereas a dynamic technique offers more detailed in-
formation on important aspects such as late binding. This
is illustrated in Figure 1: this example of dynamic dis-
patch would not have been very readable in a static context
because of the lack of object identities therein. A well-
known drawback of scenario diagram reconstruction using
dynamic analysis is that one needs specific scenarios and
that the diagrams thus represent only part of a whole sys-
tem’s behavior; however, since testcases are basically sce-
narios we feel that, in this particular context, more accurate
information outweighs genericity.

Test stage separation The second issue that arises is how
to trace the various phases of the execution of a testcase,
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Figure 1. Dynamically reconstructed scenario dia-
gram featuring an example of dynamic dispatch.

i.e., how we can distinguish between the test initializa-
tion, the test execution and the result validation. Tradi-
tional tools and techniques generally do not deal with this
testcase-specific problem. It is an important issue, as the
initialization and validation phases are potentially less rel-
evant and should therefore be treated separately (i.e., be put
in a separate diagram or even skipped).

Class vs. object level Another design choice concerns
whether we want to trace the interactions on the class level
or on the object level. The former is easier, whereas the
latter provides more detailed information that is especially
suitable for display in scenario diagrams.

Scalability However, despite the fact that in general the
execution of a unit testcase is relatively short, scalability
problems are inevitable. Most simple unit tests will proba-
bly fit within a single scenario diagram, whereas more com-
plex testcases induce too many interactions to simply put in
a diagram without applying any form of abstraction. There-
fore, we will need abstractions that are both efficient and
useful, i.e., we must determine which interactions are pre-
sumably irrelevant and can consequently be omitted. One
way would be for the tool to suggest several abstractions,
while ensuring the viewer remains in control of the level of
detail.

3. Techniques

We have come up with several design choices and solu-
tions to the issues discussed earlier. We are in the process

of implementing these in a prototype tool that we are using
for analyzing a range of existing test suites.

3.1. Tracing testcases

There exist several methods to obtain traces from soft-
ware systems, among which the most commonly used are
manually instrumenting code (e.g., [5]), using a debugger
or profiler, and instrumentation through aspects [6]. The
shortcomings of each of these techniques are mostly well
known and are not discussed here. We feel that using as-
pects in our framework is the most flexible solution in our
context, since it enables us to specify very accurately which
parts of the execution are to be considered, where tracing
must start and stop, and which steps need be taken after-
wards.

Aspects can trace the execution of a testcase and pro-
duce detailed information on all interactions, such as the
unique objects that are involved, the current thread, and
the (runtime) arguments in case of method and constructor
calls. Being able to distinguish between objects has certain
advantages, as it provides detailed information on object
interactions and exposes occurrences of polymorphism and
late binding. Figure 1 shows an example1.

In addition, aspects allow for the precise definition of
which objects and interactions are to be traced, and enable
us to make a distinction between the various stages in a
testcase. Among other things, this distinction offers us the
opportunity to filter the assertions in the comparison stages,
in case the viewer considers them unnecessary. Moreover,
we have a means to create separate scenario diagrams of
the various phases for the viewer to browse through.

3.2. Abstractions

In order to make large scenario diagrams easier to read,
we need several types of abstractions to reduce the amount
of information. In the context of scenario diagrams, one in-
tuitively thinks of omitting objects and classes and hiding
interactions to shrink the dimensions of the diagram. But
which messages and objects can be omitted while main-
taining the general idea of the testcase?

One technique that we propose is to limit the stack depth
of the execution. By use of a maximum stack depth, we can
hide all interactions above a certain threshold, thus omitting
messages and (potentially) the objects involved. Intuitively,
this filters low level messages that tend to be too detailed,
at least for an initial viewing. This is illustrated by Fig-
ures 2 and 3: the former diagram depicts the testcase in full
detail, whereas the latter shows only the essence. A similar

1The scenario diagrams in this research were created using UML-
Graph [7].
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Figure 2. Reconstructed scenario diagram at a low
abstraction level.

abstraction was applied in [8], in which (in a static context)
the length of a call chain is considered.

Another abstraction method is to hide constructors if
there are too many. This is especially applicable in the
initialization stages of complex testcases. Additionally, it
would be even more useful to hide irrelevant constructors
and the associated objects, i.e., to filter them in case they
are never used later on. That way, we will presumably have
reduced the dimensions without loss of important informa-
tion.

As was briefly mentioned in Section 2, we feel that the
viewer must ultimately decide which abstractions are to be
applied and which are not. We therefore plan to conclude
the processing of all testcases with recommended scenario
diagram specifications: based on several testcase statistics
such as the amount of objects, constructors, and stack depth
frequencies, it is automatically determined which of the ab-
stractions are highly advised. Such specifications must be
subject to adjustments at the viewer’s discretion.

Pacman25 Engine26 Game27

movePlayer(1, 0)
 inPlayingState()

 
 
 movePlayer(1, 0)

 
null

 notifyViewers()
 
 
 null

 

Figure 3. Reconstructed scenario diagram at a high
abstraction level (with a maximum stack depth of 2).

4. Related work

There is a great deal of ongoing research regarding the
visualization of dynamic information. Among this research
is a comparison of dynamic visualization techniques by Pa-
cione et al. [9] and of trace summarization tools in particu-
lar by Hamou-Lhadj et al. [10].

On the subject of testing, an interesting research was
conducted by Gälli et al. [11], in which the authors focus
on ordering (unit) tests based on the number of methods
that are called by these tests.

With respect to reverse engineering UML scenario dia-
grams, several attempts have been made in the past. They
include both static and dynamic approaches and, as was
discussed in section 2, each of these techniques has its ad-
vantages and drawbacks.

Various approaches reconstruct scenario and interaction
diagrams based on static analysis of program code [8, 12,
13, 14]. The techniques that are used vary from mapping of
control flow graphs [13] to interprocedural dataflow anal-
ysis [8]. A comparison of various approaches is presented
in [14].

There have been various reports of dynamic approaches
in the literature as well, of which some are discussed by
Briand et al. [15]. In the same paper they present a strat-
egy that is aimed at capturing the objects, the messages that
are exchanged, conditions, and repetitions when executing
a scenario. This is accomplished through manual intrumen-
tation of the source code. The paper does not describe how
the scenarios are obtained, i.e., how they are distilled from
a use case or filtered from the reconstructed scenario dia-
gram.

Systä et al. [16] aid in the understanding of Java systems
in an environment called Shimba, which uses both static
analysis and dynamic information. They reason at the level
of classes and obtain the required information from a sys-
tem’s bytecode and by using a customized debugger. Their
focus is primarily on maintaining consistent views on both
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structural (static) and behavioral (dynamic) aspects of the
system.

Riva et al. [17] combine static and dynamic analysis to
reconstruct message scenario charts. In their trace-based
approach, they provide an abstraction mechanism based on
the decomposition hierarchy that is extracted from the sys-
tem’s source code. It is not described how the scenarios are
defined, and in dealing with large diagrams, they only offer
manual abstraction techniques.

5. Conclusions

We have proposed to employ dynamic analysis and sce-
nario diagrams with the goal of aiding in the comprehen-
sion of testsuites. We have discussed the issues and design
choices that we will encounter and, through several exam-
ples, elaborated on our choices for these techniques. Dy-
namic analysis is the most logical choice for us as it pro-
vides the most details; and scenario diagrams, as long as
they are not too large, are an excellent means of showing
this detailed behavior. By means of certain metrics, a set of
recommended abstractions is determined that aims towards
presenting a scenario diagram (for each testcase stage) that
is both readable and contains the desired amount of detail.

Our next step is to implement these techniques in a
framework and to examine whether we can obtain mean-
ingful results for both interested viewers and experienced
developers. To this end, we are planning to perform at least
two case studies.

JPACMAN is a simple game consisting of 25 Java classes
and is mainly used for educational purposes. Though be-
ing a small system, it is complicated enough to give us an
indication as to the the usefulness of our approach, since
JPACMAN involves polymorphic methods and large traces.
It also has a testsuite comprising over 50 testcases.

Another case that we are currently investigating is Cro-
Mod, an industrial Java system featuring both simple unit
tests and complex testcases. By means of extensive feed-
back from the developers, we want to discover which ab-
stractions are generally required and hope to improve our
techniques.

References

[1] K. Beck. Test-Driven Development: By Example. Addison-
Wesley, 2003.

[2] K. Beck and E. Gamma. Test infected: Programmers love
writing tests. Java Report, 3(7):51–56, 1998.

[3] J.A. Jones and M.J. Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. In Pro-
ceedings of the 20th International Conference on Automated
Software Engineering (ASE’05), pages 273–282, 2005.

[4] OMG. UML 2.0 infrastructure specification. Object Man-
agement Group, http://www.omg.org/, 2003.

[5] InsectJ: A generic instrumentation framework for
collecting dynamic information within Eclipse,
http://insectj.sourceforge.net/.

[6] AspectJ: The AspectJ project at Eclipse.org,
http://www.eclipse.org/aspectj/.

[7] D. Spinellis. On the declarative specification of models.
IEEE Software, 20(2):94–96, march/april 2003.

[8] A. Rountev and B. H. Connell. Object naming analysis for
reverse-engineerd sequence diagrams. In Proceedings of
the 27th International Conference on Software Engineering
(ICSE’05), pages 254–263, 2005.

[9] M.J. Pacione, M. Roper, and M. Wood. Comparative
evaluation of dynamic visualisation tools. In Proceedings
of the 10th Working Conference on Reverse Engineering
(WCRE’03), pages 80–89, 2003.

[10] A. Hamou-Lhadj and T.C. Lethbridge. A survey of trace ex-
ploration tools and techniques. In Proceedings of the 2004
conference of the Centre for Advanced Studies on Collabo-
rative research (CASCON’04), pages 42–55, 2004.
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[16] T. Systä, K. Koskimies, and H. Müller. Shimba - an environ-
ment for reverse engineering Java software systems. Soft-
ware - Practice and Experience, 31(4):371–394, 2001.

[17] C. Riva and J. V. Rodriguez. Combining static and dynamic
views for architecture reconstruction. In Proc. 6th Conf.
on Software Maintenance and Reengineering (CSMR’02),
pages 47–55, 2002.

Proceedings of the 2nd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'06)

20



A Lightweight Approach to Determining the Adequacy of Tests as
Documentation

Joris Van Geet* and Andy Zaidman**

*University of Antwerp, Belgium
Joris.VanGeet@ua.ac.be

**Delft University of Technology, The Netherlands
& University of Antwerp, Belgium

Andy.Zaidman@ua.ac.be

Abstract

Programming process paradigms such as the Agile pro-
cess and eXtreme Programming (XP) tend to minimise cer-
emony, favouring working code over documentation. They
do, however, advocate the use of tests as a form of “liv-
ing documentation”. This research tries to make an initial
assessment of whether these unit tests can indeed serve as
a form of full-fledged documentation. The lightweight ap-
proach we propose is mainly based on the number of units
that is covered by each unit test. This paper discusses the
approach, the corresponding tool and the results of a first
case study.

1 Introduction

The program comprehension process a user goes through
when studying a piece of software can benefit greatly from
having up to date documentation available. However, often
the documentation of a software project is either out-dated
or non-existent. Programming practices such as the Agile
process or the XP process even have a tendency to minimise
documentation, as these processes value working code over
comprehensive documentation [3].

Both Agile programming and XP emphasise testing and
even advocate the use of a test-driven approach when writ-
ing a new piece of software [2]. Because the tests are writ-
ten first, they completely define what the code should do.
As such, the tests can be considered as a form of “living”
documentation that can be consulted when one wants to
learn what the code is supposed to do [4].

Our research aim then is to make an initial assessment of
the quality of the unit tests with regard to their adequacy as
documentation. To determine their adequacy, we will look
at two criteria of tests, namely:

1. The test coverage of the system, i.e. how much of the
system is actually tested.

2. Whether each test is focused on a single unit of the
system or whether each test covers a number of units.

This second criterion forms the basis for our hypothesis:
unit tests are possibly not adequate enough for documenta-
tion purposes when they cover a number of units. This basic
idea stems from the fact that when a unit test covers multi-
ple units of production code, the unit test will be harder
to understand because of an increase in coupling and com-
plexity. A similar observation has been made by Selby and
Basili when it comes to understanding “regular” production
code [5]. This is one of the reasons for the pursuit of low
levels of coupling.

To determine these “test dependencies” we rely on dy-
namic analysis, which, in the presence of polymorphism,
allows us to circumvent expensive slicing operations.

As a case study to determine the test coverage and ex-
tract the test dependencies, we used Apache Ant1, a widely
used Java build tool. We determined its test coverage for
a number of versions and extracted the test dependencies
from the latest available version.

1Form more information, see: http://ant.apache.org
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2 Unit Tests as Documentation

Testing comes in many forms and can be classified in
various ways. The “Guide to the Software Engineering
Body of Knowledge” (SWEBOK) [1] provides some inter-
esting classifications. One of them is based on the granu-
larity of testing:
• Component/Unit testing is concerned with verifying

functionality of small and (clearly) separable compo-
nents.

• Integration testing aims at verifying the interaction
between components. Usually these components have
already been tested by the previous strategy.

• System testing tests the system as a whole. This strat-
egy is considered useful for testing non-functional re-
quirements, as the functional requirements should have
been tested by the previous two strategies.

It should be noted, however, that the boundary between
component testing and integration testing is blurred for ob-
ject oriented systems as objects are used at all stages of the
software process [6]. This observation by Sommerville is
interesting because it conflicts with the criteria for the ade-
quacy of tests as documentation, which we set out in Sec-
tion 1.

It is our opinion that to have optimal documentation, i.e.
to be able to understand each unit present in the system,
each unit should be documented. As a consequence we ex-
pect each unit to be tested, which we can evaluate by deter-
mining the test coverage, but we also expect each unit to be
tested in isolation, to have a clear and unrestricted view of
how the unit works. Furthermore, we acknowledge the fact
that when units are not tested in isolation, their complexity
tends to increase, which can also hinder understandability.
We are aware of the fact that certain units cannot be tested in
complete isolation, but the usage of stubs can be beneficial
to the understandability because they are often less complex
than their actual implementations.

3 Tool

When trying to determine whether each test command
tests only a single unit of production code (criterion 2 from
Section 1), we need to extract test dependencies. A test de-
pendency being the relation between a unit of code and its
invoking test command. Since we focus on the JUnit test-
ing framework, we define a unit of code as a (production)
method and a test command as a unit test method.

For extracting the test dependencies we created a tool
with a pipe and filter architecture. The tool starts by tracing
the execution of the test scenario(s), followed by an analysis
of that trace data to eventually result in two xml files that
both contain the same test dependency information, albeit
in a different form. The first file contains for each unit of

production code the test commands which invoke the unit,
while the second XML file contains the inverse relations,
namely for each test command, the units of code that are
invoked by it.

To trace the different execution scenarios, we used a
profiler agent implemented with the Java Virtual Machine
Profiler Interface (JVMPI) [7]. This agent provides a two
way communication path with the virtual machine. We
are interested in various events that the virtual machine
emits during execution, especially the method entry and
method exit events. Our agent specifically listens for
these two events as they provide the crucial information for
a dynamic call graph. Whenever such an entry or exit oc-
curs, some identification information is written to the trace
file containing the fully qualified name of the method, its
formal parameters and its return type2.

Because the virtual machine sends out these events for all
methods, including the ones from system classes and third
party libraries, we performed a basic form of filtering to
only trace packages or classes that are of interest. Note that
at this stage we merely store the trace data for further anal-
ysis (offline analysis), instead of analysing the trace data on
the fly (online analysis).

The trace file from the profiler agent provides us with the
necessary raw data to extract test dependencies as it lists
the entry and exit of all calls in chronological order. The
dependency extractor takes a regular expression to identify
the test packages or classes. Methods of such a test class
are identified as a test method if they take no arguments
and their name starts with the string ’test’, as this is the
convention in the JUnit testing framework.

Once we have identified the test methods we can easily
deduce all methods that are tested by a certain test method,
as they appear between entry and exit of that test method.
To obtain all the test methods that test a particular method,
we inverse this relationship. Finally, we store this infor-
mation in a proprietary XML format, thereby making the
test dependencies explicit in both directions. Furthermore,
method calls that appear more than once within the same
test method are only listed once, as this tool provides a flat-
tened call graph resulting in a set of methods for each test
method and vice versa.

4 Results

As we mentioned before, we used Ant, the well-known
build tool, as an initial case study for our experiment. We
chose Ant because of its relative simplicity and also because
it is widely used, both in the open source community and the

2The return type of a method is not necessary to uniquely identify a
method. However, the Java Virtual Machine provides this data together
with the parameters, we keep it for human readability.
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method coverage
ant version percentage bare count

1.6.3 61% 3247/5351
1.6.4 63% 3399/5363
1.6.5 65% 3739/5745

Table 1. Method coverage as generated by
Emma.

ant version methods tests calls
1.6.3 4467 1330 286499
1.6.4 4472 1337 288363
1.6.5 4767 1407 324250

Table 2. Total count of methods, tests meth-
ods and method calls.

closed source community, as evidenced by the integration of
Ant in many commercial IDEs.

The results of our experiment can be divided into four
parts.

1. The first part determines the test coverage, for which
we used already available tools.

2. The second part deals with numerical data that we re-
trieved from the Ant distribution.

3. The third part presents anecdotal evidence that we re-
trieved when studying code fragments for evidence of
our findings from the numerical data.

4. The fourth part presents an historical perspective, cap-
turing the evolution of the testing strategy.

4.1 Test Coverage

Table 1 gives an overview of the test coverage, more
specifically the methods that are covered by the tests. As
can be seen, the coverage varies from 61% to 65% percent,
depending on the version of the Ant project.

Potentially, this also means that only about 2/3 of the
methods are documented, although this standpoint could be
considered a little harsh, as, just as with regular documen-
tation, not every part of a system needs to be thoroughly
documented.

It is our opinion that a coverage level of about 65%
should be sufficient for documentation purposes, although
we acknowledge that a higher level of test coverage can –
logically – only improve understandability.

4.2 Numerical data

Initially, we calculated the number of unique methods
tested, the number of test methods executed and the total
number of method calls present in our flattened call graph

version mean σ
1.6.3 68.02 190.35
1.6.4 64.48 183.49
1.6.5 64.14 182.40

Table 3. Average number of test methods for
an arbitrary method.

version mean σ
1.6.3 230.45 146.10
1.6.4 215.68 136.68
1.6.5 215.41 137.01

Table 4. Average number of methods that an
arbitrary test method runs through.

to get a quick feel of the application’s test infrastructure.
The results of this operation are listed in Table 2.

Based on this information we performed two calcula-
tions, namely:

• the average number of test methods that test an arbi-
trary method (Table 3)

• the average number of methods an arbitrary test
method runs through (Table 4)

We can see that, on average, a method is tested by approx-
imately 64 test methods and a test method tests approxi-
mately 215 methods. These numbers are shocking in con-
trast with the ideal one to one relation between method and
test method. However, the enormous standard deviation3 of
the averages we calculated, suggests that the actual values
are highly variable, indicating that further investigation is
needed.

To get a better view on the distribution of tested meth-
ods and test methods, we represented them in a box plot4

which uses more robust measurements such as the median
and other quartiles instead of the unstable mean.

Figure 1 illustrates the distribution of the number of
methods that are tested by a test method. For version 1.6.5,
for example, you can see that half of the test methods test
more (and the other half tests less) than 212 methods, since
212 is the median (= the second quartile Q2). For the same
version you can see that half of the test methods test no
more than 331 (the third quartile) and no less than 149 (the
first quartile) methods. The distribution is almost symmet-
ric around the median, leaving us with similar results as the

3According to [9] standard deviation is the most common measure of
statistical dispersion. Simply put, standard deviation measures how spread
out the values in a data set are. Traditionally this measure is represented as
σ.

4Please note that we use a stripped version of the traditional box
plot [8]. Whereas a standard box plot has a parametrised acceptable range
to define what an outlier is (usually 3/2 times the inter quartile range), our
range simply extends to the minimum and the maximum values, thus not
explicitly specifying outliers.
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Figure 1. Box plot of the distribution of the
number of methods tested by an arbitrary
test method.
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Figure 2. Box plot of the distribution of the
number of test methods that test an arbitrary
method.

ones we obtained from the averages.
However, for the number of test methods per method, we

do get a different perspective on the distribution. As you
can see in figure 2 the box plot is stretched towards the top,
meaning that there are only few outliers. For version 1.6.5,
for example, half of the methods are tested by no more than
seven test methods. A quarter of the methods are even tested
by no more than two test methods. As opposed to the aver-
age of 64, we can see that 75% of all methods are tested by
no more than 38 test methods.

4.3 Anecdotal Evidence

Let us dig a little deeper, based on these statistical ob-
servations. In Table 2 we can see that Ant 1.6.5 runs ap-
proximately 1400 test methods and the box plot in Figure 2
shows us at least one method that is tested by more than

1 public class RenameTest extends BuildFileTest {
2 public void setUp() {
3 configureProject(
4 "src/etc/testcases/taskdefs/rename.xml"); }
5 public void test1() {
6 expectBuildException("test1",
7 "required argument missing"); }
8 public void test2() {
9 expectBuildException("test2",

10 "required argument missing"); }
11 public void test3() {
12 expectBuildException("test3",
13 "required argument missing"); }
14 public void test4() {
15 expectBuildException("test4",
16 "source and destination the same"); }
17 public void test5() {
18 executeTarget("test5"); }
19 public void test6() {
20 executeTarget("test6"); }
21 }

JUnit Test Case

1 <project name="xxx-test" basedir="." default="test1">
2 <target name="test1">
3 <rename/>
4 </target>
5 <target name="test2">
6 <rename src=""/>
7 </target>
8 <target name="test3">
9 <rename dest=""/>

10 </target>
11 <target name="test4">
12 <rename src="testdir" dest="testdir"/>
13 </target>
14 <target name="test5">
15 <rename src="template.xml" dest="."/>
16 </target>
17 <target name="test6">
18 <rename src="template.xml" dest="template.tmp"/>
19 <rename src="template.tmp" dest="template.xml"/>
20 </target>
21 </project>

Test Build File ’rename.xml’

Figure 3. Test structure for the rename Task

1200 of these test methods. Based on the rather high aver-
age (Table 4) of methods that an arbitrary test method runs
through, we suspect even more of these methods that are
tested by almost all test methods. Two possible explana-
tions come to mind:

1. Some form of generic setup code is executed at ev-
ery run. This code would have to be located in the
test methods themselves5, since the dependencies of
the setUp() and tearDown() methods are not ex-
tracted from the original trace.

2. Some form of generic test code provides an execution
scenario that is similar for all tests. This would indi-
cate an integration testing strategy or at least a lack of
stub usage.

5Setting up test data in the test method is not uncommon as it is the
only way to initialise different test data for test methods in the same class.
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bare count percentage
ant version yes no total yes no

v1 153 53 206 74.27% 25.73%
v2 259 81 340 76.18% 23.82%
v3 328 107 435 75.40% 24.60%
v4 414 150 564 73.40% 26.60%

Table 5. Second Experiment: Test methods
based on BuildFileTest.

Further investigation of the source code revealed the lat-
ter option to be true. We queried our dependencies for
classes containing those often called methods and briefly
navigated through the source code with a code browser.
Figure 3 nicely illustrates our findings. The top of Fig-
ure 3 is a source code extract of the unit test of the Ant
rename task. As you can see in line 1, this test extends
BuildFileTest, an abstraction of a unit test that uses a
build file as test data. Line 3 shows that, for each test run,
a project is configured based on rename.xml (bottom of
Figure 3), a build file specifically designed for testing the
rename task. As you can see, each test method has its own
target in the build file. Executing a test method is noth-
ing more than calling its corresponding target on the newly
created project and checking whether or not the task pro-
duces the correct exception. When searching for that spe-
cific build file, we found similar build files for almost all
other tests.

4.4 Historical Perspective

We performed similar experiments for four other phases
of Ant’s evolution, to verify whether production code and
tests evolve (more or less) simultaneously. Our observations
here are that the test base, and with it the amount of unique
methods that are tested, grows consistently with each ver-
sion. This suggests that newly created test methods test pri-
orly untested functionality. Also, we see that the number of
tested methods increases more rapidly than the number of
test methods. Furthermore, on average, a test method runs
through more methods with each subsequent version. This
indicates that the integration testing strategy is gaining pop-
ularity as the development of Ant evolves.

To investigate this further, we queried our dependencies
for the BuildFileTest class, as it is the basis of the test-
ing framework in version 1.6.x. The dependencies revealed
the presence of this class in all versions except for v1.
Closer investigation showed that in v1 similar functionality
was available in the TaskdefsTest class. As the name
indicates, this was only used to test Ant’s taskdef con-
structs. In the transition to v2 this class was renamed to
BuildFileTest to be used by all Ant constructs. To
investigate the evolution of this testing strategy we queried

the dependencies for all test methods that call at least one of
these framework methods and for all test methods that call
none of them. The fourth column of table 5 shows the per-
centages of test methods that rely on the BuildFileTest
(or the TaskdefsTest for v1). A remarkable result at
first sight, as we might have expected this percentage to
grow in subsequent versions. However, this merely indi-
cates that the integration testing framework was already in
place in v1 (in the form of the TaskdefsTest) and that
the increased usage of that framework has been consistent
over the different versions: for every four new test methods,
three were based on the BuildFileTest.

4.5 Discussion

From the statistical data, the anecdotal evidence and the
evolutionary trends that we have discussed in the previous
sections, we can conclude that the development team of Ant
does not follow a strict unit testing strategy, but rather, fol-
lows a strategy that can be classified as an integration testing
strategy.

As we have mentioned previously, this kind of testing
process can lead to tests that are less suitable for documen-
tation purposes. The main indicator for this reduced ade-
quacy is the fact that a single unit of code cannot be easily
understood without also understanding other modules.

This tight coupling might have its consequences when
trying to understand a single unit or a small set of units
within the system separately. Furthermore, it has been
shown that tightly coupled systems are more difficult to un-
derstand [5], and there is no reason to assume that this is
any different for tests.

5 Conclusion

In this paper we have presented a lightweight approach
to determine the adequacy of (unit) tests as a form of docu-
mentation. Such a form of documentation is actually advo-
cated by the Agile process and eXtreme Programming (XP).
To determine the adequacy, we set out two criteria, namely
(1) the level of test coverage and (2) whether the tests work
in isolation, i.e. how many units of production code are in-
volved in one test command.

With regard to the test coverage we witnessed a method
test coverage of around 65%, which is a quite good level,
but can be improved for documentation purposes.

With regard to the isolation factor, we witnessed an inte-
gration testing strategy in our Ant case study. This integra-
tion testing strategy stands opposed to the isolation criterion
that we set out and as such, we have to express our concerns
with regard to the understandability of these pieces of (test)
code, as involving multiple units of code within one test

Proceedings of the 2nd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'06)

25



command increases coupling and complexity, two closely
related factors that can influence understandability.
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ABSTRACT 
 

In a product line context, the migration strategy to exploit 

functionality embodied in existing components having a high 

reuse potential can be fourfold: reuse as is, reuse and adapt, 

recover and reconstruct, or (re-)implement. This position paper 

focuses on the recover and reconstruct strategy and presents an 

integrated architecture reconstruction approach that aims at 

migrating core functionality, major variants and key features of 

existing systems into a product line infrastructure. We combine 

dynamic and static reverse engineering techniques within a 

systematic reconstruction approach, whereby one of the main 

goals is to be compliant to the product line architecture. In this 

paper, we present the reconstruction approach and illustrate the 

technique interactions techniques in a case study.   

Keywords 
software architecture, product line engineering, asset recovery, 

dynamic analysis. 

1. INTRODUCTION  
Product line engineering is a development paradigm that stands 

for pro-active, strategic, and successful reuse [1]. Product line 

engineering aims at sharing more than just the development 

effort, the goal is it, to improve the quality, reduce time-to-

market, and increase the number of derived products. Typically, 

product lines are built on top of existing, related software 

systems whereby the common artifacts are migrated in a product 

line asset base. In order to meet the quality requirements of the 

asset base high, the product line architects have to decide 

whether or not an existing asset becomes part of the asset base, 

in particular to identify the needs for adaptation to product line 

needs and to reason about its suitability for the product line [4] 

[7]. This paper shows how architects can be supported in this 

task by a combination of different reverse engineering 

techniques taking into account different assets like code, 

documentation or the running system.  

We propose an incremental migration towards product line 

engineering that employs an integrated architecture 

reconstruction approach to identify components with a high 

product line potential and leading to a prioritization in the 

migration plan. The approach applies a combination of different 

reverse engineering techniques and we show how the techniques 

can benefit from each other. 

Related work concerns in general architecture recovery and 

feature location techniques used to extract and determine assets 

for building an asset base. Regarding architecture recovery a 

number of tools have been developed that can be used to extract 

higher-level views on the implementation of software systems. 

Tools are, for example Bookshelf [3] or Rigi [10]. They follow 

the Extract-Abstract-View Metaphor but they do not deal with 

runtime traces.  

Discovering the architecture from run time traces was proposed 

in [11]. They use state machine as a mapping language to raise 

the level of abstraction of the collected traces to architecture 

level. An interesting approach for visualizing message sequence 

charts is introduced in [2]. Various colors and linked views are 

used to display the interaction program entities. Regarding 

feature location a number of approaches exist [8], [9]. Parts of 

these techniques can be integrated into our asset recovery and 

incorporation process. 

The remainder of the paper is structured as follows: Section 2 

presents the elements of the integrated  architecture 

reconstruction approach, while Section 3 instantiates and 

deepens the approach by combining static, dynamic and 

documentation reconstruction techniques demonstrating the 

combination benefits in a case study centered around Eclipse 

plug-in development. Section 4 draws some conclusions. 

2. APPROACH 
The reconstruction of legacy systems usually aims at recovering 

the legacy architecture or the as-built architecture as currently 

implemented in one of the existing legacy products. To achieve 

these goals, the existing legacy documentation (e.g., user 

manuals, architectural descriptions, or requirements 

documentation) even if outdated and the source code are 

analyzed. The analyses can either be static (i.e., the systems are 

not executed) or dynamic (i.e., runtime traces of the execution of 

the systems are collected) and the results are processed and 

stored into a single system asset base or a fact base. A fact 

thereby is exactly one piece of information about an existing 

system. Synergy effects by the combination of different analysis 

types may be achieved. 

The integrated reconstruction approach we propose in this paper 

uses the same analyses techniques and operates as well on the 

single system asset bases as described in the last paragraph but 

the approach is a product line reconstruction approach as the 

goal is to populate the product line asset base. Therefore the 

integrated architecture reconstruction approach considers assets 

from all existing systems. The assets may even be similar, 

overlapping, or contradictory. Thus, the main differences to 

most other approaches (i.e., the novelty of our approach) are the 

goals that we address: 

• We are only interested in the parts of the existing systems 

that provide product line relevant assets. These parts 
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comprise core functionality, key features, major variants, or 

architectural subsets relevant to the envisioned product line 

architecture and appealing for reuse. The legacy 

architecture of the existing system is of no interest so that 

we are able to work within a narrow scope (i.e., only the 

product line important assets or parts of the assets) and that 

leads to efficient way of conducting the analyses. By this 

distinction we focus the analyses only on relevant parts of 

the legacy systems.  

• Having a prioritization of product line relevant assets, we 

combine requirements recovery techniques with static and 

dynamic architecture recovery techniques. The combination 

enables a better understanding of the asset’s purpose and 

implementation and accelerates the reconstruction process 

since results produced by one technique are processed 

further by another technique. The existing assets are 

recovered and their adequacy with respect to the product 

line architecture is analyzed by identifying the amount of 

adaptation to make an asset usable within the product line.  

 

The means to control and monitor the migration towards product 

line engineering is the migration plan. The migration plan 

defines which parts of the existing systems are of interest, which 

variants have to be analyzed, or which components have to be 

reconstructed. The migration plan is thus the steering vehicle of 

the product line architects, the reverse engineers, and the experts 

of the existing systems to coordinate and to schedule the 

different activities. Data extracted and information gained 

during analyses is stored in the fact base to serve as basis for 

further or detailed analyses. 

The reconstruction yields product line component candidates 

that have to be assessed with respect to their adequacy. In 

presence of several legacy systems, this allows the identification 

of more than one component candidates completely or partially 

fulfilling the given requirements. To decide about reusing such 

existing components, the component’s internal quality and 

suitability for the product line have to be evaluated to ensure 

that the component is able to serve the product line needs [7].  

Technique Interaction Model 

Static, dynamic and documentation analysis techniques are 

inherently beneficial techniques serving various purposes when 

viewing them as individual techniques. The same holds for 

different techniques from just one area (i.e., there are various 

techniques from all three areas that could interact and influence 

each other). Each technique contributes to a specific aspect 

when mining existing artifacts for information about the 

underlying architecture, realization of functionality, 

implementation of features, and rationale behind the decisions 

made. 

Central to every technique is the fact base that stores, manages 

and enables fast access of the information gathered so far about 

the existing systems. Analysis results coming from one analysis 

techniques presented as views are handled and stored in the fact 

base as well. Often elements get annotated by comments of the 

system experts or interpretations of results when reviewing 

them. In particular, the facts about the system are basis for 

further documentation derived on top of the analysis or the facts. 

In addition it is worthwhile to note the analyses techniques 

where a fact has its origin and to include this information in the 

fact base as well in order to trace back the analysis results to the 

artifacts which contributed to the results. 

The fact base can be regarded as some kind of repository that 

enables the population, processing, modification of the facts and 

the fact base. Fact bases usually contain different levels of data 

ranging from low level source code data (e.g., structural 

information like classes, methods, and variables, data and 

control flow information like call trees, inheritance trees, or 

abstract syntax trees) to abstract information (e.g., features, 

functionality and uses cases, architectural components and 

design rationale, etc.).  

In order to enable an integrated architecture reconstruction with 

respect to mutual influences of techniques, the analyst applying 

one particular technique has to be made aware of other 

techniques. Since the techniques are often applied independent 

from each other, the fact base enables the sharing of the results. 

Figure 1 presents the interaction of techniques by means of a 

supplier-consumer pattern where different techniques supply 

information about a software system to the fact base, or they 

consume information from it: 

• Supplier Technique: The supplier techniques produce 

items of information about existing systems. Advanced 

supplier techniques combine already existing information 

from the fact base, to achieve new results or new 

viewpoints on the available information by selecting only 

particular aspects. Supplier techniques are filling the fact 

base with information that then is used for further analysis. 

• Consumer Technique: The consumer techniques consume 

the item of the fact base in order to be able to perform the 

analysis technique. The consumer benefits from the 

existing information already available in the fact base. 

Consumer techniques typically aggregate information from 

lower level to higher levels of abstraction. Consumer 

techniques exploit the fact base for their purposes and 

assume certain information to be pre base in order to be 

conducted by the reverse engineer.  

 

Depending on the context, in which a particular technique is 

applied it can be both, consumer and supplier. Next to the 

classification into supplier and consumer techniques, Figure 1 

presents two modes of operation for the supplier-consumer 

pattern: 

• Push Model: In the push model, a particular technique 

pushes the information it produces into the fact base, so 

that the analyst can be made aware of it at a later point of 

time, and that the results can then be pushed further into 

the consuming technique. The consumer uses all the 

information that is already contained in the fact base. A 

typical example for a supplier technique following the push 

model is the fact extraction, since the reverse engineer is 

doing this in almost every case, and the results of the fact 

  
Figure 1: Push and Pull Model between Supplier and 

Consumer Techniques 
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extraction activity are then pushed as input to other 

analysis techniques (e.g., architectural evaluation, metrics 

computation), which then process the inputs further or 

combine different inputs together. 

• Pull Model: In the pull model mode of operation the 

analyst (or reverse engineer) explicitly triggers other 

analysis techniques that contribute to the consumer 

technique. In this case, the analyses are delayed until the 

supplier techniques have been conducted, and the results 

have been stored in the fact base. Examples for the pull 

model mode of operation are advanced clustering 

techniques that take special similarity metrics into account 

in order to cluster the structural entities of a system into 

groups. These similarity metrics are required in order to 

apply the clustering technique, so they have to be computed 

first. Since these metrics are of limited interest for other 

analyses, the reverse engineers will trigger the computation 

on demand and wait until the results have been supplied. 

 

In our approach, we use all techniques either as push or as pull 

techniques. Depending on the situation, the order of the 

techniques is different and so none of the techniques can rely on 

information that is already in the fact base. But with this model 

we can make sure that we always can build up the facts that are 

needed for the different techniques to proceed. 

3. TECHNIQUE  COMBINATION  
We now describe different constellations of types of reverse 

engineering techniques from an abstract viewpoint and present 

where the techniques have overlaps, where a result flow is 

possible, and what the potential benefits of specific 

combinations are. We illustrate the combination with partial 

results of a case study. The case study is centered on Eclipse. 

Two programming language plug-ins of the open source tool 

platform Eclipse, namely JDT (Java Development Tools, a Java 

IDE supporting the development of any Java application) and 

CDT (C/C++ Development Tools), are the subject of the case 

study.  The technique combination in the case study is shown in 

Figure 2. Our purpose was to learn and eventually to reuse key 

features of JDT and CDT (e.g., model management, persistency, 

file system synchronization) for our own product line of Eclipse 

plug-ins, so we wanted to find out about common and variable 

features, code and behavior of JDT and CDT. In particular, we 

reused (and adapted) concepts and components to develop a 

common core that became part of three plug-ins centered on the 

analysis of product line architectures. An overview on the 

technique combination can be found in Table 1. In this section, 

we will focus on the dynamic aspects. 

Our approach for reconstructing the architectural views follows 

the extract-abstract-present paradigm. In the extraction phase, 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Combination of Techniques 
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Table 1: Overview Static and Dynamic Architecture Recovery and Requirements Recovery  
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both the source code and runtime traces are used to build a fact 

base. Usually this fact base contains low level information (for 

example, function calls). In the abstraction phase, using the 

collected static and dynamic information, high level views are 

reconstructed. Finally, in the presentation phase, the extracted 

views are presented for analysis. We use hierarchical graphs for 

visualizing the static structure of the software and the message 

sequence charts for visualizing the runtime behavior of the 

software. Table 1 depicts an overview on the three different 

recovery areas (static architecture recovery, dynamic 

architecture recovery, and requirements recovery). Our case 

study involved the following techniques in all three areas 

(namely static architecture recovery: SAVE [6] and interface 

analysis, dynamic architecture recovery: dynamic analysis with 

JRat [5], and requirements recovery: CaVE [4]).  

Document Analysis: As input for the document analysis, for 

JDT and CDT exists a large amount of additional resources, like 

FAQs, Tutorials, user guides and designer documentation. A 

selection of these documents was analyzed by non-domain 

experts with the CaVE approach. The emphasis thereby was on 

the JDT and CDT project management, for which we extracted 

concepts, features and use cases, relationships. Each plug-in was 

analyzed independently by a non domain expert resulting in a 

conceptual architectural view. Defining conceptual components 

and assigning entities and domain concepts to components was 

left to the follow up analysis. 

Static analysis: Static architecture evaluation in this case study 

was done for the JDT plug-in using the SAVE method. SAVE 

can be used to compare the architects “intended” architecture 

(i.e., their mental model of the architecture) with the systems “as 

is” or architecture (i.e., the architecture as it is implemented in 

the source code). However if such an architectural description is 

missing at all, it can be used in similar way for reconstructing 

architecture. 

The SAVE tool requires an initial architectural description as 

entry point. We used the conceptual model produced during 

document analysis and a source code model produced by parsing 

as input. The document analysis results provided insights about 

the architectural key entities, which are not directly visible from 

extracted facts from the source code. During several iterations 

the initial architectural view and the source code model were 

aligned in a semi automatic mode. The number of lower-level 

components was reduced through merging them into to 

conceptual components on a higher level of abstraction. This 

was obviously necessary, as the initial source code model was 

too close to the implementation for an architectural description. 

The analysis revealed a model-based abstraction layer for Java 

language concepts and a component managing the Java model. 

The concept of a buffer for source code was found to effectively 

propagate changes from Java model elements (managed by the 

JavaModelManager) to the underlying file system and vice 

versa. All physical elements (.java files, packages) were 

represented as model elements of JDT and managed efficiently 

by a last-recently-used (LRU) cache. This strategy is effective in 

model element access and consumes less memory. The 

rationales help the product line architects in understanding the 

main concepts for managing JDT projects. 

Dynamic Analysis: In the case study we identified hot spots in 

a system implemented in Java using dynamic analysis. With hot 

spots we mean the locations in the source code that have 

performance bottlenecks. On top of already existing tool JRat 

[5] we developed a framework which allows performance 

measurement of asynchronously communicating components to 

make requests traceable. Because instrumentation is an 

overhead, our environment uses system experts to identify 

certain key locations in it. Even for a simple runtime 

measurement (measuring the time between issuing a service 

request and getting the response) it was necessary to change the 

existing code of the product to be measured in order to make 

time usage of a single request traceable. Asynchronous 

communication did not allow the mapping of a method call to a 

specific user request. Each message had to be stamped with that 

information.  

The main purpose of combining the low level information is to 

gain information on how to abstract the source code elements. 

Figure 4 depicts an example on how low-level source code 

elements can be abstracted to architectural entities, or on the 

highest level in the Eclipse context, to the plug-in level 

 

 

 

 

 

 

 

 

 
Figure 3: Extracted Information from JDT Documentation and Code 
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capturing how plug-ins interact with the Eclipse platform. Such 

abstractions are needed in order to cope with the complexity of 

the source code elements. The details capture how the source 

code entities interact, but the big picture is crucial to enable the 

main understanding and to facilitate the architects finding their 

way in understanding the software systems. 

In the behavioral view, the interaction starts with a user 

triggering the creation of a new Java Project. The framework 

delegates the call to the JDT-GUI component where the Java 

project wizard is located. After the user entered the information 

necessary for project creation and pressed finish, the wizard 

creates a generic project in the Eclipse workspace. Moreover the 

wizard adds a Java nature to the project, so it can be 

distinguished from other projects in the workspace. The 

framework opens the perspective associated with Java projects 

(if not already open), i.e. several tree viewers and editors 

associated with Java development are opened. The creation of 

the generic project in the Eclipse workspace is triggered to all 

listeners interested in these events. In that case it is the Java 

Model (more concrete: the JavaModelManager) who has 

subscribed to these events.  The model manager figures out that 

the newly created project has the Java nature. Consequently he 

translates the Eclipse workspace changes into Java model 

events. In the case the creation of a generic project that has a 

Java nature leads to the creation of a new JavaProject in the Java 

model. Internally the JDT-model now triggers the model 

changes to the JDT-GUI component, so all the Java specific 

viewers and editors that are registered with the Java model get 

notified and can update their views. 

The runtime analysis process was performed and a behavioral 

view could be extracted as it is shown in Figure 5. The 

horizontal abstractions were provided by static analyses as 

described above, while the component interaction was collected 

in run-time traces, the messages sent were derived from use case 

scenario abstractions. This view completes the views already 

created by static and document analysis. 

The analysis of the model management in JDT and CDT enabled 

us to reuse the same mechanisms and the source code 

components (with adaptations) for a product line of architecture 

analyses tools. The reused parts have been merged into a 

common core that, up to now, has been instantiated for three of 

our own plug-ins. We are confident that our analysis effort was 

well-invested and now pays off in a mature and field-tested 

model management. The reuse goals drove the reconstruction 

activities and due to the integrated approach we were able to 

focus the activities only on those parts relevant to the product 

line architecture analysis plug-ins we developed. 

4. CONCLUSION 
This position paper described an integrated architecture 

reconstruction approach that explicitly combines analyses 

techniques from different areas, namely static architecture 

recovery, dynamic architecture recovery, and requirements 

recovery based on documentation. The integrated architecture 

reconstruction approach combines architecture recovery and 

requirements recovery to exploit existing artifacts of software 

systems. It is a framework for the systematical reconstruction of 

existing systems, especially in a product line context. In 

particular, the focus is set on the interaction of different analysis 

technique that process artifacts or asset, and that cover the 

whole range of available artifacts (i.e.,  not only the pure source 

code).  
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ABSTRACT
The developers of tools for dynamic analysis are faced with
choosing from the many approaches to gathering runtime
data. Typically, dynamic analysis involves instrumenting
the program under investigation to record its runtime be-
havior. Current approaches for byte-code based systems
like Java and Smalltalk rely often on inserting byte-code
into the program under analysis. However, detailed knowl-
edge of the target programming language or virtual machine
is required to implement dynamic analysis tools. Obtaining
and exploiting this knowledge to build better analysis tools
is cumbersome and often distracts the tool builder from the
actual goal, which is the analysis of the runtime behavior of
a system.

In this paper, we argue that we need to adopt a higher
level view of a software system when considering the task
of abstracting runtime information. We focus on object-
oriented virtual machine based languages. We want to be
able to deal with the runtime system as a collection of reified
first-class entities. We propose to achieve this by introduc-
ing a layer of abstraction, i.e., a behavioral middle layer.
This has the advantage that the task of collecting dynamic
information is not concerned with low level details of a spe-
cific language or virtual machine. The positive effect of such
a behavioral middle layer is twofold: on the one hand it pro-
vides us with a standard API for all dynamic analysis based
tools to use, on the other hand it allows the tool developer
to abstract from the actual implementation technique.

Keywords
Dynamic Analysis, Behavioral Reflection, Meta Program-
ming, Tracing

1. INTRODUCTION
In recent years there has been a revival of interest in dy-

namic analysis [16]. System analysis of runtime behavior is
vital for performance analysis to detect hotspots of activity
and bottlenecks of execution or memory allocation problems
such as unnecessary object retention. In a reverse engineer-
ing context, dynamic analysis is used is to extract high-level
views about the behavior of low-level components to facili-
tate the comprehension of the system [15, 17, 31]. The focus
of analysis determines the relevance and level of detail of the
information captured during dynamic analysis. In the field
of reverse engineering, there is no consensus on the type or
level of granularity of runtime information that is necessary
for a particular analysis. An inherent requirement of such

tools is that they be easily extensible as the requirements
and the research focus evolves.

Dynamic analysis yields precise information about the
runtime behavior of systems [2]. However, the task of writ-
ing tools to abstract runtime data is not trivial. Developers
of tools are faced with many options as there are numerous
techniques that address the task of collecting runtime data.
The approach to tool development and the abstraction of
dynamic data is therefore not standardized. Each individ-
ual tool adopts a specific technique and focuses on low-level
details of the chosen technique to achieve its goals.

This leads to recurrent problems of all approaches and
techniques:

• all clients need to re-implement large parts of the code
responsible for gathering the runtime data, and

• the abstraction level is too low in the sense that clients
need to know too much about the implementation side.

In this paper we propose the introduction of an abstrac-
tion layer based on behavioral reflection to facilitate the de-
sign and development of tools for dynamic analysis. We in-
troduce our reflection framework and identify its strengths
and shortcomings.

Structure of the paper. In the next section we identify
some typical applications of dynamic analysis. In this con-
text we outline the state of the art in gathering dynamic data
at runtime. Section 3 then shows problems and shortcom-
ings associated with the current approaches. In Section 4
we give an overview of reflection frameworks. In Section 5
we introduce our reflection framework and identify how it
can be used to solve the problems shown, and we identify
what is missing from our implementation with the intention
of initiating a discussion and obtaining feedback. Section 7
outlines our conclusions and future work.

2. DYNAMIC ANALYSIS TECHNIQUES
Dynamic analysis typically involves instrumenting the pro-

gram under investigation to examine or record certain as-
pects of its runtime behavior. Code instrumentation is a
mechanism that allows insertion of code at runtime to mon-
itor and track the runtime behavior of a system. In this
section we review the techniques currently available for ab-
stracting the runtime behavior of a system. The underlying
concepts behind dynamic analysis tools are currently limited
to using these techniques for extracting dynamic information
[17].
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The granularity and amount of behavioral data extracted
during the execution of a system varies depending on the
specific focus of a particular analysis tool. Dynamic analy-
sis implies vast amounts of data. A simple execution of a
system’s functionality can result in a large number of events
[10]. Typically, dynamic analysis tools employ filtering and
compression techniques to limit the amount of dynamic data
collected depending on a specific focus of the analysis. For
example, if the goal of the analysis is feature location [11],
this requires that a relationship between the external func-
tionalities of a system and the parts of the code that im-
plement this functionality is established. Therefore, it is
usually sufficient to extract trace events representing the
method calls performed during the execution of a specific
functionality [1, 15]. An example of trace representation is
given by Richner and Ducasse [27]. Each line records the
class of the sender, the identity of the sender, the class of
the receiver, the identity of the receiver and the method
invoked. The order of the calls is maintained.

Analysis techniques that focus on monitoring the state of
objects at runtime require a more detailed analysis to ex-
tract information about variable access. This level of gran-
ularity is required if the focus of the analysis is to infer pro-
gram invariants [12]. Performance analysis tools generally
focus on object creation and deletion and the correct mem-
ory allocation details. Thus the requirements of dynamic
analysis tools vary depending on their specific focus. This
is a drawback, because the analysis goals should not restrict
the type of information to be collected. We want to extract
as much dynamic data as possible and then depending on
the requirements of a particular analysis, extract and use a
appropriate subset of the dynamic data.

There are various approaches and language-specific frame-
works that support the extraction of dynamic information.
We describe the details of the underlying mechanisms used
by dynamic analysis tools in the following paragraphs.

Source code modification. One way to control mes-
sage passing is to instrument the code via source code
modification and recompilation. The main drawback
of this technique is that all controlled methods have
to be reparsed and recompiled. Furthermore, another
recompilation is needed to reinstall the original meth-
ods.

Bytecode modification. Another way to control mes-
sage passing is to directly insert byte-code into the
byte-code of the compiled methods. The introduced
byte-code controls the message passing. However, this
technique relies heavily on profound knowledge of the
bytecode instructions used by the virtual machines.
Another potential danger of this technique is that these
codes are not standardized and can change.

Instrumenting the Virtual Machine. A technique
for collecting runtime information is instrumenting the
runtime environment in which the system runs. For ex-
ample, the Java Virtual Machine can be instrumented
to generate events of interest. The advantage of this
technique is that it does not require modification of
the source code.

The Java Virtual Machine Profiling interface (JVMPI)
[20] provides a set of hooks to the JVM to signal in-
teresting events, such as thread starts or object al-

locations. JVMTI [21] is the sucessor to JVMPI and
provides both a way to inspect the state and to control
the execution of applications running in the Java vir-
tual machine. It provides additional facilities for byte-
code instrumentation. Profilers based on JVMPI or
JVMTI interfaces implement profiling agents to inter-
cept various events, such as method invocations. Un-
fortunately these profiling agents have to be written
in platform native code, contradicting the Java motto
of “write once run anywhere”. Binder developed Ko-
morium, a novel sampling profiler written purely in
Java that directly instruments the bytecode of Java
programs [4]. Another pure Java solution is the Java
Interactive Profiler (JIP) is based on JVMTI and pro-
vides control to turn on and off profiling at runtime
(see http://jiprof.sourceforge.net/).

Method Wrappers. Brant et al, describe a code in-
strumenting technique for Smalltalk based on method
wrappers [5]. Wrappers are mechanisms for introduc-
ing new behavior that is executed before and/or after,
and perhaps instead of, an existing method. Rather
than changing method lookup, they modify the method
objects that the processes return. Wrappers are easy
to build for Smalltalk as it was designed with reflec-
tive facilities that allow programmers to intervene in
the lookup process, while the same is not true for Java
which only supports introspection.

Debuggers. It is possible to run a system under the con-
trol of the debugger. In this case, breakpoints are
set at locations of interest (e.g., entry and exit of a
method). This technique has the advantage of not
modifiying the source code and the environment. How-
ever it slows down the execution of a system consid-
erably, and the instrumentation itself can be cumber-
some. This can be done on the source level before
compilations, or on bytecode at load time (Java) or
runtime (Smalltalk). The abstraction layers we deal
with are either those of the program text or those of
bytecode.

Logging Services. Logging can be used to track the state
of a running system at various points in time. A good
framework for doing this with Java is provided by log4j
(see http://logging.apache.org/). The drawback is
again that this implies modifying the source code.

3. CHALLENGES
As we have seen, there are multiple implementation tech-

niques for gathering runtime data. The key problem is that
every new client application has to re-implement large parts
of the runtime data gathering code depending on the lan-
guage and runtime environment. Furthermore, the abstrac-
tion is too low level, resulting in clients that are concerned
with manipulating too many implementation details.

In the following sections we elaborate on the main prob-
lems of the current approaches.

3.1 Instrumentation re-implemented
Most projects that require to access runtime data typically

re-implement the data gathering mechanism. Instrumenta-
tion code is inserted at all places of interest in the code
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(e.g., at message sends). In the case of bytecode manipu-
lation techniques, the actual modification of the bytecode
is achieved using libraries (e.g., Javassist [8, 7] or Bytesur-
geon [9]). Bytecode manipulation provides a very low level
of abstraction and requires detailed knowledge of the byte-
code of the programming language. Moreover, it is prone
to language evolution, i.e., the specification of the VM may
change.

The positive effect of the low level approach is of course
that we build a very specific implementation, tailored ex-
actly towards the information needed for a specific task. The
drawback is that the instrumentation logic is tightly coupled
with the application that requires the dynamic data, thus
in most cases we will have to re-implement the instrumen-
tation logic for each new task. Figure 1 shows an example:
We have two projects that are interested in gathering run-
time data (Tracer1 and Tracer2). Although both run on
a standard virtual machine, both independently implement
the code for bytecode instrumentation. We have seen this
happen often in our research, for example both the trace de-
bugger Unstuck [19] and a test coverage tool both utilized
the same byte-code manipulation library (ByteSurgeon), but
they did not share any instrumentation code.

Virtual
Machine

bytecode
modification

specialized 
Virtual Machine 

Tracer2, 
for specialized 
Virtual Machine

bytecode
modification

Tracer1 Tracer2

Figure 1: Trace tool today

3.2 Implementation Specific Designs
Implementors of tools that gather runtime data are faced

with the decision on which implementation technique to
adopt. Subsequently, they design a tool based on specific
knowledge of the target language and runtime environment.
The resulting tool inevitably is forced to encode implemen-
tation issues into the design of the tool. Thus, the result
is a tool that is tightly coupled with a particular runtime
environment.

This approach has obvious drawbacks. It is very diffi-
cult to change the adopted implementation technique: e.g.,
bytecode manipulation is portable, but a specialized vir-
tual machine might be faster. When the implementation
technique is closely tied to a particular virtual machine, we
are bound to this one implementation, we cannot switch to
a byte-code based implementation on a case-to-case basis.
Figure 1 shows that for a special virtual machine, we need
to re-implement our system.

4. BEHAVIORAL REFLECTION
Systems like Smalltalk and CLOS model their own struc-

tures (classes, methods) as first class objects.

The term introspection defines the ability to query the
system about this information, whereas we talk about in-
tercession when changes to these structures directly change
the structure of the system itself. Systems that provide both
are called reflective.

Structural reflection is concerned with reification of the
program and its abstract types. Behavioral reflection, on
the other hand, is concerned with the ability of the lan-
guage to provide complete reification of its own semantics
and implementation as well as complete reification of the
data and implementation of the runtime system.

Popular object oriented languages provide different de-
grees of introspection or reflective capabilities. Smalltalk is,
to some extent, a reflective system [13, 3]: Classes and meth-
ods are objects, we can change those objects to change the
structure of the system. Java and .NET on the other hand,
have only introspective features (i.e., allows for querying an
object for its class, a class for its methods and construc-
tors, query the details of those methods and constructors,
and tell those methods to execute), and partial intercession
(intercession is limited to method invocation and attribute
manipulation) [6].

Languages that facilitate the description of methods as
first class objects inherently support dynamic analysis. The
method wrappers technique exploits the first class nature
of methods in Smalltalk for providing a way to intercept
method execution [5]. Examples of dynamic analysis tools
built on the method wrapper technique are Greevy and
Ducasse’s TraceScraper tool for feature analysis [15] and
John Brant’s Interaction Diagram and Coverage Tools [5].
However method execution is just an aspect of runtime infor-
mation. For a complete dynamic analysis we need to focus
on other runtime events such as e.g., message sends between
object instances or instance variable access. Thus, we rec-
ognize the need to define a reflective meta representation
that describes all behavioral aspects of systems. We want a
system that can reify those events on demand, providing a
system with full behavioral reflection.

In both Java and Smalltalk, the reflection mechanisms
provided are concerned mostly with structure. They do not
provide an easy way to change the semantics of the run-
time model: Message sends, instance variable access are not
modeled with objects. A true behavioral reflective system
models behavior in a way that it is first class and changes
are possible: e.g., we are able to define our own version of
what a message send is.

Looking back into the history of object oriented systems,
we can find that there has been extensive research on be-
havioral reflective systems, e.g., the work done around Meta
Object Protocols [22] for CLOS. The meta object protocol
provides all operations (e.g., method activation or variable
access) to be reified and re-defined.

In systems like Java and Smalltalk, behavioral reflection
can be realised via special virtual machines or bytecode ma-
nipulation, with the latter being portable. Examples for the
virtual machine approach are Iguana/J[26], Metaxa [14], or
Guarana [25]. The prime example for a bytecode modifica-
tion based meta object protocol is Reflex [30]. Reflex pro-
vides a model for behavioral reflection that allows for a very
fine grained selection of when and what to reify.

5. THE BEHAVIORAL FRAMEWORK
The drawbacks we have identified with current approaches
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lead us to suggest that the solution would be to introduce
an additional layer of abstraction to our system, which we
refer to as a behavioral framework.

We now analyze how a behavioral reflection framework
could be used to tackle and solve the problems of previous
approaches to gathering runtime information.

Virtual Machine

Tracer1

Bytecode modification
specialized 

Virtual Machine 

Behavioral Reflection Framework

Tracer2

Figure 2: A common abstraction layer

5.1 A Shared API
With the existence of a behavioral layer, all tools could

use it to hook into runtime events. The individual tools are
no longer concerned with a specific code insertion implemen-
tation. Instead, they just leverage the abstractions provided
by the behavioral layer framework.

In Figure 2 we see again our two tools that are inter-
ested in dynamic information. Now both tools just use the
behavioral layer, thus they do not need to implement the
byte-code modification code themselves, but share it.

5.2 A Pluggable Implementation
Another important requirement of an abstraction layer is

to provide a high degree of flexibility, but at the same time
retain the same interface for clients. The proposed behav-
ioral framework should make it possible to have a pluggable
implementation (the backend): it can be realized via editing
byte-code, a changed virtual machine or other means.

Figure 2 shows how we now can use both programs on
the modified virtual machine, without having to implement
the logic ourselves: All tools using the abstraction layer will
work on both the standard virtual machine and any special-
ized virtual machine that the abstraction layer supports.

5.3 Requirements
In the following we identify a list of requirements for a

behavioral framework to tackle the challenges we identified
previously.

Runtime installation: We need to introduce behavior dy-
namically at runtime. When we are done with the
analysis, it should be possible to revert to the original
state of the system.

Unanticipated use: The behavioral change should be pos-
sible at any time in the deployed system, without the
need to prepare the system in any way at startup.

Fine-Grained Selection: The operation occurrences we
are interested in are different depending on what we
analyze. We want to be able to select the entities up
to the level of the single occurrence in the code.

Implementation Hiding: From a dynamic analysis per-
spective, we are not interested in the underlying mech-
anisms of obtaining runtime information. The fun-
damental goal of a behavioral layer is to allow us to
abstract from the details of a specific implementation
technique (e.g., VM change, byte-code extension, byte-
code modification) used to extract behavioral informa-
tion from an application at runtime.

Performance: To make the framework usable for analyz-
ing real work applications, we need a framework with
low overhead. The best case would be a system where
we pay exactly the same overhead as if we were to
annotate the code with profiling calls by hand.

5.4 Implementation
We have realized a framework for partial behavioral reflec-

tion for Squeak (a dialect of Smalltalk) called Geppetto[28].
Geppetto uses the runtime byte-code transformation frame-
work ByteSurgeon[9] and follows the model of partial behav-
ioral reflection as pioneered by Reflex[30]. Unlike Reflex,
which is constrained by the underlying model of the Java
language, our Geppetto implementation can be used com-
pletely unanticipated: code does not need to be prepared at
load or compile time, reflection can be enabled at runtime
and completely retracted when not needed.

Geppetto allows for reifying message sending, method exe-
cution and variable access (read and write) for both instance
variables and temporary variables. Selection is very fine-
grained: per package, class, object, method, operation and
operation occurrence. Geppetto can be used in any Squeak
program, without the need to adapt it at load or start time.
Installation happens transparently at runtime.

Geppetto uses ByteSurgeon to insert small peaces of code,
so called hooks into the bytecode where a selected operation
(e.g. message send) occurs. Figure 3 shows the model in
detail. Hooks are grouped to hooksets, which are bound
to a metaobject by a link. The link defines the protocol
between the base and the meta layer. Links can be enabled
or disabled based on an activation condition.

activation
condition

hookset

metaobject

links

Figure 3: Hooksets, Links and Metaobjects in Gep-
petto

For a complete description of the Gepetto behavioral re-
flection framework, see [28].
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5.5 Usage
The behavioral reflection framework provides a general

API: the reification of runtime events triggers calls to meta
objects, which are instances of normal classes. The tool
developer thus is free to use the framework as needed by
specifying which concepts to reify and which information
to pass on to the meta object. The framework does not
provide a model of the data obtained (e.g., a trace), instead
it provides a model for obtaining data. It can be either
stored for later use as a trace or processed and reacted on
at runtime. The latter has lately become an active topic of
research with systems like PQL [24].

6. DISCUSSION
We now analyze our behavioral framework with respect to

the requirements defined in the preceding section and define
future work. Then we briefly discuss the relationship to
aspect oriented programming and the usefulness of providing
scoping abstractions as part of the framework.

6.1 Next Steps
The implementation as described in section 5.4, already

fulfills some of the requirements stated: It can install (and
retract) behavioral changes at runtime, provides fine-grained
spatial and temporal selection by implementing the Reflex
model [30] and supports unanticipated use.

Two requirements are not yet fulfilled:

1. Geppetto needs to be extended to support pluggable
backends. We are working on providing a backend
based on annotated abstract syntax trees.

2. We need to verify the real world usability: first bench-
marks show good performance characteristics, but Gep-
petto needs to be validated with real world usage. We
plan to move the tools and experiments done that cur-
rently use ByteSurgeon to use Geppetto instead.

6.2 Aspects
This paper presents the solution from the perspective of

behavioral reflection. Another point of view can be that of
Aspect Oriented Programming. The proposed abstraction
layer could use, as a backend, an existing dynamic aspects
implementation. In this case, the aspect framework would
be used as a high-level replacement for byte-code manipula-
tion.

Another possibility would be to formulate the middle layer
in terms of a dynamic aspect framework instead of meta ob-
jects. The problem here is that most aspect systems (e.g.,
AspectJ [23]) are static: weaving happens at compile or load
time. Pure runtime Aspects are not yet very common and
those that exist are based themselves in some cases on be-
havioral reflection facilities, for example AspectS[18] and as-
pect systems based on Reflex[29].

6.3 Scope Abstractions
Modern implementations like Reflex provide very fine-

grained spatial and temporal selection of reification. Here
we can select what and where, in a temporal and spacial
way.

This means we can scope the reification towards collec-
tions of classes (like modules and packages) or single in-
stances, a single methods of a class, or even to one certain

occurrence of a behavioral event. Temporal selection means
that we can switch reifications on and off at will, thus we
can make the gathering of runtime data be controlled by
runtime events.

Another idea of scoping is that of scoping-towards-the-
client: We might be interested in events generated only if
our package under test is called from a certain other pack-
age. This can be useful to limit the amount of unnecessary
data when e.g., analysing system classes like Smalltalks col-
lections.

7. CONCLUSION
In this paper we addressed a fundamental problem that

faces the developers of tools that exploit runtime informa-
tion of an application. We propose an new approach to
designing dynamic analysis tools for virtual machine based
languages that interact with a layer of abstraction, namely
a behavioral layer. The behavioral layer should provide a
framework for tool developers that encapsulate typical ob-
ject oriented language constructs at runtime such as object
instantiation, message sends and instance variable access.
Thus the developer has access to reified first class entities
of runtime behavior and focuses on these high level abstrac-
tions when designing a specific tool. The main advantage of
this layer of abstraction is that the resulting tool should eas-
ily portable to use with other virtual machines as the reified
entities are independent of the underlying implementation
details and byte-codes. Moreover the developer is not con-
cerned with low level details that are specific to a particular
virtual machine.

In this paper we provided a short overview of the avail-
able technologies and approaches to extract runtime data.
We identified problems inherent to these approaches. This
motivates our argument that there is a need to introduce
a layer of abstraction between low level implementation de-
tails and the tools analysing the data.

To better understand the underlying motivation of a be-
havioral layer we provided a short overview of some of the
applications of dynamic analysis. In the field of program
comprehension and reverse engineering dynamic analysis ap-
proaches are becoming more prevalent. However there is no
standard approach to extracting runtime data nor is it clear
which type of runtime information to extract. Therefore
such tools need to be extensible, as requirements change.

We identified a list of requirements for a behavioral layer.
We describe our current implementation of a behavioral
layer and illustrate how it can be used to address the prob-
lems. We show how we simplify the task of implementing
dynamic analysis tools.
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[27] Tamar Richner and Stéphane Ducasse. Using dynamic
information for the iterative recovery of collaborations
and roles. In Proceedings IEEE International
Conference on Software Maintenance (ICSM 2002),
page 34, Los Alamitos CA, October 2002. IEEE
Computer Society Press.
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Abstract

Most of today’s dynamic analysis approaches are based
on method traces. However, in the case of object-
orientation understanding program execution by analyzing
method traces is complicated because the behavior of a
program depends on the sharing and the transfer of ob-
ject references (aliasing). We argue that trace-based dy-
namic analysis is at a too low level of abstraction for object-
oriented systems. We propose a new approach that captures
the life cycle of objects by explicitly taking into account ob-
ject aliasing and how aliases propagate during the execu-
tion of the program. In this paper, we present in detail our
new meta-model and discuss future tracks opened by it.

1 Introduction

Understanding an object-oriented system is not easy if
one relies only on static source code inspection [19]. Inher-
itance, and late-binding in particular, make a system hard
to understand. The dynamic semantics of self (or this) pro-
duces yo-yo effects when following sequences of method
calls [18]. Moreover, the method lookup depends on the
receiver which in turn varies depending on the transfer of
object references at runtime.

Dynamic analysis covers a number of techniques for an-
alyzing information gathered while running the program
[2, 17]. Dynamic analysis was first used for procedural pro-
grams for applications such as debuggers [5] or program
analysis tools [15].

As object-oriented technology became more wide-
spread, it was only natural that procedural analysis tech-
niques were adapted to object-oriented languages. In this
context many dynamic analysis techniques focus on only
the execution trace as a sequence of message sends [11, 20,
1]. However, such approaches do not treat the characteris-
tics of object-oriented models explicitly.

Although dynamic analysis has the potential to over-
come limitations of static source code inspection, it is not
without its own limits. We identify the characteristic of non-

local effects in object-orientation which renders program
comprehension difficult and motivates a need for a dynamic
analysis at the level of objects.

Nonlocal effects are possible due to object aliasing,
which occurs when more than one reference to an object
exists at the same time [10]. Objects often are not short-
lived but are passed as arguments or return values and hence
get aliased (or referenced) by multiple other objects. In this
way, object aliasing introduces nonlocal effects: an object
can be visible from different locations of the program at the
same time and hence, through side-effects, a message sent
to the object in one context can influence the behavior of the
object in another context.

These effects are hard to understand from method traces
alone because object aliasing and the transfer of aliases are
not explicit. Another area in which object aliasing compli-
cates the understanding of program execution is debugging.
Although the debugger shows the current execution stack in
which the error occurred, it is often hard to find the actual
cause of the error because object references may have been
incorrectly set at some distant time in the past.

The main contribution of this paper is a novel meta-
model of object-oriented program execution which explic-
itly represents object aliasing, the transfer of aliases and
the evolution of object state. We believe that such a model
opens new ways of understanding the dynamics of object-
oriented systems. To illustrate our approach we present
three works in progress that are applications of our model

Outline. Section 2 discusses the object flow meta-
model. Next we describe in Section 3 three example ap-
plications of our model. In Section 4 we describe the im-
plementation of our prototype for obtaining the object flow
information. Section 5 reports on the state-of-the-art and
Section 6 presents the conclusions.

2 Representing the runtime space

We propose a novel model to capture how objects circu-
late or flow through a software system. Our model is in-
tended to express the fact that an instance of a class can be
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Figure 1. The object flow meta-model

referenced from several places at once, and that those ref-
erences can be passed around to create other references. To
capture this, we put at the center of our model the alias, as
an explicit reification of an object reference.

Figure 1 shows the class diagram of our model. To get
a complete picture of the system, we model the static part
(e.g., classes, methods, attributes), the execution part (i.e.,
instances and method activations) and we complement these
parts with aliases. In the following we detail the execution
model and its integration with aliases.

Activation. An activation in our model represents a
method execution. It holds the sender activation and the
method it executes. This is very similar to commonly-
used dynamic analysis approaches. Depending on the us-
age, approaches additionally identify the receiver instance
for which a method is executed.

In our model, however, the receiver of an activation is the
alias through which the message is sent. The fact that an ac-
tivation does not directly reference an instance but rather an
alias of this instance is an important property of our model.

Alias. We define an alias to be a first-class entity iden-
tifying a specific reference to an object in the analyzed pro-
gram. An alias is created when:

• an object is instantiated,
• an object is stored in a field,
• an object is stored in a local variable,
• an object is passed as argument, and
• an object is returned from a method execution.

Except for the very first alias which stems from the ob-
ject instantiation primitive, an alias can only be created
from a previously existing alias, its ancestor. Based on
this relationship we can construct the flow of objects. The
flow shows where the instance is created and how it is then
passed through the system. Since several new aliases can be
created for each alias, the aliases of an instance form a tree.

Each alias is bound to its creator, a method activation.
By creator we understand the activation in which the alias
is first visible. For example, when passing an object as argu-
ment, the argument alias is created in the activation which
handles the message received (rather than the activation in
which the message was sent). The same holds for return
values: the alias of a return value is created in the activation
to which the object is returned.

The rationale is that aliases should belong to the activa-
tion in which an object becomes visible. Aliases of argu-
ments, return values and temporary variables are only vis-
ible in the activation where they are created whereas field
aliases may be accessed in other activations as well.

Special kinds of aliases include field and global aliases,
as they additionally carry information about the evolution
of the program’s state. Field and global aliases point via
their predecessor to the alias which was stored in the field
before the assignment. The impact on our model is that it
is capable of capturing the full history of the state evolution
of objects. The predecessor reference enables backtracking
of the state of objects to any point in the past.
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3 Applications

We envision that our model has an impact both on re-
verse engineering and on forward engineering. In this sec-
tion we describe three application examples that make use
of the data captured in our model.

3.1 Relating Object Flows to Static
Structure

The most straightforward application is relating the dy-
namic information to the static information. Figure 2 shows
the hierarchy of the Smalltalk Squeak bytecode compiler
[16], and on top of it we show how the aliases have trav-
eled through the system at runtime. We emphasize in red
the aliases of the particular instance that is the focus of our
attention.

We envision several usages of such views. For example
with such a view:

• We can check whether the path of the objects is what
is expected.

• We can identify which classes play a primary role in
the runtime object flow.

C
D

E

BA

Figure 2. Example of several object flows
mapped to a class hierarchy.

3.2 Characterizing Object Flows

Another application is to reason how a certain instance is
aliased within the system. We are working on a simple vi-
sualization that captures the flow of an object by displaying
a tree of aliases.

Figure 3 shows the same instance as in Figure 2, only
now we emphasize the different kinds of aliases of this ob-
ject using distinct colors.

Thus, the initial alias (1) is assigned to the field (2). The
following six sequences of yellow and blue aliases (3-4)
show that the instance is passed six times as argument to
other objects in which it is then stored in a field. If we
want to see in which class and method an alias is created,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Legend

field alias
instance creation

argument alias
return alias

Figure 3. Example of object flow visualization
of an instance.

our visualization tool [14] allows us to interactively get this
information by moving the mouse over an alias.

The rightmost path shows that the object is passed as
return value through (5) and (6) and is then stored in a field
(7). Finally the object is passed by argument (8).

We also map metrics to the shape of the boxes in the
diagrams [12]. We map the number of messages sent to
the alias to the width of a box, and we map the number of
messages sent from this alias to other objects to the height.
In our example, the field alias (2) is wide which means that
many messages have been sent to that alias. On the other
hand, the alias (7) has a rather tall shape which means it
sent more messages to other object than it received.

This visualization offers useful information regarding
how the instance interacted with other objects during its life
cycle. From the visualization of Figure 3 we can for exam-
ple understand the following usage scenario of the instance:
in a first stage it is set up, then it is passed around but is
never used, and in the last stage, the object is used and itself
interacts with other objects.

3.3 Object-centric Debugging

Another application area is debugging. In object-
oriented programming, the understanding of problems is
often complicated due to the temporal and spatial gap be-
tween the root cause and the effect of errors.

Figure 4 illustrates an example execution trace of a pro-
gram. While the cause of the bug is introduced at the be-
ginning of the execution, the effect occurs later (temporal
gap). Figure 4 also shows the execution stack at the point
when the error occurred. This is the typical view of a de-
bugger showing the method activation in which the bug is
manifested. The location of the cause of the bug, however,
is hidden because objects have been passed around during
execution (spatial gap).
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Figure 4. Example of how the cause of a bug
can be outside the current stack.

By means of fields the flow of an object can bridge the
linear sequence of method executions. With red we illus-
trate the flow of an object relative to the same program ex-
ecution. While the object is first passed along with the ex-
ecution trace, its path later diverges and jumps to distant
branches of the tree.

This example illustrates how changes to the software
system which modify the behavior of objects may have un-
expected effects at distant locations in the program execu-
tion. Therefore, to connect the cause and the effect of errors
we need to trace the flow of objects. This will support the
developer in finding errors by allowing him to follow incor-
rectly behaving objects back along their path. We call this
approach object-centric debugging.

4 Implementation

We have implemented the model extractor in Squeak, a
Smalltalk dialect. Since instrumenting method activation
and field access would not allow us to trace the flow of ob-
jects precisely enough, we also keep track of aliases at run-
time. That is, during the program execution we actually in-
stantiate for each reference an alias object. The alias objects
then act as proxies which trap message sends and forward
them to the object.

The instrumentation of the target program happens in
two phases. In the first phase the relevant part of the class
hierarchy is replicated to facilitate scoping the effects of the
instrumentation (i.e., the classes are copied and the class
hierarchy is reconstructed). This is necessary because we
also want to instrument core libraries such as the class Ar-
ray which is used by other parts of the system.

In the second phase the classes are instrumented by an-
notating the abstract syntax tree (AST) of the methods. This

means that our approach does not rely on source code mod-
ification but rather operates on a more abstract level. The
instrumentations modify for example field assignment. In
this case the assignment is replaced with bytecode which
instantiates a new field alias, sets its ancestor (and prede-
cessor reference if appropriate) and eventually stores it in
the actual field.

The performance overhead of the current prototype im-
plementation is around a factor of 10. However, we have
not yet done any performance optimization, and we expect
to improve the performance in the future. We plan to push
aliases down one level into the VM. The responsibility of
aliases (capturing a specific reference to an object) can be
implemented at this level much more efficiently. Instead
of instantiating new alias objects, the indirection can be
achieved by using a table which maps object pointers.

5 Related work

Dynamic analysis covers a number of techniques for an-
alyzing information gathered while running the program
[2, 6]. Many techniques focus on analyzing the program
as a sequence of method executions [11, 20].

To better understand object-oriented program behavior
various approaches have extended method traces. As an ex-
ample, Gschwind et al. illustrate object interactions taking
arguments into account [7] and De Pauw et al. exploit visu-
alization techniques to present instance creation events [3].

These approaches extend method traces with some addi-
tional information. In contrast, our approach is much more
radical as it proposes a new model which is centered around
objects, capturing object aliasing, a key characteristic of
object-orientation.

Most approaches of dynamic analysis in the context of
object-orientation primarily analyze the program’s execu-
tion behavior rather than the structure of its object relation-
ships. An exception is Super-Jinsight, which visualizes ob-
ject reference patterns to detect memory leaks [4], and the
visualizations of ownership-trees proposed by Hill et al. to
show the encapsulation structure of objects [8].

Those two approaches are based on snapshots whereas
our model has an explicit notion of the evolution of objects:
on one hand the object flow, and on the other the object his-
tory. Another practical advantage and difference to the two
approaches mentioned above is that we do not only show
how objects are referenced and how references evolve, but
that we also combine this information with method traces.

Backward-in-time debuggers [9, 13] allow one to navi-
gate back in the history program execution. Those debug-
gers capture the full execution and object history and like
this allow the user to inspect any intermediate state of the
program. Although some navigation facilities are provided,
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the notion of how objects flow through the system is missing
because the event-based tracing approaches do not provide
complete information about the flows.

6 Conclusions

Dynamic information contains valuable information
about how the systems works at runtime. Most of the ap-
proaches to analyze dynamic information use a trace-based
view. However, in the case of object-oriented programs, the
trace needs to be complemented with a view of how objects
are referenced and passed around in the system.

In this paper, we present a novel approach in which we
capture object references and explicitly model them as first
class entities (i.e., aliases). In our model we distinguish be-
tween several types of aliases and we build a meta-model
that incorporates static information, trace information, and
object flow information.

We have chosen to build our prototype implementation
in Squeak because of the flexible nature of Squeak’s envi-
ronment. Until now, we have performed several case studies
to test the scalability. Even though we witness a factor of 10
of slowdown, we are optimistic to improve the performance
by adding support for aliases to the VM.

We foresee that this model opens new research tracks
both from a reverse engineering perspective and from a for-
ward engineering perspective. We have listed three exam-
ples of our work in progress, namely: (1) relating object
flow to static structure, (2) characterizing objects based on
the objects flows, and (3) object-centric debugging.
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