
Andy Zaidman, Abdelwahab Hamou-Lhadj, Orla Greevy (editors)

3rd International Workshop on

Program
Comprehension

through Dynamic
Analysis

co-located with the 14th International Working
Conference on Reverse Engineering (WCRE’07)

Technical report TUD-SERG-2007-022
Software Engineering Research Group

Delft University of Technology
The Netherlands

Contents

Coping with large-sized execution traces

Working with 'Monster' Traces: Building a Scalable, Usable Sequence Viewer... 1
Chris Bennett, Del Myers, Margaret-Anne Storey, Daniel German

Exploring Similarities in Execution Traces ... 6
Bas Cornelissen and Leon Moonen

Exposing Side Effects in Execution Traces .. 11
Adrian Lienhard, Tudor Gîrba, Orla Greevy and Oscar Nierstrasz

Modelling and knowledge extraction

Applying Grammar Inference Principles to Dynamic Analysis... 18
Neil Walkinshaw, Kirill Bogdanov

Mining Temporal Rules from Program Execution Traces .. 24
David Lo, Siau-Cheng Khoo, Chao Liu

Application of dynamic analysis

Supporting Feature Analysis with Runtime Annotations .. 29
Marcus Denker, Orla Greevy, Oscar Nierstrasz

Identifcation of Behavioral and Creational Design Patterns through Dynamic Analysis 34
Janice Ka-Yee Ng, Yann-Gael Gueheneuc

Verifying Business Processes Extracted from E-Commerce Systems Using Dynamic
Analysis .. 43
King Chun Foo, Jin Guo and Ying Zou

Program Chairs

Orla Greevy
Software Composition Group
Institut fur Informatik und angewandte Mathematik
University of Bern
Switzerland
greevy@iam.unibe.ch

Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering
Concordia University,
Montreal, Canada
abdelw@ece.concordia.ca

Andy Zaidman
Software Engineering Research Group
Delft University of Technology
The Netherlands
a.e.zaidman@tudelft.nl

Program Committee

Daniel Amyot
University of Ottawa, Canada
Bas Cornelissen
Delft University of Technology, The Netherlands
Wim De Pauw
IBM Research, USA
Serge Demeyer
University of Antwerp, Belgium
Arie van Deursen
Delft University of Technology, The Netherlands
Tudor Girba
University of Bern, Switzerland
Adrian Kuhn
University of Bern, Switzerland
Leon Moonen
Delft University of Technology, The Netherlands
Vassilios Tzerpos
York University, Canada

Working with ‘Monster’ Traces:
Building a Scalable, Usable Sequence Viewer

Chris Bennett
University of Victoria

cbennet@uvic.ca

Del Myers
University of Victoria

delmyers.cs@gmail.com

Margaret-Anne Storey
University of Victoria

mstorey@uvic.ca

Daniel German
University of Victoria

dmg@uvic.ca

Abstract
In this position paper, we survey and identify tool
features that provide cognitive support for reverse
engineering and program comprehension of very large
reverse engineered sequence diagrams. From these
features we synthesize user requirements for a sequence
diagram viewer, to which we add system requirements
such as memory and processing scalability. We briefly
describe a pluggable sequence viewer that meets these
requirements and discuss some open questions that we
are currently exploring.

1. Introduction
 Sequence diagrams are an aid to understanding
system behaviour in the form of scenarios (the +1 view
in Krutchen’s 4+1 architectural view model [1]). While
originally devised as a notation to capture scenarios
during analysis and design, sequence diagrams can also
aid understanding of existing software through
visualization of execution call traces. Their power lies
in their ability to represent selected behaviour at a
suitable level of abstraction. As Kruchten notes [1],
scenarios illustrate how elements from the four primary
architectural views come together, highlighting the
most important requirements of a system.
 Reverse engineered sequence diagrams based on
call traces are typically huge, sometimes running to
thousands or even hundreds of thousands of calls.
Designing tools that help the user cope with the size
and complexity of such traces is a major problem. In
addition, tools need to be able to physically handle such
traces within the memory and processing constraints of
typical computers. Approaches to address these issues
include reducing information overload through pre-
processing, support for presentation and user
interaction, and techniques to deal with partial
sequences. Automatically reducing arbitrary traces to a
manageable size is probably not realistic.
Consequently, effective user interaction that allows the
user to reduce clutter, navigate the sequence, and focus
on relevant details is critical.
 This position paper is structured as follows.
Section 2 provides a brief background to research on
reverse engineered sequence diagrams. In Section 3 we
describe presentation and interaction features of
sequence diagram viewers as derived from the research
literature. In Section 4 we identify related cognitive

support requirements and categorize features in terms
of the cognitive support they provide. In Section 5 we
address system requirements (such as scalability and
performance issues) that arise from the huge volume of
information contained in a reverse engineered sequence
trace. We end with a brief discussion of a sequence
viewer we designed (called Zest) and propose future
work.

2. Background
 Sequence diagrams used in reverse engineering can
be abstracted at various levels including statement,
object, class, architectural, and inter-thread [2].
Statement-level diagrams include intra-procedural calls
and typically make use of an extended notation that
supports conditions, loops, and branches (e.g., see [3]).
High-level sequence diagrams are typically used as an
aid to program understanding (e.g., see the work of [4]
on filtering utility methods to reduce trace complexity).
Sequence diagrams can be created through static or
dynamic analysis, the advantages of the latter being
increased precision, control over inputs, as well as
resolution of polymorphic behaviour and runtime
binding in object-oriented languages [2]. Regardless of
the creation method or abstraction level represented on
a diagram, there is a need to cope with large amounts of
reverse engineered data. This problem has been
approached primarily in two ways: through pre-
processing to reduce the size of the initial sequence, and
through tool support for user interaction.

Pre-processing techniques include reduction at the
source through data collection techniques and sampling
[2], collapsing similar sequences using pattern
matching (to identify loops, recursion, and non-
contiguous repetitions), and automatic detection of
utility functions (using fan-in/fan-out metrics) [5].
Other pre-processing techniques include removing
abstract operation calls [5], hiding constructors and
getters/setters [6], and limiting the depth of the call tree
[5,6]. While pre-processing may be necessary to reduce
the complexity of a sequence, considerable tool support
is needed to help the user explore and understand the
resulting diagram. We refer to this category of tool
support as “cognitive support” - support that allows the
user to offload some of their cognitive processing, such
as their need to memorize details or to perform tedious
calculations that the tool could do for them [8].

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

1

3. Presentation and Interaction Features
 We divide sequence diagram user interface features
into two categories 1) presentation or display facilities,
and 2) features that allow the user to interact with and
explore the diagram. We note that there may be
overlap between presentation and interaction features,
presentation often being both the result of interaction
and a necessary precursor to it (e.g., highlighting and
hiding could be considered interaction as well as
presentation features). In the next subsections, we
survey a number of reverse engineering tools that
display sequence diagrams, summarizing their common
presentation and interaction features.

3.1. Presentation
 We first consider the presentation features these
tools provide. Presentation concerns the layout of the
diagram, as well as facilities for showing multiple
views, hiding information and making the most
effective use of animation and visual attributes.

3.1.1. Layout. Perhaps the most important presentation
feature is the layout of sequence diagrams according to
some notational standard. Many research tools use their
own layout format or some variation on a standard
format (e.g., UML 2.1), perhaps adding proprietary
extensions to address a specific problem (e.g., how to
capture conditional branches). Scene [9] produces
sequence diagrams according to Rumbaugh’s OMT
notation [10]. SCED [11] uses its own UML-like
notation that provides constructs for nested sub-
scenarios and repetition. TPTP [12] also uses UML.

3.1.2. Multiple Linked Views. It is often necessary to
provide multiple views [1] as well as an overview of an
underlying model. Views can be of the same type (e.g.,
to allow comparison of different parts of a trace) or
different types (e.g., linked class diagram and sequence
diagram views). Ovation [13] adopts an approach to
viewing sub-trees, whereby a subtree may be rendered
using a number of alternative ‘charts’, including a static
class list or a class communication graph. SCED
supports sequence diagrams as well as state charts that
show transitions within a selected object.
 Linking these views so that they remain
synchronized and can be easily navigated is another
useful feature. SEAT [7] provides links between
sequence and source code views. Similarly, Scene links
between sequence views and static class diagrams or
source code views. An overview is provided by many
tools. ISVis [14] provides a two-window scenario view
consisting of an information mural overview and a
temporal message-flow diagram and Scene displays a
summary call matrix view alongside a sequence view.

3.1.3. Highlighting. Highlighting a section of a
sequence diagram is often the expected visible outcome
of a user selection or search. Tools that support manual
selection of components usually use highlighting to
indicate selection. Highlighting can go beyond single
components to show related objects or messages.

3.1.4. Hiding. Hiding selected information is
commonly used for controlling complexity in sequence
diagram tools. Hiding supports abstraction by removing
detailed sub-message calls from below a parent call.
Components can be hidden following pre-processing, a
search (filtering), or a manual selection. ISVis supports
hiding of classifiers within a subsystem, SEAT supports
manual hiding, and VET [15] hides elements following
filtering. Similarly, when grouping occurs (described in
more detail below) the grouped elements are hidden
‘under’ a summary element [2]. When components are
hidden as a result of filtering, it is important to indicate
this so that the user can redisplay these components if
required. There should also be an indication of why a
set of components was hidden (e.g., as a result of loop
detection or pruning of utility functions) [5]. The
authors in [6] propose hiding null return values or
abbreviating return values and parameter lists.

3.1.5. Visual Attributes. Colour and shape are useful
ways to code additional information about a sequence.
Ovation uses colour to differentiate objects and
bevelling to indicate that components are grouped
(hidden) under the bevelled component. TPTP uses
colour to indicate the length of time spent inside a
method execution.

3.1.6. Labels. Classifiers, messages, and return values
are usually labelled. Occlusion and legibility are
challenges when displaying larger sequences.
Techniques to cope with this include hiding labels,
replacing them with rectangles when zoomed out (e.g.,
as implemented by the VET tool), or using mouse
hovers (e.g. as in Ovation).

3.1.7. Animation. Many tools support animation. This
comes in two varieties – one that supports stepping
through a sequence diagram, message by message, and
another that uses animation to morph between diagram
states to help the user maintain context. Scene supports
single step animation between trace calls and AVID
supports animation between component groupings.

3.2. Interaction
Interaction features allow the user to communicate with
the tool while they navigate, query, and manipulate the
sequence diagram to improve their understanding.

3.2.1. Selection. Manual selection of elements is a
prerequisite for further interaction such as

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

2

manipulation, filtering, and slicing. This is supported by
most tools.

3.2.2. Navigation. Rapid, simple movement between
components (traversing the call tree) is important to
usability [5] as is the ability to move between instances
of the same type of pattern (e.g., subscenarios) in tools
that support grouping of similar patterns (e.g., SEAT).

3.2.3. Focusing. User focusing has been identified as a
problem when dealing with large traces [2]. The authors
of the Scene tool note that it can be solved by
techniques such as collapsing calls, partitioning
sequences into manageable chunks, and selecting an
object such that only related messages are shown.
Single-step animation can also be used to focus on
individual messages.

3.2.4. Zooming and Scrolling. Zooming and scrolling
are standard techniques to cope with more information
than can be legibly shown in a single window. VET,
Ovation, TPTP and Jinsight [16] support zooming and
scrolling [2].

3.2.5. Queries and Slicing. Queries identify and
optionally filter information within a sequence.
Scenariographer [17] supports both relational SQL and
set-based SMQL (Software Modelling Query
Language) queries on underlying structured data. ISVis
allows exact, inexact, and wild-card searches. VET
provides graphical support for selection of objects
based on class and name as well as selection of methods
by method type or time range. While these are more
limited than language-based queries they provide a
much simpler solution. Slicing can be performed on
either objects or methods and is a specific form of
query that selects only objects or methods related to the
selected component (a slice through the sequence flow).

3.2.6. Grouping. Grouping can be the result of slicing
or it can be done manually (e.g., AVID’s manual
clustering and Ovation’s flattening and underlaying).
This is usually indicated by some sort of icon or visual
attribute of the summary component (behind which
grouped components are hidden). Grouping of objects
will result in collapsing the sequence horizontally but
may leave all messages visible (no vertical
compaction). However, Cornelissen et al. [6] describe a
technique to collapse lifelines that would eliminate calls
between the merged objects. Grouping at the message
level will hide messages called by the summary
message (vertical compaction). Grouped items can also
be annotated with a label (and optionally comments)
describing the grouped abstraction. Riva and Rodriguez
propose a technique to collapse packaging activations
within these packages [18]. In addition to preprocessing
to detect repeating patterns, interaction support can
allow manual selection and collapsing of repeated

patterns such as loops. TPTP supports grouping of life
lines using pre-determined levels of abstraction (host,
process, thread, class, and object), grouping of method
calls, and arbitrary user-defined groupings.

3.2.7. Annotating. Annotating can be used for many
purposes: to describe why components were grouped
[4], to capture user understanding during exploration of
a sequence diagram, and to provide waypoints [19] and
messages to oneself and others when the diagram is to
be shared. Few tools provide annotation mechanisms,
but our initial experiences show this to be a useful
feature.

3.2.8 Saving views. Saving views, either to share or to
revisit, is also important when documenting a user’s
understanding of the diagram. A tool should be able to
save the entire state of the visualization so it can be
restored at a later time. Together with annotations, a
saved view can tell a story about the diagram being
visualized. In [5] the authors discuss the need to save
both the original trace and the transformations that were
applied to reduce its complexity, although saving a
record of user interactions is not discussed.

4. Cognitive support requirements for tools
that present very large sequence diagrams

Even after preprocessing, interacting with and
understanding a reverse engineered sequence diagram
can be a daunting task. Tools should provide cognitive
support for the user to effectively and efficiently
explore and interact with the sequence diagram view.
Through our experiences developing and using
customized sequence diagram views, and an extensive
review of the literature, we have synthesized six high
level cognitive support requirements that these tools
should meet: (1) The tool needs to present a diagram
that is intuitive and coherent to the end user. Since
these diagrams are typically large and screen space is
limited, the layouts need to use available visual
attributes, such as position, size and color effectively
and efficiently. (2) The tool should present multiple
perspectives of the underlying sequence. It may be
necessary to display a related static view (e.g., a class
diagram) in addition to the dynamic sequence view, or
some combination of the two. (3) The user needs to be
able to navigate the diagram and explore a focus area
or navigate to other elements on or off the screen.
During navigation, the tool should help the user
maintain context and help build and maintain a mental
model of the navigated sequence. (4) Since sequence
diagrams are typically very large, the user needs tool
assistance as they filter and drill down on the salient
features they wish to understand. Filtering can be
supported through interactive querying techniques and
presentation facilities for hiding information. (5)

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

3

Related to filtering, the user may need to abstract
details in the viewer. This will remove visual details
but maintain some visual cues on the abstractions
created during the understanding process. (6)
Documenting the user’s understanding for future use
or to share with colleagues is also an important feature.

Figure 1: A portion of a sequence diagram in the Zest Sequence

Viewer with an overview of the sequence on the right

 Hamou-Lhadj et al. have also discussed high level
user requirements, specifically requirements to support
exploration, abstraction and filtering [2].

In Table 1 we map the tool features identified in
Section 3 with these cognitive support requirements.
The main advantage of this approach is that it organizes
requirements into different groups, linking each tool
feature with a clear cognitive support goal. This
mapping may also be useful when comparing tools that
might not have the same feature set, but attempt to
solve similar problems. In particular, we have used this
table to identify and prioritize the features of the Zest
sequence diagram viewer (described below).

5. System requirements for coping with
very large sequence diagrams
 While computer systems continue to increase in
processing and memory capabilities, large diagrams of
any kind can be taxing on even very powerful
machines. This leads to the question of whether it is
even possible to render the diagrams that we would like
to see. With the right optimizations, many of the
interaction features previously described can reduce
memory load and improve performance. Techniques
such as lazy-loading of visual elements can be
combined with grouping and filtering. However, trade-
offs between performance and memory requirements
must then be made and it is difficult to find an optimal
solution.
 Large diagrams require massive amounts of
memory to render – sometimes more than is available
with, for example, a Java virtual
machine. Caching visible pages for the
display can help, but it is not obvious if
it is useful to display more information
than a modern machine can handle at
one time. The cognitive load on the
human may be the limiting factor.

6. The Zest Sequence viewer
 In the previous sections, we
synthesized a list of features and
requirements that are needed to build a
general, scalable sequence diagram
viewer that can be used across different
applications. In order to explore the
effectiveness and completeness of this
list, we developed and are now

evaluating the Zest Sequence Viewer (see Figure 1).
 The Zest Sequence Viewer was designed from the
outset to be easily pluggable into various end-user
applications. The viewer is written in Java, using the
SWT framework [20], so it can be plugged into any
SWT application. We have explored using it as a
viewer for visualizing dynamic program traces and for
visualizing debug stack states. The Zest Sequence
Viewer has been used to load upwards of a thousand
objects, but trace size is limited by the memory required

Cognitive Support
Requirements

Presentation and Interaction
Tool Features

1. Visualize diagram • Layout (positioning)
• Visual attributes such as

Colour and shape
• Labels

2. Multiple
perspectives

• Multiple and linked views
(e.g., overview views,
split panes, static and
dynamic views)

3. Navigating (while
maintaining context)

• Selection
• Highlighting
• Focusing
• Multiple and linked views
• Zooming
• Scrolling

4. Filtering • Querying
• Hiding information

5. Abstracting • Grouping
• Annotating

6. Documenting
(e.g., for sharing)

• Annotating
• Saving views

Table 1: Mapping presentation and interaction
features to the cognitive support requirements for

sequence diagram views

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

4

to render large drawing areas. Such graphs can require
hundreds of megabytes of memory, and may be larger
than the Java virtual machine will allow.

7. Discussion
 Our preliminary exploration has demonstrated the
usefulness of the Zest Sequence Viewer. It has also
helped us understand important requirements and tool
features. However, more research must be done on the
limitations of visualizing large sequences. A number of
questions need to be resolved, e.g., what is the limiting
factor: computer memory or human cognitive load?
What kinds of visual inconsistencies can users cope
with when displaying an incomplete sequence (e.g.,
changes in layout, hiding of visual elements)? Are
humans able to understand and/or remember what
elements have been hidden from the view? If not, what
additional support can we provide for this? We are
currently designing a case study that will involve
observing professionals in their reverse engineering
tasks using the Zest Sequence Viewer. We wish to
observe their response to the viewer so that we can
evaluate its usefulness and determine human factors in
understanding sequence traces. We expect the results
from this case study to further inform the cognitive
support requirements for sequence diagram viewers.

Acknowledgments
 We are grateful to Martin Salois, David Ouellet
and Philippe Charland of Defence Research and
Development Canada (DRDC) for their input into and
review of this work. This work was funded by DRDC
contract W7701-52677/001/QCL.

References
[1] P. Kruchten, “The 4+1 view model of architecture”

IEEE Software, vol. 12, no. 6, Nov. 1995, pp. 42-50.
[2] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of

trace exploration tools and techniques”, in Proceedings
of the 2004 Conf. of the Centre For Advanced Studies on
Collaborative Research, IBM Press, 2004, pp. 42-55.

[3] A. Rountev, O. Volgin, and M. Reddoch, “Static control-
flow analysis for reverse engineering of UML sequence
diagrams”, SIGSOFT Softw. Eng. Notes 31, 1, Jan. 2006,
pp. 96-102.

[4] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the
content of large traces to facilitate the understanding of
the behaviour of a software system”, in Proceedings of
the 14th IEEE international Conference on Program
Comprehension, Washington, DC, 2006, pp. 181-190.

[5] A. Hamou-Lhadj, T.C. Lethbridge, and L. Fu,
"Challenges and requirements for an effective trace
exploration tool", in Proceedings of the 12th IEEE
International Workshop on Program Comprehension,
Washington, D.C., 2004, pp. 70- 78.

[6] B. Cornelissen, A. van Deursen, L. Moonen, and A.
Zaidman, "Visualizing test-suites to aid in software

understanding", in Proceedings of the 11th European
Conference on Software Maintenance and
Reengineering, 2007, pp. 213-222.

[7] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu, “SEAT: a
usable trace analysis tool”, in Proceedings of the IEEE
13th international Workshop on Program
Comprehension, Washington, DC, 2005, pp. 157-160.

[8] A. Walenstein, “Cognitive support in software
engineering tools: a distributed cognition framework”,
Ph.D. dissertation, Simon Fraser University, B.C.,
Canada, 2002, p. 87.

[9] K. Koskimies and H. Mössenböck, “Scene: using
scenario diagrams and active text for illustrating object-
oriented programs“, Proceedings of the IEEE 18th
international Conference on Software Engineering ,
Washington, DC, 1996, pp. 366-375.

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-Oriented Modeling and Design, 1990,
Prentice Hall.

[11] T. Systä, “Understanding the behavior of Java
programs”, Proceedings of the Seventh Working
Conference on Reverse Engineering , IEEE Computer
Society, Washington, DC, 2000, p. 214.

[12] The Eclipse Foundation, “Help—eclipse SDK: using
UML2 trace interaction views”,
http://help.eclipse.org/help33/index.jsp?topic=/org.eclips
e.tptp.platform.doc.user/tasks/tesqanac.htm [Sept. 2007]

[13] W. DePauw, D. Lorenz, J. Vlissides, and M. Wegman,
“Execution patterns in object-oriented visualization”, in
Proceedings Conference on Object-Oriented
Technologies and Systems , USENIX, 1998, p. 9.

[14] D. Jerding, J. Stasko, and T. Ball, “Visualising
interactions in program executions”, in Proceedings of
the 19th International Conference on Software
Engineering, Boston, USA, 1997, pp. 360-370.

[15] M. McGavin, T. Wright, and S. Marshall,
“Visualisations of execution traces (VET): an interactive
plugin-based visualisation tool”, in Proceedings of the
7th Austr-alasian User interface Conference–Vol. 50,
2006, pp. 153-160.

[16] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M.
Vlissides, and J. Yang, “Visualizing the execution of
Java programs”, Lecture Notes In Computer Science;
Vol. 2269, Springer-Verlag, London, 2001, pp.151-162.

[17] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh,
and F. I. Vokolos, “Scenariographer: a tool for reverse
engineering class usage scenarios from method
invocation sequences”, 21st IEEE Int. Conference on
Software Maintenance, 2005 pp. 155-164.

[18] C. Riva and J. V. Rodriguez, “Combining static and
dynamic views for architecture reconstruction”,
Proceedings of the 6th European conference on Software
Maintenance and Reengineering, 2002, pp. 47-55.

[19] M. Storey, L. Cheng, I. Bull, and P. Rigby, “Shared
waypoints and social tagging to support collaboration in
software development”, Proceedings of the 2006 20th
Anniversary Conference on Computer Supported
Cooperative Work, 2006, pp. 195-198.

[20] S. Northover and M. Wilson, SWT: The Standard Widget
Toolkit, Volume 1 (The Eclipse Series), New York:
Addison-Wesley Professional, 2004.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

5

Visualizing Similarities in Execution Traces

Bas Cornelissen Leon Moonen
Delft University of Technology Delft University of Technology

The Netherlands The Netherlands
s.g.m.cornelissen@tudelft.nl Leon.Moonen@computer.org

Abstract

The analysis of execution traces is a common practice in the
context of software understanding. A major issue during
this task is scalability, as the massive amounts of data of-
ten make the comprehension process difficult. A significant
portion of this data overload can be attributed to repetitions
that are caused by, for example, iterations in the software’s
source code.

In this position paper, we elaborate on a novel approach
to visualize such repetitions. The idea is to compare an
execution trace against itself and to visualize the match-
ing events in a two-dimensional matrix, similar to related
work in the field of code duplication detection. By revealing
these similarities we hope to gain new insights into execu-
tion traces. We identify the potential purposes in facilitating
the software understanding process and report on our find-
ings so far.

1. Introduction
In the field of dynamic analysis, the post-mortem analysis
of execution traces has been an active research topic for a
long time. While traces can be rich in information and offer
more accurate data than static analysis, they are typically
rather large and not very human-readable. Significant ef-
forts have been made to tackle this scalability issue (e.g.,
[11]) and many techniques and tools have been developed
over time: in earlier work, for example, we proposed a set
of techniques and a tool aimed at rendering execution traces
more navigable [3].

One of the main causes for the information overflow in
execution traces is the repetitive nature of certain event se-
quences. These sequences, which typically stem from loop
constructs, consume huge amounts of space while offering
little additional information to the reader. As a result, the
development of summarization techniques has been con-
ducted to the present day: Hamou-Lhadj et al. [6], for exam-
ple, have addressed this issue by first identifying utility rou-
tines and consequently summarizing these routine. Kuhn et
al. [8] represent traces as signals, which (to an extent) vi-

sualizes repetitions. De Pauw et al. [10] and Hamou-lhadj
et al. [5] propose algorithms to identify similar subtrees in
traces.

In this position paper, we propose to adopt a visualiza-
tion technique to gain more insight into large execution
traces. Taken from the domain of code duplication detec-
tion, we use a technique involving similarity matrices to ef-
fectively depict the repetitive nature of a trace. Our focus is
not so much on pattern identification or summarization as it
is on the visualization of (large) groups of recurrent events.
We identify the potential purposes of such visualizations,
and present the results of our preliminary experiments.

2. Approach

The technique that we propose to use is similar to the work
of Ducasse et al. who, in the field of code duplication visu-
alization, proposed to use a scatter plot to compare source
code to itself [4]. Their strategy is to perform a line-by-line
comparison using a simple string matching function and to
visualize the matches as dots in a two-dimensional matrix.
The resulting matrix shows diagonal lines in case of dupli-
cate code fragments.

It is our opinion that the same method is applicable in the
context of execution trace analysis. We propose to compare
a trace against itself and to visualize the (partial) matches,
with the intent of showing the patterns that are formed by
recurrent call sequences, thus providing more insight into
the program’s behavior.

In particular, it is our belief that a matrix visualization of
this comparison process has the following purposes:

• Recurrent pattern visualization. Similar to the case
of duplicated code detection, we expect recurrent (se-
quences of) calls to show up in the visualization as
clearly visible patterns. Insight into repetitive behav-
ior makes it easier to grasp large amounts of trace in-
formation, and is a first step towards the development
of new trace abstraction techniques that exploit these
repetitions.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

6

(a) (b) (c)

Figure 1. Similarity matrices of three partial Checkstyle traces: (a) 500 events, (b) 1000 events, and (c)
2000 events.

• Execution phase visualization. The interleaving be-
tween trace fragments that bear different degrees of
similarity indicates execution phases and phase transi-
tions [9, 3]. Initial knowledge of a program’s phases of
execution alleviates the trace comprehension process,
and can be useful as a first step towards a more focused
examination.

• Polymorphism visualization. By varying the match-
ing criterion used to compare two events, we can also
detect recurrent call sequences of which the calls differ
only slightly, e.g., in case of late binding. Additionally,
studying occurrences of late binding can provide infor-
mation about the program’s input and/or output [1].

3. Preliminary experiments
To assess the feasibility of our approach, we have per-
formed a series of preliminary experiments in which we
analyzed (parts of) an example trace. The subject system
is CHECKSTYLE1, an open-source tool that validates Java
code. The program is instrumented, and executed accord-
ing to a typical scenario during which all method and con-
structor calls are registered. The resulting execution trace
contains roughly 32,000 events.

3.1. Visualizing repetitive behavior
Since our early prototype tools can not cope with traces of
this magnitude – i.e., performing and visualizing 30,000 *
30,000 comparisons within a reasonable timeframe – in the
first experiment we have processed three trace fragments.
These fragments pertain to the first 500, 1,000, and 2,000

1Checkstyle 4.3, http://checkstyle.sourceforge.net/

events of the CHECKSTYLE trace, and serve to provide a
rough indication of the usefulness of our approach.

The matching criterion that we use is simple: we con-
sider two calls to be similar if they involve the same caller,
callee, signature, and runtime parameters.

In visualizing the resulting matches, we use the
FastScatterPlot that is part of JFREECHART2. While this
visualization solution is not particularly efficient, it is suffi-
ciently fast for the initial experiments described here.

3.1.1. Results

Figure 1 shows the similarity matrices for each of the
three trace fragments. The axes each symbolize the trace,
whereas the red dots represent the data points, i.e., similari-
ties between events according to our matching criterion. We
now take a closer look at the matrices and attempt to clarify
their contents.

1. Judging by the density of the data points in Figure 1(a),
the first 500 calls display a great degree of similarity.
Upon closer inspection, we learn that a series of similar
initialization tasks lies at the basis of these calls.

2. When considering the first 1,000 events (Figure 1(b)),
we observe that the aforementioned stage ends some-
where between the 700th and 800th call. What follows
almost instantly is another short repetition sequence.
Finally, a very characteristic shape that looks like a
grid of solid squares is shown at the lower right.

3. By broadening our perspective even more, we obtain
the similarity matrix in Figure 1(c). The main conclu-

2JFreeChart 1.0.6, http://www.jfree.org/jfreechart/

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

7

(a) (b)

Figure 2. Visualizing the entire Checkstyle trace, using (a) a sampled similarity matrix, and (b) a massive
sequence view.

sion here is that the characteristic pattern that we dis-
covered in the previous step is continued all the way
until the 2,000th event; close inspection reveals that a
long series of exceptions is being created at this point.

3.2. Visualizing execution phases
In the second experiment, we focus on the visualization of
execution phases. The idea is to process the entire CHECK-
STYLE trace and to use the matrix visualization to recognize
execution phases. To address the scalability issue that was
described in the previous experiment, we choose to employ
a sampling technique in the data generation process: we
calculate datapoints for sets of calls. The rather straightfor-
ward criterion that we use for now is to consider the simi-
larities between every n-th call with n = 16, thus reducing
the 32,000 events in our trace to a dataset of 2,000 by 2,000
points.

Additionally, we employ an alternative visualization
method that enables the visualization of execution phases.
This second method is the massive sequence view from our
earlier work [7, 3], which can easily cope with traces of up
to 500,000 calls. Viewing both visualizations side by side
allows for the comparison between the two techniques in
the context of phase detection.

3.2.1. Results

The results of this experiment are shown in Figure 2, which
shows the sampled matrix on the left and the massive se-
quence view on the right. Based on the views, we can draw

several conclusions:

1. The matrix visualization clearly shows the various
stages that are negotiated during the execution. While
initially we had suspected the sampling criterion to be
too strict, it turns out that many datapoints satisfy both
the sampling and the matching criteria, resulting in a
series of very distict shapes.

2. The datapoints are less dense in certain phases than
they are in others. In the former case (i.e., less colored
datapoints), either the matching criterion or the sam-
pling criterion is satisfied less often, or a combination
of both. Using a lower value for n would render the lat-
ter criterion more lenient, thus producing more colored
datapoints.

3. The matrix view bears a striking resemblance to the
massive sequence view, in that each phase in the one
view can easily be identified in the other. In particular,
the rather solid shapes in the matrix view correspond
to the vertical lines in the massive sequence view. The
similarity between the two types of views supports our
claim that execution phases can be (largely) attributed
to recurrent patterns, and that the visualization of these
patterns is an effective tool in identifying those phases.

3.3. Visualizing polymorphism
As an example of visualizing occurrences of polymorphism,
we analyzed a series of trace fragments while utilizing a dif-
ferent matching criterion. As a suitable criterion in this con-

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

8

text, we consider two calls to be polymorphic in case they
have common callers and signatures, but different types of
callees.

3.3.1. Results

One fragment in the CHECKSTYLE trace turned out to be
particularly rich in such calls. The resulting similarity ma-
trix of this fragment has been visualized in Figure 3, which
shows six red “columns”. A closer look at the execution
trace in this interval points out that calls with two certain
signatures are being invoked on a series of Check instances;
Moreover, in the case of six certain checks, these calls lead
to additional non-polymorphic interactions, which accounts
for the five “interruptions” in between the aforementioned
columns.

3.4. Observations

From the results in this Section, we can formulate a series
of general observations.

Observation 1. The similarity matrices effectively show
the degrees of repetition within trace fragments. The repet-
itiveness is reflected by the density of the data points: the
less whitespace there is between the data points, the smaller
and more repetitive the call sequences are.

Observation 2. The matrices allow for the recognition of
phases in the program’s execution. In the matrix that shows
2,000 events, we can already distinguish between various
stages. By sampling the data points and showing all 32,000
events, the identification of CHECKSTYLE’s major phases
and their transitions requires little effort.

Observation 3. When using different matching criteria,
various types of similarities can be highlighted in the exe-
cution trace. Our experiments point out that occurrences of
polymorphism are an example type of events that can easily
be distinguished in this manner.

Observation 4. With regard to data generation, our current
prototype implementation is not very scalable: processing
the entire trace requires 900,000,000 string comparisons.
This task would greatly benefit from the use of more in-
volved data structures.

Observation 5. Sampling the input data seems to be a
promising technique: even the very straightforward sam-
pling criterion with n = 16 in our experiment yields mean-
ingful results.

Observation 6. The visualization aspect of our technique
is not trivial, as (in case of no sampling) large traces will
typically produce massive amounts of data points. For this
reason, more effort is required to develop or reuse tech-
niques that make optimal use of screen real-estate.

Figure 3. Matrix visualization of a trace fragment
involving polymorphism.

4. Open Issues
In order for our technique to be applicable in practice, we
need to address several important issues.

4.1. Matching criterion
In our preliminary experiments we have employed a visual-
ization that only allows for one type of data point, i.e., one
color. For this reason we have utilized a very strict matching
criteron: either two calls match, or they do not match.

It would be interesting to use a criterion that is more le-
nient. As an example, one could consider assigning scores
to partial matches (e.g., in case only the runtime parame-
ters do not match) and using different colors for those data
points.

4.2. Scalability
An important observation in our experiments was the lack of
scalability. If we are to deal with real-life execution traces
we can not resort to matching every single call, as this re-
quires (1) too many calculations, and (2) too much screen
real-estate.

4.2.1. Data generation

One of the potential solutions to the data generation prob-
lem is to consider blocks of calls, i.e., to group a number
of calls according to some criterion and to compare these
blocks. The difficult part is to come up with a suitable
selection criterion: simply considering mutually exclusive
blocks of fixed numbers of calls is dangerous, as it poten-
tially separates repeating call sequences. To devise a selec-
tion criterion we will examine the role of stack depths dur-
ing the execution, and investigate whether depth changes
can offer hints in selecting suitable call blocks.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

9

Another solution is the optimization of the comparison
operations themselves. By calculating hashes for the trace
events and storing these hashes in hash buckets, the com-
parison process becomes significantly faster as string com-
parisons are no longer necessary.

4.2.2. Sampling criterion

While the sampling experiment provided good results, we
suspect that this technique would benefit from more elab-
orate sampling criteria. The criterion used so far involves
the consideration of every n-th event; another could be to
consider groups of n events and to calculate a mean value
for each group, or to introduce a minimum threshold for
the amount of events in a group that satisfies the matching
criterion.

4.2.3. Visualization

In order to visualize the potentially large amounts of data
points that result from the comparison process, we need ab-
straction techniques to visualize the information in a mean-
ingful way. Various techniques from the domains of infor-
mation visualization and computer graphics (e.g., mipmap-
ping, interpolation, or event clustering) can be used to han-
dle such larger visualizations.

5. Conclusions and Future Work
In this position paper we have elaborated on a technique to
visualize similarities in program executions. By comparing
an execution trace to itself on an event-by-event basis and
by showing the matches in a similarity matrix, little effort is
required from the viewer to detect repeated call sequences
and to determine the degree of similarity in certain execu-
tion phases. Moreover, such visualizations can lead to a
greater understanding of a program’s execution phases and
occurrences of polymorphism. We conducted preliminary
experiments that pointed out the issues that are to be tack-
led for our technique to be useful in practice.

Having overcome these issues, we have several future
directions for our research. As a first direction we seek to
investigate the value of information on repeated sequences,
e.g., to find out how information on such sequences can be
utilized to (automatically) shorten traces. Among the exam-
ple applications are the dynamically reconstructed sequence
diagrams from our earlier work [2] which could be rendered
more compact.

Secondly, we want to determine to which extent the ma-
trix visualization allows for the detection of phases during
the execution, as was done using an alternative visualization
in earlier work [3]. As a potential solution to the scalabil-
ity issue, we will investigate and propose suitable sampling

criteria.
Finally, another application that we consider to be useful

is the visualization of polymorphism. The matching crite-
rion can be adjusted such that polymorphic calls are visual-
ized, and the visualization of such occurrences may provide
a deeper insight into the program’s behavior and, by exten-
sion, its inputs and/or outputs.

Acknowledgments
This research is sponsored by NWO via the Jacquard Re-
constructor project.

References
[1] T. Ball. The concept of dynamic analysis. ACM SIGSOFT

Software Eng. Notes, 24(6):216–234, 1999.
[2] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaid-

man. Visualizing testsuites to aid in software understanding.
In Proc. 11th European Conf. on Software Maintenance and
Reengineering (CSMR), pages 213–222. IEEE, 2007.

[3] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van
Wijk, and A. van Deursen. Understanding execution traces
using massive sequence and circular bundle views. In Proc.
15th Int. Conf. on Program Comprehension (ICPC), pages
49–58. IEEE, 2007.

[4] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Proc. 3rd
Int. Conf. on Software Maintenance (ICSM), pages 109–118.
IEEE, 1999.

[5] A. Hamou-Lhadj and T. C. Lethbridge. An efficient algo-
rithm for detecting patterns in traces of procedure calls. In
Proc. 1st ICSE Int. Workshop on Dynamic analysis (WODA),
pages 1–6, 2003.

[6] A. Hamou-Lhadj and T. C. Lethbridge. Summarizing the
content of large traces to facilitate the understanding of the
behaviour of a software system. In Proc. 14th Int. Conf.
on Program Comprehension (ICPC), pages 181–190. IEEE,
2006.

[7] D. Holten, B. Cornelissen, and J. J. van Wijk. Visualizing
execution traces using hierarchical edge bundles. In Proc.
4th Int. Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT), pages 47–54. IEEE, 2007.

[8] A. Kuhn and O. Greevy. Exploiting the analogy between
traces and signal processing. In Proc. 22nd Int. Conf. on
Software Maintenance (ICSM), pages 320–329. IEEE, 2006.

[9] S. P. Reiss. Dynamic detection and visualization of software
phases. In Proc. 3rd ICSE Int. Workshop on Dynamic anal-
ysis (WODA), pages 1–6, 2005. ACM SIGSOFT Sw. Eng.
Notes 30(4).

[10] J. F. Morar W. De Pauw, S. Krasikov. Execution patterns for
visualizing web services. In Proc. Symposium on Software
Visualization (SOFTVIS), pages 37–45. ACM, 2006.

[11] A. Zaidman. Scalability Solutions for Program Comprehen-
sion through Dynamic Analysis. PhD thesis, University of
Antwerp, 2006.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

10

Exposing Side Effects in Execution Traces

Adrian Lienhard, Tudor Gı̂rba, Orla Greevy and Oscar Nierstrasz
Software Composition Group, University of Bern, Switzerland

Abstract

We need to understand the impact of side effects when-
ever changing complex object-oriented software systems.
This can be difficult as side effects are at best implicit in
static views of the software, and typically execution traces
do not capture data flow between parts of the system. To
solve this problem, we complement execution traces with
dynamic object flow information. In our previous work we
analyzed object flows between features and classes. In this
paper, we use object flow information to analyze side effects
in execution traces and to detect how future behavior in the
trace is affected by it. Using a visualization, the developer
can study how a selected part of the program accessed pro-
gram state and what side effect its execution produced. Like
this, the developer can investigate how a particular part
of the program works without needing to understand the
source code in detail. To illustrate our approach, we use
a running example of writing unit tests for a legacy system.

1 Introduction

With object-oriented programs, the gap between static
structure and runtime behavior is particularly large. Un-
like pure functional languages where the entire flow of data
is explicit, in object-oriented systems the flow of objects
is not apparent from the source code. Through reference
fields, objects may outlive the execution scope in which
they are created and thus may influence behavior of another
part of a system at a later point in time. This character-
istic of object-oriented systems represents side effects on
the program state. As this is a key characteristic of object-
orientation, it is crucial when analyzing a program function-
ality, to take side effects into consideration.

While the concept of data flow has been widely studied
in static analysis [11], it has attracted little interest in the
field of dynamic analysis. Most approaches either analyze
traces of method execution events [8, 22] or they analyze the
interrelationships of objects on the heap [4, 10]. However,
to detect side effects and how they affect future behavior in

the trace, we need to also capture fine-grained information
about the transfer of object references.

Side effects are difficult to understand, not only be-
cause of implicit information flow, but also because com-
plex chains of method executions can hide where they are
produced [20]. In this paper we explore how exposing side
effects in execution traces can support a developer to bet-
ter understand and to maintain an object-oriented system.
Before making a change to complex object-oriented legacy
system, a developer needs to identify and understand side
effects produced by the behavior he intends to change, and
the parts of the system are potentially affected by it.

To facilitate the detection of side effects we adopt our
Object Flow Analysis technique [14]. We demonstrated in
previous work the usefulness of this technique to identify
dependencies between features [15] and to discover rela-
tionships between classes by analyzing how they exchange
objects [13]. The use of Object Flow Analysis as presented
in this paper takes a different angle. Our focus here is to re-
late object flows to method execution events to reason about
side effects in object-oriented systems.

Motivating example. As a motivation for side effect
analysis, we present an example use case where knowledge
of side effects supports the production of tests. Writing re-
gression tests for legacy systems is a crucial maintenance
task [5]. Tests are used to assess if legacy behavior has
been preserved after modifying the code. They also doc-
ument reengineering efforts. However, the task of writing
tests is nontrivial when there is a lack of internal knowledge
of a legacy system [6].

Without prior knowledge of a system, a test writer needs
to accomplish the following steps to produce a unit test:

• Creation of a fixture. This involves determining which
objects should be initialized so that the behavior to be
tested can be successfully executed.

• Execution of a method under test. Once the fixture is
established, this just involves executing the method un-
der test using the appropriate receiver and arguments.

• Verification of the expected results. We need to know
which conditions to test, i.e., what the expected side
effect is and what the return value of the method is as
a result of execution.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

11

We propose a visualization to expose side effects, which
serves as a blueprint to set up a minimal fixture and to verify
the expected test results.

Outline. In Section 2 we introduce our approach and
subsequently in Section 3 we illustrate how it can be applied
to facilitate the generation of unit tests. We outline related
work in Section 4 and we conclude in Section 5.

2 Approach

To analyze side effects, we complement execution traces
with dynamic object flow information by tracing the trans-
fer of object references (i.e., a dynamic pointer analysis).
With this additional behavioral information, we can detect
for a selected part of an execution trace, the precise effect it
had on the program state and which future behavior in the
trace was affected by the resulting heap modifications. We
consider the term program state to be limited to the scope of
the application under analysis and the system classes it uses.
We do not take changes outside this scope into considera-
tion, e.g., writing to a network socket or updating the dis-
play. Therefore, we refer to the side effect of some program
behavior as the set of all heap modifications it produces.

We structure the discussion as follows. First we present
our analysis of information flows in execution traces and
how we detect side effects. Then, in Section 2.2 we describe
how to expose the side effects. A visualization shows how
program execution used and affected the program state. In
Section 2.3 we present how side effects were propagated so
as to influence behavior in the trace at a later point in time.

2.1 Detecting side effects

Typically, UML sequence diagrams are used to visualize
execution traces (or parts of them) [7]. We base our analy-
sis of side effects on an adaptation of a more scalable view
introduced by De Pauw et al. [3], which was later also im-
plemented in the Jinsight tool [4].

Figure 1 (left) illustrates a small portion of an execution
trace represented by the experimental tool we built for side
effect analysis. The trace is presented as a tree where the
nodes represent method executions. The layout emphasizes
the progression of time; messages that were executed later
in time appear further to the right on the same line or further
down than earlier ones. For a comparison with sequence
diagrams we refer the reader to work by de Pauw et al. [3].

This visual representation emphasizes the underlying
model of our approach — namely, to consider a method
execution as including the transitively executed methods.
We refer to a partial execution trace as a sub-trace. This
corresponds to the call-return procedure abstraction of most
programming languages. Figure 1 illustrates a selected sub-
trace indicated by a rectangle in the execution trace.

arguments

implicilty imported references

implicitly exported references

sub-trace

receiver

return value

Figure 1. Flow of objects into and out of a
sub-trace.

To contribute to the computation of a program, the
method executions of a sub-trace must have some effect
on information flow. A sub-trace defines an encapsulation
boundary with respect to object references being passed in
and out of it. The out going flows are represented by the
returned value (of the first method) and all objects stored in
fields. We refer to those flows as exports.

During execution, the methods of the sub-trace also use
existing program state. Accessible objects are the receiver
and the arguments (of the first method execution) and fur-
ther objects obtained from fields and global variables. We
refer to those in going flows as imports (see Table 1).

import export
explicit receiver and arguments return value
implicit field/global read field/global write

Table 1. Flows at the sub-trace boundary

The receiver, arguments and the return value are explic-
itly passed at the sub-trace boundary. However, the flows
out of or in to fields or global variables are hidden in the
methods of the sub-trace. Therefore, it is often complex to
grasp those implicit flows when studying an object-oriented
system.

The implicitly exported flows represent the side effects
of the execution of the sub-trace on the program state. The
implicitly imported flows show us which objects have been
used to produce those effects.

The strategy we adopt for detecting the object flows de-
scribed above is based on the concept of Object Flow Anal-
ysis. The core of this analysis is the notion of object aliases
(i.e., object references) as first class entities [14, 13], as
shown in the Object Flow meta-model in Figure 2.

The Object Flow meta-model explicitly captures the fol-

2

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

12

dynamic model static model

Alias

Instance

*

0..1

*0..1
sender

Method* 1

Class1*

*

1

creator

Activation

parent

receiver

subject

*

SubTrace

1

root

children

createdAliases

* 1 1

1

Figure 2. Core Object Flow meta-model.

lowing object references (represented as alias entities in the
meta-model) created in a method execution (represented by
the activation entity in the meta-model). An alias is created
when an object is (1) instantiated, (2) stored in a field or
global variable (including indexable fields), (3) read from
a field or global variable, (4) stored in a local variable, (5)
passed as argument, or (6) returned from a method execu-
tion. The transfer of object references is modeled by the
parent-child relationship between aliases of the same ob-
ject.

Once we have established our Object Flow meta-model,
we can detect the import and export sets of a sub-trace. The
implicit object flows are defined as follows:

• The implicitly exported references are exactly those
that are represented by the field and global write aliases
that are created in activations of the sub-trace.

• The implicitly imported references are exactly those
that are represented by the field and global read aliases
that (i) are created in activations of the sub-trace and
that (ii) do not have a parent write alias in the set of
exported references.

The constraint (ii) makes use of the object flow infor-
mation. That is, for each field read alias the corresponding
field write alias is known (parent relationship). This con-
straint ensures that field references that are defined in the
same sub-trace where they are used, are not considered as
imports.

2.2 Exposing side effects

In the previous section we discussed how exported and
imported object references are detected. The implicitly ex-
ported object references represent the side effects produced
by a sub-trace, while the imported object references indi-
cate which previously existing program state is used during
its execution.

In this section we present our approach to expose side ef-
fects. Our experimental tool provides two interactive views,

which are both illustrated in Figure 3. On the left side of
Figure 3 the view with the execution trace is shown (as dis-
cussed previously). When clicking on a sub-trace in this
view, a new window is opened (see Figure 3 right). We re-
fer to the view it shows as the side effect view.

This view is similar to a UML object diagram [7] in that
it shows objects and how they refer to each other. The key
differences are: (1) it is scoped to the behavior of a selected
sub-trace, and (2) it provides additional information based
on the side effect analysis.

FunctionScope>>addTemp:

Legend

imported reference
exported reference (side effect)

Figure 3. The side effect view of a selected
part of the execution trace.

Figure 3 shows all objects being accessed (but not nec-
essarily receiving messages) during the execution of a se-
lected sub-trace. We annotate the class name of objects
that have been explicitly passed into a sub-trace, i.e., the re-
ceiver, the arguments, and the return value. We use regular
typeface to indicate objects that existed before the execution
of the sub-trace, whereas we use bold typeface to indicate
objects that are instantiated during its execution.

An edge between objects indicates that one object has a
field reference to another object. Gray edges indicate refer-
ences that already existed before the sub-trace was run, i.e.,
they refer to imported object references. If a gray edge is
dashed this means that the reference is deleted during the
execution of the sub-trace. Black edges indicate the refer-
ences that are established during the execution of the sub-
trace, i.e., the ones that are exported. Thus, the black edges
represent references that are the side effects of the sub-trace.

The main goal of this view is to (i) show which objects
are used by the sub-trace, (ii) what side effects are pro-
duced on those objects, and (iii) how the objects refer to
each other, i.e., to make the reference paths between objects
visible.

In Figure 3 we see, for example, the execution of a
method addTemp: by an instance of FunctionScope (re-
ceiver). A ByteString is passed as argument. This execution

3

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

13

produces a side effect: a new TempVar instance is created (it
is displayed with bold text), and the instance is not only re-
turned but also stored in an already existing array. Another
side effect is that the returned object is assigned a back ref-
erence to the receiver. Also, the object passed as argument,
a ByteString, is stored in a field of the TempVar instance.

In our prototype, the name of a field (object reference) is
displayed as a tooltip when moving the mouse over it.

2.3 Exposing the impact of side effects

In the previous section we discussed how we expose the
side effects produced by the execution of a sub-trace. In
this section we show which future behavior in the trace is
affected by the side effect.

The side effects of a sub-trace are essentially the im-
plicitly exported references (field or global stores). Other
sub-traces, which occur later in the trace, may then import
these references. The importing sub-traces may then pro-
ceed to further export the references. Therefore, to detect
also method executions indirectly affected by the side ef-
fects of a sub-trace, we need to track how imported refer-
ences are further propagated in the trace.

In the execution trace under analysis we highlight meth-
ods that are affected by a side effect. When a sub-trace is
selected, we highlight all method executions that contain
references originating from its exported references.

An execution trace with affected method activations is
illustrated in the subsequent section (see highlighted meth-
ods in Figure 4), which exemplifies how the detection of
side effects can be used to support the task of writing tests.

3 Case Study: Using the Side Effect View as
a Test Blueprint

With our approach we make use of dynamic informa-
tion captured from instrumented example runs of the sys-
tem. The side effect view serves as a blueprint for writing
tests by making explicit:

• The minimal fixture: only the gray objects and gray
references are expected to exist before executing the
method to be tested.

• What results to verify: the black objects and black ref-
erences, which are produced as side effects of execut-
ing the method.

We motivate our work by presenting an example to il-
lustrate how knowledge of side effects supports writing unit
tests. The example is taken from an open-source Smalltalk
bytecode compiler. The compiler works in three phases: (1)
scanning and parsing, (2) translating the Abstract Syntax

InstanceScope>>newMethodScope

FunctionScope>>addTemp:

FunctionScope>>lookupVar:

NonClosureScopeFixer>>acceptVarNode:

Figure 4. Side effect views serving as
blueprints for writing tests.

Tree (AST) representation to the intermediate representa-
tion (IR), and (3) translating the IR to bytecode.

Let us assume we want to test the implementation of
how variables are captured in the AST to IR transformation
phase. Since variables are always defined in a specific scope
(method, block closure, instance, or global scope), classes
like InstanceScope or FunctionScope look like interesting
classes to test. However, they are complex to understand
without studying the source code in detail.

First, we identify in the source code the method
InstanceScope�newMethodScope, which looks promising
as a starting point. Thus, we first query the trace for one
of the executions of the method. Figure 4 on the top right
shows the side effect view of an execution. On the top left
the corresponding sub-trace is highlighted in green.

4

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

14

For the test we want to write, setting up the fixture only
requires the creation of an InstanceScope (this is the only
object that is used but not created in the sub-trace and there
are no gray references). Then we can execute the method
we want to test.

instance := InstanceScope new.
function := instance newMethodScope.

Next, we investigate the side effect view to determine
what conditions we need to verify. First we want to as-
sert that the return value actually is a function scope object.
Then we check whether the function scope correctly refer-
ences the instance scope as its outerScope (this is the name
of the field, which in our prototype is obtained by a tooltip
and hence is not shown in Figure 4). Both keyed sets, temp-
Vars and capturedVars, are assumed to be empty. Also a
new instance of ThisContextVar is created, which is stored
in the function scope and has a back reference.

self assert: function class = FunctionScope.
self assert: function outerScope = instance.
self assert: function tempVars isEmpty.
self assert: function capturedVars isEmpty.

var := function thisContextVar.
self assert: var class = ThisContextVar.
self assert: var scope = function.
self assert: var name = ’thisContext’.

With the assertions above, we have tested all side effects
that the method, together with the 9 methods it indirectly
executes, is expected to produce. Now, what further tests
can we write for this part of the system? We can answer
this question by investigating the methods that are affected
by the side effects of the method under test. In the exe-
cution trace, the affected methods are marked with orange.
In our example (see Figure 4), we identify five locations
in the trace where methods are affected, the last one being
much later in time than the others. These method executions
are examples of which other behavior uses the state that is
changed as a result of running the method we are testing.

For instance, addTemp: is called on the function scope
we created. We can now take its side effect view (see Fig-
ure 4) to write the next test. It shows that for the fixture the
function scope as it is created in the previous test is suffi-
cient. Additionally, we need the string ‘x’ as an argument.
We can now test the expected side effects, for instance, that
the function scope includes the new instance TempVar and
that this instance correctly references the name of the tem-
porary variable we passed as an argument.

...
var := function addTemp: ’x’.

self assert: var class = TempVar.
self assert: var name = ’x’.
self assert: var scope = function.
self assert: (function tempVars includes: var).

Along the same lines we can write tests for the remain-
ing usage examples. For instance, to write a fixture for
FunctionScope�lookupVar:, we see that it depends on the
TempVar produced as a side effect of the previous test.
Therefore, we only need to add the following lines to it.

result := function lookupVar: ’x’.
self assert: result = var.

The method lookupVar: is special in that it produces no
side effects (there are no bold instance names nor black ref-
erences).

The last side effect view shown in Figure 4 is more com-
plex than the previous ones. It is also an example for the
deletion of a reference. The reference from the RBVari-
ableNode to the TempVar instance is deleted (dashed arrow)
and replaced by a reference to a newly instantiated TempVar
object.

function := InstanceScope new newMethodScope.
block := function newFunctionScope.
var := block addTemp: ’x’.
node := (RBVariableNode named: ’x’) binding: var.
fixer := NonClosureScopeFixer new scope: method.

fixer acceptVariableNode: node.

newVar := method lookupVar: ’x’.
self assert: newVar class = TempVar.
self deny: newVar = var.
self assert: node binding = newVar.
self assert: newVar scope = method.

4 Related work

Typically, dynamic analysis techniques focus on execu-
tion traces, which capture method execution events [3, 9,
21]. As dynamic analysis implies large amounts of data,
much research effort has been concerned with the accessi-
bility of large traces using filtering or summarization tech-
niques [3, 9], or by identifying recurring execution patterns
[12]. While those approaches mainly analyze method ex-
ecution sequences, our approach additionally takes into ac-
count the object flow, and hence is capable to relate program
execution and its effect on the program state.

Another dynamic analysis research area is concerned
with the structure of object relationships. For instance,
Tonella et al. extract the object diagram from test runs [19],
Super-Jinsight visualizes object reference patterns to detect
memory leaks [4], and the visualizations of ownership-trees
proposed by Hill et al. show the encapsulation structure
of objects [10]. To support debugging, tools like the GNU
Data Display Debugger [23] visualize program state. The
key difference to our approach is that we not only extract
the object reference relationships, but in addition we detect
how reference relationships are modified by a specific part
of the program execution.

5

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

15

Dynamic data flow analysis is a method of analyzing
the sequence of actions (define, reference, and undefine) on
data at runtime. It has mainly been used for testing procedu-
ral programs, but has been extended to object-oriented pro-
gramming languages as well [1, 2]. Since the goal of those
approaches is to detect improper sequences on data access,
they do not capture how objects are passed through the sys-
tem, nor how read and write accesses relate to method ex-
ecutions. To the best of our knowledge, Object Flow Anal-
ysis is the only dynamic analysis approach that explicitly
models object reference transfers.

In the area of static analysis, there is a large body of re-
search on interprocedural side effect analysis. More recent
research addresses the precision problem of static side ef-
fect analysis (or the analysis of pure methods) in object-
oriented programs [16, 17, 18]. As static analysis does not
take a concrete execution scenario into account, it provides
a conservative view (which may even include infeasible ex-
ecution paths of the program). Dynamic analysis on the
other hand produces a precise under-approximation. Our
approach makes use of this property by accurately detecting
the side effects as they are produced during example runs of
the program. This allows for directly relating side effects to
where they occur in an execution trace. Another advantage
of our approach is that it handles reflection, multi-threading,
or dynamic code updates, which typically pose problems in
static analysis.

5 Conclusions

In this paper we propose to expose side effects in execu-
tion traces through Object Flow Analysis. We use the dy-
namic object flows to define the side effect view, and we ex-
emplify how we can use this information to guide the devel-
oper when writing tests, in particular in the case of legacy
object-oriented systems.

As with most other dynamic analysis approaches, scal-
ability is a potential limiting factor. Object Flow Analysis
gathers both object references and method executions, thus
it consumes about 2.5 times the space of conventional exe-
cution trace approaches [13].

Apart from the amount of data gathered, the side effect
view is most vulnerable to large amount of data because it
shows single objects and references between them. Our ini-
tial case studies indicate that also sub-traces of the size of
several hundred method executions can be analyzed. How-
ever, the view does not scale for the analysis of truly large
parts of the execution in which hundreds of objects are mod-
ified. We plan to tackle this problem by collapsing and sum-
marizing parts of the object reference graph shown in the
view. In this way, implementation details such as the inter-
nal structure of collections can be hidden to yield a more
concise side effect view.

In our current studies we limit the analysis of program
state to the application and the system library classes. How-
ever, side effects outside this scope, for instance, writing on
a network socket or updating the display, are not captured.
For future work we plan to extend the analysis to take also
side effects into account that are outside this scope (e.g., to
capture how data in a RDBMS is affected).

Acknowledgments:. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] A. S. Boujarwah, K. Saleh, and J. Al-Dallal. Dynamic data
flow analysis for Java programs. Information & Software
Technology, 42(11):765–775, 2000.

[2] T. Y. Chen and C. K. Low. Dynamic data flow analysis for
C++. In APSEC ’95: Proceedings of the Second Asia Pa-
cific Software Engineering Conference, page 22, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

[3] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. In Proceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’98), pages 219–234. USENIX, 1998.

[4] W. De Pauw and G. Sevitsky. Visualizing reference patterns
for solving memory leaks in Java. In R. Guerraoui, edi-
tor, Proceedings ECOOP ’99, volume 1628 of LNCS, pages
116–134, Lisbon, Portugal, June 1999. Springer-Verlag.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[6] S. Ducasse, T. Gı̂rba, and R. Wuyts. Object-oriented legacy
system trace-based logic testing. In Proceedings of 10th Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR’06), pages 35–44. IEEE Computer Society
Press, 2006.

[7] M. Fowler. UML Distilled. Addison Wesley, 2003.
[8] A. Hamou-Lhadj and T. Lethbridge. A survey of trace explo-

ration tools and techniques. In Proceedings IBM Centers for
Advanced Studies Conferences (CASON 2004), pages 42–55,
Indianapolis IN, 2004. IBM Press.

[9] A. Hamou-Lhadj and T. Lethbridge. Summarizing the con-
tent of large traces to facilitate the understanding of the be-
haviour of a software system. In Proceedings of Interna-
tional Conference on Program Comprehension (ICPC 2006),
pages 181–190, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[10] T. Hill, J. Noble, and J. Potter. Scalable visualisations with
ownership trees. In Proceedings of TOOLS ’00, June 2000.

[11] M. Hind. Pointer analysis: Haven’t we solved this prob-
lem yet? In 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
(PASTE’01), Snowbird, UT, 2001.

[12] D. J. Jerding, J. T. Stasko, and T. Ball. Visualizing interac-
tions in program executions. In Proceedings of ICSE ’97,
pages 360–370, 1997.

[13] A. Lienhard, S. Ducasse, and T. Gı̂rba. Object flow anal-
ysis — taking an object-centric view on dynamic analysis.
In International Conference on Dynamic Languages (2007),
2007. To appear.

6

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

16

[14] A. Lienhard, S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Cap-
turing how objects flow at runtime. In Proceedings Inter-
national Workshop on Program Comprehension through Dy-
namic Analysis (PCODA 2006), pages 39–43, 2006.

[15] A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking objects
to detect feature dependencies. In Proceedings International
Conference on Program Comprehension (ICPC 2007), pages
59–68, Washington, DC, USA, June 2007. IEEE Computer
Society.

[16] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis,
pages 1–11, New York, NY, USA, 2002. ACM Press.

[17] A. Rountev. Precise identification of side-effect-free meth-
ods in Java. In ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages
82–91, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[18] A. Salcianu and M. C. Rinard. Purity and side effect analysis
for Java programs. In VMCAI, pages 199–215, 2005.

[19] P. Tonella and A. Potrich. Static and dynamic c++ code anal-
ysis for the recovery of the object diagram. In Processings
of 18th IEEE International Conference on Software Mainte-
nance (ICSM 2002), Los Alamitos, CA, USA, 2002. IEEE
Computer Society.

[20] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

[21] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to support
the program comprehension process. In Proceedings IEEE
European Conference on Software Maintenance and Reengi-
neering (CSMR 2005), pages 134–142, Los Alamitos CA,
2005. IEEE Computer Society Press.

[22] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event ex-
ecution frequency. In Proceedings IEEE European Confer-
ence on Software Maintenance and Reengineering (CSMR
2004), pages 329–338, Los Alamitos CA, Mar. 2004. IEEE
Computer Society Press.

[23] A. Zeller and D. Lütkehaus. DDD – a free graphical front-
end for unix debuggers. SIGPLAN Not., 31(1):22–27, 1996.

7

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

17

Applying Grammar Inference Principles to Dynamic Analysis

Neil Walkinshaw and Kirill Bogdanov

Department of Computer Science, The University of Sheffield, UK
E-mail: {n.walkinshaw, k.bogdanov}@dcs.shef.ac.uk

Abstract

Grammar inference and dynamic analysis share a num-
ber of similarities. They both try to infer rules that gov-
ern the behaviour of some unknown system from a sample
of observations. Deriving general rules about program be-
haviour from dynamic analysis is difficult because it is vir-
tually impossible to identify and supply a complete sample
of necessary program executions. The problems that arise
with incomplete input samples have been extensively inves-
tigated in the grammar inference community. This has re-
sulted in a number of advances that have produced increas-
ingly sophisticated solutions that are much more successful
at accurately inferring grammars. This paper investigates
the similarities and shows how many of these advances can
be applied with similar effect to dynamic analysis problems.

1. Introduction

Techniques that are based upon dynamic program anal-
ysis are appealing because of their inherent precision. A
dynamic technique is supplied with a collection of program
traces (a trace records the state of a program throughout its
execution), and this concrete information can be used as a
basis to make precise conclusions about the program be-
haviour. However, these conclusions are only valid with
respect to the set of supplied traces and do not necessarily
generalise to every possible program execution [10].

Dynamic analysis results have to be interpreted with a
degree of skepticism. They can only be regarded as rep-
resentative of general program behaviour (regardless of in-
put or environment) if the supplied set of program traces
is ‘complete’, i.e. it provides a total coverage of program
behaviour, as is the purpose of functional test sets. Depend-
ing on the complexity of the program, this set of necessary
program traces can be extremely large. If the additional
assumption is made that the developer has no prior famil-
iarity with the program (which is probable in domains such
as program comprehension), the precondition that she can

provide a set of traces that is complete becomes unreason-
able. Instead, dynamic analysis techniques are commonly
provided with an incomplete set of traces, in the hope that
they are sufficient to result in a model that is an approxima-
tion of general program behaviour.

This problem is not unique to dynamic analysis. Gram-
mar inference is an example of another field that is sub-
ject to a similar weakness. Here the challenge is to identify
the grammar of a language by analysing a sample of sen-
tences that belong to (and optionally do not belong to) it.
The sample of sentences can often be sparse, which means
that the resulting grammar is inevitably only partial or even
false. However, a substantial amount of research in gram-
mar inference has focused on minimising this problem, and
has largely achieved this by using simple solutions, such
as the provision of negative strings as well as positive ones
to avoid unsound results, and the use of oracles to guide
inference by answering simple questions about system be-
haviour.

This paper looks at some of the similarities between
grammar inference and dynamic analysis. It presents some
of the established theoretical limits on solutions to gram-
mar inference problems, which also apply to dynamic anal-
ysis techniques that infer models equivalent to deterministic
finite automata (this is the case for a large proportion of dy-
namic analysis techniques). It also shows how certain prin-
ciples that have been successful in increasing the reliability
of inferred grammars can as easily be used to improve the
soundness of dynamic analysis results.

2. Regular Grammar Inference and its Limits

This section introduces the grammar inference problem,
provides an overview of some inherent limits on certain tra-
ditional approaches, and introduces some of the most suc-
cessful recent solutions. It does not provide an in-depth
overview of the underlying mechanics of grammar infer-
ence techniques. The purpose of this section is to provide a
high-level view of some of the key insights that have led to
the most substantial advances in the field. For a more com-
prehensive overview, there are recent authoritative surveys

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

18

a

b

c

b

Figure 1. DFA that recognises the grammar
corresponding to (ab*c)+b

by Parekh and Honavar [17] and De la Higuera [7].

2.1. The Grammar Inference Problem

The problem of grammar inference (also known as gram-
mar induction) was formalised by Gold [11] in 1967. It
is concerned with the identification of a language gram-
mar from a finite sample of valid and (optionally) invalid
sentences. Regular grammars have received the greatest
amount of attention from the inference community. They
are the simplest form of grammar in terms of Chomsky’s
hierarchy [4], and can be equivalently represented as a De-
terministic Finite Automaton (DFA), where transitions are
labelled by words and the automaton represents every valid
ordering of those words in a sentence. The DFA represen-
tation is particularly appealing because [17]: (a) DFAs are
easy to understand and (b) there exist several efficient DFA
algorithms that are useful for a number of inference tech-
niques (such as minimisation, determining the equivalence
of two DFAs, and determining whether the language pro-
duced by one DFA is the super set of the language produced
by another).

To illustrate the regular grammar inference problem, fig-
ure 1 illustrates the DFA for a simple regular grammar. Pos-
itive samples of the grammar correspond to sequences that
would be accepted by the machine, and negative samples
correspond to strings that would be rejected. As an ex-
ample, a positive sample could consist of {abbbbc, b, abc}
and a negative sample could consist of {c, aba, ba}. Given
that we do not have any prior knowledge of the structure
of the DFA, a grammar inference technique would attempt
to guess it, given only the sets of positive and negative se-
quences.

2.2. Traditional Solutions and their Limits

The regular grammar inference problem has been shown
to be NP-complete in general [1, 12] and was even com-
pared to problems such as breaking the RSA cryptosystem
[13]. However, since Gold’s initial research into the subject,
a number of techniques have emerged that can correctly in-
fer a grammar in polynomial time by placing restrictions on

certain factors, such as making assumptions about the ini-
tial sample of sentences, or adding oracles that can provide
additional information to the inference algorithm. Some of
those advances have been prompted by a substantial body
of theoretical work that establishes the inherent computa-
tional limitations on particular solutions to the grammar in-
ference problem. As an example, Gold [11] proved that (in
the worst case) an inference algorithm will require an in-
finite number of positive input sentences to determine the
target grammar – thus establishing that any practical finite
solution would require some quantity of negative sentences
as well.

Subsequent research by Angluin [2] proved that, given
a random initial sample of positive and negative sentences,
the exact language can be inferred in polynomial time by
using a ‘minimally adequate teacher’. This teacher is ex-
pected to answer two types of queries:

(1) If the technique suggests sequences that do not al-
ready belong to the initial positive or negative samples, the
oracle can state whether or not they are valid in the target
grammar - these are called membership queries.

(2) If the technique produces a suggested grammar
(i.e. arrives at a tentative DFA), the oracle can determine
whether it is the target DFA or not - these are called equiv-
alence queries.

Angluin’s minimally adequate teacher, in particular the
requirement to be able to answer equivalence queries, is not
always practical for certain application domains. The ability
to answer equivalence queries implies a substantial amount
of prior knowledge of the grammar (or state machine). If,
for example, the teacher is a human and the state machine
consists of hundreds of states and transitions, the process of
establishing whether the inferred hypothesis corresponds to
the human’s impression of a correct machine becomes un-
realistic. Besides the practicalities of comparing two gram-
mars, there is the additional problem that the approach pre-
sumes that the oracle already has a prior knowledge of the
system.

An alternative approach that does not necessarily depend
on an oracle is to adopt the state merging approach, origi-
nally developed by Trakhtenbrot and Barzdin [18]. These
broadly operate by using the sets of positive and negative
samples to produce an augmented prefix tree acceptor - a
state machine that represents exactly the samples of posi-
tive and negative sequences provided. This is illustrated in
figure 2. The inference process then consists of iteratively
merging pairs of nodes in the tree, producing a more general
language acceptor in the process. The challenge lies in not
merging pairs of nodes that would represent different states
in the target DFA, because this would produce a machine
that is too general (unsound). A worklist of node pairs to be
merged is created by traversing the prefix tree in a structured
fashion (e.g. breadth-first search), and this list is processed

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

19

a

b

c

b

a

c

b

a

b b b

Figure 2. Augmented Prefix Tree Acceptor for
positive sequences abc,abbbbb,b and nega-
tive sequences aba,c,ba

in order until a merge is found that is consistent with the
supplied sample of sequences. The original state merging
approach by Trakhtenbrot and Barzdin requires a complete
sample of all strings up to a particular length to correctly
infer the exact grammar in polynomial time.

Subsequent work by Oncina and Garcia [16] resulted in
the RPNI (Regular Positive Negative Inference) algorithm.
Instead of requiring an exhaustively complete set of sam-
ples up to a given length, the RPNI algorithm will exactly
identify the target DFA in polynomial time, provided that
the samples contain a characteristic sample of the target
grammar. Informally, this means that, given the minimal
DFA for some target language, a sample is characteristic if
it contains positive sequences that cover every transition, as
well as negative sequences that differentiate between any
pair of non-equivalent states (see Dupont [8] for a formal
definition).

Although the RPNI algorithm does not require an ora-
cle, the requirement for a characteristic sample of the tar-
get grammar can be deemed just as impractical. Depending
on the size and complexity of the target machine, the num-
ber of required sequences in the characteristic sample can
be extremely large. As is the case with answering equiva-
lence queries, constructing a characteristic sample requires
a substantial amount of prior knowledge about the underly-
ing system, ultimately rendering the requirement for a char-
acteristic sample unrealistic for a large number of practical
applications.

2.3. Pragmatic Solutions

The results for the techniques presented above are gener-
ally discouraging. Only if there exists an oracle that invests
a substantial amount of effort, or the initial positive and neg-
ative sentence samples are sufficiently abundant that they
happen to include an exhaustive or characteristic sample,
is it possible to identify the exact target DFA in polyno-
mial time. In the majority of practical applications these as-
sumptions are unrealistic. However, recent techniques pro-
duce vastly improved results by relaxing these assumptions.

They accept that the supplied set of samples might only be
sparse, and apply various heuristics to identify states that
might be equivalent. They accept that the resulting gram-
mar might be only approximate, but ensure that it is at least
an accurate approximation.

Traditional state-merging techniques fail when the sup-
plied sample is sparse. They use simplistic techniques to
construct work lists of possible state merges. If the pro-
vided sample of sentences is not complete or characteristic,
there is not going to be enough information to prevent a
wrong merge from happening, and there is a high probabil-
ity that the algorithm will generate an erroneous machine as
a result. At any point in the traditional merging algorithm,
a worklist of candidate state merges is generated by sim-
ple strategies such as carrying out a breadth-first search of
the successor tree to a node. This creates an arbitrary list
of merge candidates that will only not be merged if there
is a negative string to show that they are not equivalent.
If this negative string is not present, a false merge occurs
that in turn produces an incorrect state machine. Subse-
quent merges compound the error, resulting in a highly in-
accurate final machine. Lang [14] reinforces this point by
demonstrating empirically that for a sparse (incomplete /
non-characteristic) sample of sequences, a traditional merg-
ing algorithm will only approximately identify the correct
target machine if the size of the (random) sample is expo-
nential in the size of the target machine.

A number of authors have realised that the key to im-
proving the performance of state merging algorithms, par-
ticularly in the case of sparse samples, is to improve the
way candidate pairs of nodes are selected. This has resulted
in a number of heuristic approaches - the most popular of
which is Price’s Evidence-Driven State Merging (EDSM)
algorithm [15]. The EDSM algorithm constructs a list of
possible merges in a two-step process. The first step com-
pares every possible pair of states and assigns a ‘similarity’
score to each pair, which indicates how much evidence there
is in the sample to suggest that the pair are equivalent. This
is computed by counting the number of overlapping outgo-
ing labels in the prefix tree. An invalid merge (where a suf-
fix from one state leads to an accept state but the identical
suffix from the other state leads to a reject state) results in
a negative score. The second step merges the highest scor-
ing pair and the search process is restarted on the merged
machine. Unlike the arbitrary merge sequences produced
by traditional state-merging approaches, the merge order
for the EDSM approach depends on the characteristics of
the supplied samples. The EDSM approach was originally
developed as a winning entry to the Abbadingo competi-
tion, which posed various grammar inference challenges for
large random target machines with sparse data sets, where
it excelled at identifying the largest class of machine (~512
states).

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

20

The EDSM algorithm can arrive at a close approxima-
tion to the target DFA even if the initial sample of sequences
is not complete or characteristic. Nonetheless, the require-
ment for a relatively large number of samples is still in-
evitable. Dupont realised that it is easier to supply these
samples iteratively, by employing an oracle. His Query-
driven State Merging (QSM) approach [6, 9] is equipped
with a question generation component that generates ques-
tions with the aim of guiding the oracle towards providing
a (complete) characteristic sample. The algorithm uses the
same heuristics as the EDSM algorithm to select states to
merge, and for every merge the question generator produces
a set of sequences that would have been valid if the merge
was correct. These are posed to the oracle, and are then
added to the appropriate positive or negative sample sets.
Dupont shows that, through its targeted acquisition of nec-
essary samples, the QSM technique arrives at an accurate
solution with a much lower amount of initial sample se-
quences than the EDSM algorithm.

3. Augmenting Dynamic Analysis

There is an obvious overlap between the problems that
are addressed in the grammar inference and dynamic anal-
ysis communities. Both attempt to derive facts or models
from a finite sample of observations. (Regular) grammar in-
ference aims solely to infer a DFA, whereas dynamic anal-
ysis has a broader range of applications. This paper argues
that dynamic analysis has not taken advantage of the afore-
mentioned advances in the field of grammar inference. If
the purpose of dynamic analysis is to discover a model that
is equivalent to a DFA, the analysis problem can be recast as
a grammar inference problem, and the solution can take ad-
vantage of the many advances that have made regular gram-
mar inference more tractable. Even if the target of dynamic
analysis is not to produce a DFA-equivalent model, there are
still many sufficiently general principles that can be applied
regardless of the target model.

This analogy between grammar inference and dynamic
analysis was first realised over 30 years ago when Biermann
and Feldman [3] proposed their k − tails state-merging al-
gorithm that could generate state machines from sample ex-
ecutions. Since then a number of papers with similar aims
have emerged that explore the analogy (e.g. Cook and Wolf
[5]). However, these papers invariably restrict themselves
to a rigid dynamic analysis framework that does not permit
them to take advantage of some of the substantial advances
that have taken place in grammar inference.

The conventional dynamic analysis framework assumes
the provision of a single random selection of execution
traces, from which the analysis technique must generate a
hypothesis model in a single step. Invariably, the implicit
assumption is made that this set of traces is in some sense

‘representative’. Given that in the conventional case dy-
namic traces provide no negative data, it cannot be a char-
acteristic sample (which necessarily contain negative se-
quences to distinguish between states). The only alterna-
tive requirement on the sample that can guarantee an exact
result is that every positive sample up to a given length is
provided, which in the case of dynamic analysis becomes
impossible for any non-trivial system. Consequently, the
result of a dynamic analysis is inevitably an approximation
of the target system which, given only positive samples, is
inherently prone to over-generalisation.

In practice, this means that the model that is presented
by such an analysis will exactly show some set of rules that
govern the provided set of program traces, but will not be
able to make any useful inferences about the general system
behaviour; it cannot infer impossible behaviour and, due
to a combination of insufficient negative information and
incomplete set of samples, any steps that attempt to infer
behavioural rules beyond the supplied set of samples will
probably be false. However, a number of the advances that
have vastly improved the performance of grammar infer-
ence algorithms can be adapted to dynamic analysis. These
are summarised below:

(1) Negative samples: Dynamic traces (positive sam-
ples) need to be accompanied by negative samples if the
model inference is to be accurate and efficient. Negative
samples can be obtained by a variety of techniques, such
as proposing test sequences (if they fail / cannot be exe-
cuted then they are negative) or by static analysis techniques
which, although often too conservative to produce accurate
positive input, are a powerful means of determining what is
impossible in a software system, and are therefore a useful
source of negative input.

(2) Accuracy wrt. incomplete traces: It can often be
analytically shown that a dynamic analysis technique will
produce an accurate model of the target system if the pro-
vided set of traces is complete. However, the ability of a
dynamic analysis technique to cope with incomplete sets of
traces is rarely evaluated. It is only through such empirical
evaluation (often in the context of competitions such as the
Abbadingo competition [15]), that real progress has been
made in the field of grammar inference. These have pro-
duced the advanced heuristic techniques, such as EDSM,
that excel in the average case, by making the most out of
the sparse samples that they are given.

(3) Active dynamic analysis: Dynamic analysis, par-
ticularly in the context of program comprehension, is not
necessarily restricted to passive techniques (which expect
a single initial set of traces and produce a result in a sin-
gle step). Oracles are available that can iteratively guide the
analysis process, both in the form of the human program de-
veloper, as well as the software system itself. In the field of
program comprehension, where it is unreasonable to expect

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

21

Dynamic
Analysis

Trace
Abstraction

QSM
abstract state
machine

source
code

abstraction
function

abstract function
sequences

Abstraction

traces

analyst
3 4

scenarios

2

1

tests (of membership queries)

manual membership queries

Figure 3. Combining dynamic analysis with
QSM

the developer to know much about the system, queries about
the system can be formulated as system tests instead (i.e.
“Is the sequence of calls xyz possible?”). This removes the
necessity that the initial set of traces is complete, because
the set of samples can be grown iteratively, by guiding the
oracle(s) to providing the further missing samples.

4. Small Example: Reverse Engineering State
Machines

The authors are currently applying the principles men-
tioned above to the process of reverse engineering state ma-
chines from software [19]. The ability to reliably reverse
engineer a state machine from a software system is partic-
ularly valuable for a range of development and maintene-
nace tasks such as model-based testing, documentation, and
comprehension of system behaviour. The aim is to gener-
ate the necessary program traces to produce a state machine
that is as accurate as possible.

The problem of reverse engineering state machines by
dynamic analysis is an obvious application for regular
grammar inference techniques because the target model is
a state machine in each case. Our approach is based upon
Dupont’s QSM grammar inference technique [6, 9]. QSM
espouses the three features mentioned in the previous sec-
tion; it can accept negative samples, is relatively accurate
when provided with incomplete samples, and is active (i.e.
will try to obtain more information if it is missing from the
initial set of input samples).

Figure 3 shows how we integrate QSM into the reverse
engineering process. Essentially, the developer develops a
set of mappings from sequences of particular method in-
vocations in the traces to abstract functions. Thus a low-
level dynamic trace can be lifted to a series of high-level
functions (e.g. <open_file, enter_text, save_file>). Each
trace is made into a string of abstract functions and fed
into the QSM algorithm. If more information is required,
it generates a question, in the form of a sequence of abstract
functions that might be valid for the hypothesised machine
(e.g. <open_file, close_file, enter_text?>). The question can
either be answered directly by the user, or automatically,

i.e. the sequence can be executed as a system test. Either
way, if unsuccessful the new negative string is fed back into
the QSM algorithm and the process repeats until no further
questions are generated.

The benefits of active dynamic analysis are manifold. If
queries are answered solely by the developer, the question-
ing process fosters a greater understanding of how the sys-
tem works and forces them to consider aspects of system
behaviour that they might not have envisaged. If, instead of
the developer, the software system itself is used as an oracle
(i.e. queries are posed as system tests), it is straightforward
to simply supply new traces that do or do not correspond
to the questions. Given a suitable test harness this process
could be entirely automated, however at the moment our
implementation takes manually generated traces.

Our initial evaluation of the technique shows that the ap-
proach is reasonably scalable in terms of number of ques-
tions generated and the accuracy of the final model. For spe-
cific results the reader is referred to our paper [19]. What is
important to point out in the context of this paper however
is the fact that the grammar inference evaluation methods
provide a well established means to establish how accurate
and scalable a given technique is. Grammar inference tech-
niques are usually evaluated by generating a collection of
random machines and an accompanying set of random paths
across these machines. The technique in question can be run
with respect to these different sets of paths of varying de-
grees of sparsity. This enables the precise quantification of
the accuracy and scalability of the technique, with respect
to increasingly populated samples of inputs. This evalua-
tion approach is more systematic and accurate than com-
mon evaluations of dynamic analysis techniques, which are
rarely evaluated with respect to the accuracy or complete-
ness of the final model.

5. Conclusions

Many of the problems faced by dynamic analysis and
grammar inference are similar. In order to construct a sound
model of system behaviour, current dynamic analysis tech-
niques place unrealistic requirements on the initial set of
traces which, when unsatisfied, result in a model that can be
highly inaccurate. However, by recasting the problem of in-
ferring a model as a grammar inference problem, there are
a number of straightforward techniques that can be adopted
to substantially improve the efficiency and reliability of dy-
namic analysis results.

The domain of software analysis presents a number of
advantages for inference techniques that need to be inves-
tigated. Static analysis presents an abundance of reliable
negative information. Whereas grammar inference tradi-
tionally relies solely on human oracles, software engineer-
ing tools such as automated testing frameworks and model

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

22

checkers can be used as oracles alongside the developer to
answer queries about hypothetical models. We have applied
grammar inference techniques to the problem of reverse-
engineering abstract state machines, and are currently inves-
tigating the use of static analysis (in the form of call graphs)
to increase the amount of negative information about se-
quences of methods that are definitely impossible, in order
to improve the efficiency of our current technique.

References

[1] D. Angluin. On the complexity of minimum inference of
regular sets. Information and Control, 39:337–350, 1978.

[2] D. Angluin. Learning regular sets from queries and coun-
terexamples. Information and Computation, 75:87–106,
1987.

[3] A. W. Biermann and J. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Trans-
actions on Computers, 21:592–597, 1972.

[4] N. Chomsky. Three models for the description of lan-
guage. IRE Transactions on Information Theory, 2(3):113–
124, 1956.

[5] J. E. Cook and A. L. Wolf. Discovering models of soft-
ware processes from event-based data. ACM Transactions
on Software Engineering and Methodology, 7(3):215–249,
1998.

[6] C. Damas, B. Lambeau, P. Dupont, and A. van Lam-
sweerde. Generating annotated behavior models from end-
user scenarios. IEEE Transactions on Software Engineering,
31(12):1056–1073, 2005.

[7] C. de la Higuera. A bibliographical study of grammatical
inference. Pattern Recognition, 38(9):1332–1348, 2005.

[8] P. Dupont. Incremental regular inference. In Interna-
tional Colloquium on Grammatical Inference and Applica-
tions (ICGI’06), 1996.

[9] P. Dupont, B. Lambeau, C. Damas, and A. van Lamsweerde.
The QSM algorithm and its application to software behavior
model induction. Applied Artificial Intelligence, 2007. to
appear.

[10] M. Ernst. Static and Dynamic Analysis: Synergy and Du-
ality. In Proceedings of the International Workshop on Dy-
namic Analysis (WODA’03), 2003.

[11] E. Gold. Language identification in the limit. Information
and Control, 10:447–474, 1967.

[12] E. Gold. Complexity of automaton identification from given
data. Information and Control, 37:302–320, 1978.

[13] M. Kearns and L.Valiant. Cryptographic limitations on
learning boolean formulae and finite automata. Journal of
the ACM, 41, 1994.

[14] K. Lang. Random DFA’s can be approximately learned from
sparse uniform examples. In COLT, pages 45–52, 1992.

[15] K. Lang, B. Pearlmutter, and R. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-
driven state merging algorithm. In Grammatical Inference;
4th International Colloquium, ICGI-98, volume 1433 of
LNCS/LNAI, pages 1–12. Springer, 1998.

[16] J. Oncina and P. Garcia. Inferring regular languages in poly-
nomial update time. In Pattern Recognition and Image Anal-
ysis, volume 1, pages 49–61. 1992.

[17] R. Parekh and V. Honavar. The Handbook of Natural Lan-
guage Processing, chapter Grammar Inference, Automata
Induction and Language Acquisition, pages 727–764. 2000.

[18] B. Trakhtenbrot and Y. Barzdin. Finite Automata, Behavior
and Synthesis. North Holland, Amsterdam, 1973.

[19] N. Walkinshaw, K. Bogdanov, M. Holcombe, and
S. Salahuddin. Reverse engineering state machines by in-
teractive grammar inference. In Proceedings of the 14th
Working Conference on Reverse Engineering (WCRE’07),
Vancouver, October 2007. IEEE.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

23

Mining Temporal Rules from Program Execution Traces

David Lo† and Siau-Cheng Khoo† and Chao Liu‡
†Department of Computer Science, National University of Singapore

‡Department of Computer Science, University of Illinois at Urbana-Champaign
{dlo,khoosc}@comp.nus.edu.sg, chaoliu@cs.uiuc.edu

Abstract

Software evolution incurs difficulties in program compre-
hension and software verification, and hence increases the
cost of software maintenance. In this study, we propose a
novel technique, to mine from program execution traces a
sound and complete set of statistically significant temporal
rules of arbitrary lengths. The extracted temporal rules re-
veal invariants that the program observes, and will conse-
quently guide developers to understand the program behav-
iors, and facilitate all downstream applications like verifi-
cations. Different from previous studies that are restricted
to mining two-event rules (e.g.,〈lock〉 → 〈unlock〉), our
algorithm discovers rules of arbitrary lengths. Further-
more, in order to facilitate downstream applications, we
represent the mined rules as temporal logic, so that existing
model checkers or other formal analysis toolkits can read-
ily consume our mining results. We performed case studies
on JBoss Application Server (JBoss AS) and a buggy Con-
current Versions System (CVS) application, and the result
clearly demonstrates the usefulness of our technique in re-
covering underlying program designs and detecting bugs.

1 Introduction

Software changes throughout its lifespan. Software
maintenance deals with the management of such changes,
ensuring that the software remains correct while features
are added or removed. Maintenance cost can contribute up
to 60%-80% of software cost [4]. A challenge to software
maintenance is to keep documented specifications accurate
and updated as program changes. Outdated specifications
cause difficulties in program comprehension which account
for up to 50% of program maintenance cost [4].

In order to ensure software correctness, model check-
ing [5] has been proposed and shown useful in many cases.
It accepts a model, often automatically constructed from the
code, and a set of formal properties to check. However, the
difficulty in formulating a set of formal properties has long
been a barrier to its wide-spread application [2].

Addressing the above problems, there is a need for tech-
niques to automatically mine formal specifications from
program as it changes over time. Employing these tech-
niques ensures specifications remain updated; also it pro-
vides a set of properties to be verified via formal verifica-
tion tools like model checking. This family of techniques is
commonly referred to as “specification mining” [2].

There have been a number of studies on specifica-
tion mining, which relate to either program comprehen-
sion (e.g., [20, 6, 15]) or verification (e.g., [2, 22]). Most
specification mining algorithms extract specifications in the
form of an automaton (e.g., [15, 2, 20, 6]) or two-event
rules (e.g., [22]). While a mined automaton expresses a
global picture of a software specification, mined rules break
this into smaller parts each expressing a program property
which is easily understood. A mined automaton might be
too complex to be comprehended manually. Also, meth-
ods mining automaton-based specifications from traces use
automaton learners which suffer from the issue ofover-
generalization(see [14, 15]), but this is not the case with
mining rules. On the other hand, existing work on mining
rules only mines two-event rules (e.g., 〈lock〉→ 〈unlock〉)
which are limited in their ability to express complex tempo-
ral properties.

The focus of this study is to automatically discover rules
of arbitrary lengthsfrom program execution traces. A trace
can be viewed as a series of events, with each event corre-
sponding to a method which is called when a program is ex-
ecuted. A multi-event rule is denoted byESpre → ESpost,
where ESpre and ESpost are the premise/pre-condition
and the consequent/post-condition, respectively. This rule
means that “Whenever a series of eventsESpre occurs,
eventually another series of eventsESpost also occur.”

The above rules can be expressed in temporal logic,
and belong to two of the most used families of temporal
logic expressions for verification (i.e., response and chain-
response) [7]. Examples of such rules include:(Resource
Locking Protocol)Whenever a lock is acquired, eventually
it is released;(Internet Banking)Whenever a connection to
a bank server is made and an authentication is completed

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

24

and one transfers money, eventually money is transferred
and a receipt is displayed.

From traces, many rules can be inferred, but not all are
important. We therefore utilize the concept of support and
confidence from data mining [8] to identify important rules.
Rules satisfying user-defined thresholds of minimum sup-
port and confidence are referred to asstatistically signifi-
cant. A non-redundantset (see Section 3) ofstatistically
significantrules are the output of our mining algorithm.

As with any program analysis tool, soundness and com-
pleteness are desirable goals to have [19]. Our algorithm
is soundas all mined rules are statistically significant. It
is completeas all statistically significant rules of the form
ESpre → ESpost are mined or represented.

We performed a case study on the transaction component
of JBoss Application Server. The result shows the useful-
ness of our mining technique in recovering the underlying
protocols that the code obeys, thus aiding program compre-
hension. Also, another case study has been performed on
a buggy CVS application built on top of the Jakarta Com-
mons Net [3] adapted from the one studied in [15, 14]. The
result highlights the usefulness of our technique in mining
bug-revealing properties, thus aiding program verification.

The rest of this paper is organized as follows. We first in-
troduce the semantics of discovered rules in Section 2, and
discuss the challenges of rule mining and our proposed so-
lution in Section 3. Section 4 reports on the case studies.
With related work discussed in Section 5, Section 7 con-
cludes this study.

2 Semantics of Mined Rules
In this section, we discuss the semantics of mined rules

and the computation of support and confidence values.
Temporal Logic Semantic. Our mined rules can be ex-
pressed in Linear Temporal Logic (LTL) [5]. There are a
number of LTL operators, among which, we are interested
in the operators ‘G’,‘F’ and ‘X’. The operator ‘G’ specifies
thatgloballyat every point in time a certain property holds.
The operator ‘F’ specifies that either a property holds at that
point in time orfinally (eventually)it holds. The operator
‘X’ specifies that a property holds at thenextevent. Let us
consider two examples of LTL expressions below.

F (unlock)
Meaning:Eventuallyunlock is called

G(lock → XF (unlock))
Meaning:Globallywhenever lock is called,
then from thenextevent onwards,
eventuallyunlock is called

Each of our mined rules states: whenever a series of
premise events occurs eventually a series of consequent
events also occurs. A mined rule denoted aspre → post,
can be mapped to its corresponding LTL expression. Exam-
ples of such correspondences are shown in the table below.

Notation LTL Notation
a → b G(a → XFb)

〈a, b〉 → 〈c, d〉 G(a → XG(b → XF (c ∧XFd)))
The set of LTL rules minable by our technique can be

represented in the Backus-Naur Form (BNF) as follows:
rules := G(pre → post)

pre := event|event → XG(pre)
post := XF (event)|XF (event ∧XF (post))

By simple transformations, the mined rules can also be
expressed in Computational Tree Logic (CTL) [5] and prob-
abilistic CTL [9].
Support and Confidence.There are many possible rules,
and we need to identify important ones. Statistics, such
as support and confidence, adapted from data mining [8],
can be used to distinguish important ones:(Support)The
number of tracesexhibiting the premise of the rule;(Confi-
dence)The likelihood of the rule’s premise being followed
by its consequent in the traces.

The meaning of the above is best illustrated by an exam-
ple. Consider the following set of simplified traces:

Trace 1 lock,use,use,unlock,lock,use
Trace 2 lock,unlock,lock,unlock

Let us consider the rulelock → unlock. Its support value
is two, as all two traces exhibit the premise of the rule. Its
confidence is 0.75, as 75% of the time (3 out of 4)lock
is followed byunlock. Formal definitions of support and
confidence are provided in the technical report [17].

Our technique will only output rules satisfying a user-
defined thresholds of minimum support and confidence.
Rules satisfying these thresholds are referred to as being
statistically significant.

3 Mining Algorithm
This section discusses challenges of mining a sound and

complete set of multi-event LTL rules, and presents our so-
lution and mining algorithm.
Challenges and Solutions. The complexity of mining
multi-event temporal rules is potentially exponential to the
length of the longest trace in the trace-set. A naive approach
is to check each possible rule of length two up to the max-
imum length of the traces. This simply does not work be-
cause a set of traces with a maximum length of 100 and
containing 10 unique events will require10100 checks.

To address the above challenge, we utilize an effective
search space pruning strategy. In particular, the follow-
ing ‘apriori’ properties are used to prune non statistically-
significant rules from the search space:

1 If a rule evsP → evsC doesn’t satisfy the sup-
port threshold, neither does any ruleevsQ → evsC

whereevsQ is a super-sequence ofevsP .
2 If a rule evsP → evsC doesn’t satisfy the con-

fidence threshold, neither does any ruleevsP →
evsD whereevsD is a super-sequence ofevsC .

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

25

Furthermore, we notice that many rules are redundant.
A rule RX is redundant if there exists another mined rule
RY where:

1 The concatenation ofRX ’s premise and consequent is
a proper subsequence of the concatenation of those of
RY . Otherwise, if the concatenations are the same,
RX has a longer premise.

2 Both RX and RY have the same support and confi-
dence values.

To illustrate redundant rules, consider the following set
of rules describing an Automated Teller Machine (ATM):

R1 acceptcard→ enterpin,displaygoodbye,ejectcard
R2 acceptcard→ enterpin
R3 acceptcard→ displaygoodbye
R4 acceptcard→ enterpin,ejectcard
R5 acceptcard→ displaygoodbye,ejectcard

If the above rules have the same support and confidence
values, rules R2-R5 are redundant since they are repre-
sented by rule R1. To keep the number of mined rules
manageable, we remove redundant rules. This can drasti-
cally reduce the number of reported rules. Our performance
study on data mining benchmark datasets shows the number
of rules is reduced by more than 1,000 times lesser whenre-
dundantrules are removed – see our technical report [17].

Without the application of the ‘apriori’ properties and
the removal of redundant rules, the case studies considered
are infeasible as the naive approach requires an exponential
number of checks. A different ‘apriori’ property and redun-
dancy identification have enabled practical use of pattern
mining which would otherwise require exponential running
time [8, 21].
Algorithm Sketch. Inputs of our mining algorithm com-
prise a set of traces and the support and confidence thresh-
olds. The output of our algorithm is a set of rules, each of
which expresses: whenever a series of events occurs at a
point in time (i.e., temporal point), another series of events
will eventually occurs. To generate these rules, we need
to identify interesting temporal points, and for such points,
note what series of events are likely to occur next. Our
mining process is composed of three steps – for full details
see [17]:

Step 1 Mine a set of premises where each has a sup-
port value greater than the minimum support
threshold.

Step 2 For each premisepre, do the following:
a Find all temporal points where the

premisepre occurs
b Extract all rules of the formpre →

post, where the consequencepost hap-
pens with the likelihood greater than
or equal to the minimum confidence
threshold.

Step 3 Remove remaining redundant rules.

We perform an aggressive pruning strategy to remove
redundant rules. Sub search spaces containing redundant
rules are identified “early” and pruned. Rather than generat-
ing all statistically significant rules and removing redundant
ones at Step 3 (i.e., “late” pruning), weavoidgenerating re-
dundant rules in the first place (i.e., “early” pruning). At
step 3, we only remove the remaining redundant rules not
identified by our aggressive pruning strategy. “Early” prun-
ing of redundant rules greatly improves the performance of
our algorithm. In our performance study, unless redundant
rules are pruned “early”, several experiments on a real-life
benchmark dataset at various minimum support and confi-
dence thresholds are practically infeasible – see our techni-
cal report [17].

At the end of the above process, a complete set of non-
redundant multi-event LTL rules of the formESpre →
ESpost satisfying the support and confidence thresholds are
mined.

4 Case Studies

We performed a case study on the transaction compo-
nent of JBoss AS to show the applicability of our method
in providing insight into the protocol that the code obeys –
hence aiding program comprehension. Another case study
on a buggy CVS (Concurrent Versions System) application
adapted from the one previously studied in [15, 14] shows
the utility of mined rules in identifying bugs via model
checking.
JBoss AS Transaction Component.We instrumented the
transaction component of JBoss-AS using JBoss-AOP and
generated traces by running the test suite that comes with
JBoss-AS distribution. In particular, we ran the transaction
manager regression test of JBoss-AS. Twenty-eight traces
of a total size of 2603 events, with 57 unique events, were
generated. Running the algorithm with the minimum sup-
port and confidence thresholds set at twenty-five traces and
ninety-percent respectively, 163 non-redundant rules were
mined. The algorithm completed in 35.1 seconds.

A sample of the mined rules is shown in Figure 1. The
19-event rule in Figure 1 describes that the series of events
〈connection to a server instance events, transaction manager
and implementation set up event〉 (event 1-10) at the start
of a transaction is always followed by the series of events
〈transaction completion events and resource release events〉
(event 11-19) at the end of the transaction. The above rule
describing the temporal relationship and constraint between
the 19 events is hard to identify manually. The rule sheds
light into the implementation detailsof JBoss AS which
are implemented at various locations in (i.e., crosscuts) the
JBoss AS large code base.
CVS on Jakarta Commons Net. A case study was per-
formed on a buggy CVS application built on top of the FTP
library of Jakarta Commons Net to show the usefulness of

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

26

Premise Consequent

TxManLocator.getInstance()
TxManLocator.locate()
TxManLocator.tryJNDI()
TxManLocator.usePrivateAPI()
TxManager.getInstance()
TxManager.begin()
XidFactory.newXid()
XidFactory.getNextId()
XidImpl.getTrulyGlobalId()
LocalId.associateCurrentThread()
TransactionImpl.lock()

TransactionImpl.instanceDone()
TxManager.getInstance()
TxManager.releaseTransImpl()
TransactionImpl.getLocalId()
XidImpl.getLocalId()
LocalId.hashCode()
LocalId.equals()
TransactionImpl.unlock()
XidImpl.hashCode()

Figure 1. A Rule from JBoss-Transaction
mined rules in verification and bug detection. The CVS in-
teraction protocol with the underlying FTP library can be
represented as a 33-state automaton partially drawn in Fig-
ure 2 (see [15, 14] for a more detailed diagram).

2

11

0

13 X

G

G

O

12 Y

Info
A – appendFile
S – storeFile
N – rename
C – changeWorkingDir
T – setFileType
I - listNames
D - deleteFile

Info
W- <init>
X – Connect
G – Login
O – Logout
Y – Disconnect
 3 4

5

6

A

T
S

N

S

A

S

C
A

9 8 10

D

I D 7 C

1

W

<<Other 6 Scenarios>>

Multiple-File Deletion Scenario

Multiple-File Upload Scenario

Figure 2. CVS Protocol
We focus on the two scenarios of multiple-file upload

and deletion scenario. The scenarios start with connecting
and logging into the FTP server and end by logging off and
disconnecting from the server. Whenever a new file is added
or a file is deleted a record is made to a system log file.
Multiple versions of the same file are maintained by adding
timestamp to old versions of the file.

The CVS application is buggy, there are 4 bugs that
causesinconsistent system log file. The system log file de-
scribes the state of the CVS repository and should be kept
consistent with the stored files. The 4 bugs are illustrated
by the error transitions (in dashed lines) shown in Figure 3.
Due to the bugs, a file can be added or deleted without a
proper log entry being made. Also, an old version of a file
can be renamed by appending a time-stamp without the new
version being stored to the CVS.

The bugs occur because scenarios are not executed
atomically. Each invocation of a method ofFTPClient

of the FTP library may generate exceptions, especially
ConnectionClosed and IO exception. Hence the code
accessingFTPClient methods need to be enclosed in a
try..catch..finally block. Every time such an ex-
ception happens the program simply logout and disconnect
from the FTP server.

To generate traces, we follow the process discussed
in [15]. First, we instrument the CVS application byte

11 4

5
S

N

A

S
6

N

S

9 10

C D

D A
11 8

I

D

Deletion(D) without log update

Store(S) and rename(N) without appropriate next actions

Normal Injected Bug
Legend

[Bug-1]

[Bug-2]

[Bug-3]

[Bug-4]

C

3
T

Figure 3. Injected Bug

code using an adapted version of Java Runtime Analysis
Toolkit [12]. Next, we ran the instrumented CVS applica-
tion over a set of test cases to generate traces. Via a trace
post-processing step, we then filter events in the traces not
corresponding to the interactions between the CVS applica-
tion and the Jakarta Commons Net FTP library. Thirty-six
traces of a total size of 416 events were generated.

We ran our mining algorithm on the generated traces. It
ran in less in 1.1 second and mined 5 rules with minimum
support and confidence thresholds set at fifteen traces
and ninety percent respectively. Among the mined rules,
the following two rules are the bug-revealing program
properties:

1 Whenever the application is initialized (W), the con-
nection (X) and login (G) to the server are made, file
type is set (T) and an old file is renamed(N),then even-
tually a new file is stored(S), followed by a logout (O)
and a disconnection from server (Y). This isdenoted
as: 〈W,X, G, T,N〉 → 〈S, O, Y 〉

2 〈W,X, G,C, I, D〉 → 〈A,O, Y 〉
We used the model checker described in [10]. We con-

verted an abstract model of the CVS application to the for-
mat accepted by the model checker and checked against the
above two properties. The model checker reported viola-
tions of the above properties. These violations correspond
to 3 out of the 4 bugs (Bug-2,3,4) in the model.

5 Related Work

In [22], Yang et al. present an interesting work on
mining two-event temporal logic rules (i.e., of the form
G(a → XF (b)), whereG, X, and F are LTL opera-
tors [11]), which are statistically significant with respect to
a user-defined ‘satisfaction rate’. The algorithm presented,
however, does not scale to mine multi-event rules of arbi-
trary length. To handle longer rules, Yang et al. suggest a
partial solution based on concatenation of mined two-event

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

27

rules. Yet, the method proposed might miss some multi-
event rules or introduce superfluous rules that are not sta-
tistically significant – it is neither sound nor complete. In
contrast, we mine LTL rules of arbitrary size; scalability is
accomplished by utilizing search space pruning strategies
adapted from the data mining domain. The method is sound
and complete as all mined rules are statistically significant
and all statistically significant rules are mined.

There are many other work on mining frequent pat-
terns [1, 21, 16], automaton [2, 20, 6, 15], Live Sequence
Charts [18], etc. Technique wise, this work is similar to the
family of pattern mining algorithms and has similar worst
case complexity. By employing a pruning strategy, typi-
cal runtimes of pattern mining algorithms can be much less
than the worst case complexity. However, different from
the above existing studies, some of which are our own, in
this work we mine LTL rules which have a different se-
mantic and require different mining strategy than previous
approaches.

6 Discussion and Future Work

Note that the time taken for mining ismuch improved
with search space pruning strategy. Without employing a
search space pruning strategy, the mining process will re-
quire at leastEL check operations, whereE is the number
of unique events andL is the maximum length of the trace.
For traces from JBoss AS considered in Section 4, the min-
ing process (without pruning) will require more than50100

operations. Considering 1 picosecond per operation, it will
only completein about2.501x10148 centurieswhereas we
simply need 35.1 seconds. This highlights the power and
importance of search space pruning strategies in improving
the scalability of the mining process.

In the second case study, Bug-1 cannot be revealed be-
cause the bug-revealing property is outside the bound of
the LTL expressions minable by our algorithm. The bug-
revealing property is: Whenever the application is initial-
ized (W), the connection (X) and login (G) to the server
are made, a file type is set (T),and there is no rename (N)
until a new file is stored (S), then eventually a log entry is
made (A), followed by a logout (O) and a disconnection
from server (Y). To mine the property, we need to mine
rules containing the LTL operators not(¬) and until(U) –
this is a future work.

Another open issue is in improving the scalability of
our method further. One direction we are investigating is
to reduce the size of input traces while retaining the qual-
ity of the specification mined. One can do so by throw-
ing away non-important or less important events. In [23],
Zaidmanet al. identify important key classes using a web-
mining algorithm. Similar approach to that in [23] might
be employed to identify and remove less important events
from the traces. In [13], Kuhn and Greevy partition a trace

into different phases. Rather than mining specifications for
the entire trace, one can separately mine each phase in the
trace. This can be more efficient than mining the entire
trace. If a test-suite is available, one can also perform a
divide-and-conquer strategy by generating traces for each
distinct part of the test suite (i.e., group those testing the
same component together) and analyzing them separately.
Another direction we are investigating is to incorporate lat-
est research in data mining to improve the algorithm further
where approximation in the mining algorithm result can im-
prove mining speed (e.g., [24]).

7 Conclusion
In this paper, a novel method to mine anon-redundantset

of statistically significantrulesof arbitrary lengthsof the
form: “Whenever a series of eventsESPre occurs, eventu-
ally another series of eventsESPost also occurs” is pro-
posed. The problems of potentially exponential runtime
cost and huge number of reported rules have been effec-
tively mitigated by employing a search space pruning strat-
egy and by eliminating redundant rules. Case studies have
been conducted to demonstrate the usability of the proposed
technique for program comprehension and verification.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proc. of Int. Conf. on Very Large DataBases, 1994.
[2] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. InSIGPLAN-

SIGACT POPL, 2002.
[3] Apache Software Foundations. Jakarta Commons/Net.

http://jakarta.apache.org/commons/net/.
[4] G. Canfora and A. Cimitile. Software maintenance. InHandbook of Software

Eng. and Knowledge Eng., 2002.
[5] E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
[6] J. E. Cook and A. L. Wolf. Discovering models of software processes from

event-based data.ACM Trans. on Software Eng. and Methodology, 1998.
[7] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for

finite-state verification. InICSE, 1999.
[8] J. Han and M. Kamber.Data Mining: Concepts and Techniques, 2nd ed.

Morgan Kaufmann, 2006.
[9] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliabil-

ity. Formal Aspects of Computing, (6):512–535, 1994.
[10] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for

automatic verification of probabilistic systems. InTACAS, 2006.
[11] M. Huth and M. Ryan.Logic in Computer Science. Cambridge, 2004.
[12] Java Runtime Analysis Toolkit.jrat.sourceforge.net/.
[13] A. Kuhn and O. Greevy. Exploiting analogy between traces and signal pro-

cessing. InICSM, 2006.
[14] D. Lo and S.-C. Khoo. QUARK: Empirical assessment of automaton-based

specification miners. InWCRE, 2006.
[15] D. Lo and S.-C. Khoo. SMArTIC: Toward building an accurate, robust and

scalable specification miner. InSIGSOFT FSE, 2006.
[16] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of iterative patterns for soft-

ware specification discovery. InProc. of SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, 2007.

[17] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of strong
temporal rules from a sequence database. Technical report at:
www.comp.nus.edu.sg/∼dlo/pcoda07-techrep.pdf, 2007.

[18] D. Lo, S. Maoz, and S.-C. Khoo. Mining modal scenario-based specifications
from execution traces of reactive systems. InASE (to appear), 2007.

[19] F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program Analysis.
Springer, 2005.

[20] S. P. Reiss and M. Renieris. Encoding program executions. InICSE, 2001.
[21] X. Yan, J. Han, and R. Afhar. CloSpan: Mining closed sequential patterns in

large datasets. InProc. of SIAM Int. Conf. on Data Mining, 2003.
[22] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das. Perracotta: Mining

temporal API rules from imperfect traces. InICSE, 2006.
[23] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining

techniques to execution traces to support the program comprehension process.
In CSMR, 2005.

[24] F. Zhu, X. Yan, J. Han, P. Yu, and H. Cheng. Mining collosal frequent patterns
by core pattern fusion. InInt. Conf. on Data Eng., 2007.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

28

Supporting Feature Analysis with Runtime Annotations
– Position Paper –

Marcus Denker, Orla Greevy and Oscar Nierstrasz
Software Composition Group, University of Bern, Switzerland

Abstract

The dynamic analysis approach to feature identification
describes a technique for capturing feature behavior and
mapping it to source code. Major drawbacks of this ap-
proach are (1) large amounts of data and (2) lack of sup-
port for sub-method elements. In this paper we propose to
leverage sub-method reflection to identify and model fea-
tures. We perform an on-the-fly analysis resulting in anno-
tating the operations participating in a feature’s behavior
with meta-data. The primary advantage of our annotation
approach is that we obtain a fine-grained level of granular-
ity while at the same time eliminating the need to retain and
analyze large traces for feature analysis.

Keywords: behavioral reflection, annotations, dynamic
analysis, feature analysis, reverse engineering, program
comprehension, software maintenance

1 Introduction

Traditionally, reverse engineering techniques focused on
analyzing source code of a system [2]. In recent years, re-
searchers have recognized the significance of centering re-
verse engineering activities around the behavior of a system,
in particular, around features [8, 17, 21]. Reasoning about
object-oriented systems in terms of features is difficult, as
they are not explicitly represented in the source code. The
first step therefore is to define what is meant by a feature,
establish a feature representation and to locate the relevant
parts of the source code that participate in its behavior.

Most existing feature analysis techniques capture traces
of method events but they do not capture behavioral data of
sub-method elements such as variable assignments [21, 17].
Furthermore, modeling features themselves poses some
problems: features are typically modeled as traces of run-
time activity resulting in the manipulation and interpretation
of large amounts of trace data.

In this paper we address the following issues relevant to
dynamic feature analysis:

• Dynamic feature analysis implies a need to manipulate
large amounts of trace data.

• Current feature analysis techniques do not consider
analysis to the granularity of sub-method elements (i.e.
variable assignments).

Our goal is to show how feature annotation eliminates
the need to manipulate large traces and thus makes it possi-
ble to collect fine-grained detail about the parts of the code
that are involved in the runtime of a feature.

Paper structure. In the next section we briefly describe
the current dynamic analysis approach to feature analysis
and highlight problems such as the manipulation of large
amounts of runtime data and the extraction of fine-grained
behavioral information. In Section 3 we briefly introduce
sub-method reflection, as it serves as a basis for our ap-
proach. Subsequently, in Section 4 we introduce our fea-
ture annotation approach. We discuss different aspects of
our approach in Section 5. Section 6 outlines related work
in the fields of dynamic analysis and feature identification.
Finally we conclude in Section 7.

2 Dynamic Feature Analysis in a Nutshell

The goal of feature analysis is to reason about a system
in terms of its features. A fundamental step of any feature
analysis approach is to first apply a feature identification
technique to locate features in source code. As a basis for
feature analysis we use a model which expresses features
as first class entities and their relationships to the source
entities that implement their behavior [10]. Once the repre-
sentation of a feature is established, we can reason about a
system in terms of its features. Furthermore, we can enrich
the static source code perspective with knowledge of the
roles of classes and methods in the set of modeled features.

The generally adopted definition of a feature is a unit
of observable behavior of a system triggered by a user
[1, 8, 16, 24, 25]. Techniques for feature identification
through dynamic analysis typically instrument a system,
capture traces of feature behavior and establish links to

1

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

29

source code. However, capturing dynamic data to repre-
sent features raises many issues that need to be taken into
consideration.
Large Amounts of Data. The volume of trace data gen-
erated represents a threat to the scalability of any feature
analysis approach. As the granularity required for an ex-
periment increases, so too does the volume of information
generated.

Dynamic analysis approaches adopt different strategies
to deal with large amounts of data. Some of the most pop-
ular strategies adopted by researchers to tackle and analyze
dynamic data are: (1) summarization through metrics [7],
(2) filtering and clustering techniques [14, 26], (3) visual-
ization [3, 12] (4) selective instrumentation and (5) query-
based approaches [20]. Many techniques apply a combina-
tion of these strategies.

Instead of trying to compress the trace data, we need to
question the idea of modeling features as execution traces.
Fine-Grained Analysis. Traditionally, dynamic analysis
techniques for feature analysis focused on execution traces
consisting of a sequence of method executions [8, 25].
Some dynamic analysis approaches trace additional proper-
ties of behavior such as the message receiver and arguments
or instance creation events [4, 13]. However very little work
in feature analysis has focused on a means to model which
sub-method entities are part of a feature.

Fine-grained analysis down to the operation level should
be possible.

Before we present our solution to these issues, we briefly
introduce the extended reflection mechanism that enables
feature annotation in Section 4.

3 Sub-Method Reflection

Reflection in programming languages is a paradigm that
supports computations about computations, so-called meta-
computations. Metacomputations and base computations
are arranged in two different levels: the metalevel and the
base level [22]. Because these levels are causally connected
any modification to the metalevel representation affects any
further computations on the base level [19]. Structurally
reflective systems contain a first-class, causally connected
model of their own structure: classes and methods are ob-
jects and changing these objects directly changes the system
[9].

Structural reflection stops at the granularity of the
method: a method is an object, but the operations the
method contains are not modeled as objects. Examples of
these operations would be message sends, variable reads or
assignments. Sub-Method Reflection [5] extends the tra-
ditional model of structural reflection to encompass sub-
method elements in addition to classes and methods. This
is done by associating an extended AST (Abstract Syntax

Tree) representation with the method.
Before execution, the AST is compiled on demand to a

low-level representation that is executable, for example to
byte-codes executable by a virtual machine.

Another mechanism provided by sub-method reflection
is the annotation. Sub-method reflection provides a frame-
work for annotating any program element with meta-data.
An open compiler infrastructure supports the definition of
compiler plugins that react to annotations by transforming
the generated code.

We have extended Squeak Smalltalk to support sub-
method reflection. More in-depth information about this
system and its implementation can be found in the paper
on sub-method reflection [5].

3.1 Partial Behavioral Reflection

Structural reflection is concerned with modeling the
static structure of the systems. Behavioral reflection pro-
vides a model for execution and a way to intercept and
change the execution of a program.

Whereas structural reflection is about classes, methods
and the instructions inside the methods, behavioral reflec-
tion is concerned with execution events, i.e. method execu-
tion, message sends, or variable assignments.

One model for behavioral reflection is Partial Behavioral
Reflection as pioneered by Reflex [23]. We have argued in
the past [6] that this model is particularly well suited for
dynamic analysis. It supports a very fine-grained, temporal
and spatial selection of what exactly to reflect on. Thus it
provides control of where and in which context dynamic
analysis should be deployed in the system.

The core concept of the Reflex model of partial behav-
ioral reflection is the link (see Figure 1). A link invokes
messages on a metaobject at occurrences of selected oper-
ations. Link attributes enable further control of the exact
message sent to the meta-object. One example for a link at-
tribute is the activation condition which controls if the link
is really invoked.

source code
(AST)

metaobject

activation
condition

link

Figure 1. The reflex model

The original implementation of partial behavioral re-
flection for Java was based on bytecode transformation.

2

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

30

Sub-Method Reflection provides a natural implementation
substrate for realizing partial behavioral reflection. Links
are annotations on the operations provided by sub-method-
reflection. A plugin enables the compiler to take the links
into account when generating the bytecode for a method.

4 Feature Annotation

Feature identification (i.e. locating which parts of the
code implement a feature) by dynamic analysis is done at
runtime: the feature is executed and the execution path is
recorded. For example, when exercising Login feature of an
application, we record all methods that are called as a result
of triggering this feature. This trace of called methods then
encompasses exactly all those methods that are part of the
login feature.

4.1 Behavioral Reflection and Features

Trace-based feature analysis can be easily implemented
using partial behavioral reflection. In a standard trace-based
system, the tracer is the object responsible for recording
the feature trace. This tracer is the meta-object (see Fig-
ure 2). We define a link that calls this meta-object with the
desired information passed as a parameter (e.g. the name
and class of the executed method). The link then is installed
on the part of the system that we want to analyze. When we
then exercise the feature, the trace meta-object will record a
trace.

The resulting system is very similar to existing trace-
based systems, with one exception: tracing now can easily
cover sub-method elements, if required.

source code
(AST)

tracer metaobject

link

Figure 2. A tracer realized with partial behav-
ioral reflection

4.2 Feature Annotation with Behavioral
Reflection

In contrast to traditional dynamic feature analysis ap-
proaches, our sub-method reflection based approach does
not need to retain a trace. The goal of feature identification

is to map features to the source code. With the annotatable
representation provided by sub-method reflection, we can
annotate every statement that participates in the behavior of
a feature. Instead of recording traces, we tag all the AST
nodes that are executed as part of a feature with a feature
annotation at runtime.

The annotation at runtime is realized using partial be-
havioral reflection. We do not need a dedicated tracer ap-
plication anymore, instead the meta-object that models an
instruction (the AST node) tags itself if it is part of a fea-
ture. For this, we define a link that calls a method on the
node on which it is installed. This method tags the appro-
priate node with a feature annotation (see Figure 3).

source code
(AST)

instruction is
 metaobject

link

Figure 3. Annotating nodes using partial be-
havioral reflection

We install the link on all the AST nodes of the system
that we plan to analyze. Exercising the feature subsequently
annotates all methods or instructions that take part in a fea-
ture execution. In this way we do not need to retain traces,
resulting in less data to be managed. We have not yet con-
ducted extended case studies using our technique. How-
ever preliminary studies with feature traces captured using
the traditional approach to tracing show that for the number
of methods that are part of a trace, we get 10 times more
method execution events. Thus there is a factor of 10 be-
tween the number of method execution events and the num-
ber of distinct methods in a trace.

The idea of feature annotation has many implications,
both for how to model and analyze features. This position
paper presents the basic idea of feature annoations, the next
section discusses some of the possibilities and drawbacks of
our approach.

5 Discussion

Our feature annotation approach can easily support many
of the existing feature analysis approaches. For example,
we could exercise a feature multiple times with different
parameters to obtain multiple paths of execution. This can
be important, as the traces obtained can very considerably
depending on the input data.

3

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

31

For trace-based approaches this results in a many-to-one
mapping between features and traces. Using our approach,
if the execution path differs over multiple runs, newly exe-
cuted instructions will be tagged in addition to those already
tagged. Thus we can use our approach to iteratively build
up the representation of a feature covering multiple paths of
execution.

Instead of multiple runs resulting in one feature annota-
tion, the feature annotations can be parametrized with the
amount of executions that are the result of exercising the
feature. We can, for example, record a metric if a statement
is always part of a feature or only in certain contexts sim-
ilar to the reconnaissance metric of Wilde and Scully [24]
or our other feature analysis work [11]. Other information
that can be captured is e.g., instance information or feature
dependencies as described in the approaches of Salah et al.
or Lienhard et al. [21, 18]. Naturally, the more informa-
tion gathered at runtime, the more memory would be re-
quired. In the worst case, recording everything would result
in recording the same amount of information as a complete
trace of fine-grained behavioral information.

A downside of the filtering at runtime is that dynamic
information is lost. It is crucial to define which informa-
tion is necessarry for a given feature analysis. A change
in a selection strategy implies a need to exercise a feature
again. In contrast approaches based on complete traces can
perform a variety of postmortem analyses of feature traces,
each requiring different level of detail.

6 Related work

We review dynamic analysis approaches to system com-
prehension and feature identification approaches and dis-
cuss these in the context of our work.
Dynamic Analysis for Program Comprehension. Many
approaches to dynamic analysis focus on the problem of
tackling the large volume of data. Many of these works pro-
pose compression and summarization approaches to support
the extraction of high level views [26, 11, 15].
Feature Identification through dynamic analysis. Dy-
namic analysis approaches to feature identification have
typically involved executing the features of a system and
analyzing the resulting execution trace [24, 25, 8, 1]. Typ-
ically, the research effort of these works focuses on the
underlying mechanisms used to locate features (e.g., static
analysis, dynamic analysis, formal concept analysis, seman-
tic analysis or approaches that combine two or more of these
techniques).

Wilde and Scully pioneered the use of dynamic analysis
to locate features [24]. They named their technique Soft-
ware Reconnaissance. Their goal was to support program-
mers when they modify or extend functionality of legacy
systems.

Eisenbarth et al. described a semi-automatic feature
identification technique which used a combination of dy-
namic analysis, static analysis of dependency graphs, and
formal concept analysis to identify which parts of source
code contribute to feature behavior [8]. For the dynamic
analysis part of their approach, they extended the Software
Reconnaissance approach to consider a set of features rather
than one feature. They applied formal concept analysis to
derive a correspondence between features and code. They
used the information gained by formal concept analysis to
guide a static analysis technique to identify feature-specific
computational units (i.e., units of source code).

Wong et al. base their analysis on the Software Recon-
naissance approach and complement the relevancy metric
by defining three new metrics to quantify the relationship
between a source artefact and a feature [25]. Their focus
is on measuring the closeness between a feature and a pro-
gram component.

All of these feature identification approaches collect
traces of method events and use this data to locate the parts
of source code that implement a feature. Thus, the feature
identification analysis is based on manipulating and analyz-
ing large traces. Furthermore, many of the dynamic anal-
ysis approaches do not capture fine-grained details such
sub-method execution events. The main limiting factor is
the amount of trace data that would result. Our approach
eliminates the need to retain execution traces. Thus there
is no limitation to annotating all events (methods and sub-
methods) involved in a feature’s behavior.

Furthermore, a key focus of feature identification tech-
niques is to define measurements to quantify the relevancy
of a source entity to a feature and to use the results for fur-
ther static exploration of the code. Thus these approaches
do not explicitly express the relationship between behav-
ioral data and source code entities. Thus to extract high
level views of dynamic data, we need to process the large
traces. Other works [1, 10] identify the need to extract a
model of behavioral data in the context of structural data of
the source code. Subsequently feature analysis is performed
on the model rather than on the source code itself.

7 Conclusions and Future Work

In this paper we have presented feature annotation, a
technique that solves some issues found in traditional trace-
based dynamic feature analysis systems. Feature Annota-
tion support the analysis on a sub-method level and does
not require to store complete trace data.

We have implemented a prototype of feature annotation,
future work includes using it on large case-studies. We
plan to analyze both performance and memory characteris-
tics and compare our approach to a trace collecting feature
analysis system.

4

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

32

Another interesting direction of future work is to exper-
iment with advanced scoping mechanisms, e.g. we want to
experiment with the idea of scoping dynamic analysis to-
wards a feature instead of static entities like packages and
classes.

Acknowledgments.. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] G. Antoniol and Y.-G. Guéhéneuc. Feature identification:
a novel approach and a case study. In Proceedings IEEE
International Conference on Software Maintenance (ICSM
2005), pages 357–366, Los Alamitos CA, Sept. 2005. IEEE
Computer Society Press.

[2] E. Chikofsky and J. Cross II. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Software, 7(1):13–17,
Jan. 1990.

[3] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. van
Wijk, and A. van Deursen. Understanding execution traces
using massive sequence and circular bundle views. In Pro-
ceedings of the 15th International Conference on Program
Comprehension (ICPC), pages 49–58. IEEE Computer So-
ciety, 2007.

[4] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. In Proceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’98), pages 219–234. USENIX, 1998.

[5] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall. Sub-
method reflection. Journal of Object Technology, 6(9):231–
251, Oct. 2007.

[6] M. Denker, O. Greevy, and M. Lanza. Higher abstrac-
tions for dynamic analysis. In 2nd International Work-
shop on Program Comprehension through Dynamic Anal-
ysis (PCODA 2006), pages 32–38, 2006.

[7] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering (CSMR’04), pages 309–318, Los Alamitos
CA, 2004. IEEE Computer Society Press.

[8] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Computer, 29(3):210–224, Mar. 2003.

[9] J. Ferber. Computational reflection in class-based object-
oriented languages. In Proceedings OOPSLA ’89, ACM
SIGPLAN Notices, volume 24, pages 317–326, Oct. 1989.

[10] O. Greevy. Enriching Reverse Engineering with Feature
Analysis. PhD thesis, University of Berne, May 2007.

[11] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. In Pro-
ceedings of 9th European Conference on Software Mainte-
nance and Reengineering (CSMR’05), pages 314–323, Los
Alamitos CA, 2005. IEEE Computer Society.

[12] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing software
evolution through feature views. Journal of Software Main-
tenance and Evolution: Research and Practice (JSME),
18(6):425–456, 2006.

[13] T. Gschwind and J. Oberleitner. Improving dynamic data
analysis with aspect-oriented programming. In Proceedings
of CSMR 2003. IEEE Press, 2003.

[14] A. Hamou-Lhadj and T. Lethbridge. A survey of trace explo-
ration tools and techniques. In Proceedings IBM Centers for
Advanced Studies Conferences (CASON 2004), pages 42–
55, Indianapolis IN, 2004. IBM Press.

[15] A. Hamou-Lhadj and T. Lethbridge. Summarizing the con-
tent of large traces to facilitate the understanding of the
behaviour of a software system. In Proceedings of In-
ternational Conference on Program Comprehension (ICPC
2006), pages 181–190, Washington, DC, USA, 2006. IEEE
Computer Society.

[16] R. Koschke and J. Quante. On dynamic feature location.
International Conference on Automated Software Engineer-
ing, 2005, pages 86–95, 2005.

[17] J. Kothari, T. Denton, S. Mancoridis, and A. Shokoufandeh.
On computing the canonical features of software systems.
In 13th IEEE Working Conference on Reverse Engineering
(WCRE 2006), Oct. 2006.

[18] A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking ob-
jects to detect feature dependencies. In Proceedings In-
ternational Conference on Program Comprehension (ICPC
2007), pages 59–68, Washington, DC, USA, June 2007.
IEEE Computer Society.

[19] P. Maes. Computational Reflection. PhD thesis, Laboratory
for Artificial Intelligence, Vrije Universiteit Brussel, Brus-
sels Belgium, Jan. 1987.

[20] T. Richner and S. Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. In Pro-
ceedings of 18th IEEE International Conference on Software
Maintenance (ICSM’02), page 34, Los Alamitos CA, Oct.
2002. IEEE Computer Society.

[21] M. Salah and S. Mancoridis. A hierarchy of dynamic soft-
ware views: from object-interactions to feature-interacions.
In Proceedings IEEE International Conference on Software
Maintenance (ICSM 2004), pages 72–81, Los Alamitos CA,
2004. IEEE Computer Society Press.

[22] B. C. Smith. Reflection and semantics in a procedural lan-
guage. Technical Report TR-272, MIT, Cambridge, MA,
1982.

[23] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behav-
ioral reflection: Spatial and temporal selection of reification.
In Proceedings of OOPSLA ’03, ACM SIGPLAN Notices,
pages 27–46, nov 2003.

[24] N. Wilde and M. Scully. Software reconnaisance: Mapping
program features to code. Software Maintenance: Research
and Practice, 7(1):49–62, 1995.

[25] E. Wong, S. Gokhale, and J. Horgan. Quantifying the close-
ness between program components and features. Journal of
Systems and Software, 54(2):87–98, 2000.

[26] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event ex-
ecution frequency. In Proceedings IEEE European Confer-
ence on Software Maintenance and Reengineering (CSMR
2004), pages 329–338, Los Alamitos CA, Mar. 2004. IEEE
Computer Society Press.

5

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

33

Identification of Behavioral and Creational Design Patterns through
Dynamic Analysis

Janice Ka-Yee Ng and Yann-Gaël Guéhéneuc
Ptidej Team – GEODES

Département d’informatique et de recherche opérationnelle
Université de Montréal – CP 6128 succ. Centre Ville

Montréal, Québec, H3C 3J7 – Canada
ngjanice@iro.umontreal.ca and guehene@iro.umontreal.ca

Abstract

Design patterns are considered to be a simple and
elegant way to solve problems in object-oriented soft-
ware systems, because their application leads to a well-
structured object-oriented design, and hence, are con-
sidered to ease software comprehension and mainte-
nance. However, after application, design patterns are
lost in the source code and are thus of little help dur-
ing program comprehension and maintenance. In the
past few years, the structure and organization among
classes were the predominant means of identifying de-
sign patterns in object-oriented software systems. In
this paper, we show how to describe behavioral and cre-
ational design patterns as collaborations among objects
and how these representations allow the identification
of behavioral and creational design patterns using dy-
namic analysis and constraint programming.

1 Introduction

Software maintenance is considered a crucial phase
of the software development process, as it consumes as
much as 90% of the total resources related to the soft-
ware life cycle [5]. Part of the activities of software
maintenance is program comprehension, where devel-
opers try to identify the structure and organization of
code artifacts, with the help of re-engineering tools, to
then perform the maintenance tasks, such as debugging
or adding new features.

For more than 10 years now, design patterns [6]
have been increasingly used to design and obtain well-
structured software systems. However, due to the com-
plexity of large object-oriented software systems nowa-
days, it is impossible to recover manually the design

patterns applied during the design and the implemen-
tation of a system, which, in turn, impedes its compre-
hension [1].

In the past, several approaches have been proposed
to detect design patterns in source code using static
analysis, for example [14, 15, 16, 19, 22, 24, 25]. The
fundamental idea of these approaches consists in ana-
lyzing the class structure of a system to identify classes
whose structure resembles the most the structure of a
design pattern. The dynamic aspect of the system has
almost been completely ignored, but it should not be
because, on the one hand, behavioral and creational
design patterns can hardly be described by their struc-
ture, and on the other hand, the dynamic aspect pro-
vides data to complement those related to the archi-
tecture and design of software systems, as shown in
[11, 12].

In this paper, we propose a 3-step approach (as il-
lustrated in Figure 1 Steps 1, 2, and 3) to identify be-
havioral and creational design patterns in source code
using dynamic analysis. First, we describe behavioral
and creational design patterns in terms of UML se-
quence diagrams (really scenario diagrams as explained
in Section 2). Second, using dynamic analysis, we
reverse engineer a dynamic model—such as UML se-
quence diagrams—of any given object-oriented soft-
ware system written in Java. Finally, we perform the
Visitor pattern identification on one particular sce-
nario of JHotDraw. To this end, we translate the
problem of design patterns identification in terms of a
constraint satisfaction problem (a.k.a. CSP).

This paper is structured as follow: In Section 2, we
provide a metamodel to capture the interactions be-
tween objects at runtime. Then, a description of be-
havioral and creational design patterns in terms of the
constructs of this metamodel is provided in Section 3.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

34

Figure 1. A 3-step approach for the identification of design patterns through dynamic analysis.

In Section 4, we describe our technique to reverse engi-
neer scenario diagram of object-oriented software sys-
tems using dynamic analysis. Section 5 elaborates on
the technique used to identify behavioral and creational
design patterns. We then report the results of one case
study in Section 6. Challenges and limitations of the
approach are discussed in Section 7. Related work is
provided in Section 8. Finally, Section 9 concludes and
presents future work.

2 Scenario Diagram Metamodel

In the context of design patterns identification, the
reverse engineered UML sequence diagrams are ob-
tained from the execution of some particular use cases.
Therefore, these diagrams are referred to as scenario
diagram [3], as they are only partial UML sequence di-
agrams describing one specific scenario corresponding
to a use case instead of all possible alternatives for the
exercised use case.

Following [3] and [17], we implement a metamodel
of scenario diagrams to express the data we need to
describe the behavior of design patterns and software
systems. Figure 2 shows our scenario diagram meta-
model. A scenario diagram, class ScenarioDiagram,
is composed of an ordered list of components, class
Component, that can either be messages, class Message,
or combined fragments, class CombinedFragment.

Messages can be of three different types: an
operation call, class Operation, a destruction
call, class Destroy, or a creation call, class
Create. Messages have a sourceClassifier and
a destinationClassifier to represent the concept
of caller and callee. Caller and callee are of type
Classifier that can be specialized into an Instance
or a Class, the latter case is applicable if the message
in relation to the caller or callee is a class method.
If any, messages are composed of arguments, class
Argument, of different types: either primitive types or
object types. The return value of messages is class
ReturnValue.

Class CombinedFragment is inspired by a previous
notation [17] to group sets of messages to show condi-
tional flows in sequence diagrams. Although [17] pro-
vides eleven interactions types of combined fragments,
only the combined fragments loops and alternatives are
necessary to behavioral and creational design patterns
identification. In this context, combined fragments can
be specialized into two types: either loops, class Loop,
to illustrate repetitions of messages, or alternatives,
class Alt, to designate mutually exclusive choices be-
tween sequence of messages. To model the case where
a loop or an alternative is nested into another loop
or alternative, we introduce composition links: compo-
sition operand between classes Loop and Component,
and composition operands between classes Alt and

2

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

35

Figure 2. Scenario diagram metamodel.

Component. A loop has one and only one operand,
while an alternative has one or more operands. For
instance, the classic alternative ‘if then else’ has two
operands: operand ‘if’, and operand ‘else’.

3 Description of Design Patterns

Figure 3. Memento pattern scenario diagram.

In [6], each design pattern is provided with their own
description in terms of collaborations between partic-

ipants. In particular, for some specific patterns, the
authors have chosen to use diagrams similar to sce-
nario diagrams to show sequences of messages between
objects, i.e., the order in which messages between par-
ticipants of design patterns are executed. For instance,
Figure 3 is a scenario diagram that illustrates how the
participants of the Memento pattern collaborate.

In our approach, as illustrated in Figure 1 Step 1,
we describe behavioral and creational design patterns
by transforming the graphical description of collab-
orations in [6] into an instance of the scenario dia-
gram metamodel. For each design pattern for which a
graphical description is available, we describe its par-
ticipants and its sequence of messages in terms of ob-
jects of the scenario diagram metamodel. For instance,
for each message involved in the sequence of messages
in Figure 3, we instantiate an object Operation that
is added to the ordered list components of an object
ScenarioDiagram representing the Memento pattern.
Given message setMemento(Memento aMemento) takes
‘aMemento’ as argument, we instantiate an object
Argument whose attribute type is Instance. This ob-
ject Argument is added to the ordered list arguments of
message setMemento(Memento aMemento). The par-
ticipants collaborating in the pattern, for instance

3

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

36

aCaretaker, anOriginator, and aMemento, are in-
stantiated as objects Instance, and are set to be
the sourceClassifier or destinationClassifier
of the corresponding message. For example, the
sourceClassifier of createMemento() and set-
Memento(Memento aMemento) is aCaretaker, while
anOriginator is their destinationClassifier.

4 Reverse Engineering of
Scenario Diagram

In the literature, many approaches have been pro-
posed to reverse engineer dynamic models of object-
oriented software systems. Based on [3], our approach
for the scenario diagram reverse engineering consists
in 4 steps (as illustrated in Figure 1 Steps i, ii, iii, and
iv). First, we compile the source files of an object-
oriented software system to obtain their corresponding
class files. Second, we instrument the class files using
bytecode instrumentation. Third, we execute the in-
strumented system following some scenario to produce
an execution trace. Finally, we instantiate the scenario
diagram that corresponds to the execution trace.

In this section, we describe briefly the mechanism
used to produce an execution trace containing dynamic
data of an object-oriented software systems in Java
(Step ii), and to instantiate a scenario diagram from
the execution trace (Step iv).

Instrumentation. In terms of design patterns iden-
tification, the type and amount of dynamic data to re-
trieve are relative to the description of design patterns.
In this context, we focus primarily on the control flow
data, that is, the sequence of messages actually exe-
cuted during runtime. We have chosen to instrument
Java bytecode with Bcel—the Byte Code Engineer-
ing Library [2]. Bcel is a Java library that gives users
the possibility to create, analyze, and manipulate easily
Java class files.

We need to trace the execution of methods and con-
structors to instantiate class Message in a scenario dia-
gram. To this end, we introduce bytecode instructions
to produce dynamic data before and after the execution
of the methods and constructors. We indicate in the
execution trace when methods and constructors start
and end executing in relation to other events. Figure
4 shows an example of execution trace of a toy system
implemented in Java.

Instantiation of Scenario Diagram. To obtain
the scenario diagram corresponding to an execution
trace, the latter is processed. For each execution trace

statement such as operation start, constructor
start, or destructor start, a message of type
Operation, Create, or Destroy is respectively in-
stantiated, while an object CombinedFragment of type
Loop or Alt is instantiated for each execution trace
statement loop start or alt start. In both cases,
the component corresponding to the line currently an-
alyzed in the execution trace is referred to as the
current component. If the current component is of
type CombinedFragment, we add the subsequent ob-
jects Message or CombinedFragment to its ordered
list operands, until the corresponding end statement
is met. Otherwise, they are added to the ordered
list components of object ScenarioDiagram. Each
time an object Message is instantiated, its correspond-
ing sourceClassifier and destinationClassifier
of type Classifier are also determined and instanti-
ated. The set arguments of a message is determined
by processing the data positioned between the brack-
ets of the corresponding execution statement. Figure
5 is a textual description of the scenario diagram cor-
responding to the execution trace in Figure 4.

5 Identification of Design Patterns

Using the reverse engineering technique described in
the previous section, we instantiate two scenario dia-
grams. One instance models the sequence of messages
of a design pattern, i.e., a source system, and the other
instance models the sequences of messages of a given
source code, i.e., a target system. The approach we
propose to identify behavioral and creational design
patterns in object-oriented software systems consists
in identifying the scenario diagrams of a source system
in the scenario diagram of a target system.

As illustrated in Figure 1 Step 3, we translate the
problem of design patterns identification in terms of
a constraint satisfaction problem (CSP, as in previous
work [8]). We define the problem of detecting a design
pattern in terms of its variables, the constraints among
them, and their domains. This CSP represents the
problem that the explanation-based constraint solver
JChoco [13] solves to identify in the target system,
sequence of messages that is identical or similar to the
one defined by the source system.

Variables. The set of variables Classifier and
Message corresponds respectively to the entities
Classifier and Message modelling the scenario di-
agram of a design pattern (the source system).

Constraints. The set of constraints among the vari-
ables corresponds to the relationships among the en-

4

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

37

operation start public static void main (String[] args) callee ModelMementoTest -1
constructor start public void <init>() callee Caretaker 14613018
constructor start public void <init>() callee Originator 12386568
constructor end public void <init>() callee Originator 12386568
constructor end public void <init>() callee Caretaker 14613018
operation start public void callCreateMemento() callee Caretaker 14613018
operation start public Memento createMemento() callee Originator 12386568
constructor start public void <init>() callee Memento 17237886
constructor end public void <init>() callee Memento 17237886
operation start public void setState(String state) callee Memento 17237886
operation end public void setState(String state) callee Memento 17237886
operation end public Memento createMemento() callee Originator 12386568
operation end public void callCreateMemento() callee Caretaker 14613018
operation start public void undoOperation() callee Caretaker 14613018
operation start public void setMemento(Memento m) callee Originator 12386568
operation start public String getState() callee Memento 17237886
operation end public String getState() callee Memento 17237886
operation end public void setMemento(Memento m) callee Originator 12386568
operation end public void undoOperation() callee Caretaker 14613018
operation end void public static void main (String[] args) callee ModelMementoTest -1

Figure 4. Example of execution trace of a toy system implementing the Memento Pattern.

<OPERATION> public static void main (String[] args) <CALLEE> ModelMementoTest <CALLER> inexistant
<CREATE> public void <init>() <CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
<CREATE> public void <init>() <CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
<OPERATION> public void callCreateMemento() <CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
<OPERATION> public Memento createMemento() <CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
<CREATE> public void <init>() <CALLEE> Memento 17237886 <CALLER> Originator 12386568
<OPERATION> public void setState(String state) <CALLEE> Memento 17237886 <CALLER> Originator12386568
<OPERATION> public void undoOperation() <CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
<OPERATION> public void setMemento(Memento m) <CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
<OPERATION> public String getState() <CALLEE> Memento 17237886 <CALLER> Originator 12386568

Figure 5. Textual representation of the scenario diagram of Figure 4.

tities of the scenario diagram defined by a design
pattern. We use binary constraints, of the form
constraint(variable1, variable2), to express the
relationships between variable1 and variable2.

Domain. The domain of each variable (Classifier
or Message) corresponds to a set of integers, each cor-
responding respectively to an entity Classifier or
Message in the scenario diagram of a target system.

For a given set of constraints, the constraint solver
JChoco solves the CSP by removing from the domains
values that do not satisfy the relationships between
variable1 and variable2. If the constraint solver
JChoco provides no solution for a CSP, then the cor-
responding design pattern is considered as not imple-
mented in the target system.

The constraint caller (classifier1, message2)
(respectively callee) defines the relationship
‘classifier1 is the sourceClassifer of message2 ’
(respectively destinationClassifier) between
classifier1 and message2. The constraint
creator(classifier1, message2) (respec-

tively created) is very similar to constraint
caller(classifier1, message2), except that
message2 is an instance of Create instead of
Operation (c.f. Figure 2). Finally, the constraint
follows(message1, message2) defines the relation-
ship ‘message2 is executed after message1 ’.

For example, the Memento pattern, as shown
in Figure 3, is the source system and is mod-
elled by associating a variable with each en-
tity in the scenario diagram (var createMemento,
var newMemento, var setState, var setMemento,
var getState, var aCaretaker, var anOriginator,
and var aMemento), and by constraining the values of
these variables according to the relationships among
the entities:

follows(var_createMemento, var_newMemento)
follows(var_newMemento,var_setState)
follows(var_setState, var_setMemento)
follows(var_setMemento, var_getState)
caller(var_aCaretaker, var_createMemento)
callee(var_anOriginator, var_createMemento)
creator(var_anOriginator, var_newMemento)
created(var_aMemento, var_newMemento)
caller(var_anOriginator, var_setState)
callee(var_aMemento, var_setState)
caller(var_aCaretaker, var_setMemento)
callee(var_anOriginator, var_setMemento)

5

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

38

caller(var_anOriginator, var_getState)
callee(var_aMemento, var_getState)

The resolution of the CSP modelling the Memento pat-
tern returns results of the form:

<Sol.#>.var_createMemento = <an entity>
<Sol.#>.var_newMemento = <an entity>
<Sol.#>.var_setState = <an entity>
<Sol.#>.var_setMemento = <an entity>
<Sol.#>.var_getState = <an entity>
<Sol.#>.var_caretaker = <an entity>
<Sol.#>.var_originator = <an entity>
<Sol.#>.var_memento = <an entity>

When applied to the toy system, our approach found
one solution:

1.var_createMemento = createMemento()
1.var_newMemento = new Memento()
1.var_setState = setState(String state)
1.var_setMemento = setMemento()
1.var_getState = getState()
1.var_caretaker = Caretaker [14613018]
1.var_originator = Originator [12386568]
1.var_memento = Memento [17237886]

6 Case Study

To evaluate our approach, we applied it on JHot-
Draw v6.0b1 (15 KLOCs), which is a drawing editor
with a GUI based on an open source system written in
Java. Although it is intentionally designed to have very
clear implementations of well-known design patterns,
its documentation can eventually help us determine the
precision and recall properties of our approach. The
scenario used to identify occurrences of the Visitor
pattern in JHotDraw is to Cut and Paste a figure in
a document :

Create a new document on which figures can be drawn;
Select the ‘Draw Rectangle’ tool from the menu;
Select the rectangle figure drawn at step 2;
Select the ‘Cut’ command from the menu;
Select the ‘Paste’ command from the menu.

For this scenario, our approach includes
twice in the solution variables var accept,
var visitConcreteElement, var operation,
var objectStructure, var concreteElement, and
var concreteVisitor, to illustrate both the actions
‘Cut ’ and ‘Paste’ executed in the same scenario. By
applying our approach to this scenario on a subset
of JHotDraw (for performance issues as discussed
in Section 7), we obtained two occurrences of the
Visitor pattern.

Occurrence 1 is:

1.var_accept1 = visit(FigureVisitor visitor)
1.var_visitConcreteElement1 = visitFigure(Figure hostFigure)
1.var_operation1 = removeFromContainer(FigureChangeListener c)
1.var_objectStructure1 = FigureTransferCommand [7760420]

1.var_concreteElement1 = AbstractFigure [5489653]
1.var_concreteVisitor1 = DeleteFromDrawingVisitor [12741398]
1.var_accept2 = visit (FigureVisitor visitor)
1.var_visitConcreteElement2 = visitFigure (Figure hostFigure)
1.var_operation2 = setZValue (int z)
1.var_objectStructure2 = FigureTransferCommand [26980954]
1.var_concreteElement2 = AbstractFigure [31746664]
1.var_concreteVisitor2 = InsertIntoDrawingVisitor [2554341]

and Occurrence 2 is:
1.var_accept1 = visit (FigureVisitor visitor)
1.var_visitConcreteElement1 = visitFigure (Figure hostFigure)
1.var_operation1 = addToContainer (FigureChangeListener c)
1.var_objectStructure1 = FigureTransferCommand [26980954]
1.var_concreteElement1 = AbstractFigure [31746664]
1.var_concreteVisitor1 = InsertIntoDrawingVisitor [2554341]
1.var_accept2 = visit (FigureVisitor visitor)
1.var_visitConcreteElement2 = visitFigure (Figure hostFigure)
1.var_operation1 = removeFromContainer (FigureChangeListener c)
1.var_objectStructure2 = FigureTransferCommand [7760420]
1.var_concreteElement2 = AbstractFigure [5489653]
1.var_concreteVisitor2 = DeleteFromDrawingVisitor [12741398]

According to the documentation in JHotDraw, the
value of the variables provided in Occurrence 2 cor-
respond to the participants and messages involved in
the Visitor pattern. In contrast, the value of vari-
able var operation2 in Occurrence 1, public void
setZValue (int), is not involved in the sequence of
messages corresponding to the action ‘Paste’. There-
fore, Solution 1 is not an occurrence of the Visitor
pattern.

7 Challenges and Limitations

In this section, we elaborate on several challenges
we faced while reverse engineering scenario diagrams
and identifying design patterns, as well as the main
problems of the proposed approach.

Dynamic and Static Analysis. In obtaining sce-
nario diagrams, we can choose to capture the behavior
of a software system either by static analysis or dy-
namic analysis. Both strategies have their own draw-
backs. On the one hand, even if static analysis can
depict a complete picture of what could happen at run-
time, it does not show what actually happens. Further-
more, using static analysis to retrieve dynamic data
requires to analyze source code and determine the dy-
namic types of object references, which is not conceiv-
able for large, complex systems [7]. On the other hand,
reverse engineered scenario diagrams using dynamic
analysis represent only part of the system’s whole be-
havior. However, it reports precisely on the interac-
tions between objects.

In the context of design patterns identification, pre-
cise data outweighs completeness. Therefore, we fa-
vor dynamic analysis over static analysis. To make up
the incompleteness of reverse engineered scenario dia-
grams, we will consider as future work the merging of

6

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

39

several traces, each reporting on one observed behav-
ior according to one scenario (or use case). Also, using
test coverage tools can help defining the scenarios that
need to be executed to possibly recover all the design
patterns applied during the design and implementation
of a system.

Target Language and Runtime Environment
Specific Approach. In the proposed 3-step ap-
proach for the identification of design patterns through
dynamic analysis, the process of scenario diagram re-
verse engineering is specific to the target language: we
used bytecode instrumentation to trace a software sys-
tem’s method execution. This instrumentation tech-
nique has obvious drawbacks, among which it is spe-
cific to the target language, and highly coupled with a
particular runtime environment. However, the funda-
mental principles according to which dynamic data is
retrieved should not be affected. Regardless of the lan-
guage (as long as it is object-oriented) or the runtime
environment of the target system, a method execution
is traced in such a way that instrumentation bytecode
instructions are placed before and after the execution
starts and ends.

In contrast, the process of design patterns identifica-
tion using CSP (Figure 1 Step 3) is not specific to the
target language, since its principal actors—variables,
constraints, and domain—are described in terms of the
constructs of the scenario diagram metamodel only.

Scalability and Performance. One of the key chal-
lenges while using dynamic analysis to monitor the be-
havior of a software system is the large amount of data
traced. As the size of the target system grows, the exe-
cution trace grows in parallel, and as a result, execution
time required to solve the CSP deteriorates.

Among the most commonly used abstraction mech-
anisms to cope with high volume of data, we used start
and end markers to specify respectively the start and
end of the action primary to a particular scenario. For
instance, in the ‘Cut and Paste a figure in a document ’
scenario described in Section 6, the two principal ac-
tions involved are actions ‘Cut ’ and ‘Paste’. We thus
placed two markers in the execution trace of the corre-
sponding scenario to specify the start and end of action
‘Cut ’, just before and after the user chooses ‘Cut ’ in
the menu of JHotDraw. In the same manner, two
markers are specified respectively for the start and end
of action ‘Paste’. In this manner, method executions
that are positioned outside each pair of start and end
markers can be omitted from the execution trace. Re-
sults after applying our identification approach both on

the original and the summarized execution trace show
identical solutions for the Visitor pattern.

The marker mechanism is our first attempt to reduce
the volume of dynamic data, and still needs some more
refinements to assure that no occurrences of design pat-
tern are omitted because some method executions are
eliminated from the original execution trace.

Design Pattern Description. As explained in Sec-
tion 3, we describe design patterns in terms of collabo-
rations given in [6]. However, as design patterns need
not be collaborating precisely as described in the Gang
of Four, the design patterns description step could be
automated in such a way that users could easily de-
scribe the collaborations between participants to char-
acterize their own patterns of interest.

8 Related Work

The identification of design patterns in object-
oriented software systems has been the subject of many
works. In particular, the identification of structural
design patterns has been investigated since as early as
1998 [25]. However, we are not aware of work ded-
icated to the identification of general non-structural
design patterns. Thus, we present work related to the
identification of structural design patterns, the use of
dynamic data during structural design patterns identi-
fication, and the recovery of interaction diagrams.

Structural Pattern Identification. Wuyts [25]
published a precursor work on structural design pat-
terns identification. His approach consisted in repre-
senting systems as Prolog facts and in describing de-
sign pattern as predicates on these facts. Facts were
extracted using static analysis. This approach had per-
formance issues, could not deal with variations, and
had limited precision and recall. It was followed by
many other works to improve on its limits. These
works include the use of constraint programming [20],
explanation-based constraint programming [10], and,
more recently, similarity scoring [24].

Dynamic Data for Identification. To the best of
our knowledge, no previous work focused on the iden-
tification of behavioral and creational design patterns.
Heuzeroth et al. [11, 12] proposed an approach that
uses both static and dynamic data to identify so-called
interaction patterns and exemplified their approach on
the Observer pattern using a dedicated detection al-
gorithm. It is unclear how this approach can be gener-
alized to pure-behavioural/creational design patterns.

7

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

40

Shawky et al. [23] proposed a similar approach to im-
prove the precision and recall of a static identification
approach.

Some previous works also used dynamic data in ad-
dition to structural data to improve precision and re-
call. In particular, most previous work on the identi-
fication of structural design patterns use data related
to method calls, which can be considered as dynamic
data, for example [1], or [9] used in [10].

Recovery of Interaction Diagrams. The recov-
ery of interaction diagrams has been tackled by several
authors. An important contribution to this line of re-
search is the work of De Pauw et al. [18], which de-
scribes a model to visualize data about the execution
of an object-oriented software system. Briand et al. [4]
proposed a method to reverse engineer UML sequence
diagrams from execution traces. They used the recov-
ered traces and a metamodel to describe UML v1.x se-
quence diagrams. Rountev et al. [21] described a first
algorithm to reverse engineer UML v2.0 sequence dia-
grams by control-flow analysis. Their approach did not
consider data obtained by dynamic analysis and thus
is limited by the accuracy of the control-flow analysis.
Briand et al. [3] introduced a complete approach to
recover scenario diagrams using execution trace. Their
work has inspired our own work.

9 Conclusion

We proposed a 3-step approach to identify behav-
ioral and creational design patterns in source code us-
ing dynamic analysis. We described behavioral and
creational design patterns in terms of scenario dia-
grams. Then, we reverse engineered scenario dia-
grams of a given software systems by means of dy-
namic analysis through bytecode instrumentation. Fi-
nally, we performed design patterns identification using
constraint programming by identifying in the scenario
diagrams of systems objects and messages conform to
(caller/callee, follows, and create/created) the
scenario diagrams of some design patterns. We eval-
uated our approach on JHotDraw with the Visitor
design patterns to show its precision and recall.

Future work includes merging scenario diagrams to
obtain sequence diagrams; using abstraction mecha-
nisms that can reduce the size of execution trace with-
out loss of data relevant to the identification of design
patterns; adding new constraints and improving the
CSP of the design patterns to obtain higher precision
without impacting recall; evaluating our approach on
larger systems; combining this approach with a previ-
ous structural approach.

References

[1] Giuliano Antoniol, Gerardo Casazza, Massimiliano
di Penta, and Roberto Fiutem. Object-oriented design
patterns recovery. Journal of Systems and Software,
59:181–196, November 2001.

[2] Apache Jakarta Project. Byte Code Engineering Li-
brary, June 2006.

[3] Lionel Briand, Yvan Labiche, and Johanne Leduc. To-
wards the reverse engineering of UML sequence dia-
grams for distributed Java software. Transactions on
Software Engineering, 32(9), September 2006.

[4] Lionel Briand, Yvan Labiche, and Y. Miao. Towards
the reverse engineering of UML sequence diagrams.
Proceedings of the 10th Working Conference on Re-
verse Engineering, pages 57–66, November 2003.

[5] Len Erlikh. Leveraging legacy system dollars for e-
business. IT Professional, 2(3):17–23, 2000.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1st edition, 1994.

[7] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of software engineering. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1991.

[8] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using
design patterns and constraints to automate the de-
tection and correction of inter-class design defects. In
Quioyun Li, Richard Riehle, Gilda Pour, and Bertrand
Meyer, editors, Proceedings of the 39th conference on
the Technology of Object-Oriented Languages and Sys-
tems, pages 296–305. IEEE Computer Society Press,
July 2001.

[9] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recov-
ering binary class relationships: Putting icing on the
UML cake. In Doug C. Schmidt, editor, Proceedings of
the 19th conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 301–314.
ACM Press, October 2004.

[10] Yann-Gaël Guéhéneuc and Narendra Jussien. Us-
ing explanations for design-patterns identification. In
Christian Bessière, editor, Proceedings of the 1st IJ-
CAI workshop on Modeling and Solving Problems with
Constraints, pages 57–64. AAAI Press, August 2001.

[11] Dirk Heuzeroth, Thomas Holl, and Welf Löwe. Com-
bining static and dynamic analyses to detect interac-
tion patterns. In Hartmut Ehrig, Bernd J. Krämer,
and Atila Ertas, editors, proceedings the 6th world con-
ference on Integrated Design and Process Technology.
Society for Design and Process Science, June 2002.

[12] Dirk Heuzeroth, Welf Löwe, and Stefan Mandel. Gen-
erating design pattern detectors from pattern speci-
fications. In 18th IEEE International Conference on
Automated Software Engineering (ASE) 2003. IEEE,
2003.

8

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

41

[13] Narendra Jussien and Vincent Barichard. The PaLM
system: Explanation-based constraint programming.
In Nicolas Beldiceanu, Warwick Harvey, Martin Henz,
François Laburthe, Eric Monfroy, Tobias Müller, Lau-
rent Perron, and Christian Schulte, editors, Proceed-
ings of TRICS: Techniques foR Implementing Con-
straint Programming Systems, pages 118–133. School
of Computing, National University of Singapore, Sin-
gapore, September 2000. TRA9/00.

[14] Rudolf K. Keller, Reinhard Schauer, Sébastien Ro-
bitaille, and Patrick Pagé. Pattern-based reverse-
engineering of design components. In David Garlan
and Jeff Kramer, editors, proceedings of the 21st In-
ternational Conference on Software Engineering, pages
226–235. ACM Press, May 1999.

[15] Christian Krämer and Lutz Prechelt. Design recovery
by automated search for structural design patterns in
object-oriented software. In Linda M. Wills and Ira
Baxter, editors, proceedings of the 3rd Working Con-
ference on Reverse Engineering, pages 208–215. IEEE
Computer Society Press, November 1996.

[16] Jörg Niere. Fuzzy logic based interactive recovery of
software design. Presented at the ICSE Doctoral Sym-
posium, May 2002.

[17] Object Management Group. UML 2.0 Superstructure
Specification, October 2004.

[18] Wim De Pauw, Doug Kimelman, and John M. Vlis-
sides. Modeling object-oriented program execution. In
Proceedings of the 8th European Conference on Object-
Oriented Programming, volume 821, pages 163–182.
Springer-Verlag, July 1994.

[19] Niklas Pettersson and Welf Lowe. Efficient and accu-
rate software pattern detection. In Proceedings of the
XIII Asia Pacific Software Engineering Conference,
pages 317–326, Washington, DC, USA, 2006. IEEE
Computer Society.

[20] Alex Quilici, Quing Yang, and Steven Woods. Ap-
plying plan recognition algorithms to program under-
standing. journal of Automated Software Engineering,
5(3):347–372, July 1997.

[21] Atanas Rountev, Olga Volgin, and Miriam Reddoch.
Static control-flow analysis for reverse engineering of
UML sequence diagrams. Proceedings of the 6th Work-
shop on Program Analysis for Software Tools and En-
gineering, pages 96–102, September 2005.

[22] Jochen Seemann and Jürgen Wolff von Gudenberg.
Pattern-based design recovery of Java software. In Bill
Scherlis, editor, proceedings of 5th international sym-
posium on Foundations of Software Engineering, pages
10–16. ACM Press, November 1998.

[23] Doaa M. Shawky, Salwa K. Abd-El-Hafiz, and Abdel-
Latif El-Sedeek. A dynamic approach for the identifi-
cation of object-oriented design patterns. Proceedings
of the 2nd International Conference on Software Engi-
neering, pages 138–143, February 2005.

[24] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George
Stephanides, and Spyros Halkidis. Design pattern de-
tection using similarity scoring. Transactions on Soft-
ware Engineering, 32(11), November 2006.

[25] Roel Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Joseph Gil, editor, pro-
ceedings of the 26th conference on the Technology of
Object-Oriented Languages and Systems, pages 112–
124. IEEE Computer Society Press, August 1998.

9

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

42

Verifying Business Processes Extracted from E-Commerce Systems
Using Dynamic Analysis

King Chun Foo1, Jin Guo2 and Ying Zou1

Department of Electrical and Computer Engineering1 School of Computing2

Queen’s University
Kingston, Ontario, Canada

Queen’s University
Kingston, Ontario, Canada

3kcdf@qlink.queensu.ca, ying.zou@queensu.ca guojin@cs.queensu.ca

Abstract

E-commerce systems must react in real-time to user
inputs and business rules. For the purpose of re-
documentation, static analysis is often adopted to
recover business processes implemented in e-
commerce systems. However, static analysis fails to
recover the complete tasks in business processes due to
the dynamic nature of e-commerce systems. To
improve the accuracy of recovered business processes,
we devise dynamic analysis techniques which trace the
execution of processes. We recover usage scenarios
from the execution logs and use them to verify the
business processes recovered using static analysis. We
verify the effectiveness of our proposed approach
through a case study on OFBiz e-commerce
applications.

1. Introduction

Most e-commerce systems are constructed using
three-tier architecture, which includes user interface
(UI) tier, business logic tier, and database tier. E-
commerce systems are highly dynamic. They react to
users’ requests in real-time and generate results
according to user’s selections, business rules and status
data stored in databases. For the example of an on-line
bookstore, a book can be placed in the shopping cart
only if the book in stock. An e-commerce system
implements a collection of business processes that
describe the operations provided by an organization.
Specifically, a business process consists of tasks,
control flows, data and participants. A task is a unit of
work, which can be executed either automatically in
the business logic tier (i.e., back-end components) or
require human interactions through UIs. For example,
a book purchase business process can contain
“selecting a book” task, “select a payment method”
task and “buying a book” task. Control flows describe

the task execution paths [4], such as sequential,
alternative and parallel paths.

 Business processes are often optimized to reduce
the cost of business operations and improve the quality
of services provided by an organization. Business
process optimization requires updating the source code
to accommodate the modified part of the business
processes. When performing code updates, developers
need to identify the portion of the code to change.
However, locating the code blocks corresponding to a
particular feature or change is a difficult process
without up-to-date documentation.

In previous research [2][3], we applied static
analysis techniques to examine source code and reason
over all possible behaviors that might arise during run-
time, in order to recover business processes in e-
commerce systems. To reduce the complexity of
representing the recovered business processes, our
previous work [3] represents the business processes in
terms of two abstraction levels: high-level and low
business processes. High-level business processes give
an overview of business operations and contain tasks
which require human interactions or which are
executed by components in the business logic tier.
Low-level business processes contain the details steps
performed in the back-end components. Separating
complex system structure can provide a clear view of
the overall structure of an ecommerce application
while hiding processing details. However, static
analysis cannot capture the business tasks executed
under the conditions determined at run-time. For the
example of an on-line bookstore, administrator can edit
or add books to the system. The add or edit operations
can be initiated by the “create” link or “edit” link in the
book management page. Both links will direct the user
to a new page. Depending on which link is pressed,
one of the two possible operations will take place. The
exact operation executed will be dictated by the run-

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

43

time parameter supplied by the user. Using static
analysis, we can only extract information that either
links would lead to two possible operations. However,
the exact operation that will be invoked can only be
determined through dynamic analysis where actual
value is being used to test the system.

To improve the accuracy of recovered business
processes, we aim to integrate static analysis with
dynamic analysis for recovering business processes. In
this paper, we use dynamic analysis techniques to
observe the behaviors of a system at run-time. We also
use the result of the dynamic analysis to verify and
enhance business processes recovered from static
analysis. More specifically, the static analysis
identifies business processes from the source code of
three tiers of the e-commerce application. As an
extension to our previous work [3] we refine our
techniques for recovering high-level business
processes using UI design patterns, which describe the
best practices to implement UI functionalities. The UI
design patterns are used to separate multiple business
processes implemented in the same UI screens.

The dynamic analysis records how a user would
normally interact with the e-commerce applications.
Usage scenarios are generated to represent the steps
that a user needs to perform in order to complete
business processes. We record the tasks performed
throughout the three tiers when a user interacts with
the systems to fulfill business processes. When a user
conducts a particular usage scenario, information
regarding each step in the scenario is recorded. Since
static analysis may not be capable of recovering
business processes correctly when run-time
information is needed, therefore, we match the tasks
from business processes recovered using static analysis
and the usage scenarios traced using dynamic analysis.
Depending on the results of the matching, we can
determine whether a recovered business process is
complete or incomplete.

The rest of the paper is organized as follows.
Section 2 presents techniques for recovering business
processes using UI design patterns. Section 3 presents
the techniques for identifying usage scenarios. Section
4 discusses the case studies. Section 5 gives a brief
overview of related work. Finally, Section 6 concludes
our work and discusses future work.

2. Recovering Business Processes using
Static Analysis

We recover business processes from the three tiers
of e-commerce systems using static analysis.
Recovering business processes from UIs is a
challenging task, since the UI is often developed

without referring to the underlying business process
specifications. The structure of a UI can be complex
due to the hyperlinks and hierarchical structures of the
widgets (e.g., buttons, tables, and trees in UIs). The
hyperlinks can connect one page to other pages with
arbitrary orders. Therefore, it is difficult to identify the
control flow constructs (e.g., sequence, alternative and
parallel) between the functionality delivered in
different pages in an e-commerce application. It is also
hard to determine the starting point of a business
process from the interwoven page links.

The hierarchical structure of a widget complicates
the identification of a task with appropriate granularity.
For example as shown in Figure 1, a table widget
contains multiple cells in different rows and columns.
Each cell can further encapsulate tables, hyperlinks,
buttons and selection lists. Many possible tasks with
different level of granularity can be identified from the
UI widgets. For example, the entire table can be
considered as a task that displays the result of a search
operation. A button widget that triggers a back-end
service could be considered as a task with low-level
details. However, it is difficult to understand a
business process with excessive low-level detailed
tasks since a business process is intended to capture
high level business operations.

Figure 1. Example UI Page of Sequoia ERP [11]

To overcome the complexity of UI implementation,

we use UI design patterns to abstract the structure of
the UIs and capture the tasks and controls flows from
the structure of pages, and the dependencies among
pages. We classify UI design patterns into three
categories according to the structure of the UI:
1) Hierarchical structure patterns: are used to organize

the overall structure of a UI and group different
functionalities of a UI into subsystems. Each
subsystem allows a user to work on particular
functionality. For example, as shown in Figure 1,
the multiple tabs depicted on the top of the screen
allow a user to select different subsystems (e.g.,
agreement, accounting, and catalog) to work on.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

44

This tab structure is an instance of the hierarchical
structure pattern. The first screen displayed after
selecting a subsystem from the tabs suggests the
starting point of a business process.

2) Navigation patterns: describe the navigational
structure of UI pages. The navigational structure
allows a user to accomplish one business process
by navigating through different pages. Generally, a
business process can be implemented within one
page or can be accomplished across multiple pages.
To improve the usability of the UI, different UI
navigation patterns are often adopted to guide users
through the UI pages. For example, a wizard
pattern guides a user to complete tasks in a step by
step fashion. We consider the operations fulfilled in
the wizard pattern as a business process and we
map each operation in the wizard pattern to a task
in a business process. The order of each step is
converted to a sequential control structure in the
business process.

3) Behavioral patterns: characterize functional units
delivered in a page. For example as shown in
Figure 1, a multi-value input format pattern [10]
encapsulates multiple input widgets that take input
data from a user; a browse pattern [10] presents a
set of ordered data as the output from the back-end
components; a search pattern [10] allows a user to
specify search criteria, and to review the results of a
search. We locate the tasks by identifying the
behavior patterns in a UI page.

3. Verifying Business Processes using
Dynamic Analysis

The goal of dynamic analysis is to generate a
sequence of business tasks which represent the
processing steps for fulfilling a business process. A
business task, however, can be implemented as code
fragments with utility code and other non-business
related task in between. Normally, a business task is
associated with business data accesses and
manipulations. Simply recording all code lines that
involve business data would quickly lead to the
creation of large log files that is challenging to analyze.
Utility classes provide internal basic operations which
facilitate the completion of a business process. These
non-business logics do not contribute to business
processes and hence, should not be logged.

To filter non-business logic, we define criteria to
guide the insertion of instrumentation code into the
different tiers of an e-commerce application. We
define a set of rules to trace the execution of business
tasks using code instrumentation in all tiers. Aspect
oriented programming can be applied to insert the

probes automatically at the location where the rules
can be applied. The recorded information from each
tier is merged and sorted by access time in order to
create a complete usage scenario of a business process.

A potential drawback of dynamic analysis is that it
requires a large set of test cases to ensure it covers all
execution path of the application. The effort of
generating such test case suites makes it impractical for
applying dynamic analysis to large software such as e-
commerce application. Instead of using dynamic
analysis to recover business processes, we apply
dynamic analysis to verify the results of static analysis
and identify possible mistakes in the business
processes generated from static analysis.

3.1 Instrumenting the User Interface Tier

The UI tier is responsible for generating page
transitions and collecting user’s inputs. This tier is the
starting and ending point for all business processes.
Upon collecting all necessary information from the
user, the UI tier forwards the request of the operation
to the business logic tier. We identify two rules for
signaling the starting and ending point of a business
process.
Rule 1. Each business task is initiated by a user's

interaction with the UI. We log each user request
as well as the input data for the request.

Rule 2. Upon completion of the user's request of a
business task, a new UI screen containing the
result of the request is generated. This signifies
the end of the business processes and is recorded.

3.2 Instrumenting Business Logic Tier

The business logic tier contains the functional
algorithms which process requests from the UI tier
using information from the databases. While the other
two tiers remain unchanged most of the time, the
business logic tier is often updated to reflect changes
in the business processes. We identify a preliminary set
of rules for instrumenting the business logic tier.

Figure 2. Implementation to support previous
releases

Rule 1. To provide support to the previous releases of
a system, the implementation of a function may
contain code which transfers the program control to

1 Public static createPayment(Object paymentType){
2 createPaymentMethod(“Credit”, null);
3 }
4 Public static createPaymentMethod(Object paymentType,
Object paymentDate){
5
6 }

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

45

a newer implementation of the function. As shown
in Figure 2, the implementation for createPayment
from line 1 to 3 contains only an invocation of the
newer version of the function, namely,
createPaymentMethod. Since the program control
is being transferred to another method, it is
assumed that the method being transferred to
contain all business logics. Therefore, the
instrumentation should start at the method being
invoked. For example as illustrated in Figure 2, the
probe for tracing the execution of the function (i.e.,
a business task) is inserted at line 4.

Rule 2. Identify the starting point of a business task
which is completed by invoking multiple methods
in source code. In most e-commerce systems,
business tasks are declared as services in an
interface file and implemented in a different file.
By analyzing the service declaration, a precise
starting point of the implementation of a business
task is identified.

Rule 3. Identify business data which govern the
purpose of the business tasks. The business data is
passed from the UIs and is used to implement
business tasks and enforce business rules that
specify the conditions for executing business tasks.
To generate a meaningful trace, only the code
lines that involve business data validation or
modification should be recorded. In later cases,
data modification is done by populating variables
with business data. If the variable is modified
multiple times, we only record its last assignment
as this is the final value that would be stored in the
database.

3.3 Comparing Results from the Static
Analysis and Dynamic Analysis

Users often perform multiple business processes in
one session. To detect each business process, we
analyze the traces produced from all users’ requests
made during a session. The usage scenarios can be
recovered from the traces. Specifically, a usage
scenario captures the tasks that are carried out to react
to user’s requests. Different from recovering a business
process, the control flow constructs (e.g., sequential,
alternative and parallel execution paths) are not
included in a usage scenario.

For each trace records generated by dynamic
analysis, we assume that the user completes each
operation sequentially without interleaving. To
compare the results from both analyses, we match the
tasks identified from both techniques in sequential
order. There are three possible outcomes through the
comparison.

1) If a task is present in the results of both analyses,
then the task is verified in the recovered business
processes.

2) If a task is present in the dynamic usage scenario
of dynamic analysis but not in the recovered
business processes from the static analysis, we
would treat it as a missed task in which static
analysis failed to recover a business task. We
complement the static analysis result with the
missing task found in dynamic analysis result.

3) If a task is present in static analysis but not in
dynamic analysis, we would consider it as a
possible misidentified task and we can manually
analyze the corresponding code block to determine
if it is a business task.

4. Case Study

To demonstrate the effectiveness of our proposed
approach, we performed case studies on Sequoia ERP
[11], a variant of the Open For Business project
(OFBiz). The system is implemented in Java and a
proprietary scripting language, called Mini-Language.

We have instrumented the Sequoia by applying the
rules discussed in Section 3 on four Sequoia ERP
subsystems: catalog, facility, marketing, and
workeffort. Using static analysis, we recovered 1)
high-level business processes from the scripting code
for UI pages and the XML scripting code, 2) low-level
business processes from the Java source code. To
produce the traces, we recruited an undergraduate
student to use the system. The undergraduate student
studied the user guides and on-line demos of the
system before the experiment.

We developed a prototype tool to recover usage
scenarios that have the same starting points as the
business processes recovered using static analysis.
Such usage scenarios serve as the basis for the
verification.

We compare the results by matching the name of
tasks and starting points of the process in the results of
both analyses. We count the number of missed tasks
and misidentified tasks based on the criteria mentioned
in section 3.3. We calculate the recall rate and
precision using Eqn 1 and Eqn 2.

tasksidentifiedof
tasksiedmisidentifoftasksidentifiedofprecision

#
−

=
 (Eqn 1)

tasksidentifiedof
tasksmissedoftasksidentifiedofrecall

#
−

= (Eqn 2)

Table 1 summarizes the high-level business

processes recovered using static analysis from the four
studied subsystems in Sequoia ERP. We have
recovered 116 business processes and 233 unique tasks

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

46

in total. We calculate the precision and recall for
misidentified tasks and missed tasks using Eqn 1 and
Eqn 2 respectively. The mis-identified tasks should be
removed from the recovered business processes. The
result of the comparison is shown in Table 2.
Comparing the usage scenarios recovered from the
dynamic analysis, we locate 4 business tasks that were
missed using static analysis. No misidentified tasks
were found. The precision and recall are 100% and
98.3% respectively as shown in the Table 2.

Table 1. High-Level Business Processes from Sequoia

Subsystem # of Workflows # of Tasks
catalog 66 133

facility 30 62
marketing 8 10
workeffort 12 28

Total 116 233

Table 2. Precision and Recall for the Static Analysis

of

Ident.
Task

of
Mis-
ident.
Task

of
Missed
Tasks

Precision Recall

High-
Level

Process
233 0 4 100% 98.3%

Low-
Level

Process
195 46 32 76.4% 83.6%

For the low-level business processes, our static

analysis techniques missed 32 tasks and mis-identified
46 tasks. We found the precision for recovering low-
level process is 76.4% using static analysis. Upon
examining the result, we found that the misidentified
tasks were mostly related to debugging statements used
in the system. We use the results of the dynamic
analysis to add the missed tasks and correct the mis-
identified tasks. .

5. Related Work

Static analysis is adopted in previous research
[1][2][3] to recover business processes. Huang et al. [1]
propose an approach which depends on variable
classification to recover business rules. Zou et al. [2]
describe a model-driven business process recovery
framework using heuristic rules. Hang and Zou [3]
produce a collection of complete business processes
from the three-tier of e-commerce systems and
visualize them using commercial business process
modeling tools. Nevertheless, these approaches
[1][2][3] require manual verification of the results, and
ignore the design structure of UIs when recovering
tasks that deliver single unit of work. In this paper we

use the dynamic analysis to automatically verify the
results from static analysis and enhance the task
identification using UI design patterns.

Aalst et al. [5][6] recover process models from
execution logs. Their research effort is used to
generate logs. Feature location is a process to identify
the parts of source code corresponding to specific
functionalities [7]. Greevy et al. [8] map features to
software entities using dynamic analysis. Kuhn et al.
[9] complement dynamic analysis with latent semantic
indexing to identify related features in programming
language code. In our approach, the detection of UI
patterns relies on the static analysis techniques.
However, our approach locates tasks using the
structures and designs in the UI implementation.

Deursen et al. [12] used lexical analysis to track
database usage for rapid system understanding
purposes. This technique relies on explicit declaration
of SQL table or when such information is not available,
record definition that is used to read/write entry to
database is used instead. The result generated by
lexical analysis is only an approximate. In our
approach, we based our dynamic analysis on business
data access. However, the identification of business
data in our approach starts at the UI level and rather
than by analyzing the database structure.

6. Conclusion

In this paper, we propose techniques for recovering
business processes from e-commerce applications and
for verifying the recovered processes using dynamic
analysis. To identify tasks with appropriate granularity
and separate different business processes, we use UI
design patterns. The patterns abstract the UI structures
and recover tasks that can deliver a single unit of
functionality. The usage scenarios of a user are
recovered using dynamic analysis and are compared
with the results from static analysis. The case study on
an open source e-commerce system demonstrates the
feasibility of our techniques.

The limitation with our proposed approach is that
manual code instrumentation is required to carry out
dynamic analysis which can be difficult when working
with large piece of software. Furthermore, manual
identification is needed when possible false positive is
suggested by dynamic analysis. In the future, we plan
to instrument the code automatically.

Reference
[1] H. Huang, W.T. Tsai, S. Bhattacharya, X.P. Chen, Y. Wang, and
J. Sun. “Business rule extraction techniques for COBOL programs”,
Journal of Software Maintenance 1998, 10(1):3–35.

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

47

[2] Y. Zou, T. C. Lau, K. Kontogiannis, T. Tong, and R. McKegney.
“Model Driven Business Process Recovery”, In Proceedings of
Working Conference on Reverse Engineering, 2004.
[3] M.K. Hang and Y. Zou, “Recovering Workflows from Multi
Tiered E-commerce Systems”, Proceedings of International
Conference on Program Comprehension, Banff, July 2007. pp.198-
207
 [4] H. Schmid and G. Rossi, “Modeling and Designing Processes in
E-Commerce Applications”, IEEE Internet Computing,
January/February 2004.
[5] W.M.P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
Mining: Discovering Process Models from Event Logs”, IEEE
Transactions on Knowledge and Data Engineering, v.16 n.9,
pp.1128–1142, Sep. 2004
[6] A.J.M.M. Weijters and W.M.P. van der Aalst, “Process mining:
discovering workflow models from event-based data”, in:
Proceedings of the Belgium-Netherlands Conference on Artificial
Intelligence, 2001, pp. 283–290.
[7] D. Poshyvanyk, A. Marcus, and V. Rajlich, “Feature Location
Using Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval”, IEEE Transactions on
Software Engineering, v.33, n.6, June 2007.
[8] O. Greevy and S. Ducasse, “Correlating features and code using a
compact two-sided trace analysis approach”, Proceedings of CSMR
2005, 2005, pp.314–323.
[9] A. Kuhn, O. Greevy, and T. Gîrba, “Applying semantic analysis
to feature execution traces”, Proceedings of PCODA, Nov. 2005, pp.
48–53..
 [10] D. Sinnig, “The Complicity of Patterns and Model-Based UI
Development”, Mater thesis in Department of Computer Science,
University of Concordia, Montoreal, Canada, 2004.
[11] http://ofbiz.apache.org/
[12] A. van Deursen, and T. Kuipers, “Rapid System
Understanding: Two COBOL Case Studies”, IWPC 1998

Proceedings of the 3rd International Workshop on Program Comprehension through Dynamic Analysis (PCODA'07)

48

	proceedings_withoutfront.pdf
	1. Introduction
	2. Background
	3. Presentation and Interaction Features
	3.1. Presentation
	3.2. Interaction

	4. Cognitive support requirements for tools that present very large sequence diagrams
	5. System requirements for coping with very large sequence diagrams
	6. The Zest Sequence viewer
	7. Discussion
	Acknowledgments
	References

