
Andy Zaidman, Abdelwahab Hamou-Lhadj, Orla Greevy, David Röthlisberger
(editors)

4th International Workshop on

Program
Comprehension

through Dynamic
Analysis

co-located with the 15th International Working

Conference on Reverse Engineering (WCRE’08)

October 16th, 2008 – Antwerp, Belgium

Technical report TUD-SERG-2008-036
Software Engineering Research Group

Delft University of Technology
The Netherlands

Contents

On Execution Traces

Visualizing an Execution Trace as a Compact Sequence Diagram
Using Dominance Algorithms ... 1
Yui Watanabe, Takashi Ishio, Yoshiro Ito, Katsuro Inoue

Using a Sequence Alignment Algorithm to Identify Specific and Common Code
from Execution Traces... 6
Marcelo de A. Maia, Victor Sobreira, Klérisson R. Paixão, Sandra A. de Amo, Ilmério R. Silva

Pattern of feature detection

Behavioral Design Pattern Detection through Dynamic Analysis ... 11
Francesca Arcelli, Fabrizio Perin, Claudia Raibulet, Stefano Ravani

TAG (TrAce+Grep): a Simple Feature Location Approach .. 17
Dapeng Liu, Monica Brockmeyer, Shaochun Xu

Tools

A Cognitively Aware Dynamic Analysis Tool for Program Comprehension.. 22
Iyad Zayour, Abdelwahab Hamou-Lhadj

Towards Seamless and Ubiquitous Availability of Dynamic Information in IDEs .. 27
David Röthlisberger and Orla Greevy

Applications of Dynamic Analysis

Using Dynamic Analysis for API Migration ... 32
Lrla ea Haensenberger, Adrian Kuhn, Oscar Nierstrasz

Applying Static and Dynamic Analysis in a Legacy System to Study the
Behaviour of Patterns of Code during Executions: an Industrial Experience ... 37
Rim Chaabane, Françoise Balmas

Program Chairs

Orla Greevy
Software Engineering gmbh
Switzerland
greevy@sw-eng.ch

Abdelwahab Hamou-Lhadj
Department of Electrical and Computer Engineering
Concordia University,
Montreal, Canada
abdelw@ece.concordia.ca

David Röthlisberger
Software Composition Group
Institut fur Informatik und angewandte Mathematik
University of Bern
Switzerland
roethlis@iam.unibe.ch

Andy Zaidman
Software Engineering Research Group
Delft University of Technology
The Netherlands
a.e.zaidman@tudelft.nl

Program Committee

Edna Braun
University of Ottawa, Canada
Constantinos Constantinides
Concordia University, Canada
Serge Demeyer
University of Antwerp, Belgium
Wim De Pauw
IBM, USA
Philippe Dugerdil
Haute école de gestion de Genève, Switzerland
Adrian Kuhn
University of Bern, Switzerland
Adrian Lienhard
University of Bern, Switzerland
Leon Moonen
Simula Research Laboratory, Norway

Visualizing an Execution Trace as a Compact Sequence Diagram
Using Dominance Algorithms

Yui Watanabe, Takashi Ishio, Yoshiro Ito, Katsuro Inoue
Osaka University

1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
{wtnb-y, ishio, yito, inoue}@ist.osaka-u.ac.jp

Abstract

Visualizing an execution trace of an object-oriented sys-
tem as sequence diagrams is effective to understand the
behavior of the system. However, sequence diagrams ex-
tracted from an execution trace are too large for develop-
ers to inspect since a trace involves a large number of ob-
jects and method calls. To support developers to under-
stand extracted sequence diagrams, it is necessary to re-
move the less important details of the diagrams. In this
paper, we apply a dominance algorithm to a dynamic call
graph among objects in order to detect and remove local
objects contributing to internal behavior of dominator ob-
jects. The case study shows our approach automatically re-
moved about 40 percent of the objects from execution traces
on average.

1. Introduction

Visualizing an execution trace of an object-oriented sys-
tem as sequence diagrams is effective to understand the be-
havior of the system since understanding dynamic behavior
of an object-oriented system is more difficult than under-
standing its structure [1, 19]. A sequence diagram extracted
from an execution trace visualizes actual collaborations of
objects that provide a larger unit of program comprehension
than classes [14]. Extracted diagrams also enable develop-
ers to compare actual behavior of a program with its design.

Although several tools supported such UML-based visu-
alization [4, 7, 15], a sequence diagram extracted from an
execution trace may be too large for developers to inspect
since a trace involves a large number of objects and method
calls. A simple approach to reducing the size of a sequence
diagram is a filter to exclude objects and method calls us-
ing their package, class and method names. Such name-
based filtering approach is effective to remove well-known
library such as JDK classes from sequence diagrams. How-

ever, to filter out objects and method calls in an application,
developers have to know important packages, classes and
methods before understanding the system. In addition, the
approach does not work when a particular set of objects is
more important than other instances of the same class. For
example, a web application using a database may create a
large number of objects representing records in a database
but use only few of them to construct an output for users.

In this paper, we propose to apply dominance algorithms
to instance-level filtering. While objects shared by several
features are important to understand the relationship among
features [10], local objects contributing to only internal be-
havior of their dominator objects are less important. We
apply dominance algorithms to detect and remove local ob-
jects in execution traces. In our approach, we first translate
an execution trace to a dynamic call graph whose vertices
and edges representing objects and method calls in execu-
tion traces. Then, we compute dominance relation among
objects. A dominator object and objects dominated by the
dominator form a cluster such that objects out of the clus-
ter access only the dominator object. We regard objects in
a cluster except for the dominator as local objects. A se-
quence diagram excluding local objects is still precise; the
diagram includes all interactions among dominator objects
shown in the diagram.

We have implemented our approach with an iterative
dominance algorithm [2] and our sequence diagram extrac-
tion tool named Amida [7]. We conducted a case study on
four implementations of a web application, and found that
40% of objects are categorized into local objects on average.
Although we need further case studies on software in differ-
ent domains, our approach is promising to provide a com-
pact sequence diagram extracted from an execution trace to
developers .

The rest of this paper is organized as follows. Section
2 explains the background of this research. Section 3 de-
scribes our approach to filtering local objects from sequence
diagrams. Section 4 shows the result of a case study. Sec-
tion 5 describes the summary and future work.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

1

2. Background

Visualization of dynamic behavior of object-oriented
programs is effective for program understanding and de-
bugging. A popular approach is UML-based visualization
[1]. For example, JIVE supports object interaction diagram
and sequence diagram [4]. Shimba [15] and Amida [7]
also support sequence diagram. To draw a compact dia-
gram, Shimba can replace objects in the same package as
a package object. Amida detects loops and recursive calls
in a trace [16]. Several data compression approaches to de-
tecting repeated method call sequences are investigated by
Reiss [13].

Since UML-based visualization often outputs a large di-
agram, several new viewers and summarization approaches
are proposed. Pauw proposed a simple left-to-right layout
of a call tree that works well with zoom-in/out functionality
[11]. Cornelissen proposed Circular Bundle View that vi-
sualizes an execution trace as a compact circular view [3].
These approaches are suitable to investigate an overview of
a trace but not for developers to investigate the actual be-
havior of a program.

To summarize an execution trace before visualization,
Hamou-Lhadj proposed a utilityhood function to identify
utility methods [6]. Their utilityhood definition is based on
a simple idea: many methods depend on utility methods
while utility methods depend on few other methods. This
approach simply excludes utility-like method calls from
traces. Therefore, a summarized sequence diagram may
miss method call events connecting objects; such a diagram
would be a good overview of a trace but it does not support
developers who would like to investigate the precise behav-
ior.

Phase detection divides an execution trace into phases
that are corresponding to functional units in the trace
[12, 18]. Reiss uses statistical information of method calls
[12]. Our approach monitors a working set of objects [18].
Although these approaches can divide a large sequence dia-
gram into several smaller pieces, resultant diagrams may be
still large for developers to investigate.

In this paper, we apply dominance algorithms to identify
local objects contributing to internal behavior of a particu-
lar object. Our approach is based on a dynamic call graph
whose vertices and edges represent objects and method calls
in an execution trace, differently from utilityhood function
based on static fan-in and fan-out of each method [6]. Dom-
inance algorithm is already used for visualizing and navigat-
ing a program dependence graph [5]. We hypothesized that
dominance algorithm would be effective for a dynamic call
graph since many temporary objects are created to achieve
a task in a system and such objects are locally used and de-
stroyed after the task [9, 17].

Our approach is an instance-level filtering approach ex-

cluding objects that are likely not important from an execu-
tion trace. A simple name-based filtering approach does not
distinguish instances; it simply removes all instances of the
class from a trace. Shimba implements another approach
that replaces all instances with a single actor representing
a class [15]. These class-based approaches are not applica-
ble when an instance of a class is more important than other
instances of the same class. For example, a web applica-
tion using a database may create a large number of objects
representing records in a database but use only few of them
to construct an output for users. On the other hand, JIVE
allows developers to hide member objects that are stored in
fields of another object [4]. This approach is also instance-
level but developers have to manually specify fields con-
taining internal objects. Our approach automatically detects
local objects from an execution trace.

3. Visualization of Dominator Objects

We apply dominance algorithms to detect and remove lo-
cal objects from an execution trace in order to visualize the
execution trace as a compact sequence diagram. Our ap-
proach comprises three steps. First, we construct a dynamic
call graph from an execution trace. Next, we compute a
dominance tree of the dynamic call graph. We regard ob-
jects dominated by a dominator as local objects contributing
internal behavior of the dominator since only the dominator
object interacts with dominated objects. Finally, we exclude
local objects from an execution trace and visualize the re-
sultant trace as a sequence diagram.

3.1. Dynamic Call Graph Construction

In the first step, we construct a dynamic call graph from
an execution trace. Vertices and edges of a dynamic call
graph represent objects and method calls in an execution
trace, respectively. It should be noted that our approach is
described based on Java language but applicable to other
object-oriented languages.

An execution trace in this paper is a sequence of method
call events. A method call event records at least a caller
object cfrom and a callee object cto. To construct a dynamic
call graph, first we prepare an empty graph G. For each
method call from cfrom to cto, a directed edge from cfrom

to cto is added to G.
We have a rule to deal with static methods such as main

that are not belonging to any instance but a class. We
translate each static method call into an individual vertex;
for example, if a static method Arrays.sort is called
twice in an execution trace, the resultant call graph contains
two vertices vArrays.sort[1] and vArrays.sort[2]. We distin-
guish these method calls since many static methods in util-
ity classes such as Arrays and Math are independently

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

2

2 5 6 31 4 7 8 92 5 6 31 4 7 8 9

Figure 1. An example trace shown as a se-
quence diagram

called from many call sites in general.
The above rule for static methods enables us to obtain

a dynamic call graph G with a root vertex corresponding
to the entry point of a program, i.e., main method. An
execution trace shown in Figure 1 is translated to a dynamic
call graph shown in the left hand side of Figure 2.

3.2. Dominance Tree Construction

We apply a dominance algorithm to a dynamic call graph
in order to compute dominance relation among objects in an
execution trace. Dominance relation is a relation between
two nodes in a directed graph G that has a single root node
r. A vertex v dominates another vertex w in G if and only
if every path from r to w contains v. Vertex v is the im-
mediate dominator of w if v dominates w and every other
dominator of w dominates v [8]. Dominance relation in a
graph forms a dominance tree; the direct ancestor of node n
in a dominance tree is the immediate dominator of n.

We can compute a dominance tree of a dynamic call
graph since a dynamic call graph always has the single root
main as we described in Section 3.1. In implementation,
we have used iterative but fast dominance algorithm [2].
The right hand side of Figure 2 is an example of a domi-
nance tree that is computed from the left call graph.

3.3. Visualizing Sequence Diagram

A dominance tree for objects involved in an execution
trace indicates locality of interaction. Interaction among
a dominator object and its descendant objects is invisible
from other objects in the execution trace. Therefore, we re-
gard descendant objects as local objects of their immediate

5

1

2 4

7

9

8

3

6

9

85

2 7

1

3 4

65

1

2 4

7

9

8

3

65

1

2 4

7

9

8

3

6

9

85

2 7

1

3 4

6

9

85

2 7

1

3 4

6

Figure 2. A dynamic call graph of a trace in
Figure 1 and its dominance tree

2 3 4 71 2 3 4 71

Figure 3. A reduced sequence diagram ex-
cluding local objects from Figure 1

dominator object. A sequence diagram excluding local ob-
jects still involves all method calls among non-local objects
in the diagram.

To visualize a trace excluding local objects as a sequence
diagram, we classify objects into clusters. For each domi-
nator d, we create a cluster c(d) involving all objects domi-
nated by d. The resultant clusters satisfy the following char-
acteristics:

• Each cluster c(d) has a single dominator object d.

• A method call from the outside of c(d) always calls the
dominator object d.

These characteristics enable us to visualize only dom-
inator objects of clusters in a sequence diagram and hide
their internal behavior. The hierarchy of a dominance tree

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

3

indicates the hierarchy of clusters; it allows developers to
interactively visualize and inspect the detail of interesting
clusters. Figure 3 visualizes a sequence diagram involving
only the root object and its immediate descendant objects in
the dominance tree in Figure 2.

4. Case Study

We have implemented our approach as a tool and con-
ducted a case study to evaluate our approach. We have ana-
lyzed four implementations of an enterprise web application
developed by four groups of developers in a training course.
Four groups referred to the same specification and design
documents but they implement the details of the system in
different ways. We have prepared a use-case scenario that
executes all features of the system according to the specifi-
cation, and executed the scenario on four systems.

To obtain execution traces, we used an implementation
of JVMTI, or Amida Profiler [7]. When recording execu-
tion traces, we filtered JDK standard classes out because of
performance limitation. A call-back from JDK is regarded
as an indirect call. In other words, when object o1 called
some JDK object and o2 received a call-back, we recorded
an indirect method call from o1 to o2.

After execution traces are obtained, we applied the tool
to each of traces. Using Amida Viewer, we visualized a
trace including only objects that are immediately dominated
by main as a sequence diagram. We have compared the
resultant diagrams with diagrams directly extracted from
traces without our approach.

Table 1 and Table 2 shows the number of objects and
method calls in each of execution traces before and after
applying our approach. Since the target systems are im-
plemented in Model-View-Controller architecture, we have
categorized objects in traces into four categories: Model,
View, Controller and Other. Total row shows the total
number of objects in a trace. Model shows the number
of objects whose classes represent data model and business
logic. View includes only JSP objects. Controller
includes Action, Servlet and RequestProcessor objects.
Other includes other utility objects and static objects. It
should be noted that we have regarded a static (class) object
as a single object in Table 1, although each static method
call is translated to an individual vertex when applying a
dominance algorithm. In Table 1, the column Before
and After respectively indicate the number of objects in
a trace and the number of objects directly dominated by
main. In Table 2, the columns indicate the number of
method calls shown in sequence diagrams before and after
our approach removes local objects. In both tables, Ratio
is computed as follows.

Ratio =
After

Before
× 100(%)

Table 1. The number of objects in execution
traces
System Type Before After Ratio(%)

A Total 286 169 59.1
Model 259 145 56.0
View 9 9 100.0
Controller 11 11 100.0
Other 7 4 57.1

B Total 300 176 58.7
Model 273 152 55.7
View 9 9 100.0
Controller 11 11 100.0
Other 7 4 57.1

C Total 312 183 58.7
Model 285 159 55.8
View 9 9 100.0
Controller 11 11 100.0
Other 7 4 57.1

D Total 354 4 1.1
Model 326 0 0.0
View 9 0 0.0
Controller 11 0 0.0
Other 8 4 50.0

Table 2. The number of method calls in traces
System Before After Ratio(%)

A 3371 2390 70.9
B 3797 2716 71.5
C 3862 2646 68.5
D 4506 133 3.0

While about 60% of objects are directly dominated by
main in System A, B and C, System D involves only few
objects dominated by main. This is because System D uses
a kind of Façade object representing a system itself. The
system object is similar to main method in other systems
and immediately dominates about 60% of other objects.

For other three systems, we have investigated objects in-
volved in sequence diagrams and local objects filtered out
by our approach. Our approach did not remove View and
Controller objects such as Action and JSP since these
objects interact with one another. These objects are impor-
tant to understand the behavior of systems since they im-
plement user interface. On the other hand, our approach ex-
cluded many Model objects from sequence diagrams. The
resultant sequence diagrams involve “Data” objects con-
taining database records since these objects are short-lived
but shared by business logic and user interface. Our ap-
proach filtered out data access objects named “DAO” that

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

4

construct “Data” objects from database since such data ac-
cess objects are locally used by Action objects. Objects for
searching database records are also excluded from sequence
diagrams since they are only used in a search function.

In the case study, local objects excluded by our approach
are the less important implementation details of the target
systems, while the resultant diagrams retained important
objects such as user interface and business logic. Although
we need further case studies on software in different do-
mains, our filtering approach is promising to exclude local
objects from a trace and provide a compact sequence dia-
gram to developers.

5. Conclusion

We have applied dominance algorithms to identify local
objects contributing to only internal behavior of their domi-
nator objects. Excluding local objects from execution traces
simplifies sequence diagrams extracted from the traces. In
the case study, we found only 60% objects are directly dom-
inated by mainmethod and the other 40% of objects are lo-
cal objects. We have confirmed that local objects excluded
by our approach are the less important implementation de-
tails of the target systems. We implemented the algorithm
to filter local objects from a sequence diagram in Amida
Viewer. The resultant sequence diagrams retain all interac-
tions among non-local objects; therefore, the diagrams are
suitable for developers to investigate actual behavior of pro-
grams.

In future work, we have to conduct further case stud-
ies on various software. We would like to evaluate how
our approach collaborates with other filtering and visualiza-
tion approaches. We are also interested in how architecture
and design of software influence the effectiveness of our ap-
proach.

Acknowledgements

This research was supported in part by Global COE Pro-
gram, Center of Excellence for Founding Ambient Informa-
tion Society Infrastructure from MEXT, Japan.

References

[1] L. C. Briand, Y. Labiche, and J. Leduc. Towards the reverse
engineering of UML sequence diagrams for distributed java
software. IEEE Transactions on Software Engineering,
32(9):642–663, 2006.

[2] K. D. Cooper, T. J. Harvey, and K. Kennedy. A sim-
ple, fast dominance algorithm. http://www.cs.rice.
edu/∼keith/EMBED/dom.pdf, 2001.

[3] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van
Wijk, and A. van Deursen. Understanding execution traces

using massive sequence and circular bundle views. In Pro-
ceedings of the Int’l Conference on Program Comprehen-
sion, pages 49–58, 2007.

[4] J. K. Czyz and B. Jayaraman. Declarative and visual debug-
ging in eclipse. In Eclipse Technology Exchange, 2007.

[5] R. Falke, R. Klein, R. Koschke, and J. Quante. The dom-
inance tree in visualizing software dependencies. In Pro-
ceedings of the 3rd International Workshop on Visualizing
Software for Understanding and Analysis, page 24, 2005.

[6] A. Hamou-Lhadj and T. Lethbridge. Summarizing the con-
tent of large traces to facilitate the understanding of the be-
haviour of a software system. In Proceedings of the Int’l
Conference on Program Comprehension, pages 181–190,
2006.

[7] T. Ishio, Y. Watanabe, and K. Inoue. AMIDA: a sequence
diagram extraction toolkit supporting automatic phase de-
tection. In Companion Volume of the Int’l Conference on
Software Engineering, pages 969–970, 2008.

[8] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Program-
ming Languages and Systems, 1(1):121–141, 1979.

[9] H. Lieberman and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications of the
ACM, 26(6):419–429, 1983.

[10] A. Lienhard, O. Greevy, and O. Nierstrasz. Tracking ob-
jects to detect feature dependencies. In Proceedings of the
Int’l Conference on Program Comprehension, pages 59–68,
2007.

[11] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlis-
sides, and J. Yang. Visualizing the execution of java pro-
grams. In Revised Lectures on Software Visualization, Inter-
national Seminar, pages 151–162, 2001.

[12] S. P. Reiss. Dynamic detection and visualization of software
phases. In Proceedings of the Int’l Workshop on Dynamic
Analysis, pages 1–6, 2005.

[13] S. P. Reiss and M. Renieris. Encoding program executions.
In Proceedings of the Int’l Conference on Software Engi-
neering, pages 221–230, 2001.

[14] T. Richner and S. Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. In Pro-
ceedings of the Int’l Conference on Software Maintenance,
pages 34–43, 2002.

[15] T. Systä, K. Koskimies, and H. Müller. Shimba - an envi-
ronment for reverse engineering java software systems. Soft-
ware Practice and Experience, 31:371–394, 2001.

[16] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. In-
oue. Extracting sequence diagram from execution trace of
java program. In Proceedings of the Int’l Workshop on Prin-
ciples of Software Evolution, pages 148–151, 2005.

[17] D. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In Proceedings
of Software Engineering Symposium on Practical Software
Development Environments, pages 157–167, 1984.

[18] Y. Watanabe, T. Ishio, and K. Inoue. Feature-level phase
detection for execution trace using object cache. In Pro-
ceedings of the Int’l Workshop on Dynamic Analysis, pages
8–14, 2008.

[19] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, 1992.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

5

Using a Sequence Alignment Algorithm to Identify Specific and Common Code
from Execution Traces

Marcelo de A. Maia, Victor Sobreira, Klérisson R. Paixão, Sandra A. de Amo, Ilmério R. Silva

Computer Science Department
Federal University of Uberlândia

Uberlândia, MG, Brazil

{marcmaia,deamo,ilmerio}@facom.ufu.br, {victor.sobreira,klerissonpaixao}@gmail.com

Abstract

Software product lines are an important strategy to im-
prove software reuse. However, the migration of a single
product to a product line is a challenging task, even when
considering only the reengineering task of the source code,
not mentioning other management challenges. The reengi-
neering challenges are partially due to effort of identifying
common code of similar features, even when we know those
features in advance. This work proposes the alignment of
execution traces in order to discover similar code of similar
features, facilitating the reengineering task. We present the
architecture of our approach and preliminary results that
shows a promising direction.

1 Introduction

Changes are inherent to software systems [4]. Every
successful software goes through continuous evolution ei-
ther to support new user expectations, hardware changes or
operational changes. However, providing software evolu-
tion easily, quickly and correctly is still a major challenge
for software engineers because applications are increasingly
complex. This complexity is consequence of more sophisti-
cated non-functional requirements. Most maintenance tasks
are originated from new user requests, that is, perfective
maintenance tasks [3, 4]. One of the major problems in
software maintenance is related to program comprehension.
The effort of comprehending of what will be modified is
estimated in 40% to 60% of the whole effort of the main-
tenance phase[1]. This situation is aggravated when soft-
ware documentation is either not updated, unintelligible, or
simply does not exist. Another complicating issue is the
software size. Reverse engineering techniques are being de-

veloped with relative success, but their scalability to large
systems is still a challenge.

This work proposes a reverse engineering technique us-
ing a sequence alignment algorithm. Sequence alignment
algorithms have been applied in Molecular Biology to com-
pare two or more sequences of DNA, RNA or protein in or-
der to find out if there exists some similarity between them.
For example, if we have two sequences: ATGGATGCCC and
ATGCATCCC, a possible alignment would result in the fol-
lowing two sequences, respectively: ATG-GATGCCC and
ATGC-AT-CCC. Note that gaps are introduced in the orig-
inal sequences so that an i-th element of the first sequence
can match the i-th element of the second sequence. The idea
of this work is based on aligning similar execution traces in
order to find out where the two traces match (common code)
and where they mismatch (specific code). The technique is
aided by a semi-automated tool to help the identification of
specific and common code of similar features. The traces
should be captured from similar execution scenarios of the
system, otherwise it is not expected to find common code.
It is important that the developer knows what are the com-
monalities and variabilities between two execution scenar-
ios from an observational point of view in order to establish
adequate traces for alignment.

2 The Approach

In Figure 1, a general view of our approach is presented
using an UML activity diagram.

The first activity is to define suitable scenarios that en-
ables extracting relevant information when comparing two
executions traces. This is a manual activity, and informa-
tion used as input for this activity comprehends new user
requests that defines what kind of maintenance will be per-
formed, similar features present in the system and the avail-

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

6

Figure 1. The proposed approach

able documentation of the system. The result of this activity
is the definition of an execution scenario that must be per-
formed, and consequently, the input data that enables the
desired execution of the target system.

The trace extraction activity is automated. Our trace ex-
tractor is implemented in AspectJ. Currently, our target sys-
tem must be implemented in Java. During the execution
of the target system, the extractor intercepts method calls
and writes a text file for each thread launched during the
execution. Each line of the file corresponds to a method
call whose content is the fully qualified name of the called
method.

After the traces are collected, the next step is to perform
an automatic pairwise alignment with two selected traces.
The expected result of the alignment is the information of
what is common to both sequences and what is specific to
each sequence.

This information can be used to focus on the source code
that is important to desired maintenance task.

3 Related Work

Some ideas of this work were inspired in other works in
software maintenance.

Ding and Medvidovic proposes an incremental process
for the evolution of object-oriented systems with poor or in-
existent documentation. [6]. One phase of the process is the
architecture recovery of specific fragments of the system.
There are three assumptions for this phase: definition of the
desired changes, knowledge of the application properties
from the user point of view and the understanding of ba-
sic architectural features of the implementation plataform.
This work was posteriorly revised with the addition of new
heuristics for the phase of identifying components and with
new case studies [9]. Our work relates to this, in the sense
that the result of alignments helps to focus system under-
standing on the desired points of system evolution.

Rajlich and Silva have studied the reuse and the evo-
lution of orthogonal architectures, which are code frag-
ments organized in layers within the same abstraction level

[11]. They have developed an application domain inde-
pendent process aiming at adapting the system architecture
to encompass a new requirement set. The authors have
concluded that such process have application in small and
medium-sized systems, and that the source code modular-
ization was not effective for large scale systems. We expect
that sequence alignment can be applied to large scale sys-
tem in order to help focusing on the most important places
to eventually modularize.

Sartipi et al. developed a work that comprehended in re-
covering system architecture using patterns defined in the
AQL language - Architectural Query Language - and to-
gether with data mining techniques. The system is trans-
lated from source code to a graph model that is suitable for
pattern-matching [13]. In other work[12], a framework that
combines static and dynamic information is proposed. We
also believe that we will need to combine the dynamic in-
formation extracted from sequence alignment and combine
it with static information in order to achieve a more robust
result.

Vasconcelos et al. [15, 16] presents a set of heuristics for
class clustering in object-oriented systems from execution
traces, using a similar idea of combining dynamic and static
information.

Impact analysis techniques are responsible to identify the
parts of the system that will be affected by a change. A well-
known technique is program slicing. Binkley e Gallagher
have presented a survey about this technique[5]. Our work
can be used to provide the slicing criteria for understanding
the impact of a software change.

Clustering is a data mining technique used for classi-
fying related source code entities using similarity metrics.
Wiggerts [17], Anquetil [2] and Tzerpos [14] shows dif-
ferent aspects on the clustering algorithms for source code.
Feature location is a common task in software evolution ac-
tivities. Marcus et al. has presented the application of an in-
formation retrieval method - Latent Semantic Indexing (LSI)
that is used to map concepts written in natural language to
relevant fragments of source code [8]. Our work also aims
at locating source code fragments that are relevant in a soft-

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

7

ware evolution or software restructuring context based on
external point of view of behavior.

In the Bioinformatics field, comparing sequences has be-
came a major activity. The identification of similar regions
in DNA, RNA or protein sequences can help mapping se-
quences to functional, structural and evolutionary charac-
teristics. Several algorithms are presented in [7]. However,
it is still a challenge to define and adapt sequence alignment
algorithms for the software maintenance field. Surprisingly,
at the best of our knowledge, we still could not find the use
of alignment algorithms to detect similarities and common-
alities of execution traces.

4 Sequence Alignment

Sequence alignment is a well-studied problem. Needle-
man and Wunsch have already proposed an algorithm for
analyzing protein sequence in early seventies [10]. Several
algorithms have been proposed since then. Indeed there are
some issues that must be considered when adapting these
algorithms for maintenance purposes.

4.1 Characteristics of Execution Traces

Our execution traces normally can present some patterns
that can provide us with some information. For example,
consider the sequences “XaaaaY” and “XaaaY”. We can
suspect that these sequence may be generated from the same
code, and they are different just because the method “a”
was called inside a loop that executed four times in one trace
and three times in the other. Another example, consider the
sequences “XaaaaY” and “XaabaY”. In this case, we can
suspect that some condition enabled the execution of the
method “b”, possibly inside a conditional command.

4.2 Global Alignment vs Local Alignment

Global alignments attempts to align every element in
the sequences. These strategy is most useful when the se-
quences are similar and of roughly equal size. A general
global alignment technique is the Needleman-Wunsch algo-
rithm that is based on dynamic programming. Local align-
ments are more useful when we are trying to find a smaller
sequence inside a larger one. The Smith-Waterman algo-
rithm is a general local alignment algorithm and is also
based on dynamic programming. There are also hybrid
methods that attempt to find the best possible alignment that
includes the start and end of one and the other sequence.

In this paper, we have chosen to study the alignment of
almost similar sequences. Our goal was to choose similar
features and to find out what is common and what is differ-
ent between them. In such a situation, a global alignment
strategy seems a reasonable alternative.

4.3 Pairwise Alignment vs Multiple
Alignment

Pairwise alignment is used to find local or global align-
ments of two sequences. If it is necessary to compare sev-
eral sequences, the alignment can only occurs with two se-
quences at a time, and the user should proceed with an in-
tegration step with another technique. Multiple sequence
alignment is a generalization of pairwise alignment, in the
sense that the alignment algorithm can take as input several
sequences at a time. However, general multiple alignment
algorithms tend to lead to NP-complete solutions, and thus
are not very practical, unless you provide some heuristics or
use a very small input.

In this paper, we have chosen to study the pairwise align-
ment because execution traces are normally large.

4.4 Identity and Similarity

In Bioinformatics, identity and similarity are related but
different concepts. The identity is a relation of equality in
which a nucleotide or aminoacid of one side must be equal
to its complement to produce a match. This relation is too
restrictive in Biology, so the alignment algorithm may con-
sider to match two different elements, if these elements have
some level of similarity.

In principle, considering that classes may have a reason-
able cohesion, we could consider methods in the same class
or in the same package to have some level of similarity, and
thus apply the same principles of biology. However, in this
work we have chosen to consider only the identity relation-
ship as a prerequisite for matching two method calls.

4.5 Gap Penalty

Because in Bioinformatics is reasonable to accept the
alignment match between two different elements, a ques-
tion may arise when deciding if a match based on similarity
is better or not than a gap that is inserted in one of the se-
quences.

In this work, we have decided not to penalize the intro-
duction of gaps in either of the two sequences for two rea-
sons. The first is that since we work only with identity, it
seems incoeherent to accept an alignment match with two
different elements instead of introducing the gap. The sec-
ond reason is that the misalignment gives us also an impor-
tant information: it may represent specific method calls of
a sequence and thus contribute to identify specific code.

5 Application and Current Results

In this section, we present an application of sequence
alignment to report specific and common code between two

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

8

Traces Length - Prefix Length - Specific to Rectangle Length - Suffix
Rectangle 885 matches and gaps 396 specific to Rectangle 18 matches and gaps
Circle 885 matches and gaps 396 gaps only 18 matches and gaps

Figure 2. Length and Characteristic of Aligned Sequences

features in a small graphical editor shown in Figure 3. The
total lines of code of the editor is 387, the number of classes
is 9, and the total number of methods is 58.

Figure 3. The target system

We have chosen two similar features to execute the sys-
tem: drawing a rectangle and drawing a circle. The exe-
cution traces were collected and two threads were launched
for each execution. Each pair of corresponding threads were
aligned with a Needleman-Wunsch algorithm, considering
only identities and zero gap penalty. Below we present the
results of the alignments.

5.1 Results

The first thread was responsible for drawing the main
frame and there was only 14 method calls perfectly aligned
between each other.

The second thread was more interesting. Although the
system is small and the execution scenarios are fairly sim-
ple, the thread for drawing a rectangle had 1040 method
calls and the thread for drawing a circle had 644 method
calls, and thus manual alignment seems unfairly hard. Af-
ter the gap insertions each sequence had the gaps inserted
and grown to 1299 elements.

In Figure 2, we show the tree main subparts of the traces
and their correspondence. The interesting alignment is in
the first and third part, summing 903 elements. After ana-
lyzing manually the traces, we could find out that the 396 el-
ements in the second part, corresponds to gaps in the thread
of drawing circle, because the size of the drawn rectangle
was greater than the size of the circle and thus demanded
more screen updates. In Figure 4, we summarize the quan-
titative details of the alignment.

After the alignment, we computed the set of common
methods between the two features, the set of methods spe-
cific to the feature of drawing a rectangle and the set of

Before Alignment
Length of Rectangle Trace 1040
Length of Circle Trace 644
Difference Rect-Circle 396

After Alignment
Length of Rectangle Trace 1299
Length of Circle Trace 1299
#Matches 385
#Gaps in Rectangle Trace 259
#Gaps in Circle Trace 655
#Real Gaps in Circle Trace 259
Length of Interesting Alignment 903
%Matches 0.4263
%Interesting Gaps in Rectangle 0.2868
%Interesting Gaps in Circle 0.2868

Figure 4. Quantitative results

methods specific to the feature of drawing a circle. The
results are shown below, respectively. False positives have
arised when finding methods specific to draw a rectangle.
The reason was that it was not possible to align those 396
method calls with a counterpart in the draw circle feature,
as already shown in Figure 2. Nonetheless, the other results
seem promising because no false negative has arised and
all called methods were present in at least one of the above
three sets.

// Common methods
graphicaleditor.MainFrame$1.paint
graphicaleditor.MainFrame.access$0
graphicaleditor.ShapeSet.draw
graphicaleditor.MainFrame.access$1
graphicaleditor.MainFrame.processWindowEvent
graphicaleditor.MainFrame$4.mousePressed
graphicaleditor.MainFrame.drawPanel_mousePressed
graphicaleditor.MainFrame.createShape
graphicaleditor.Point2D.<init>
graphicaleditor.MainFrame$5.mouseDragged
graphicaleditor.MainFrame.drawPanel_mouseDragged
graphicaleditor.Point2D.getX
graphicaleditor.Point2D.getY
graphicaleditor.MainFrame$4.mouseReleased
graphicaleditor.ShapeSet.add
graphicaleditor.MainFrame.drawPanel_mouseReleased
graphicaleditor.MainFrame.jMenuFileExit_actionPerformed

// Methods specific to draw rectangle
graphicaleditor.MainFrame$1.paint
graphicaleditor.MainFrame.access$0
graphicaleditor.ShapeSet.draw
graphicaleditor.MainFrame.access$1
graphicaleditor.Rectangle.<init>
graphicaleditor.Rectangle.setAnchor
graphicaleditor.MainFrame$5.mouseDragged
graphicaleditor.MainFrame.drawPanel_mouseDragged
graphicaleditor.Rectangle.getAnchorX
graphicaleditor.Point2D.getX
graphicaleditor.Point2D.getY
graphicaleditor.Rectangle.getAnchorY
graphicaleditor.Rectangle.draw
graphicaleditor.Rectangle.setDimension
graphicaleditor.Rectangle.getAnchor

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

9

// Methods specific to draw circle
graphicaleditor.Circle.<init>
graphicaleditor.Circle.getAnchorX
graphicaleditor.Circle.setAnchor
graphicaleditor.Circle.setDimension
graphicaleditor.Circle.getAnchorY
graphicaleditor.Circle.getAnchor
graphicaleditor.Circle.draw

6 Final Remarks

In this work, we have shown an approach to identify
commonalities and variabilities in execution traces. The
possibilities of usage of these information are manifold. We
can help the introduction new features in the target software
based on similar characteristics already present providing
information of specific methods that the feature must im-
plement. We can help extracting common components from
source code based on information provied by commonali-
ties between execution traces.

There are many questions that still persist, for instance,
how the approach will scale up for larger systems, how the
extracted information can be more systematically used by
developers, how would be the results when working with
different versions of the system, how much the trace com-
pression would enhance the approach, and how different
alignment methods behave in different situations.

Acknowledgments. We would like to thank CNPq and
CAPES for partially funding this research.

References

[1] A. Abran, P. Bourque, R. Dupuis, and L. Tripp. Guide
to the software engineering body of knowledge (iron-
man version). TR, IEEE Computer Society, 2004.

[2] N. Anquetil, C. Fourrier, and T. Lethbridge. Experi-
ments with clustering as a software remodularization
method. In WCRE ’99: Proceedings of the Sixth Work-
ing Conference on Reverse Engineering, page 235,
Washington, DC, 1999.

[3] K .Bennett. Software evolution: past, present and
future. Information and Software Technology, Vol.
38(11):673–680, November 1996.

[4] K .Bennett and V .Rajlich. Software maintenance and
evolution: a roadmap. In Conference on The Future of
Software Engineering, pages 73–87, New York, NY,
USA, 2000. ACM Press.

[5] D. Binkley and K .Gallagher. Program slicing. Ad-
vences in Computer, 1(43), July 1996.

[6] L .Ding and N. Medvidovic. Focus: a light-weight, in-
cremental approach to software architecture recovery

and evolution. In Software Architecture, 2001. Pro-
ceedings. Working IEEE/IFIP Conference on, pages
191–200, 28-31 Aug. 2001.

[7] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, January 1997.

[8] A .Marcus, A .Sergeyev, V .Rajlich, and J .Maletic.
An information retrieval approach to concept location
in source code. In WCRE ’04: Proc. of the 11th Work-
ing Conference on Reverse Engineering (WCRE’04),
pages 214–223, Washington, DC, USA, 2004. IEEE
Computer Society.

[9] N .Medvidovic and V .Jakobac. Using software evo-
lution to focus architectural recovery. Automated Soft-
ware Engineering, 13(2):225–256, 2006.

[10] S. Needleman and C. Wunsch. A general method ap-
plicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biol-
ogy, 48(3), 1970.

[11] V. Rajlich and J. Silva. Evolution and reuse of or-
thogonal architecture. IEEE Transaction on Software
Engineering, 22(2):153–157, 1996.

[12] K. Sartipi, N. Dezhkam, and H. Safyallah. An orches-
trated multi-view software architecture reconstruction
environment. In Proc. of 13th Work. Conf. on Reverse
Engineering, pages 61–70, Oct. 2006.

[13] K. Sartipi, K. Kontogiannis, and F. Mavaddat. Archi-
tectural design recovery using data mining techniques.
In Proc. of 4th European Conf. on Soft. Maintenance
and Reengineering, pages 129–139, March 2000.

[14] V .Tzerpos and R. Holt. Software botryology: Au-
tomatic clustering of software systems. In Interna-
tional Workshop on Large-Scale Software Composi-
tion, pages 811–818, 1998.

[15] A. Vasconcelos, R. Cêpeda, and C. Werner. An ap-
proach to program comprehension through reverse en-
gineering of complementary software views. In 1st
Intl. Workshop on Prog. Comprehension through Dy-
namic Analysis (PCODA), pages 58–62, 2005.

[16] A. Vasconcelos and C. Werner. Software architec-
ture recovery based on dynamic analysis. In Simpósio
Brasileiro de Engenharia de Software, 2004.

[17] T. Wiggerts. Using clustering algorithms in legacy
systems remodularization. In Proc. of the 4th Working
Conf. on Reverse Engineering (WCRE ’97), page 33,
Washington, DC, 1997. IEEE Computer Society.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

10

Behavioral Design Pattern Detection through Dynamic Analysis

Francesca Arcelli, Fabrizio Perin, Claudia Raibulet, Stefano Ravani
DISCo – Dipartimento di Informatica Sistemistica e Comunicazione,

Università degli Studi di Milano-Bicocca
{arcelli, raibulet}@disco.unimib.it, {fabrizio.perin, stefano.ravani}@gmail.com

Abstract

The recognition of design patterns in an existing
system provides additional information related to the
rationale behind the design of the system which is very
important for the system comprehension and re-
documentation. Several approaches and tools have
been proposed for design patterns detection, some
approaches are based only on static analysis of the
code, other use both static and dynamic analysis.

In this paper we present our approach to the
recognition of design patterns based on dynamic
analysis of Java software. The idea behind our solution
is to identify a set of rules capturing information
necessary to identify a design pattern instance. Rules
are characterized by weights indicating their
importance in the detection of a specific design
pattern. The core behavior of each design pattern may
be described through a subset of these rules forming a
macrorule, which defines the main traits of a pattern.
JADEPT (JAva DEsign Pattern deTector) is our
prototype for design pattern identification based on
this idea. It captures static and dynamic aspects
through a dynamic analysis of software by exploiting
JPDA (Java Platform Debugger Architecture).

1. Introduction

The information related to the presence of design
patterns [3] in a system is useful not only to better
comprehend the system, but also to discover the
rationale of its design. This has a significant
implication for further improvement or adaptive
changes, with various advantages for the overall
maintenance process.

In the context of design patterns detection, it is
possible to use different approaches both for the
identification logic (e.g., searching for subcomponents
of design patterns, identifying the entire structure of a

design pattern at once) and for the information
extraction method (e.g., static, dynamic, or both).

Problems raised by the identification of design
patterns are related not only to the search aspects, but
also to the design and development choices. There are
at least three important decisions that should be taken
when developing a design pattern detection tool. These
decisions may influence significantly the final results.
The first issue regards the evaluation of how to extract
the interesting data from the examined software,
including the type of the analysis to be performed. The
second issue considers the data structure in which to
store the gathered information; one important risk is
related to the loss of knowledge at the data or the
semantic level: this would generate inferences about
something that is no more the analyzed software, but
an incorrect abstraction of it. The third one highlights
the importance to find a way to process the extracted
data and to identify design pattern instances.
Independently of the adopted data structure for the
extracted information (e.g., a text file, XML, database),
the following three aspects should be considered:
memory occupation, processing rate and, most
important, the effective recognition process of design
patterns with a minimum rate of false positives and
false negatives. While the first two issues could be
solved through an upgrade of the machine on which
elaboration is performed, the last is strictly related to
the efficiency of the recognition logic applied for
design pattern detection due to the significant number
of possible implementation variants.

In this paper, we present a new approach based on
the analysis of dynamic information caught during the
execution of the software under analysis in order to
detect behavioral design patterns. We consider
behavioral design patterns because they are particularly
appropriate for dynamic analysis. In fact, their traces
may be better revealed at runtime by analyzing all the
dynamic aspects including: object instantiation,
accessed/modified fields, and method calls flows. The
main advantage of using dynamic analysis regards the
fact that it is possible to evaluate both the structure of a

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

11

design pattern and its behavior. Thus, it is possible to
assert that a piece of software represents not only the
structure of a design pattern, but its behavior, too.
Through dynamic analysis it is possible to observe
objects, their creation and execution during their entire
life-cycle and overcome part of the limitations of the
static analysis which may be determinant in pattern
recognition.

JADEPT (JAva Design Pattern deTector) is the
software prototype we are developing for design
pattern detection which collects structural and
behavioral information through dynamic analysis of
Java software by exploiting JPDA (Java Platform
Debugger Architecture). We validated our approach on
canonical design pattern implementations and on the
JADEPT itself.

There are various approaches that aim to detect
design patterns based on a static analysis of source
code such as: FUJABA RE [6], SPQR [12], PINOT
[11], PTIDEJ [4] or MAISA [14]. The design pattern
detection mechanisms search for information defining
an entire pattern or sub-elements of patterns which can
be combined to build patterns [1] or evaluate the
similarity of the code structure with higher-level
models as UML diagrams [2] or graph representations
[13]. Other approaches exploit both static and dynamic
analysis as in [5, 9] or only dynamic analysis as in [10,
15]. The approach we use in JADEPT is different from
the other solutions, but a comparison with the other
tools is not possible, since a real benchmark is not yet
available.

The paper is organized through the following
sections. Section 2 presents the identification rules and
an example of their application on a behavioral design
pattern. Section 3 describes the overall architecture
and the functionalities of the JADEPT prototype.
Section 4 introduces several aspects concerning the
validation of JADEPT. Conclusions and further work
are dealt within Section 5.

2. JADEPT

To detect design pattern in JADEPT we defined a

set of rules describing the properties of each design
pattern. Properties may be either structural or
behavioral and may describe relationships between
classes or families of classes. We defined a family of
classes as a group of classes implementing the same
interface or extending a common class. Weights have
been associated to rules indicating how much a rule is
able to describe a specific property of a given design
pattern. The rules have been defined independently of
any programming language.

Nevertheless part of the extracted information can
be obtained by a static analysis of the software,
JADEPT extracts all the information during the
execution of the software adopting an approach based
exclusively on dynamic analysis. The extracted
information is stored in a database. The advantages of
having information stored in database are: (1) the
possibility to perform statistics and (2) the possibility
to memorize information about various executions of
the same software. A rule may be implemented by one
or more queries to the database. The database has been
designed to model concepts of a generic object-
oriented language. The presence of a design pattern is
verified through the validation of its associated rules.

2.1. Rules for design pattern detection

We present how rules, weights and macrorules have
been defined for the detection of design patterns, and
we introduce them through an example for the Chain of
Responsibility pattern (see Table 1). First, the
identification rules are written using natural language
(see Table 1 – Second column). This approach avoids
introducing constraints regarding the implementation
of rules. In JADEPT, rules are translated into queries,
but they can be used also outside the context of our
tool and hence, represented through a different
paradigm (e.g., graphs).

Then weights have been added to the rules to
determine the probability of the pattern presence in the
examined code, weights denote the importance of a
rule in the detection process of a pattern (see Table 1 –
Third column). Weights’ range is 1 to 5. A low weight
value denotes a rule that describes a generic
characteristic of a pattern like the existence of a
reference or a method with a specific signature. A high
weight value denotes a rule that describes a specific
characteristic of a pattern like a particular method call
chain that links two class families. Even if each
behavioral design pattern has its own particular
properties, an absolute scale for the weights value has
been defined based on our design pattern detection
experience which can be obviously further improved or
modified. Rules whose weight value is equal to 1 or 2
describe structural and generic aspects of code (e.g.,
abstract class inheritance, interface implementation or
the presence of particular class fields). Rules whose
weight value is equal to 3 or higher, describe a specific
static or dynamic property of a pattern. For example,
the fifth rule of Chain of Responsibility in Table 1,
specifics that each call to the handle() method has
always the same caller-callee objects pair. This is the
way objects are linked in the chain. A weight whose
value is equal to 5 describes a native implementation of
the design pattern we are considering.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

12

The next step regards the definition of the
relationship between rules [8]. There are two types of
relationships. The first one is logical: if the check of a
rule does not have a positive value, it does not make
sense to proof the rules related to it. For example, the
fifth rule in Table 1 cannot be proved if the fourth rule
has not been proved first. The second one is
informative: if a rule depends on another one, and the
latter is verified by the software detector, its weight
increases. The second type of relationship determines
those rules which are stronger for the identification of
design patterns.

Finally we have introduced macrorules. A
macrorule is a set of rules which describes a specific
behavior of a pattern which they refer to (see an
example in Table 2). If the rules that compose a
macrorule are verified, the core behavior of a pattern
has been detected so the final probability value
increases. The value added to the probability is
different for each pattern. This is because the number
of rules which belongs to a macrorule varies from one
macrorule to another.

A question mark after a weight value indicates a
variable weight. For example, the fifth rule has a
variable weight because of its relation with rule
number four. If the fourth is verified then the weight of
the fifth rule is increased by one, hence associating a
higher probability to the pattern instance recognition.

The fourth column indicates the type of information
needed to verify a rule. If a rule describes a static
property, which can be verified through an analysis of
static information, then the value in this column is S
(indicating static). If a rule describes a dynamic
property, which can be verified through an analysis of
dynamic information, then the value in this column is
D (indicating dynamic).

Table 1. Detection rules for the Chain of
Responsibility design pattern

In the case we have to verify a property by
performing analysis of static and dynamic information,
then the value specified is S-D (indicating static and
dynamic). However, in JADEPT both static and
dynamic information are extracted through a dynamic
analysis of the software under inspection.

A relationship of dependency among two or more
rules is indicated in the fifth column. A logical
dependency is between rule four and five. Rule five
cannot be proved if rule four is not previously verified.
The informative dependency we have defined for this
pattern involves the fourth and the fifth rules. Rule 5
can increment by one its weight if rule 4 is verified.

Table 2. The Macrorule for the Chain of
Responsibility Pattern

Macrorule Rules
Sequential redirection 4, 5

3. JADEPT architecture

JADEPT is a Java application composed of four
main modules [7]: Graphic User Interface (GUI),
Launcher and Capture Module (LCM), Design Pattern
Detector Module (DPDM) and JDEC Interface Module
(see Figure 1).

3.1. Graphic User Interface

JADEPT's GUI allows users: (1) to set up a
JADEPT XML configuration file, (2) to launch the
software to be monitored, (3) to start the analysis on
the stored information and (4) to create the JDEC
database.

Nr. Rule Weight/
Specificity

Type Dependencies

1 Some classes implement the same interface. 1 S

2 Same classes extend the same class. 1 S

3 All classes that implement the same interface or extend the same
class, contain a reference whose type is the same of the
implemented interface or the extended class.

3 S

4 Each class has one method that contains a call to the same method
in another class of the same family and this method must contain a
parameter.

3 S-D

5 “handle” is defines as the name of the method identified by the
forth rule. The call to handle method of one object is always
originated by the same caller object. This property is true for each
object of the family.

3? D

if 4 = +1

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

13

Figure 1. JADEPT architecture

The set up of the configuration file is obviously the

first operation to be performed to start a new work
session and it is also necessary to create a JDEC
database instance to store the extracted information if
this operation has never been performed before. After
these operations, JADEPT is able to run the user
application and to launch the design pattern detector on
the collected information.

JADEPT GUI has been designed using the
Command pattern [3]. In this way both the
management of the operations of all graphical
components and the structure of the entire GUI
becomes simpler.

3.2. Capture and Launcher Modules

The Capture and Launcher Module is composed of

two following modules:
- the Launcher Module which starts the execution of

the software under analysis, as well as the execution of
the Catcher Module. The Launcher uses the XML
configuration file to read all the information needed to
run the user application. When the Launcher is invoked
from the GUI a new Java Virtual Machine (JVM) is
created and configured to execute the user application
in the debug mode. Finally, the Catcher is invoked.

- the Catcher Module uses JPDA to capture events
occurred in the JVM created by the Launcher.
Essentially, events regard classes and interfaces
loading, method calls, field accesses and modifications.
Through these events JADEPT extracts various types
of information exploited in the detection process (e.g.,
the loaded classes provide information about their field
names and types or about their methods). Using JPDA
the extraction of information is simplified but the
monitored software pays in terms of performance. This
performance reduction is caused by the JVM
suspension needed to read the information contained in
the JVM stack when a method call event occurs.

At the end of user's software execution the Catcher
Module writes the XML Report File containing all the
collected information and invokes the Communication
Layer insertion method. Thus, the XML Report File is
inserted in the JDEC database. The XML Report File
will not be deleted at the end of the insertion, in this
way it is possible to keep traces of the software
executions independently of the database.

3.3. JDEC and its Interface Module

To store the extracted information we use the JDEC
database. In this way, information is available to the
Design Pattern Detector Module (DPDM). The JDEC
structure models both the object oriented code structure
and its behavior (e.g., the class fields and methods, the
method calls and its containing operations). The JDEC
structure can be divided in two main parts: the first one
is composed of those relations which contain static
information (classes, interfaces, fields, methods and
their arguments); the second one contains dynamic
information as method calls, accessed fields or
modified and instantiated objects. For example, this
type of information allows the recognition of different
design patterns having very similar structures, but
different behaviors such as the State and Strategy
design patterns.

4. Validation

JADEPT has been validated using different

implementation samples of design patterns more or
less closer to their definitions given in [3]. The results
for the Chain of Responsibility design pattern are
shown in Table 3.

The first column of the table contains the
identification name for the implementations
considered. The remaining columns show the results
provided by the Chain of Responsibility, Observer and
Visitor detectors. The last two detectors have been
used to verify if they provide false negatives. The `-'
symbol means that JADEPT has not detected any
instance for a given design pattern. The `X' symbol
indicates that the considered sample does not provide
any implementation of a specific pattern.

JADEPT recognizes the Chain of Responsibility
pattern in three implementations with reliable values.
The Chain implementation in fluffycat is detected as a
false negative because JADEPT is not able to find a
good handle() candidate in this pattern instance. This
argument indicates the request that should be managed
by one of the classes which implements the interface.
Moreover, each class implementing the interface
declares a field whose type is the type of the common

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

14

interface. The successor element in the chain is
assigned to this field during execution.

Table 3. Chain of Responsibility implementation
analyzed by three design pattern detectors
CoR CoR

Detector
Observer
Detector

Visitor
Detector

composite X X x
composite3 X X X
cooper 100% 10% 17%
earthlink 76% - -
earthlink2 X X X
fluffycat 7% - -
kuchana 69% - -
sun X X X
vis1 X X X
visitorcontact X X X

Figure 2 shows the class diagram related to the

implementation of the Chain of Responsibility in the
fluffycat example. According to the GoF’s definition,
this pattern should define a common interface (e.g.,
called Chain) which is implemented further by two or
more classes. The interface defines a method (e.g.,
called sendToChain(String)) which accepts only one
argument.

Figure 2. The Chain of Responsibility pattern in the

fluffycat implementation example

The fluffycat implementation is not closed to the

GOF's definition: it defines a common interface called
TopTitle, but this interface declares methods which
accept no arguments. This aspect does not comply with
GoF definition and it is reflected in the low values
associated to the fluffycal implementation in Table 3.

Table 4 shows the results of JADEPT that analyzes
itself. JADEPT is composed of 151 classes. Analysis
reveals the presence of Chain of Responsibility and
Observer, which are actually implemented in the code.
In JADEPT there are no Visitor instances, and this
analysis was performed only to test if any false
positives are revealed.

Table 4. JADEPT analyzed by JADEPT

System
Name CoR Observer Visitor

JADEPT 100% 90% 17%

To summarize, there are two main reasons why
JADEPT cannot perform analysis on some
implementations. The first is related to the quality of
implementations themselves because they are very
different from the UML structure of patterns defined
by GoF. For example, classes do not implement the
same interface or extend the same class. We mean that
such implementations cannot be retained as valid
instances of design patterns. Common interfaces and
classes are used to easily extend software and their use
is a principle of good programming as much as other
design pattern features.

The second problem concerns the information
partitioning technique of JADEPT. Our tool can work
on families retrieved from the information collected in
JDEC. Before starting the analysis, JADEPT identifies
all the possible families and assigns to each family a
specific role, according to the design pattern it is
looking for. If the analyzed system is unstructured,
meaning that common interfaces or classes are absent,
JADEPT cannot build correctly the families and
perform further analysis.

5. Conclusions and future work

In this paper we have presented our approach to
detect design patterns in Java applications through
dynamic analysis to extract all the information needed
in the detection process. The defined rules focus on the
behavior of the patterns and not on their static aspects.
Rules capturing static properties have been introduced
because they express pre-conditions for the dynamic
ones. Further we have defined logical and informative
dependencies among rules, established the importance
of rules in the detection process through scores, and
identified a group of rules characterizing the particular
behavior of each pattern through macrorules.

We have validated our idea through the
implementation of the JADEPT prototype. JADEPT
has been developed for Java software, while the rules
and the database are language-independent. Thus, it is
possible to apply and reuse these concepts in other
object-oriented languages. Modularity is one of the
main characteristic of the JADEPT architectural model.
It may use alternative ways to extract information or to
perform analysis. It is possible to exclude the database
and to use another approach to detect design patterns
due to existence of the XML Report file. Moreover, the
database model can be used in another design pattern
detector or a software architecture reconstruction tool.

The decision to use a database to store the extracted
information is due to two main reasons. The first is
related to the large amount of information which
should be extracted during software execution and

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

15

which should be considered to identify design patterns.
The second is related to the traceability/persistence in
time of the extracted information, the comparison
among two or more executions of the software code or
among executions of different applications, and the
statistics which may be done. The issues related to this
second aspect are not implemented in the current
version of our prototype.

We have outlined in the paper the advantages of
using dynamic analysis for design pattern detection,
but we have also identified two limitations. The first is
related to a possible reduction of the performance of
the analyzed application. To improve its performance
we have used a filtering system to trace only the
meaningful events. The execution time of the
monitored applications is still longer than the ordinary
execution time, especially for software having a
Graphic User Interface. The second, concerns the code
coverage problem. If the analyzed software needs a
user interaction, it could be necessary a human-driven
selection of code functions to reveal all possible
behaviors.

Future work will regard the validation of JADEPT
on systems of larger dimensions. Moreover, we are
working on the definition of a benchmark for the
evaluation of design pattern detection tools based on
various criteria. This will allow us to compare various
tools exploiting various approaches based on static,
dynamic or hybrid analysis. Furthermore, JADEPT
will be extended to detect also creational and structural
design patterns.

The rules may be revised in terms of definition and
the scores associated to them based on the experience
gathered during systems validations. Further, the
translation of the rules into the design pattern detector
module in term of queries and programming logic may
be optimized.

6. References

[1] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato, “A
Comparison of Reverse Engineering Tools based on Design
Pattern Decomposition”, Proceedings of the IEEE Australian
Software Engineering Conference, 2005, pp. 262-269

[2] F. Bergenti and A. Poggi, “Improving UML Designs
Using Automatic Design Pattern Detection”, Proceedings of
the 12th International Conference on Software Engineering
and Knowledge Engineering, 2000, pp.336-343

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: elements of reusable object-oriented software,
Addison Wesley, Reading MA, USA, 1994

[4] Y. G. Guéhéneuc, “PTIDEJ: Promoting Patterns with
Patterns”, Proceedings of the 1st ECOOP Workshop on
Building Systems using Patterns, Springer-Verlag, 2005

[5] D. Heuzeroth, T. Holl, and W. Löwe, “Combining Static
and Dynamic Analyses to Detect Interaction Patterns”,
Proceedings the 6th World Conference on Integrated Design
and Process Technology, 2002

[6] U. Nickel, J. Niere, A. Zündorf, “The FUJABA
Environment“, Proceedings of the 22nd International
Conference on Software Engineering, 2000, pp. 742-745

[7] F. Perin, Dynamic analysis to detect the design patterns
in Java: gathering information with JPDA. MSc Thesis,
University of Milano-Bicocca, Milan, April 2007

[8] S. Ravani, Dynamic analysis for Design Pattern detecting
on Java code: information relationship modelling, MSc
Thesis, University of Milano-Bicocca, Milan, April 2007

[9] N. Pettersson, “Measuring Precision for Static and
Dynamic Design Pattern Recognition as a Function of
Coverage”, Proceedings of the Workshop on Dynamic
Analysis, ACM SIGSOFT Software Engineering Notes, Vol.
30, No. 4, 2005, pp. 1-7

[10] D. M. Shawky, S. K. Abd-El-Hafiz, and A.-L. El-
Sedeek, “A Dynamic Approach for the Identification of
Object-oriented Design Patterns”, Proceedings of the
IASTED Conference on Software Engineering, pp. 138-143,
2005

[11] N. Shi, and R. A. Olsson, “Reverse Engineering of
Design Patterns from Java Source Code”, Proceedings of the
21st IEEE/ACM International Conference on Automated
Software Engineering, 2006, pp. 123-134

[12] J. McC. Smith, and D. Stotts, “SPQR: Flexible
Automated Design Pattern Extraction From Source Code”,
Proceedings of the IEEE International Conference on
Automated Software Engineering, October, 2003, pp. 215-
224

[13] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, G.,
and S. T. Halkidis, “Design Pattern Detection Using
Similarity Scoring”, IEEE Transactions on Software
Engineering, Vol. 32, No. 11, November 2006, pp. 896-909

[14] A. I. Verkamo, J. Gustafsson, L. Nenonen, and J.
Paakki, “Design patterns in performance prediction”,
Proceedings of the ACM Second International Workshop on
Software and Performance, 2000, pp. 143-144.

[15] L. Wendehals, “Improving Design Pattern Instance
Recognition by Dynamic Analysis”, Proceedings of the ICSE
Workshop on Dynamic Analysis, Portland, USA, 2003, pp.
29-32.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

16

TAG (TrAce+Grep): a Simple Feature Location Approach

Dapeng Liu, Monica Brockmeyer
Department of Computer Science

Wayne State University
[dliu, mbrockmeyer]@wayne.edu

Shaochun Xu

Department of Computer Science
Algoma University

simon.xu@algomau.ca

Abstract

Orthogonality of LSI query results and traces
makes hybrid feature location approaches, such as
PROMISIR and SITIR, very useful. In this paper we
propose a new feature location approach, TAG
(TrAce+Grep), which takes advantages of the
orthogonality, by exchanging the order of static and
dynamic components of SITIR and replacing LSI with
GREP. We re-conducted the case studies that
validated SITIR using TAG and compared
performances of the two approaches. The analysis of
various observations and deep discussion on the cross
cut of orthogonal information are also presented
thereby. We conclude that simple feature location
strategies, such as TAG, can compete with complex
ones in term of effectiveness, even for big software.

1. Introduction

Software change is unavoidable since it is
impractical to develop the program in one round
without modification; especially with the increasing
volume and complexity and elongated development of
current software. Feature location [1], the first step of
software change, is to locate parts of code that are
related to a specific feature that is extracted from the
change request.

In application of feature location, hybrid
approaches that combines tracing and LSI, such as
Probabilistic Ranking Of Methods based on Execution
Scenarios and Information Retrieval (PROMESIR)
and SIngle Trace and Information Retrieval (SITIR)
[2], have been proved to be helpful. We accredit their
success to the crosscut of search result and traces as
their noises are orthogonal.

Based on our observation that in practice
programmers prefer simple words to lengthy sentences
when using LSI, we propose a new feature location
approach TrAce+Grep (TAG), which simplifies SITIR
by exchanging the order of static and dynamic
approaches and replacing LSI with GREP.

We also re-conduct case studies of [2] using TAG
and found that, in the best cases which nonetheless are
reasonably easy to achieve, TAG worked comparably
well as SITIR, especially with consideration of its
much less time overhead. Our case studies
demonstrated that during feature location simple
approaches can achieve promising precision and speed.

The rest of the paper is organized as follows:
section 2 discusses the orthogonality of search result
and traces; section 3 presents the case studies and
analyzes the results; section 4 enumerates related
work; finally section 5 concludes the paper and
presents future work.

2. Cross cut of static and dynamic
information

Hybrid feature location approaches that combines
tracing and LSI have been proved to be helpful, and
the representatives are SITIR and PROMISIR. We
accredit the success of combining tracing and LSI to
the crosscut of search results and traces as their noises
are orthogonal. While noise in trace comes along time
axis, noise in LSI comes from semantic similarity. In
one imaginary but common case, as shown in Figure 1,
we can see the orthogonality of the search result and
traces. When we use LSI to search for “popup menu”,
many methods that are related to the concept will be
retrieved, such as “organize”, “internalize”, “show”,
“hide”, etc. Please note that there may be some
overlap of different query results. For example,
“divide menu items into groups” might be shared by
“show” and “organize”. When we trace a program,
prior and subsequent activities are hard to be
completely avoided, even we can indicate when to
start or stop tracing, partially due to the speed of
program execution. With close observation, we can
see that the result of using LSI contains only a few
methods that are used to preparing for menu display;
and the result of using traces do not have methods that
are related to other operations of popup menu, such as
hiding. Cross cut of the two sets will make the final

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

17

mailto:@wayne.edu
mailto:simon.xu@algomau.ca

result much smaller thus precision will be improved
remarkably.

Although LSI can provide programmers the

convenience of using fuzzy query, it, to some extent,
weakens the performance brought by the orthogonality,
as the resulted ranked list contains all unrelated
methods. Moreover, in practice, we noticed that
programmers prefer simple words to lengthy query
sentences that construct vectors in semantic space and
thus lose the advantage of LSI. There is no need to
mention the lengthy time needed for LSI to parse code
corpus. Therefore, we replace LSI with GREP for
simplicity and increasing performance. Here, we take
the risk of loosing recall in favor of performance.

Our new method is named TrAce+Grep (TAG). In
summary, its differences from SITIR are: tracing is
done first and LSI is replaced with GREP.

3. Case studies

To verify our conjectures and to evaluate the
performance of TAG, we have re-conducted the six
case studies that were done for SITIR [2] and
compared the results of the two different approaches.
Following SITIR, we apply TAG on full traces as well
and demonstrate the advantages of as-needed tracing.
Finally, based on observations on those case studies,
we discuss about cross cut of static and dynamic
information to deeper extent.

TAG and SITIR cannot be compared directly.
While formats of result sets are different btween TAG
and SITIR, we define their performance measurement
formulas respectively. For SITIR, the performance of
feature location is defined as the highest rank of
relevant methods; we consider a method relevant to
the change request if it will be modified in response to
it. For TAG, the performance is defined as half size of
the result set, since in the result methods are not
ordered.

When TAG is able to dig out sought methods, its
result is labeled as Successful; otherwise, if viewers
believed the result contained related information that
was close to the sough methods, TAG was labeled as
Potential; in the rest cases, TAG was labeled as Failed.
This new classification was based on the consideration
that feature location is used for programmers to
identify methods that are related to specific features.
Even though no method in the result is directly related
to the sought feature, the result can still be helpful. To
constrain subjectivity of judging TAG as Potential,
programmers must be able to present the reasoning in
one sentence when deciding to do this. Overlong
reasoning would not be honored.

Difference of working principles requires distinct
reasoning when making queries for TAG an SITIR.
In the case studies of SITIR, new words were added to
queries to refine them. Whereas, adding unrelated
words to GREP query will purge all results, therefore,
TAG requires more precise queries and is very
sensitive to them. To compare performance of TAG
and SITIR, we will refer to queries used in SITIR for
TAG; however, we have to change the way in which
we use the query tokens; more important, in some
cases TAG was not used in their best favor.

The granularity of our traces is at method level.
During the search process of TAG, only method
names are used, which contain much less information
than in SITIR, in which method body is fully parsed.
With the expectation to analyze how much the loss of
information affects performance of TAG, we construct
complementary method names by concatenating
package name, class name, and method name together.
For each feature location assignment, we used GREP
twice: once on complementary method names and the
other time we used original method names. The
expected benefit can be explained in the following
imaginary but realistic example: both MessageBox
and SearchDialog classes have methods named as
OkButtonPressed, however, the two methods have
totally different meanings; one to complete an action,
the other to start a new action.

organize popup menu
sh

ow
 p

op
up

 m
en

u

hide popup menu

LSI result of “popup menu”

Retrieve menu items

sort menu items

show popup menu

Trace

cross cut with

è

… show popup menu…

… …

Figure 1. Orthogonal LSI results and Traces

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

18

3.1 Case study setup

We chose the same software applications, JEdit 4.2

and Eclipse 2.1.3, that were used in [2] for case
studies using TAG. JEdit consists of approximately
500 classes and about 5,000 methods with 88,000
lines of Java source code and internal comments,
Swing was used for its GUI components and user
event transference. Eclipse is mostly written in Java,
with some C/C++ code used mainly for the widget
toolkit, which we did not analyze here We used
version 2.1.3, which contains approximately 7,000
classes and about 89,000 methods in more than 8,000
source files implemented in nearly 2.4 MLOC.
Eclipse uses its own GUI package named JFace and
transfers all user events by itself. We chose them with
expectation to show the scalability of TAG, to allow
replication of our case studies, and to make our
observations more representative of reality.

Case study assignments were borrowed from [2]
without modification; and we still use the same labels
for them. Constrained by limited space, readers are
referred to the previous paper for details.

3.2 Results and observations

We summarize all case study observations into

Table 1. In six title rows, there are three substrings
separated by commas, the first ones label the case
study, the second ones indicate the performance of
SITIR on the same case study, the third ones are the
sentences that were used in SITIR.

Except for title rows, the rest of the table is
partitioned in seven columns. The first columns list
query tokens; columns 2~4 display results returned on
complementary methods names; and the rest columns
display results working on original method names.

The second columns, titled as #FM/#C, list two
values that are separated by a back slash: number of
found methods and number of the containing classes,
including inner and anonymous ones. The third
columns present whether TAG identified sought
methods: S means Successful, P means Potential, and
F means Failed. The forth columns show the results
using full traces, i.e. the object programs were traced
from startup to termination.

Columns 5~7 present in the same way as columns
2~4, except that methods were presented in their
original names.

To create as-needed trace, we traced object program
once for each case study. We can see full traces may

enlarge the result by 13 times, such as in case study
JEdit #2 using “add” on both full and original method
names. However, we noticed that, if we choose the
best queries, though full traces still enlarge results in
most cases, many times the result sets are still very
small.

Table 1. Summary of case studies

GREP token #FM/
#Class S? TAG

using ft #M S? ft&m

JEdit #1, 9, “search find next”
find 2/2 S 12/3 2 S 12
search 65/8 P 58/12 6 P 11
next 2/2 P 15/8 2 P 15

JEdit #2, 1, “add marker”
addMarker 2/2 S 2/2 2 S 2
add 5/4 S 65/38 5 S 65
marker 14/6 S 42/12 8 S 18

JEdit #3, 5, “ whitespace text area visible paint”
whitespace 3/2 S 12/3 2 S 10
show 4/2 S 9/7 4 S 9
textarea 82/11 S 295/11 3 F 6

Eclipse #1, 2, “ mouse double click up down
drag release select text offset document position”
doubleclick 10/8 S 20/14 8 S 12
double 12/10 S 23/17 10 S 14
select 90/32 S 392/34 77 S 269
drag 0/0 F 60/30 0 F 19
mouse 42/12 S 80/12 36 S 56

Eclipse #2, 2, “unified tree node file system
folder location”
filesystem 19/6 S 50/7 5 S 8
system 24/9 S 107/13 10 S 33
file 69/21 S 432/23 31 S 158
unified 33/2 S 53/2 0 F 0
unifiedtree 33/2 S 53/2 0 F 0
add 56/39 S 471/40 51 S 417
node 111/14 S 384/14 21 S 92
tree 199/14 S 655/14 15 F 81
treenode 47/3 S 125/5 0 F 0
folder 14/8 S 101/11 3 F 6

Eclipse #3, 2, “search query quoted token”
token 25/13 S 64/26 8 S 39
search 128/20 S 338/21 15 S 33
query 49/12 S 76/12 13 S 27
quoted 0/0 F 0/0 0 F 0

If we focus on case studies using original method

names, we can see that maximum amplification factor
is 6, happened in JEdit #1, whereas maximum

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

19

absolute value is only 12, except for Eclipse #3 using.
This means, given best queries, traces do not affect
TAG performance to critical extent. An adventurous
conjecture of this observation is that if programmers
are familiar with naming conventions of the program,
they can use only one full trace for multiple feature
location assignments, when the sought features are not
related. In the underneath analysis, we ignore the data
obtained from full traces.

String tokens used for GREP were excerpted from
queries used for SITIR and were used individually.
When using the best query tokens, TAG turns out very
effective: performances of TAG are 1, 1, 1, 4, 2.5, and
4, respectively. As Eclipse is much more complex
than JEdit, best performances on Eclipse do not
degrade more than those on JEdit; this observation
shows that the best performance of TAG is scalable.

Whereas, with the specific way in which we
composed queries, overall performance of TAG is not
that attractive for Eclipse. When using
complementary method names, TAG failed twice;
when using original method names, TAG failed 7 out
of 19 times, i.e. success ratio is merely 63.16%.
Though using complementary method names increases
recalls remarkably, it may not be a helpful approach in
practice due to big result sizes. In SITIR, we noticed
that most programmers only viewed top 10 methods in
the result; if here we only consider those results whose
size is no greater than 20, only 7 out of 19 times TAG
works out; the success ratio is merely 36.84%. By no
means, we could consider this as evidences of the
deficiency of TAG; since in reality it will not be used
this way.

One interesting phenomenon that is worthy
pointing out is the possibility of small number of
classes behind large number of found methods with
complementary names. For example, in Eclipse #2
using query “unified”, 33 found methods aggregated
in 2 classes. This observation implies the possibility
that top-down manner can be helpful in feature
location. This suggests that TAG results can be used
in creative ways.

Another observation about complementary method
names is that in best cases there is no added
performance compared to original method names;
otherwise, they obviously increase recall.

3.3 Discussion

First of all, we have to emphasize that not all
queries used for TAG were practically reasonable. To

use TAG, we have to be both conservative and
aggressive.

As GREP is very strict on queries, e.g., even plural
and singular of the same words are considered
different by GREP, choosing query tokens is very
conservative. For example, in practice, while
programmers are not sure whether “quoted” or
“quotation” is used in source code, they may search
“quot” first to probe the existence of either of the
words; and then make their decision of further search
accordingly. Those details were not covered in the
case studies. In fact, a primitive LSI system may
suffer from the same problem [3].

On the other hand, we do not prefer to use words
that are generally used, since they cannot serve for the
purpose of filtering. For example, searching for
“mouse” generally makes no sense.

We consider best cases in our case studies as
reasonable evaluations that are close to real
performance of TAG. This opinion can be justified by
the imaginary situation where programmers compose
queries directly from change requests and bug reports.
For all the three case studies on JEdit, exact words of
“find”, “addMarker”, and “whitespace” exist on the
user interface. In case studies Eclipse #1 and #2,
words “doubleclick” and “filesystem” appear in the
bug report and both are common code identifiers; in
Eclipse #3, novice programmers may use “query”
while experienced programmers will know that the
bug arises when Eclipse dissects the query sentence
into an array of query tokens; nonetheless, using either
of the two words produces satisfactory performance,
which are 4 and 6.5, respectively.

One important discussion that has been missed in
previous publications is why sometimes the cross cut
does not work out small result sets as expected. There
are two different causes, one is that the words used in
queries are commonly used in different situations or
for different components; we name this phenomenon
word overloading. The other reason, which is totally
different from the former one, is due to the substantive
details in object programs implementing the sough
feature. Eclipse belongs to the latter case since it
handles all infrastructural processes by itself.

In summary, our case studies turned out that TAG
could perform as well as SITIR with less overhead,
although deep discussion reveals that TAG needs strict
prerequisite to be successful, fortunately, it can be
easily achieved in reality.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

20

4. Related work

Feature location approaches fall into three
categories based on how they collect information:
static, dynamic, and hybrid. A good overview of static
techniques is presented in [4] and a complete survey of
dynamic and hybrid approaches is presented in [2].

Wilde and Scully [1] introduced software
Reconnaissance in which the program was traced
twice: once with the sought feature exercised and the
other time without it; the difference set was expected
to implement the sough feature. The approach was
later formalized by Deprez and Lakhotia [5] and
further developed in [6] and adapted to be applied in
distributed systems in [7].

Eisenbarth et al. [8] proposed a first hybrid
technique, by combining static and dynamic analysis
to identify features in source code. The dynamic
analysis is performed similarly to Reconnaissance.

The Reconnaissance approach was also extended to
Scenario-based Probabilistic Ranking (SPR) by
Antoniol and Guéhéneuc [9] with statistical
hypothesis testing based on the events that occured in
marked traces, knowledge-based filtering, and support
for multi-threaded applications using processor
emulation techniques, such as Valgrind for C/C++
trace collection and Jikes RVM for Java programs.

PROMESIR [10] combined two existing techniques:
SPR [9] of events and Latent Semantic Indexing [11].
The developer traced the program in at least two
scenarios for SPR to produce a set of ranked methods
relevant to the feature. In addition, the developer used
LSI on a query that described the sought feature in
natural language. The rankings of the two approaches
were combined via an affine transformation. In case
studies, PROMESIR showed significant improvements
over either SPR or LSI if they were used standalone.

SITIR [2] used one single-scenario trace and LSI to
achieve comparable effect of PROMESIR and
conducted a thorough survey of various concept
location approaches.

5. Conclusion and future work

In this paper we discussed the orthogonality of
static and dynamic information in terms of feature
location and proposed an improved hybrid feature
location approach: TAG. We re-conducted case
studies that have been done to evaluate SITIR. In the
best cases that at the same time are reasonably easy to
achieve, TAG performs as comparably good as SITIR.
Through analysis of case study observations, we learn

how to improve the performance of TAG and why
sometimes hybrid feature location can hardly work out.

While composing queries depends on programmer
individuals, there are still many other possible factors
that affect the performance of feature location. We
will conduct more case studies on various software
programs to initialize quantitative analysis of them.

6. References
[1] N. Wilde and M. Scully, "Software Reconnaissance:
Mapping Program Features to Code," Software
Maintenance: Research and Practice, vol. 7, pp. 49-62,
1995.
[2] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich,
"Feature Location via Information Retrieval based Filtering
of a Single Scenario Execution Trace," in the 22nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE2007), Atlanta, Georgia, USA,
2007, pp. 234-243.
[3] D. Liu and S. Xu, "Challenges of using LSI for concept
location," in the 45th ACM Annual Southeast Regional
Conference Winston-Salem, North Carolina, USA, 2007, pp.
449 - 454.
[4] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A.
Sergeyev, "Static Techniques for Concept Location in
Object-Oriented Code," in 13th IEEE International
Workshop on Program Comprehension (IWPC'05), St.
Louis, Missouri, USA, 2005, pp. 33-42.
[5] J.-C. Deprez and A. Lakhotia, "A formalism to automate
mapping from program features to code," in the 8th
International Workshop on Program Comprehension
(IWPC'00), 2000, pp. 69-78.
[6] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M.
Groble, "Industrial tools for the feature location problem: an
exploratory study," Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, pp. 457-474,
November 2006.
[7] D. Edwards, S. Simmons, and N. Wilde, "An Approach
to Feature Location in Distributed Systems," Software
Engineering Research Center, 2004.
[8] T. Eisenbarth, R. Koschke, and D. Simon, "Locating
Features in Source Code," IEEE Transactions on Software
Engineering, vol. 29, pp. 210 - 224, March 2003.
[9] G. Antoniol and Y.-G. Guéhéneuc, "Feature
Identification: An Epidemiological Metaphor," IEEE
Transactions on Software Engineering, vol. 32, pp. 627-641,
2006.
[10] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G.
Antoniol, and V. Rajlich, "Feature Location using
Probabilistic Ranking of Methods based on Execution
Scenarios and Information Retrieval," IEEE Transactions on
Software Engineering, vol. 33, pp. 420-432, June 2007.
[11] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic,
"An Information Retrieval Approach to Concept Location in
Source Code," in 11th IEEE Working Conference on
Reverse Engineering (WCRE2004), Delft, The Netherlands,
2004, pp. 214-223.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

21

A Cognitively Aware Dynamic Analysis Tool for Program Comprehension

Iyad Zayour
Alumni of the School of Information Technology

and Engineering
University of Ottawa, Ottawa, Ottawa

iyad@alumni.uottawa.ca

Abdelwahab Hamou-Lhadj

Department of Electrical and Computer Engineering
Concordia University

Montréal, Québec, Canada
abdelw@ece.concordia.ca

Abstract

Software maintenance is perhaps one of the most
difficult activities in software engineering. Reverse
engineering tools aim at increasing its efficiency. However,
these tools suffer from the low adoption problem. To be
adoptable, a tool has to reduce the cognitive overload
faced by software engineers when performing maintenance
tasks. In this paper, we identify the cognitive difficulties
encountered by software engineers during software
maintenance based on an experiment we conducted in an
industrial setting. Our results support the idea that
comprehension during software maintenance tasks consists
of a process of mapping between the static and the
application domains via the dynamic domain. We present a
prototype dynamic analysis tool, called DynaMapper,
designed to support these domain mappings. A preliminary
evaluation of the tool is presented to assess its
effectiveness.

Keywords: dynamic analysis, software maintenance,
cognitive models, reverse engineering tools

1. Introduction
It is estimated that 50% to 70% of software costs are

spent on maintenance [7]. Maintaining a large software
system, however, has been shown to be an inefficient
process; software engineers must understand many parts of
the system prior to undertaking the maintenance task at
hand. The difficulties encountered by maintainers are
partially attributable to the fact that changes made to the
implementation of systems are usually not reflected in the
design documentation. This can be due to various reasons
including a lack of effective round-trip engineering tools,
time-to-market constraints, the initial documentation being
poorly designed, etc. As such, program comprehension is
considered to be a key bottleneck of software maintenance
[10].

Reverse engineering research aims to reduce the impact

of this problem by investigating techniques and tools that
can help extract high-level views of the system from low-

level implementation details. Reverse engineering tools
build on the knowledge obtained from studying how
programmers understand programs.

There exist several program comprehension models that
describe the cognitive difficulties encountered by
programmers when understanding large programs (e.g., [1,
9, 12]). However, these cognitive models tend to describe
the major internal cognitive activities in a generic way. In
this paper, we rely on the knowledge provided by these
models, and expand it by investigating in more detail the
practical problems that can be addressed by a reverse
engineering tool. We present the difficulties and associated
cognitive overloads encountered during software
maintenance and then we present our approach based on
dynamic analysis that addresses these difficulties.

This paper is organized as follows: In Section 2, we
present our approach of how we identified the difficulties
in software maintenance. In Section 3, we describe a
dynamic analysis tool, called DynaMapper, which
addresses these difficulties, followed with related work.
We conclude the paper in Section 5.

2. Cognitive Overloads
Identifying cognitive overloads is possible by

observing the work practices of software engineers, by
asking software engineers to identify them, or even by
introspection [6]. Introspection consists of relying on the
proper experience of the software engineers in doing
software maintenance to detect cognitive difficulties that
other software engineers face when performing
maintenance tasks. In fact, the personal experience of the
authors of this paper in doing software maintenance was
highly valuable in determining the overloads identified in
this paper.

To identify the cognitive overloads during
maintenance, we worked with software engineers from a
telecommunications company that maintains a large legacy
software system, which was developed in 1982. It includes
a real-time operating system. The system is written in a
proprietary structured language and contains over 2 million

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

22

lines of code. The company suffers from the high cost of
maintaining the system.

We focused on small corrective maintenance tasks that
are often assigned to newly hired software engineers, with
little knowledge of the structure of the system. We
observed their work practices while asking them to think
aloud. We summarize the result of our observations in the
following steps:

First, software engineers start by understanding the
maintenance request by reading its description. The next
activity consists of locating the code relevant to the
problem, and mapping problem behaviour to the
corresponding code. This involves locating a starting point
in the code, which is typically a snippet of code that is part
of the execution path of the current problem.

Once the starting point is located, they proceed with

identifying the rest of the code responsible for the
maintenance problem. For this purpose, they follow events
in program behaviour and try to match them to code. Once
the code has been located, the next step consists of
understanding this code as executed. The code statements
are mentally visualised as executed (symbolic execution)
and mapped with the problem behaviour.

The maintenance activities involve a substantial

mapping from program behaviour to source code and then
mapping from source code to behaviour. In other words, it
consists of a series of mapping activities between the static
domain and the application domain. The static domain
consists primarily of source code including comments and
any additional documentation that describes the design and
implementation of software. The information in this
domain is always available, fixed, and explicit. The
application domain is defined here as the functionality of
the program from the user’s perspective. In other words, it
includes whatever is visible to the user, such as the user
interface and the program output as well as any detectable
event in related application software or hardware. This bi-
directional mapping seems to be an activity that places a
heavy load on the human cognitive resources. This is
because this mapping involves the intermediate dynamic
domain (that consists of run-time information) that is
largely invisible and requires to be mentally constructed.

Accordingly, our primary goal is to reduce the cognitive

cost of inter-domain mapping; hence, dynamic information
has to be generated and presented in a efficient way. This
information has to act as an explicit representation of the
dynamic domain, thus reducing the cognitive effort that
would otherwise be required to mentally construct it. Since
dynamic data such as program traces can be very

challenging to be managed and comprehended, let alone to
be used for domain mapping, our representation of the
dynamic domain has to support the inter-domain mapping
in an efficient way.

3. Domain Mapping Using Traces
We embarked onto designing a prototype tool, referred

to as DynaMapper, which supports the identified cognitive
difficulties. The tool should sub-contract from the working
memory whatever possible sub-activities it can. This can be
compared to using a hand held calculator as an external aid
to “sub contract” some of the processing load of a larger
mathematical problem. Another example is using paper to
store intermediate results of multiplication, instead of
storing the results mentally.

The tool should also take over some cognitive load by
explicitly representing the implicit processing constructs
and operations that go on in the working memory using its
processing power and the screen display (e.g., extracting
and displaying the call tree on the screen).

Figure 1. Snapshot of DynaMapper call hierarchy

3.1 DynaMapper Description
DynaMapper is a trace analysis tool that aims at creating

a dynamic representation of data while facilitating domain
mapping using program trace generation and processing. In
addition to domain mapping, DynaMapper provides several

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

23

other features that facilitate the comprehension of program
behaviour, and visualisation of traces.

The input for DynaMapper is a trace file that contains
the names and call levels for all the routines that are
executed during a scenario. The choice of routines as the
level of granularity of the trace was driven by our
observation of software engineers. When they explore code
in order to trace control flow, they look at routine calls
more than at other programming statements. This may be
because routine names tell a lot about execution, and in our
subject system a high percentage of the statements are
routine calls.

The first challenge in creating a useful dynamic
representation is to deal with the size of traces that is
usually very large. DynaMapper performs several
processing phases on the input file to prepare it for
visualisation. First, any redundancy created by calls to
routines within loops or by recursion is detected, removed
and replaced by its number of occurrences. Next, other
kinds of redundancy are detected, such as routine
sequences that occur repetitively but non-contiguously in
several places in the trace. Moreover, routines that
contribute little information to the trace, called utility
routines, are identified and removed. For this purpose, we
used utility detection techniques based on fan-in analysis
[3]. Finally, the processed trace is visualised as a call
hierarchy in a user interface (see Figure 1). The user can
expand and contract particular sub-hierarchies, show or
hide patterns, and restrict the entire display to particular
levels of depth. A summary of trace reduction techniques
can be found in [4].

3.2 Bookmarks
The novel aspect of DynaMapper compared to existing

trace analysis tools is the ability to perform mapping
between the application and static domains (via the
dynamic domain). DynaMapper supports mapping using a
special trace entry called a bookmark. A bookmark is a
kind of trace annotation – a special node that can be
inserted inside the trace to indicate the occurrence of an
application domain visible event. These bookmarks act as
cross-reference points, a way to tell where an application
event corresponds in the trace. For example, if an error
message is inserted as a bookmark in the trace, a software
engineer will identify this node and thus identify what part
of the trace occurs before, i.e., the one leading to the error
message, and the part that comes after. Instead of dealing
with the entire trace as one monolithic block, the user can
deal with it as set of segments that proceed or succeed
application level events like the error message that is
visible from the application domain.

This way, a bookmark can be inserted in the trace to
identify the relative position of such an event within the
trace. When the trace is displayed as a call tree, the
bookmark nodes will have their special icons that are easily
distinguishable from other routine nodes. Figure 1 shows
an example of a trace displayed as a call tree and annotated
with bookmarks (having an arrow icon). For example, the
first bookmark shown in Figure 1, labelled “Finish
initialization”, indicates that at this point of the program
behaviour, an initialization phase occurred.

Bookmarks are created by instrumenting the code to
produce distinguishable trace entry whenever certain code
with application level visibility is identified (based on any
clue available in the source code). This is like inserting
print statements inside the code to track the proper time and
order of occurrence of special events during application
execution.

Bookmark Types:

The choice of events to instrument is open and depends
on the type of applications. An obvious choice of
application-visible events in code is the user interface and
program output. One can choose to bookmark many or all
user interface events such as screen display or button
pressed or even logged events. We found that all program
output (e.g., error message) that is generated during
exceptional (erroneous) behaviour are very useful for
maintenance tasks.

Also DynaMapper supports interactive bookmaking
both during application execution and during trace or
program exploration. During application execution, a target
application can be instrumented so that it responds, while
running, to pressing a hot key (F2) by opening a dialog box
where the user can enter a description. This description will
be inserted inside the trace as a special bookmark entry.
This can be very useful during maintenance where the SE
can bookmark the program behavior while reproducing
problems, so for example, to mark the start of the
malfunctioning in program behavior.

Code Bookmarks:
The granularity of trace bookmarking is determined by

the size of code that runs between two interactive events
(i.e., where a user interface is generated or an application
wait for a user input so the user can press the hot key to
enter a bookmark). That is, a bookmark can be inserted
only when the system is a waiting to accept a new event
and not while it is processing the event handling. In
minimum interactive systems, the size of trace between two
bookmarks can be still significant.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

24

Therefore, DynaMapper permits the user to choose a
routine during trace or static program exploration and mark
it as “application domain visible”. These routines can have
names that directly reflect application domain concepts
such as “dialNumber” or ‘postInvoice”. Once tagged as
such, a special instrumentation is inserted so that this
routine execution will produce bookmarks node during
trace generation in addition to their normal routine trace
entry.

Navigation and Visualization:
Traces even after compression can be very large. Just

finding the visually distinguished nodes of bookmarks
within the trace by manual exploration can be very
inefficient. Therefore, DynaMapper offers several features
to help making use of bookmarks such as:

• Searching for a bookmark by its text so if found its
node is selected and made visible.

• The "view bookmarks only" operation that collapses
all nodes in a way that ensure that all bookmarks
nodes are made visible (see Figure 2). This offers a
bookmark view of the call tree where the user can
easily locate a certain bookmark and expand the call
tree guided by the bookmarks.

• The slice operations permits removing all trace
entries except those that are located between two or
more bookmarks

Figure 2. Same call tree as in Figure 1 but after “view
bookmarks only” operation

3.3 Evaluation
In order to evaluate the usefulness of DynaMapper for

mapping domains, we designed an experiment in which
five software engineers of the telecommunications
company were asked to a) identify the part of trace
(displayed as call tree) corresponding to application visible

events (mapping from application to static), b) describe
what application events this trace is causing (mapping from
static to application).

In the experiment, we first asked the software engineers
to locate the code that needed to be maintained according
to a specific maintenance request without using
DynaMapper. This was not trivial given the size of the
subject system. We asked the participants to use explicitly
the bookmarks after we had demonstrated how they work.
The participants inserted bookmarks before each interactive
application event (when the application is waiting for a
user input) that preceded the feature they had to locate.
Using bookmarks greatly facilitate locating the code for an
event. The user can collapse the tree to show only the
bookmarks, and then locate a bookmark that they inserted
and only investigate the few call sub-trees after that
bookmark.

Results have shown that the bookmark feature to be
particularly useful in finding the code relevant to an
interactive application visible events (e.g., UI event).
Bookmarks were also useful to identify an ending point in
the trace. That is, the trace segment relevant to
maintenance request (program behaviour) could be
identified and sliced reducing the space in which
comprehension needs to take place.

However, while the application to dynamic domain

mapping was effective, the opposite mapping was not as
much useful. After locating the starting point, bookmarks
were found to be less used. As our model of difficulties
suggests, the software engineer’s effort shifts to the
mapping from the static to application domain after the
code is identified. This mapping takes place at a lower
level of granularity where seldom interactive bookmarks
were present to facilitate the mapping from trace to the
application domain.

4. Related Work
DynaMapper can be considered to belong to the set of

tools that apply dynamic analysis to aid in the behavioural
understanding of programs. A survey of existing trace
analysis tools is presented by Hamou-Lhadj et al. [4]. Most
of these tools provide the dynamic information in terms of
visualisation at the component level that can either be user-
defined as in IsVis [5], showing modules and subsystems
as in the “Run Time Landscape” [11], or at the physical
source file level as in RunView [8]. None of these tools,
however, is developed taking into account a comprehensive
framework oriented towards understanding the cognitive
overloads that occur when doing software maintenance. In
addition, we are not aware of any tool that supports the

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

25

concept of bookmarks for domain mappings as described in
this paper.

A close research area to the work presented in this paper
consists of feature location – Identifying the most relevant
components that implement a given feature. There exist
several feature location techniques (e.g., [2, 14]). These
techniques, however, operate in after-the-fact fashion. In
other words, a trace (or many traces) has to be generated by
exercising the feature under study and then heuristic-based
techniques are applied to identify the feature most relevant
components. In this research, we propose that the use of
bookmarks, which are conceptual tags inserted in the
source code, will lead to a trace that is segmented in such a
way that software engineers can easily map the behaviour
embedded in a trace to the corresponding code.

Concept assignment is concerned with finding the
correspondence between high-level domain concepts and
code fragments. Concept assignment main task is of
discovering individual human-oriented concepts and
assigning them to their implementation-oriented
counterparts in the subject system [10]. This type of
conceptual pattern matching enables the maintainer to
search the underlying code base for program fragments that
implement a concept from the application. Concept
recognition is still at an early research stage, in part
because automated understanding capabilities can be quite
limited due to difficulties in knowledge acquisition.

5. Conclusion and Future Work
In this paper, we developed a tool called DynaMapper

that allows the mapping between static and program
behaviour, based on identifying cognitive difficulties
facing software maintainers.

The key feature of DynaMapper is the concept of
bookmarks, which is an instrumental feature that segments
a trace into behavioural parts that a user can understand.
Bookmarks, however, as proposed in this paper may not
produce a small enough segment especially for large and
non-interactive software systems. We are investigating
automatic identification of routines that have application
domain visibility so that their presence in a trace would
play the role of a bookmark.

Finally, we also need to conduct large-scale experiments
involving a larger number of software engineers in order to
better assess the applicability of bookmarks to reduce
cognitive overloads through domain mappings.

6. References
[1]. Brooks R, “Toward a theory of the comprehension
of computer programs”, International Journal of Man-
Machine studies 18(6), pp. 542-554, 1983.
[2]. Greevy O., Ducasse S., and Girba T., "Analyzing
Feature Traces to Incorporate the Semantics of Change in
Software Evolution Analysis", In Proc. of 21st
International Conference on Software Maintenance, pp.
347-356, 2005.
[3]. Hamou-Lhadj A. and Lethbridge T. C.,
"Summarizing the Content of Large Traces to Facilitate the
Understanding of the Behaviour of a Software System", In
Proc. of the 14th IEEE International Conference on
Program Comprehension, pp. 181-190, 2006.
[4]. Hamou-Lhadj A. and Lethbridge T. C., “A Survey
of Trace Exploration Tools and Techniques”, In Proc. of
the International Conference of the Centre for Advanced
Studies, IBM Press, pp. 42-54, 2004.
[5]. Jerding, D., Rugaber, S., "Using Visualisation for
Architecture Localization and Extraction", In Proc. of the
4th Working Conference on Reverse Engineering, pp.267-
84, 1997.
[6]. Lakhotia A, “Understanding Someone Else’s code:
Analysis of Experience”, Journal of Systems and Software,
vol. 23, pp.269-275, 1993.
[7]. Lientz B., Swanson E. B., and Tompkins G. E.
“Characteristics of application software maintenance”,
Communications of the ACM, 21(6), pp 466-471, 1978.
[8]. McCrickard, D. S., and Abowd, G. D., “Assessing
The Impact of Changes at the Architectural Level: A Case
Study on Graphical Debuggers”, In Proc. of the
International Conference on Software Maintenance, pp.
59-69, 1996.
[9]. Pennington N., “Comprehension Strategies in
Programming”, In Proc. of the 2nd Workshop on Empirical
Studies of Programmers, pp. 100-113. 1987.
[10]. Rugaber, S., “Program Comprehension” TR-95,
Georgia Institute of Technology, 1995.
[11]. Teteishi, A., "Filtering Run Time Artefacts Using
Software Landscape", M.Sc. Thesis, University of
Waterloo, 1994.
[12]. Von Mayrhauser A, Vans A. M., “Program
comprehension during software maintenance and
evolution”, IEEE Computer, 28 (8), pp.44-55, 1995.
[13]. Wilde N. and Scully M., "Software Reconnaissance:
Mapping Program Features to Code", Journal of Software
Maintenance: Research and Practice, 7(1), pp. 49 – 62,
1995.
[14]. Woods S. and Yang Q., “The program
understanding problem: analysis and a heuristic approach”,
In Proc. of the 18th International Conference on Software
Engineering, pp.6-15, 1996.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

26

Towards Seamless and Ubiquitous Availability of Dynamic Information in IDEs

David Röthlisberger and Orla Greevy
Software Composition Group, University of Bern, Switzerland

{roethlis, greevy}@iam.unibe.ch

Abstract

Software developers faced with unfamiliar object-
oriented code need to build a mental model of the sys-
tem to understand its dynamic flow. Development envi-
ronments typically provide static views of the source code
(e.g., classes and methods), but do not explicitly represent
dynamic collaborations. The task of revealing how static
source artifacts interact at runtime is thus challenging.To
address this we have developed several techniques to repre-
sent dynamic behavior at various levels of granularity di-
rectly in the IDE. In this paper we outline these various
techniques towards a seamless integration of dynamic infor-
mation in the IDE. We elaborate on user feedback we have
gathered and on our empirical experiments to validate our
work. We derive several ideas and visions of further poten-
tial representations of dynamic behavior from this analysis
of our approach. The missing representations we identify
serve to enrich our proposed IDE, so as to provide the de-
veloper from within the IDE with a readily available and
complete picture of a software’s dynamics.

Keywords: dynamic analysis, dynamic collaborations,
development environments, program comprehension

1 Introduction

Maintaining or enhancing object-oriented software sys-
tems requires developers not only to understand static
source artifacts, but also their dynamic interaction. The pri-
mary tool available to developers, the integrated develop-
ment environment (IDE), typically focuses on a static view
of a system. It does not explicitly represent dynamic collab-
oration between static artifacts (e.g., classes or methods). In
the absence of IDE support developers are forced to build up
a mental model of a system’s dynamic behavior. Integrating
explicit representations of dynamic behavior directly in the
IDE would prove helpful in gaining a more accurate under-
standing for a system under investigation.

To achieve the goal of representing dynamic behavior
seamlessly in the IDE, we are faced with several challenges,

such as:

• How can we efficiently gather dynamic information
and immediately make it available from within the
IDE?

• How do we represent dynamic behavior of a system in
an IDE?

• How do we validate that our proposed representations
are useful for developers?

Our key focus is to present our experience to date and
to identify our visions for further IDE enhancements to ex-
ploit seamless integration of dynamic information in vari-
ous forms, providing developers with relevant information
to understand a software’s dynamics.

In this paper we report on the techniques we devised to
address the above challenges. In Section 2 we present an
overview of our techniques to represent dynamic behavior
explicitly in the IDE, such as (i) visualizations, (ii) enrich-
ments to the source code view, or (iii) techniques to query
dynamic information from within the IDE. We present a
summary of developer feedback and results of our evalu-
ations in Section 3. Based on this, we have identified rep-
resentations of dynamic behavior to support developers In
Section 4, we outline ideas for further enhancements to an
IDE encompassing dynamic information.

2 Existing Approaches Integrating Dynamic
Analysis in IDEs

In our work to date, we have developed four different
approaches to reason about dynamic information directly in
the IDE. Each approach works on different levels of granu-
larity, from the fine-grained source code level, the dynamic
interaction of static artifacts to a coarse-grained represen-
tation of user-identifiable features of a system. Our tech-
niques provide the developer with several entry points for
gaining an understanding of software system, e.g., to cor-
rect a specific defect. If a defect occurs in a specific feature,
the developer may first gain an overview of the feature’s
dynamics, then locate candidate entities (e.g., methods) that

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

27

may contain the defect. In a next step, the developer rea-
sons about the specific communication patterns between the
candidate entities and finally drills down to the source code
level to study the dynamics on a fine-grained level to pin-
point and correct the defect.

We provide a brief overview of our four proposals to rep-
resent dynamic information in the IDE. We implemented
our IDE enhancements in the Squeak Smalltalk IDE [7] as
it provides an extensible framework to adapt and extend its
tools, We take advantage of our previously implemented a
technique, partial behavioral reflection, to efficiently and se-
lectively gather runtime information [3].. Applying our en-
hancements to other IDEs, e.g., Eclipse could be achieved
using similar techniques.

2.1 Feature Representation

To explicitly represent features, i.e., behavioral entities
of a software system, we introduce our Feature Browser
[10], an enhancement to a traditional IDE.

We describe our Feature Browser taking as an example
a Wiki application. The developer first specifies within the
IDE that dynamic data should be recorded for the applica-
tion (i.e., at the package level) and then associates names
with the features (i.e., external user-understandable units
of behavior of the application) under investigation, e.g.,
“wikiEditPage”. Then she exercises a feature in the applica-
tion. The IDE takes care of gathering and storing dynamic
data of the feature. The IDE now provides the developer
with an explicit feature representation of behavioral data for
“wikiEditPage”. To study the features of interest, the devel-
oper selects them either in our Feature browser or invokes
an action we added next to the class and method browser to
open all features that use a particular class or method.

Figure 1 depicts our feature browser’s core components.
The Compact Feature Overview (1) enables visually com-
parison of several features . The small nodes in a feature
view can represent either methods or classes and are colored
according to the feature affinity metric proposed by Greevy
[5]. Entities used in only one feature (colored blue) can
be distinguished from entities used in several or all features
(colored orange or red). The coloring scheme makes it eas-
ier to quickly grasp similarities between features, anomalies
or to locate erroneous behavior.

The Feature Tree (2) provides the developer a more de-
tailed view on a feature by representing the method call tree
triggered while it was exercised. The root of the tree is the
first, e.g., the “main” method of the feature, child nodes are
methods being invoked by this main method. All nodes in
this tree are colored according to the feature affinity metric.
To make this tree navigable for reasonable sized execution
traces we applied several compression techniques such as
subexpression removal [8] or sequence and repetition re-

Figure 2. Class collaboration chart for class
Graph.

moval as proposed by Hamou-Lhadj [6]. A developer can
open this feature tree by clicking on a node (i.e., a method)
in the compact feature overview or by selecting a feature in
which a method opened in the IDE participates.

The Feature Artifact Browser (3) shows all entities used
in a particular feature in a dedicated source browsing envi-
ronment. Only entities (e.g., packages, classes, or methods)
which are actually used in the selected feature are shown so
the developer can focus on parts of the code responsible for
the feature’s behavior.

2.2 Representing Dynamic Collaboration

To refine their mental model of a feature’s behavior, de-
velopers typically want to reason about more fine-grained
interactions to reveal how classes communicates with each
other. Studying this kind of dynamic interaction may un-
cover unwanted behavior, such as incorrect or missing com-
munication between instances. To study this level of inter-
action we provide a range of collaboration charts. A class
collaboration chart of the class Graph of a visualization tool
is shown in Figure 2. Similar charts exist for packages or
methods.

Our charts show compact representations of package,
class or method runtime communications. Our class col-
laboration chart is similar to a UML sequence diagram, al-
though the order of calls is not preserved, To avoid clutter-
ing the chart with too much information, we show commu-
nication paths between classes, i.e., message sends occur-
ring in an instance of a class with an instance of another
class as a receiver, as edges in the chart. The thickness of
an edge reflects the relative frequency of the interaction, as
in the work of Ducasse et al. [4].

Our charts are directly accessible either from within the
feature browser, or from the static view on source code of
the IDE, e.g., by selecting a particular class and opening a
class collaboration chart for this class. In the latter case,
the application has to be executed before the class collabo-
ration chart can be shown. The charts are always dedicated
to a specific run of the subject system triggered by the de-
veloper, either by running scripts to exercise behavior or by

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

28

Figure 1. Schema of the Feature Browser.

manually interacting with the subject application.

2.3 Dynamic Data Querying

Dynamic analysis approaches need to deal with vast
amounts of data [1]. In the two previous approaches, we
addressed this by focusing on one particular execution of
a system and by compressing the resulting execution trace.
However, developers often want to understand the dynamic
behavior of the application “in general”, i.e., for as many
different executions as possible, although full coverage is
of course not achievable for any reasonable big system [1].
For this reason, we keep the data generated by observed en-
tities in a central database accessible from within the IDE
[9].

To effectively reason about the permanently stored dy-
namic data, we extended the IDE’s search capabilities con-
sider both static and dynamic information. Our extended
search enables the developer for instance to search for
senders of messages to a specific receiver type, e.g., only
for methods invoking the size method of class Graph. The
query to solve this problem is shown in the code section
below (query 1).

SHOW senders OF Graph . s ize
SHOW c o l l a b o r a t o r s OF Graph
SHOW method invoca t i on IN Wiki ORDER BY

frequency

The query language syntax is similar to SQL. Query
2 returns all classes collaborating with Graph at runtime,
while query 3 provides a list of all methods being invoked
in the package Graph, ordered by invocation frequency.

Other search facilities are dynamic implementors, package
or method collaborators, or method execution times. The
results of such queries are directly embedded in the IDE
and can be browsed using IDE functionalities.

2.4 Dynamic Information Integrated in
Source Code

On the lowest level of granularity, we embed dynamic
information directly into the source code of methods [11].
When reading source code of dynamically-types languages
such as Smalltalk, it may be difficult to completely under-
stand the code as there is no type information. Polymor-
phism further complicates the task. It is unclear which
methods are invoked at runtime and what kind of objects
are stored in variables. We enrich the source code view
to feed in information obtained by dynamic analysis. The
code statement in Figure 3 highlights our enhancements to
the source view. We add icons to message sends and vari-
ables accesses in source code. Clicking on an icon either
reveals what methods were executed for a message send or
show all type of objects a variable stored at runtime. Of
course the developer can directly navigate to a method or
a variable type shown in the respective list by clicking on
the item. An interesting side-effect of these enhancements
is that they also reveal which parts of a method have never
been executed, as these parts will be missing these icons for
dynamic information.

To obtain the dynamic data for these extensions we query
the database mentioned in Section 2.3. We apply caching
strategies: as soon as a method’s source code has been

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

29

Figure 3. Dynamic information embedded in
source code.

displayed once, including dynamic information icons. We
cache results of various queries submitted for this method
until either the method’s source code has changed or more
dynamic information has been gathered.

3 Validation of Existing Techniques

We validate our various approaches to integrate dynamic
information in the IDE from a user perspective. In previ-
ous works we also validate it from an efficiency and perfor-
mance perspective [10, 11].

3.1 User Validation

We validated out Feature Browser (Section 2.1) by
means of an empirical study involving twelve developers fa-
miliar with both the Smalltalk language and IDE. We asked
the subjects to correct two defects of similar complexity in
a Wiki system. For one defect the developers used the tradi-
tional Squeak IDE, for the other we provided them with our
IDE-embedded feature browser. The order in which they
used each environment was randomly assigned. We then
compared both, the efficiency (i.e., time spent) to correctly
locate the cause of the defect in source code and to actually
correct the defect entirely. The performance of the subjects
was in average 30% better with the feature browser concern-
ing defect location and 10% better concerning defect cor-
rection. Both figures are statistically significant. For more
details of this study we refer the reader to our previous work
[10].

We validated the other techniques, collaboration charts,
dynamic information querying, and enriched source code
view, by means of providing a questionnaire to several de-
velopers and asked them to apply our techniques in a con-
trolled experiment we defined. We also involved the sub-
jects of the feature browser. For all techniques, we used set
of general questions as well as specific questions for each
technique. Every questionnaire was answered by at least
three subjects. We used the same Wiki application (i.e.,
Pier) for each experiment as none of the subjects had prior
knowledge of this system. We assigned the subjects spe-
cific tasks to solve, providing them with just one of our four
techniques. The tasks were for instance to describe the role
of an key model class, to enhance the system with a feature
similar to an already existing feature, or to adapt a feature
without impacting any other system behavior. After solving

Statement Av.
rating

Impact of feature browsing in program comprehension 4.2
Impact of collaboration charts on program understanding 3.2
Effect of collaboration charts on execution overview 4.3
Impact of querying dynamic inf. on prog. understanding 3.4
Impact of querying dynamic inf. on navigation of static artifacts 3.8
Effect of source code enrichments on execution overview 4.0
Effect of source code enrichments on navigation of static artifacts 3.9
Impact of source code enrichments on program comprehension 3.3

Figure 4. Answers obtained from our ques-
tionnaires

three tasks we gave the subjects the questionnaire. Table 4
provides a selection of answers from the questionnaires.

We obtained many suggestions, ideas, or wishes for fu-
ture enhancements to represent dynamic information in the
IDE, this feedback incorporates in Section 4.

4 Competing the Representation of Software
Dynamics in IDEs

We elaborate on several opportunities to extend our
existing work on integrating dynamic information in the
IDE. We identify shortcomings, problems, or issues in the
current work and present ideas and suggestions obtained
from developers that participated in our experiments.

Identifying Missing Features. A shortcoming of the cur-
rent solution is the requirement to select specific static ar-
tifacts of the subject system (e.g., packages or classes) to
collect dynamic data, and to then run one or many system’s
features. The IDE should automatically take care of gath-
ering dynamic information from all system entities. Dy-
namic data should be as readily available as static informa-
tion (e.g., list of methods or instance variables of a class).
Moreover, developers want to be able to associate a partic-
ular execution with the dynamic data it generated, but for
other scenarios they also want to access all gathered infor-
mation about an artifact in order to achieve a high level of
coverage. If the IDE were to automatically collect dynamic
information, developers would be freed from this respon-
sibility and would be more likely to incorporate views on
system’s dynamics in their daily work, in particular when
these views show reliable, complete and accurate informa-
tion.

To gather dynamic data, a system first needs to be
executed. Instead of relying on the developer to run the
application manually or with scripts, the IDE could contin-
uously run the system in the background, in particular after
changes to the system’s code base. The developer could
record some scripts on a high level (e.g., by recording user

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

30

actions in the application) that could be fed into the IDE so
it could run the system. The IDE could easily determine
code (e.g., methods or source code statements) that have
never been executed and either try to find execution paths
for this code or alert the developer to refine the provided
scripts. This procedure would improve code coverage.
The general, idea is to empower the IDE and to relieve
the developer of the responsibility to ensure that as many
parts of the system as possible are covered by dynamic
analysis. The IDE is the appropriate tool to assume this
responsibility as it is very familiar to developers (they
spend most of their working time in this environment),
and as it already provides sophisticated means to work
with static code. We understand dynamic views as being
orthogonal to static views and hence nicely completing
IDE’s mostly static perspective.

Developer Suggestions. One suggestion of developers was
to use dynamic information not only to enhance and com-
plete the static perspective of a system, but to build means
and concepts to browse, develop and maintain software in a
environment that primarily display entities by their dynamic
relationships, e.g., a browser that shows classes on a two-
dimensional map showing communication as paths while
the distance between any two classes represents how heav-
ily they communicate with each other. Entities are placed
closer to each other the more they collaborate. Another de-
veloper mentioned the importance of having full coverage,
i.e., he often wants to know whether two entities will ever
communicate to each other in any possible system execu-
tion. Of similar importance is a big picture view: While fo-
cusing on a particular feature or execution is interesting in
many scenarios, there is often also a need to get an overview
of all possible dynamic communication occurring in an ap-
plication, e.g., to present to a new developer how the system
generally functions at runtime.

5 Conclusions

In this paper we described four different techniques to
seamlessly integrate dynamic information in IDEs to rea-
son about software’s dynamics. These four techniques are
(1) a feature browser to reason about features, (2) collabo-
ration charts to visualize dynamic communication between
static artifacts in the IDE, (3) facilities to query dynamic
information, and (4) enrichments to source code to embed
information of its dynamic behavior. We performed sev-
eral user experiments to evaluate these techniques and to
solicit feedback from developers about ideas for future en-
hancements. We presented both the results from the various
studies (e.g., results of questionnaires) and a comprehensive
list of issues in the current approach. Finally we identified
further opportunities for extend and complete the represen-

tation of software’s dynamics in IDEs.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
“Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008).

References

[1] T. Ball. The concept of dynamic analysis. In Proceed-
ings European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (ESEC/FSC 1999), number 1687 in
LNCS, pages 216–234, Heidelberg, 1999. Springer Verlag.

[2] M. Denker and S. Ducasse. Software evolution from the
field: an experience report from the Squeak maintainers. In
Proceedings of the ERCIM Working Group on Software Evo-
lution (2006), volume 166 of Electronic Notes in Theoretical
Computer Science, pages 81–91. Elsevier, Jan. 2007.

[3] M. Denker, O. Greevy, and M. Lanza. Higher abstrac-
tions for dynamic analysis. In 2nd International Work-
shop on Program Comprehension through Dynamic Anal-
ysis (PCODA 2006), pages 32–38, 2006.

[4] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. In Proceedings
of 8th European Conference on Software Maintenance and
Reengineering (CSMR’04), pages 309–318, Los Alamitos
CA, 2004. IEEE Computer Society Press.

[5] O. Greevy. Enriching Reverse Engineering with Feature
Analysis. PhD thesis, University of Berne, May 2007.

[6] A. Hamou-Lhadj and T. Lethbridge. An efficient algorithm
for detecting patterns in traces of procedure calls. In Pro-
ceedings of 1st International Workshop on Dynamic Analy-
sis (WODA), May 2003.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA’97),
pages 318–326. ACM Press, Nov. 1997.

[8] J.-M. S. Philippe Flajolet, Paolo Sipala. Analytic varia-
tions on the common subexpression problem. In Automata,
Languages, and Programming, volume 443 of LNCS, pages
220–234. Springer Verlag, 1990.

[9] D. Röthlisberger. Querying runtime information in the ide.
In Proceedings of the 2008 workshop on Query Technolo-
gies and Applications for Program Comprehension (QTAPC
2008), 2008. To appear.

[10] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Feature
driven browsing. In Proceedings of the 2007 International
Conference on Dynamic Languages (ICDL 2007), pages 79–
100. ACM Digital Library, 2007.

[11] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Exploit-
ing runtime information in the ide. In Proceedings of the
2008 International Conference on Program Comprehension
(ICPC 2008), 2008. To appear.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

31

Using Dynamic Analysis for API Migration

Lea Haensenberger and Adrian Kuhn and Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland
lhaensenberger@students.unibe.ch, {akuhn,oscar}@iam.unibe.ch

Abstract

When changing the API of a framework, we need to mi-
grate its clients. This is best done automatically. In this
paper, we focus on API migration where the mechanism
for inversion of control changes. We propose to use dy-
namic analysis for such API migration since structural
refactorings alone are often not sufficient. We consider
JExample as a case-study. JExample extends JUnit
with first-class dependencies and fixture injection. We
investigate how dynamically collected information about
test coverage and about instances under test can be used
to detect dependency injection candidates.

Keywords: API migration, automatic software en-
gineering, dynamic analysis, inversion of control.

1. Introduction

Large software systems are not written from scratch,
but rather reuse functionality offered by third-party
frameworks. Frameworks provide their functionality
through an application programming interface (API)
that typically inverts the control between client and
framework.

“The framework will often be called from within the
framework itself, rather than from the user’s applica-
tion code. The framework often plays the role of the
main program in coordinating and sequencing appli-
cation activity. This inversion of control gives frame-
works the power to serve as extensible skeletons. The
methods supplied by the user tailor the generic algo-
rithms defined in the framework for a particular appli-
cation.” – Ralph Johnson et al [6]

An API is a contract between framework and client
that guarantees stability. No changes to the client are
required when updating the framework, or even, when
moving to a framework implementation of another ven-
dor. However, sometimes comes the moment when we
must migrate the client to a different API.

Migrating client code from one API to another is
tedious work and thus best done automatically. Some-
times this can be done using a series of refactorings
that map the structure of one API to the other. How-
ever, when the mechanism for inversion of control dif-
fers, a mere structural mapping is often not sufficient.
Therefore, we propose to use dynamically collected in-
formation for automatic migration of APIs with differ-
ent mechanism for inversion of control.

In this paper, we consider JExample as a case-
study [7, 4]. JExample extends JUnit with first-class
dependencies and fixture injection. We identified the
following migration steps that require information ob-
tained from dynamic analysis in order to be done.

• For detection of dependencies we propose to record
the coverage set of each test, such that the partial
order, i.e., subset relationship, of coverage sets can
be used to introduce dependencies.

• For detection of injection candidates we propose
to use record the state of the instances under test,
such that redundant setup code can instead be re-
placed with fixture injection.

The remainder of this paper is structured as follows.
Section 2 introduces JExample. We propose why and
how to use dynamic analysis to detect dependencies
(Section 3) and candidate fixtures (Section 4). We dis-
cuss other that might require dynamic migration in
Section 5, and Section 6 concludes.

2. JExample in a Nutshell

JExample introduces producer-consumer relation-
ships to JUnit unit testing.

• A producer is a test method that yields an in-
stance of its unit under test as return value.

• A consumer is a test method that depends on one
or more producers.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

32

Figure 1. Partial order of the coverage sets of the test suite of MagicKeys. Figure courtesy of Gaelli et al [3].

JExample caches the return values of producer meth-
ods and injects them when a consumer is about to
be executed. Producer-consumer relationships are first-
class dependencies: when running a test suite, JExam-
ple will skips any test method whose producers have
previously failed or been skipped.

For example, when testing a stack class, you may
declare that testPop depends on the unit under test
of testPush as follows.

@Test

public Set testPush() {

Stack $ = new Stack();

$.push("foo");

assertEquals("foo", $.top());

assertEquals(1, $.size());

return $;

}

@Test

@Depends("#testPush")

public void testPop(Stack $) {

Object top = $.pop();

assertEquals("foo", top);

assertEquals(0, $.size());

}

We refer to producers and consumer methods as exam-
ple methods. They do more than just test the unit un-
der test. Producer methods consist of source code that
illustrates the usage of the unit under test, and that
may return a characteristic instance of their unit un-
der test. Thus, producer/consumer methods are in fact
examples of the unit under test.

As such, example methods tackle the same prob-
lem as mock objects, i.e., “How to test a unit that de-
pends on other units?” When working with mock ob-
jects, you solve this problem by creating a mock for
each dependency. When working with examples, you

solve this problem by declaring producer-consumer de-
pendencies. Thus, instead of testing against mocks,
you test against the previously created return values
of other tests. Since example methods are both pro-
ducers and testers of their returned value, all return
values are guaranteed to be valid and fully functional
instances of the corresponding unit. In addition, JEx-
ample will use cloning to take care that no side-effects
are introduced when two or more consumers use the
same return value.

An example method may depend on both success-
ful execution and return values of other examples. If
it does, it must declare the dependencies using an
@Depends annotation. An example method with de-
pendencies may have method parameters. The num-
ber of parameters must be less than or equal to the
number of dependencies. The type of the n-th param-
eter must match the return type of the n-th depen-
dency.

Dependency declarations uses the same syntax as
the @link tag of the Java documentation tool. Ref-
erences are either fully qualified or not. If less than
fully qualified, JExample searches first in the declar-
ing class and then in the enclosing package. The fol-
lowing table shows the different forms of references.

#method

#method(Type, Type, ...)

class#method

class#method(Type, Type, ...)

package.class#method

package.class#method(Type, Type, ...)

Multiple references are separated by either a comma
(,) or a semicolon (;). As listed above, the hash charac-
ter (#), rather than a dot (.) separates a member from
its class. However, JExample is generally lenient and
will properly parse a dot if there is no ambiguity. This
is the same as the Java documentation tool does.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

33

3. Detecting Dependencies

Test methods in JExample can have explicit de-
pendencies on other test methods. If dependencies are
properly declared, a failing method directly points to
the defect location (since all dependents that would
otherwise fail as well are skipped) whereas in JUnit
many dozens of test methods covering the same defect
location fail and it is often not obvious where to start
fixing the bug. A test method ma should depend on a
test method mb, if ma covers at least the same code
as mb. The execution of method ma can be skipped, if
the framework already knows that mb fails.

Gaelli et al have shown that a partial order of test
methods by means of coverage sets helps developers to
locate a defect by pointing out the test method with
the most specific debugging context [3]. Figure 1 illus-
trates the partial order of one test suite.

Thus, we propose to migrate JUnit tests to JEx-
ample by running the tests and recording the cover-
age set of each test. The coverage set of a test con-
tains all methods that get invoked when running the
test. In the main step we make a partial order of cover-
age sets, in order to detect coverage dependencies be-
tween test methods. If a JUnit method ma is found to
cover a superset of a JUnit method mb, then mb is mi-
grated to a JExample method with a @Depends an-
notation to ma.

Consider the following two test methods of a JUnit
test case testing Java’s Stack.

@Test

public void testPush() {

Stack stack = new Stack();

stack.push("foo");

assertEquals("foo", stack.top());

assertEquals(1, stack.size());

}

@Test

public void testPop() {

Stack stack = new Stack();

stack.push("foo");

Object top = stack.pop();

assertEquals("foo", top);

assertEquals(0, stack.size());

}

In the example above testPop covers testPush, since
the set of methods invoked by testPop is a superset of
the methods invoked by testPush. Thus, in the JEx-
ample implementation of the Stack test, as given pre-
viously in Section 2, testPop declares itself to explic-
itly depend on testPush as follows:

@Test

@Depends("#testPush")

public void testPop() { ...

Please note, as we add a depends annotation but no
methods parameters, a dependency without fixture in-
jection is added. Detection of fixture injection candi-
dates is covered in the next section.

4. Detecting Candidates for Fixture In-
jection

Test methods in JExample can pass an instance
of the unit under test (instance under test) from one
test method to another. If a test method ma returns
a value, the JExample framework caches this return
value. If later the framework is about to execute a
test method mb that depends on ma, the cached re-
turn value of ma is cloned and injected as a parameter
to the method invokation of mb. As such, in JExam-
ple a test method may provide the fixture for its de-
pendent methods. Thus, we refer to the former as the
producer and to the latter as its consumers.

Again we consider the Stack example as given in Sec-
tion 3. In JUnit both testPush and testPop create a
new instance of Stack, the unit under test. Both meth-
ods push the same String onto their Stack instance,
thus they share the same setup of the instance un-
der test. The method testPush ends at this point,
whereas testPop continues with further operations on
its instance. In JExample we can rewrite this so that
testPush returns its instance under test as return
value and testPop expects this return value to be in-
jected as a method parameter.

We propose to migrate JUnit tests to JExample
by running the tests, but this time recording the cre-
ated instances under test. If at any moment during the
execution of test method ma the instance under test
has the same state as method mb’s instance under test
at the end of method mb, then we have found a candi-
date for fixture injection.

There is two possible techniques to check if the in-
stances under test are the same:

• All fields of both instances are equivalent.

• The path that produced the instance is the same.

For example, even if the String pushed by ma and mb

is not the same, we might consider it as a fixture in-
jection candidate. This candidate might however be a
false positive if ma or mb tests a boundary condition
that particularly depends on the pushed value.

In the same way, it is possible to create an empty
Stack instance by many different paths that might not
all be equivalent. For example, a freshly created Stack
might have a different modification count than one that
has been filled and later emptied again.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

34

We propose to use both techniques, since singeling
out false positive candidates is straightforward: if the
migrated tests do not run we have obviously introduced
an error. Thus, if we migrate the candidates one by one
we can make sure no false positives are migrated.

The migration script will collect all candidates, as
well as the dependencies detected above in Section 3,
in order to migrate JUnit test suites to JExample
test suites. If both a dependency from ma to mb and
a fixture candidate has been detected, the method ma

is rewritten to not only depend on mb but to also take
mb’s return value as a parameter as follows:

@Test

public Stack testPush() {

...

return stack;

}

@Test

@Depends("#testPush")

public void testPop(Stack stack) {

...

}

In addition, if a JUnit test-class has a @Setup method,
this methods will be migrated to a JExample test
method that is a producer, and all other methods in
the same test-class become its consumers.

5. Current and Emerging API Trends

In this section, we provide current and emergent API
trends where the mechanisms for inversion of control is
affected, and suggest how dynamically obtained infor-
mation might be useful in order to migrate these APIs:

• XML frameworks offer a wide range of APIs with
different control mechanisms. The main divisions
are tree- and streaming-based APIs, with the the
streaming APIs are further subdivided into push-
and pull models. For example, the DOM model is
tree-based [11], whereas SAX uses a push-model
streaming API [10]. In addition, non-imperative
APIs are emerging that enrich XML processing
with the functional and logical paradigm. For Ex-
ample, LINQ uses functional queries to map ob-
jects to XML or SQL and back [8].

• The latest release of J2EE, Java’s enterprise ap-
plication framework, moves from EJB’s heavy-
weight applications servers to light-weight tech-
nologies such as Hibernate and Spring [5]. Both
approaches use inversion of control1, but employ

1 “There is some confusion these days over the meaning of inver-
sion of control due to the rise of IoC containers; some people

different mechanisms in order to do so. EJB hard-
wires application code into the application server
framework by passing around explicit references to
the container. Spring on the other hand uses de-
pendency injection to inject container-provided ob-
jects into annotated fields of the application code.
At this moment, many J2EE systems are about to
be migrated from EJB 2.0 to EJB 3.0, that is from
conventional application servers to Spring and Hi-
bernate.

• In the field of unit testing, frameworks with first-
class dependencies are emerging. For example,
both TestNG and JExample extend conven-
tional unit tests with dependencies between tests
[7, 4]. When running tests, the framework can
skip tests whose dependencies have failed. In ad-
dition, JExample introduces producer-consumer
relationships, where the return value of a producer
test is cached by the framework and later injected
into the consumers as their fixture.

• Web frameworks are another field where “inver-
sion of control is inverted back” [9]. For example,
the Seaside framework use continuations rather
than the goto-like style of page-centric program-
ming [1]. Rather than writing the web application
page by page, one (or more) main methods cap-
ture the complete flow of the application, using
call-backs and control flow structures provided by
the Seaside API to handle page transitions.

Migration between APIs with such different mecha-
nisms for inversion of control, some even based on con-
flicting paradigms, can not necessarily be done with a
simple set of structural refactorings. Additional run-
time information might be required.

For example, to migrate from a tree- to a streaming-
based XML framework, we might dynamically record
all operations performed on the tree and then check if
these operations can be re-ordered such that they can
be applied in streaming fashion.

For example, to migrate a conventional XML query
to a LINQ query, we might dynamically record the
imperative sequence of instructions (which will cer-
tainly include many for loops and if statements) per-
formed during the query and then check if we can find
a LINQ equivalent that returns the same elements as
the recorded for loops and if statements.

confuse the general principle here with the specific styles of in-
version of control (such as dependency injection) that these
containers use. The name is somewhat confusing (and ironic)
since IoC containers are generally regarded as a competitor
to EJB, yet EJB uses inversion of control just as much (if not
more).” – Martin Fowler [2]

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

35

For example, XML namespaces in LINQ are repre-
sented with a dedicated Namespace class rather than
plain strings. Thus, when migrating towards LINQ, we
might dynamically record the usage of all strings in or-
der to single out those that can be migrated as XML
namespaces rather than strings.

For example, to migrate a J2EE application, we
might dynamically record the resources requested from
the EJB container in order to replace these calls with
corresponding Spring injection annotations.

For example, to migrate from a conventional web
framework to Seaside, we might dynamically record the
page transitions for different tasks in order to gener-
ate high-levels methods that capture this flow of pages
in one method. For example, given a Wiki application,
one could record tasks such as login, create page, edit
page, remove page, and generate a corresponding high-
level method that captures the entire page flow of each
of these tasks.

6. Concluding Remarks

In this paper, we investigate API migration where
the mechanism for inversion of control changes. We pro-
pose to use information obtained from dynamic analy-
sis for such API migration.

We provided examples taken from current and
emerging industry trends. As a case-study we inves-
tigated in further detail how to migrate JUnit tests
to JExample using information obtained from dy-
namic analysis, and propose two particular migrations
steps that require dynamic analysis.

The first author of this paper is currently realizing
the proposed steps as part of her Master’s thesis.

Acknowledgments: The authors thank Ralf Lämmel for
many discussions on API migration, from which emerged the
proposed examples on API migration of XML frameworks.

We gratefully acknowledge the financial support of the
Hasler Foundation for the project “Enabling the evolution
of J2EE applications through reverse engineering and qual-
ity assurance” and the Swiss National Science Foundation
for the project “Analyzing, Capturing and Taming Software
Change” (SNF Project No. 200020-113342, Oct. 2006 - Sept.
2008).

References

[1] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flex-
ible environment for building dynamic web applications.
IEEE Software, 24(5):56–63, 2007.

[2] M. Fowler. Inversion of control, obtained from Martin
Fowler’s wiki, June 2005.

[3] M. Gaelli, M. Lanza, O. Nierstrasz, and R. Wuyts. Or-
dering broken unit tests for focused debugging. In
20th International Conference on Software Maintenance
(ICSM 2004), pages 114–123, 2004.

[4] L. Haensenberger. JExample. Bachelor’s project, Uni-
versity of Bern, Mar. 2008.

[5] R. Johnsohn and J. Hoeller. Expert One-on-One J2EE
Development without EJB. Wrox, 2004.

[6] R. E. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1(2):22–35,
1988.

[7] A. Kuhn, B. V. Rompaey, L. Haensenberger, O. Nier-
strasz, S. Demeyer, M. Gaelli, and K. V. Leemput. JEx-
ample: Exploiting dependencies between tests to im-
provedefect localization. InP.Abrahamsson, editor, Ex-
treme Programming and Agile Processes in Software En-
gineering, 9th International Conference, XP 2008, Lec-
ture Notes in Computer Science, pages 73–82. Springer,
2008.

[8] Language Integrated Queries.
http://plone.org/products/archgenxml.

[9] C. Queinnec. Inverting back the inversion of control or,
continuations versus page-centric programming. SIG-
PLAN Not., 38(2):57–64, 2003.

[10] Simple API for XML. http://www.saxproject.org/.

[11] L. Wood, J. Sorensen, S. Byrne, R. Sutor, V. Apparao,
S. Isaacs, G. Nicol, and M. Champion. Document Object
Model Specification DOM 1.0. World Wide Web Con-
sortium, 1998.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

36

Applying Static and Dynamic Analysis in a Legacy System to Study the
Behaviour of Patterns of Code during Executions: an Industrial Experience

Rim Chaabane, Françoise Balmas

Laboratoire LIASD, Université Paris 8, France
{rchaabane, fb}@ai.univ-paris8.fr

Abstract

This paper describes our work for detecting and
analysing the performances of some patterns of code
during their execution. This work was realized for a
legacy software written in a proprietary, procedural and
compiled language. The approach we present here uses
static analysis techniques to detect patterns of code in
source and in bytecode without modifying any of them.
We also share our experience on dynamic analysis on
pattern analysis in this specific legacy system.

1. Industrial issues

 Our work is performed in the context of a financial
company that develops and maintains a legacy software
[1]. This software was initially written more than twenty
years ago, in a proprietary, procedural and 4th generation
language (4GL) called ADL1 (Application Development
Language). This software was initially developed under
the VMS operating system and is based on a previous
generation of database. For commercial reasons, the
software was ported to UNIX systems and adapted to
newer relational databases, Oracle and Sybase. It was also
extended to offer a web interface. Currently the software
has 10 million lines of ADL source code, and some
expanded source files or procedures called by the main
program can reach 400,000 lines of code each.

 This legacy software has to face some new challenges
like database growth. These last 20 years some client
companies merge together, which made their data grew to
more than one Terabyte and will extend even more during
the next years. This made that the software shows critical
decrease in performance. Some ADL database access
statements or patterns of code (POC) were suspected by
developers to be responsible for this performance
decrease.

1 ADL is close to the Cobol language

 In order to identify which POC has shown poor
performance, code maintainers should inspect all
instances of POC to check them. Due to the size of the
software, this would mean inspecting hundreds and
hundreds of instances. Since this is clearly unfeasible,
we developed a combined approach to search for all
possible instances and to analyze them from a behaviour
point of view.

We developed the “Adlmap” tool, based on static
analysis, which searches for the suspected instances of
POC in source code. We can find hundreds of instances
for a given procedure. Not all the instances are called
during a product run of the legacy software. Also not all
called ones have poor performance. To identify those
instances which really decrease the performance, we
need to analyse their execution behaviour. For that we
developed the “Pmonitor” tool that executes instances
and measures their performances in order to classify
them. Maintainers can then identify which instance need
to be focused on.

In this way, we can know which instances of these POC
decrease performances in a ‘real-life’ customer
execution. Maintainers therefore have only a few
instances to improve.

In Section 2, we describe the technique we use to

detect instances of POC in source code, while in Section
3 we explain our technique to dynamically analyse their
performance. In Section 4 we give a general survey on
our current work.

2. Pattern detection in source code with

Adlmap

To be able to measure the performance of POC
instances during their execution, we need to be able to
detect them inside the compiled code. Most of the time
two techniques are used:

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

37

Figure 1. Adlmap architecture

1. Modifying the source code to insert instructions

before and after each instance of a POC [3, 4]
which perform measurements.

2. Modifying the compiler to generate an

instrumented bytecode to measure the
performances of each encountered instance of
pattern. While the bytecode is executed, the
additional instructions generate information about
their performance [5].

In our context, these two solutions cannot be

applied because we do not want to modify either the
source code or the bytecode. The first technique
would increase the number of lines in the source code,
whereas our compiler shows limitations when

compiling very large source files. The second
technique would require a change in the bytecode
which would mean modifying the compiler as well.
Since the ADL compiler has not been maintained for
years, this solution cannot be considered.

Our solution is centered on identifying all

suspected POC instances in a given procedure and in
its corresponding bytecode, modifying neither source
code, bytecode nor compiler. For this purpose, we rely
on the fact that all the suspected POC are database
accesses (DBA), since DBA are easier to detect in
bytecode than POC. We developed the Adlmap tool
that scans both source code and bytecode to list all the
database accesses.

Source code XML format

Delia AST
parser

Xpath

Compilation
VMS

Runtime
UNIX

Binary

Runtime
Tools

bytecode
PC

(A)

(C)

 lineno | Relation | source path | ispattern
--
 32 | ‘temp1’ | via_pcoda.adl | |
 33 | ‘temp2’ | via_pcoda.adl | |
 34 | ‘temp3’ | via_pcoda.adl | |
 40 | ‘temp4’ | via_pcoda.adl | P1 |

 PC | Relation

 12 | ‘temp3’ |
 39 | ‘temp2’ |
 66 | ‘tem p1’ |
 98 | ‘temp4’ |

 lineno | PC | Relation | source path | ispattern

 34 | 12 | ‘ temp3’ | via_pcoda.adl | |
 33 | 39 | ‘ temp2’ | via_pcoda.adl | |
 32 | 66 | ‘ temp1’ | via_pcoda.adl | |
 40 | 98 | ‘ temp4’ | via_pcoda.adl | P1 |

(B)

(D)

 mapping

(E)

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

38

Adlmap relies on mapping rules to match the DBA
extracted from source code to those extracted from
bytecode. During the extraction of DBA from source
code, Adlmap checks if each of them verifies the
definition of a suspected POC, if that is the case, the
DBA is flagged with the name of the POC2. Since the
list of extracted DBA from source code, maps the list
extracted from bytecode, we can link the flagged
DBA to their corresponding bytecode instructions.
This way we can identify the suspected instances of
POC in the bytecode before its execution. Let’s see
this in more details with exmple in figure 1.

To extract and flag the DBA from the source code,

Adlmap uses Delia [6, 7] a tool for ADL static
analysis. Delia builds an abstract syntax tree (AST)
from the source code that can be transformed into an
XML tree (cf. Part A in figure 1), which it scans with
Xpath requests [8] to extract all the DBA. Xpath
requests are also used to identify those DBA that are
suspected POC. The DBA that are suspected POC are
then flagged (cf. Part B in figure 1).

To extract the DBA from bytecode we need to

load the binary code produced by the compiler into
the Runtime (cf. Part C in figure 1), in which each
instruction has its own program counter (PC). The
Runtime offers many tools to navigate inside the
bytecode and to detect DBA instructions. Adlmap
uses these features to extract all DBA (cf. Part D in
figure 1).

To find the suspected POC instances in bytecode,

Adlmap makes all the DBA extracted from source
code match those extracted from bytecode. Thus
Adlmap maps the suspected POC instances source
line numbers to their corresponding PC in bytecode
and reports these results in a mapping table (cf. Part E
in Figure 1).

This mapping allows us to identify the suspected

POC instances in bytecode before its execution. The
next Section explains how Adlmap results are used
during dynamic analysis.

3. Pattern monitoring with Pmonitor

Since one given suspected POC can have more
than one hundred instances in a procedure with near
400 000 lines of ADL source code, we need to use
dynamic analysis to identify those instances with poor

2 ADL maintainers established a list of suspected POC which are
named P1, P2, P3, etc...
Unitl now, only P1 and P2 are detected by Adlmap

performances and the contexts that make them behave
this way.

For this, we use a Runtime feature that executes the
bytecode with an activated trace mode. This mode
creates huge log files arduous to analyse. The Runtime
has an other feature that groups bytecode instructions
by sequences. This feature can be used on trace mode
to obtain log files of reduced size. Reducing the size of
log files permit to reduce the time to analyse them

We developed the Pmonitor tool to analyse these

log files and to extract a report containing the
performances of each executed bytecode instruction.
The suspected POC instances are flagged to be
compared to the rest of executed bytecode sequences.

 In the example given in Figure 2, we used our

Adlmap tool to extract from the procedure called
“NEXMO” a mapping table. The mapping table
contains information on all the DBA found in
procedure’s source files, such as the source line
number, PC, the name of the accessed relation and it’s
suspected pattern (cf. Part A in Figure 2). Adlmap
identified 12 000 DBA in “NEXMO” source code, 75
of them are suspected POC of type P13. In the table
shown in figure 2, only 11 instances of pattern P1 are
shown (the colored ones are those that are called
during code execution).

The “NEXMO” procedure is then compiled to

obtain the bytecode that is loaded in the Runtime
which executes it in trace mode. A log file is created at
the end of the execution (cf. Part B in Figure 2). This
log file contains the different sequences of bytecode,
the time taken for execution and the PC of the first
instruction of the sequence.

We then use Pmonitor to analyse this log file. It

first counts the number of calls for each sequence of
bytecode and the average time its execution takes.
Pmonitor uses then the results of the Adlmap tool to
match the executed sequences of bytecode that contain
a DBA to the corresponding static information such as
the line number or the relation name accessed and if
it’s a suspected POC instance. A combining report file
is created (cf. Part C Figure 2) with detailed
information on executed instances of POC that can be
compared to other DBA executions and non DBA
bytecode sequences. We can see in this example that
only 9 P1 patterns were executed. The most expensive
one in terms of execution time is called 830 times and

3 P1 is a table scan and P2 a table scan containing as first instruction
an if statement.

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

39

Figure 2. Pmonitor architecture

takes 0,09 seconds. We show in this report that the
most expensive sequence of bytecode is a non DBA
(non colored one) that takes 325,41 seconds and is
called more than 3 million times. We also can see in
the last row of the report, that a DBA takes 5,18
seconds and is called more than 47 000 times. We can
expect it to be part of a pattern Adlmap is not get able
to handle.

So this report allows developers to get a view on
the behaviour of the suspected POC in comparison to
the other instructions. This way they can know
suspected POC involvement in performance decrease
for a given execution context.

In the next Section we present our current work to

improve our analysis tools and techniques.

4. Current work

Our tools were tested for 2 types of patterns (P1
and P2) and for a large variety of procedure

executions. All tested executions do not show bad
performances for our suspected POC, but show
that they can point on new inexpected ADL
patterns with bad performances.

For a better analysis of suspected POC, we

need to extend our tools to the other POC of the
list. Currently the maintainers have identified 6
more patterns which we will test in real costumer
contexts. But this needs some preliminary work in
order to first optimize our own analysis tools. We
present here the current axes of work to apply our
tools on real customer contexts and to reduce
analysis execution time.

The static analysis with Adlmap is based on a

research in an XML tree which is very expensive
in system resources and also in time of analysis
(19h07mn to obtain the mapping table for the
procedure given in Figure 2). To reduce this time
we are working on refactoring Adlmap with
Python generator expressions [9] allowing the
scanning of AST trees by small sub-trees instead of

Adlmap

Procedure
NEXMO

Mapping table

Runtime
Trace mode

Execution

Log file
Lineno PC Relation Ispattern

78377 386819 mouvement.tmp
78446 386930 mouvement.tmp.b P1
78612 387168 mouvement.tmp
94312 444656 c.m.e.m.b
96000 453788 detail.valeur P1
28890 107232 mouvement.cons P1
28892 107251 mouvement.cons
28893 107264 mouvement.cons P1

395355 1310509 rel.ordre.gen P1
395999 1316543 stock.diff P1
396001 1316562 stock.diff
396003 1316575 lien.trans.compta P1
396007 1316611 mouvement.pris
396008 1316615 stock.touche P1
396010 1316634 stock.touche
396058 1316795 suivi.operation
396074 1316979 rel.ordre.gen P1
395999 1316543 stock.diff P1
396527 1319214 ext.ope.a.gen P1

Binary
file

Compilation

Report file (extract)

9 Executed
patterns

Non DBA
DBA

(A) (B)

(C)

Static analysis

time PC

SequencesPC Calls Time (s) PC Relation Ispattern Lineno
386930 830 0,09 386930 mouvement.tmp.b P1 78446
107222 415 0,05 107232 mouvement.cons P1 28890
107262 415 0,04 107264 mouvement.cons P1 28893

1316605 414 0,05 1316615 stock.touche P1 396008
1316573 414 0,04 1316575 lien.trans.compta P1 396003
1310509 414 0,04 1310509 rel.ordre.gen P1 395355
1316428 414 0,05 1316543 stock.diff P1 395999
453788 222 0,02 453788 detail.valeur P1 96000

1319214 1 0,00 1319214 ext.ope.a.gen P1 396527
1422817 3125318 325,41
444656 47774 5,18 444656 c.m.e.m.b 94312

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

40

loading and scanning the full XML tree. These
generators allow Adlmap to use less memory (near
400Mo of RAM instead of 1Go) which speeds up
considerably the analysis time.

The dynamic analysis takes even more time, for

the example given in Figure 2 the Pmonitor report was
obtained in 5h15mn. First, the trace mode increases
the procedure execution time for procedure NEXMO
of Figure 2. This increase in time of execution is due
to Runtime that saves much information in log files.
Second, Pmonitor spend more time to analyse a log
file. To improve our dynamic analysis, we are working
on a solution based on a full mapping between the
instructions of source code and the sequences of
bytecode. For doing this, a new static analysis tool,
Adlmatch, is under development. Using this method
will reduce the time to execute a procedure with trace
mode activated as well as the time to analyse the log
file with Pmonitor. This solution will also permit
Pmonitor reports to be closer to the source code and
by the way render them more concise for a better
analysis.

5. Conclusion

Our work is on analysing POC instances
performances. The static analysis identifies a very
large number of suspected POC instances that, in real
customer contexts, may behave differently according
to some set like actual size of database or versions of
source code and libraries. Combining static and
dynamic analysis allows us to reduce the number of
POC instances to analyse, thus to know those
instances of POC that are really called and to have
detailed information about the time taken by each one
to execute. The final report produced by our tools
allows maintainers to see which the instances which
need a priority optimization are. These tools also allow
identifying new patterns of ADL code that decrease
execution performance. To identify the line number of
these new patterns of code a full mapping between
source code and bytecode is needed, which represent a
first step for a future ADL debugger. Although these
tools are already useable they need to be improved to
make dynamic analysis more abstract and closer to the
source code in order to improve the pattern analysis.

References

[1] Sungard Asset Arena Investment accounting (GP3).
http://www.sungard.com/GP3

[2] Rim Chaabane, “Poor Performing Patterns of Code :
Analysis and Detection”. In proceedings of the 23rd IEEE

International Conference on Software Maintenance in
Doctoral Symposium, IEEE Computer Society, Paris
(France), Oct. 2007, pp 501-502.

[3] A. Aggarwal and P. Jalote, “Integrating static and
dynamic Analysis for Detecting vulnerabilities”. In
proceedings of the 30th IEEE annual int. COMPuter
Software and Applications Conference, IEEE Computer
Society, Chicago (USA), 2006, pp 343-350.

[4] M. Mock, M. Das, C. Chambers and S. Eggers,
“Dynamic Point-To sets: A Comparison with Static
Analyses and Potential Applications in Program
Understanding and Optimization”. In the proceedings of
the ACM SIGPLAN-SIGSOF workshop on PASTE,
ACM, Utah (USA), 2001, pp 66-72.

[5] W. Binder, J. Hulaas, P. Moret, “Reengineering
Standard Java Runtime Systems through Dynamic
Bytecode Instrumentation”. In the proceedings of the 7th
IEEE int. Working Conf. on Source Code Analysis and
Manipulation, IEEE Computer Society, Paris (France),
Oct. 2007, pp 91-100.

[6] NICT team, “Documentation de Conception: Module
Delia”, version 4, Sungard Asset Arena Investment
Accounting, Saint-Cloud (France), Copyright © 2003 by
SunGard, 2003.

[7] NICT team, “Compilateur Spécifications Préalables
(Option vers J2EE)”, version 3, Sungard Asset Arena
Investment Accounting, Saint-Cloud (France), Copyright
© 2003 by SunGard, 2003.

[8] J. Clark, S. DeRose, “XML Path Language (Xpath)”,
Version 1.0, W3C, Massachusetts (USA), 1990.
http://www.w3.org/TR/xpath

[9] Neil Schemenauer, Tim Peters and Magnus Lie
Hetland, “Simple Generators”, Version 2.2, Python
Software Foundation, 2001.
http://www.python.org/dev/peps/pep-0255/

Proceedings of the 4th International Workshop on Program Comprehension through Dynamic Analysis (PCODA'08)

41

	proceedings_withoutfront.pdf
	3.pdf
	1. Introduction
	3. JADEPT architecture
	3.1. Graphic User Interface
	3.2. Capture and Launcher Modules
	3.3. JDEC and its Interface Module
	4. Validation
	5. Conclusions and future work
	6. References

	7.pdf
	Introduction
	JExample in a Nutshell
	Detecting Dependencies
	Detecting Candidates for Fixture Injection
	Current and Emerging API Trends
	Concluding Remarks

