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Abstract—One of the main challenges that developers face when testing their systems lies in engineering test cases that are good
enough to reveal bugs. And while our body of knowledge on software testing and automated test case generation is already quite
significant, in practice, developers are still the ones responsible for engineering test cases manually. Therefore, understanding the
developers’ thought- and decision-making processes while engineering test cases is a fundamental step in making developers better at
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72 software developers on their testing practices. We discuss our results from three different angles. First, we propose a general
framework that explains how developers reason about testing. Second, we propose and describe in detail the three different
overarching strategies that developers apply when testing. Third, we compare and relate our observations with the existing body of
knowledge and propose future studies that would advance our knowledge on the topic.
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1 INTRODUCTION

Software testing is an important and challenging software
development activity. No wonder large software compa-
nies such as Google [1, 2], Microsoft [3], and Facebook [4]
have long been investing in software testing and ensuring
that their developers master different techniques. However,
while we know that testing accounts for a large part of the
software development process, time-wise and cost-wise [5],
many developers do not see testing as their favourite task [6]
and, worse, do not feel productive when testing [7].

The difficulty in testing lies in devising test cases that
are good enough to reveal bugs. To mitigate this, the
software testing research community has been working on
different approaches for a long time. The current advances
in the areas of random testing [8], search-based software
testing [9], or even more recently, neural bug finding [10],
have already been helping developers in finding bugs they
cannot do manually. However, these tools are not yet able
to fully replace humans due to hard problems (e.g., the
oracle problem [11]) that researchers still need to overcome.
In practice, this means that software developers are still
majorly responsible for testing their software systems.

Since the advent of agile methodologies [12] and, more
specifically, software development methodologies that value
technical aspects such as Extreme Programming [13], the
popularity of (automated) unit testing among software de-
velopers has increased drastically. In fact, 67% of the 1,112
developers that completed the 14th Annual State of the
Agile Report survey [14] affirmed to perform unit testing,
the most applied engineering practice among the surveyed
ones. The idea of “developer testing”, as suggested by
Meszaros [15] and Tarlinder [16], where developers are also

the ones responsible for testing, indeed became a prominent
practice.

The popularity of the practice has led to an explosion of
books on the topic. A simple search on Amazon for “soft-
ware testing” returns more than 1,000 books. Well-known
practitioners such as Fowler [17], Beck [13, 18], Martin [19],
Freeman and Pryce [20], and Hunt and Thomas [21], have
written about the advantages of automated unit tests as
well as how to pragmatically test software systems. Aca-
demics have also been proposing software testing theories,
practices, and techniques, in forms of books. Among them,
we mention the books of Myers et al. [22], Pezzè and
Young [23], and Mathur [24]. These books largely focus
on explaining our current body of knowledge on how to
perform domain testing, equivalence partitioning, boundary
testing, and structural testing (e.g., [25, 26, 27, 28, 29, 30, 31]).

While our body of knowledge on software testing is
already quite significant, we again argue that developers
are still the ones responsible for putting all these techniques
together. Therefore, understanding the developers’ thought-
and decision-making processes on, e.g., how they reason
about what test cases to write, which techniques to apply,
what types of questions they face when testing, and how
they decide it is time to stop, is a fundamental step in
making developers better at testing software.

In this paper, we observe 13 developers thinking-aloud
while testing different real-world open source methods, and
use these observations to explain how developers engineer test
cases. We then challenge and augment our main findings by
surveying 72 software developers on their testing practices.

We discuss our results from three different angles. First,
we propose a general framework that explains how de-
velopers reason about testing. The framework contains six
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main concepts (i.e., DOCUMENTATION, SOURCE CODE, MEN-
TAL MODEL, TEST CASE, TEST CODE, and ADEQUACY CRITE-
RIA) and how they relate to each other. We describe how
developers leverage each of these concepts when testing.
Second, we observe the behaviour of the developers in a
holistic way, and propose and describe in detail the three
different overarching strategies that developers apply when
testing (i.e., guided by documentation, guided by source
code, ad-hoc). Third, we compare and relate our observa-
tions with the existing body of knowledge and propose
future studies that would advance our knowledge in the
topic. Finally, we use all the knowledge we acquired to
propose recommendations for practitioners (i.e., how they
can use the findings of this paper to improve their testing
skills), tool makers (i.e., a list of tools that would improve
the way developers do testing), and educators (i.e., testing
topics that should be taught at university-level).

This paper makes the following contributions:
• A general framework and a set of strategies that explain

how developers reason about testing, emerged from an
observational study with 13 developers and challenged
by 72 surveyed software developers.

• A set of actionable guidelines for practitioners, tool-
makers, and educators, as well as a research agenda
for the empirical software engineering community.

2 RESEARCH METHOD

The goal of this study is to understand the thought-process of
developers while engineering test cases. To that aim, we conduct
a qualitative study that uses a think-aloud protocol [32].
We ask developers with various backgrounds to engineer
(automated) test cases for different programs and to verbally
explain their thoughts while performing the task. We use
their verbal explanations and the video recording of their
screens to understand how developers engineer test cases.
We then challenge our observations by means of a survey
with developers.

2.1 Study design
Our study design is composed of five steps: (i) participants
record themselves performing the task (i.e., they engineer
automated test cases for a randomly assigned piece of code),
(ii) we watch their screen recording, listen to their verbal
explanations, and write down our observations, (iii) we
qualitatively analyse the observations and iteratively derive
a codebook, (iv) we survey a different set of developers to
understand how generalizable our findings are.

We describe each of the steps in the following sub-
sections. We share the observations and codebook in our
online appendix [33].

2.2 Task design
We ask participants to engineer automated test cases for a
piece of code that is randomly assigned. We tell participants
to follow the same procedure they are used to when writing
tests for the software systems they develop in their daily
jobs. We ask participants to explain their thoughts verbally
while performing the task. As examples, we give partici-
pants a list of topics to keep talking about: (i) What are

you doing right now? (ii) Where did the idea for this test
case come from? (iii) Why would you test this? (iv) Why
would you not test this? (v) What challenges are you facing?
(vi) What are you not understanding? (vii) What is the next
step?

We send the instructions to participants via e-mail and
give them the possibility to send us the recording back
within two weeks. While participants are free to start the
experiment at any time during these two weeks, we ask
them to perform the entire task without stopping.

Each participant is randomly assigned to one program.
The random program was selected out of a dataset of pro-
grams that we manually devised for this study. The goal of
having different programs is to ensure that our findings are
less dependent on the program under test. When selecting
candidate programs, we followed three criteria:

• Programs have to be of a familiar domain to developers.
By familiar, we mean a domain that developers with
general background in programming can understand.
Programs in domains such as mathematics would re-
quire developers to also have a background in math,
which goes beyond the scope of this paper. After man-
ual exploration, we opt for methods that perform string
manipulations. We argue that any developer is familiar
with the concept of strings.

• Programs have to be of considerable complexity. Our
reasoning is that simple programs might be too easy
to test, while too complex programs would require too
many hours of work from participants.

• Classes under test should not depend on other classes.
While mocking is commonly used among develop-
ers [34, 35], we argue that developers considering
whether to use mocks may divert them from our main
goal which is to observe how they reflect about deriving
test cases.1

We selected the Apache Commons Lang2 project, a
well-known open-source library that contains, among many
other functionalities, methods that manipulate strings. We
considered string manipulation a problem that most devel-
opers are familiar with, thus matching our first criteria. In
terms of complexity, we selected methods that contained
[20, 30] lines of code, had a cyclomatic complexity of [5, 8],
and did not depend on any other classes. The thresholds
were chosen after manual exploration, in which we ob-
served that methods within that range of complexity would
offer a good balance between being complex enough to
challenge the participant and yet not too complex so that
participants could perform the task in around one hour.
From the candidate set of methods, we manually picked
four of them. In the following, we describe the methods,
based on their official documentation:

• initials(String str, char... delimiters): Extracts the initial
characters from each word in the String. All first char-
acters after the defined delimiters are returned as a new
string. Their case is not changed. The method contains

1. We nevertheless believe that observing how developers reason
about testing a more complex structure of classes is interesting work,
and we suggest it as future work.

2. https://commons.apache.org/lang; the hash of the commit used:
e0b474c0d015f89a52.
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24 lines of code, five if/else statements, and one for
loop.

• leftPad(String str, int size, String padStr): Left pad a
String with a specified String. The string Pad is padded
to a given size. The method contains 26 lines of code,
six if/else statements, and one for loop.

• rightPad(String str, int size, String padStr): Right pad
a String with a specified String. The string is padded to
a given size. The method contains 26 lines of code, six
if/else statements, and one for loop.3

• substringsBetween(String str, String open, String
close): Searches a String for substrings delimited by
a start and end tag, returning all matching substrings
in an array. The method contains 29 lines of code, five
if/else statements, and one while loop.

We apply a few transformations to the original code
snippet. More specifically, to avoid any bias, we remove
parts of the original Javadoc documentation that contained
examples of inputs and outputs that could influence the test
case engineering process of the developer. We also trans-
lated their documentation to Brazilian Portuguese (the main
language of all the recruited participants, as we later discuss
in Section 2.3) to avoid any confusion from participants that
do not fluently speak English. Note that we do not perform
any changes in the implementation themselves; the source
code is precisely the same as in the Apache library.

Finally, we provide participants with IntelliJ and Eclipse
workspaces containing the method they should test in a
single class. We ask participants to import the code in
the IDE they are more familiar with. We do not give the
entire class from the Apache library (which contains several
methods that are unrelated to the study), but a new class
containing solely the method to test, to avoid confusion. The
final version of the code snippets as well as the workspaces
can be found in our online appendix [33].

In the end, participants submit their video recording and
the final test class they produced. The videos are used as
the main source of analysis. This study was reviewed and
approved by the Delft University of Technology’s human
research ethics council. Participants provided their consent
on the participation and were aware that findings would be
published in an anonymized way. Our appendix does not
contain the raw videos as they contain private information
of the participant (e.g., flashes of their e-mail inboxes or
messaging apps, or their faces).

2.3 Recruitment Strategy
The goal of our recruitment strategy was to attract profes-
sional software developers with experience in writing test
cases. Since it is not realistic to conduct random sampling
of all software developers who fulfil these criteria, we
employed convenience sampling. We attract participants via
social media. The first author of this paper tweeted about the
study4. In exchange for their participation, we offer a two-
hour meet-up on software testing, where participants will
have the chance to meet and talk about software testing with

3. The leftPad() and the rightPad() method share similar im-
plementations.

4. https://twitter.com/mauricioaniche/status/
1273285692710432771, in Brazilian Portuguese.

the first author of this paper.5 Given that all the respondents
were Brazilians, we decided to allow participants to speak
in Brazilian Portuguese, as we conjectured that speaking in
their first language would make participants to better focus
on tasks and on thinking-aloud.

As a first step in the recruiting process, we ask partic-
ipants to give us information about their background as
developers. We ask the following questions:

• Years as a professional software developer.
• Years of experience with testing and JUnit.
• How often they write automated tests in their current

job [Likert scale, 1-5].
• Academic background [BSc, MSc, PhD, none].

We set as requirements: (i) professional experience with
Java, and (ii) experience with JUnit and automated test
cases. These criteria were essential to filter out develop-
ers without testing experience and without experience in
our programming language of choice, thus enabling us to
capture strategies employed by professional developers. We
recommend future work to focus on other languages and
testing frameworks, as well as on the challenges encoun-
tered by newcomers. We received a total of 94 candidate par-
ticipants in seven days. We randomly split the participants
into the four tasks and send the instructions, as described in
Section 2.1.

In the end, 13 participants (14% of those that subscribed
to the experiment) fully completed the experiment. We show
their demographics in Table 1. We observe that participants
have varied levels of experience in software development.
The average number of years of experience as a developer
is 9.9 ± 4.0 (median=10) years, indicating that most of our
participants have significant experience in the field. In terms
of experience with JUnit, we see an average of 4.0 ± 3.2
(median=3) years.

2.4 Analysis of the videos and verbal explanations

Our analysis method contains the following steps: (i) we
watch the screen recording and listen to the verbal expla-
nations, (ii) we write observation notes that describe the
participants’ actions, in such a way that it can be coded and
understood by any researcher, (iii) we inductively code the
observation notes, and finally (iv) we iteratively refine the
codebook.

As a first step, we watch the screen recording and
listen to their verbal explanations. The first author of this
paper is responsible for this task, given that he is the
only one that speaks the language of the participants. The
observation notes contain (i) the different actions taken by
the participant (e.g., “look at the documentation”, “write
an automated test case”, “run the test suite”, “use the
debugger”), (ii) the train of thought/reasoning of partic-
ipants while performing that task, extracted from their
verbal explanations (e.g., “this line can throw a null pointer
exception, so it should be tested”), (iii) overall observa-
tions of the researcher while observing the participant (e.g.,
participants writing tests that should clearly fail due to a
misunderstanding of the requirements of the program). The

5. This meet-up happened after the study, and therefore, did not bias
the participants.
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researcher aimed to be as systematic as possible in this pro-
cess. To ensure the quality of the observations, the researcher
watched each video at least twice. The second author of this
paper randomly selected three participants and confirmed
the appropriateness of the observations extracted from the
videos.

The observation notes document is then used for coding.
The coding process was mostly conducted by the first author
of this paper as he had all the knowledge accumulated from
watching the participants. The codes were derived itera-
tively. The researcher assigned each piece of information in
the observation notes to an open code. The researcher also
performed axial coding iteratively by finding connections
and relationships between the codes. To ensure reliability,
once the entire open and axial coding were done, the re-
searcher revisited the codes of all participants. The final
observations that emerged out of the codebook were then
revisited and discussed by the three authors of this paper.

We note that the entire process was done iteratively. The
researcher would watch the video of a participant, write
down the observations, perform open coding, perform axial
coding, and then move to the next participant. We argue that
doing the analysis iteratively was a good methodological
decision as the codes that have emerged from previous
participants increased the knowledge of the researcher re-
garding the phenomenon under study.

The final document we used for the qualitative analysis
contained 37 pages and around 14,400 words, transcribed
after 8 hours and 14 minutes of videos. Moreover, to objec-
tively describe the test suites they produced, the table shows
the number of test cases, and the branch and mutation
coverage achieved by the test suite. The final version of the
codebook is presented in the results section of this paper.

2.5 Survey design
The validation survey is devised based on the observa-
tions from the qualitative analysis. The survey is composed
of seven main parts, one for each of the major concepts
that emerged during the analysis (i.e., DOCUMENTATION,
SOURCE CODE, MENTAL MODEL, TEST CASES, TEST CODE,
and ADEQUACY CRITERION – all explained in the Results
section of this paper) and one for the overall testing strategy
that developers apply.

Each of these parts is composed of multiple Likert scale
questions where the participant tells us how often s/he
practices a specific observation. For example, one of the
items in the DOCUMENTATION section states: “I read the
documentation only at the beginning of the implementation,
and that is enough for me to write tests”.6 Participants
would then choose an option out of never, rarely, occasionaly,
frequently, all the time, and I do not know how to answer. We
note the chosen Likert scale options are a common choice
when evaluating frequency. In total, we have eight options
for the DOCUMENTATION section, ten for the SOURCE CODE,
three for the MENTAL MODEL, six for TEST CASE, nine for
TEST CODE, and four to ADEQUACY CRITERION. All items
are compulsory, i.e., participants are required to pick an

6. This is a free translation of the item, as the survey was written in
the first language of the participants. In fact, all quotes from partici-
pants we present later in this paper are freely translated to English.
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Fig. 1. The proposed framework on how developers engineer test cases.

option for all the items. Moreover, the survey system ran-
domised the order in which the observations are presented
to the users, as a way to reduce any possible bias.

The final part of the survey is about the overall strategy
followed by participants. There, we opt for a multiple-choice
option, where participants have to pick the strategy they
tend to more frequently apply (i.e., using documentation,
source code, or mental model as the main source). We
also provide participants with an optional open question
to explain their reasoning. The open questions were coded
in a separate qualitative analysis process. Finally, to better
understand the sample of developers that take part in our
survey, we also include the same demographic questions as
in the observational study. These questions appear at the
beginning of the survey.

We applied different marketing strategies for the survey.
First, we emailed the participants that subscribed for the
first part of the task but never completed it. After three
days, we also shared the survey among our connections in
our social networks (LinkedIn7 and Twitter8) and industrial
partners.

In the end, we received a total of 72 answers. The
survey participants had an average of 10.5 ± 6.6 (median
10) years of experience in software development, and an
average of 5.3 ± 3.9 (median 4) years of experience with
testing. Moreover, on a scale from 1 to 5 on how often they
write tests in their current project, the majority (83.3%) of
participants answered 4 and 5.

3 A FRAMEWORK ON HOW DEVELOPERS ENGI-
NEER TEST CASES

In this section, we first present the framework that emerged
out of the results of this paper. Then, we describe the six
main concepts that developers utilize when engineering test
cases (TEST CASE, DOCUMENTATION, MENTAL MODEL, TEST
CODE, SOURCE CODE, and ADEQUACY CRITERION).

We introduce the framework in Figure 1:
1) A TEST CASE, the main asset produced by developers

during the test phase, describes a set of inputs and a
list of expectations. The test case provides the inputs to
the program under test and compares the output of the
program against the expected behaviour.

7. http://bit.ly/3apKAAE, in Brazilian Portuguese.
8. https://twitter.com/mauricioaniche/status/

1356585005502377987, in Brazilian Portuguese.
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TABLE 1
The demographic information of the participants in the think-aloud study (N=13), their assigned tasks, video length, and branch and mutation

coverage achived by their test suites. Participants are grouped by their assigned tasks.

Experience as Testing How often Highest
developer w/ JUnit write tests academic Assigned Video Number of Branch Mutation

ID (in years) (in years) [1-5]b degree task length test cases coverage coverage

P1 9 7 5 BSc Initials 0:56:34 11 100% 92%
P3 8 3 5 PhD Initials 0:30:15 6 91% 76%
P7 15 4 2 BSc Initials 0:40:53 12 100% 84%
P10 15 1 5 BSc Initials 0:26:15 13 91% 92%
P4 14 10 4 BSc LeftPad 0:32:29 7 100% 88%
P6 11 1 4 BSc LeftPad 0:37:40 10 100% 88%
P8a 1 1 3 None LeftPad 0:20:02 4 50% 35%
P9 12 6 1 BSc LeftPad 1:04:27 12 100% 88%
P11 1 1 5 None LeftPad 0:57:44 10 100% 88%
P12 14 10 5 MSc LeftPad 0:12:54 8 100% 88%
P5 10 3 5 None RightPad 1:07:45 11 100% 88%
P2 10 1.5 2 BSc SubstringsBetween 0:27:54 7 93% 68%
P13a 9 4 4 BSc SubstringsBetween 0:18:38 6 75% 62%
a The participant delivered a failing test method, which we commented out to run the mutation testing tool.
b Likert scale, where 1 means “Rarely” and 5 means “All the time”.

2) TEST CASEs are derived by a combination of what the
developer sees in the DOCUMENTATION of the pro-
gram, the MENTAL MODEL of the program that devel-
opers build throughout the testing process, as well as
what the developer understands from the structure of
SOURCE CODE of the program under test.

3) Developers learn from the test failures and use their
newly acquired knowledge to improve their MENTAL
MODEL of the program, which often leads to new TEST
CASEs.

4) Developers automate TEST CASEs in form of TEST CODE.
5) Developers propose new TEST CASEs until a specific

ADEQUACY CRITERION is satisfied. Developers then
consider that their testing task is done.

In the following sub-sections, we explain each of these
six concepts in detail by means of the data we collected
during the observational study and the survey. Whenever
presenting evidence from the observational study, we de-
scribe the participants from which the observation emerged
(e.g., P1 means Participant 1). Whenever presenting evi-
dence from the survey data, we show the percentage of
participants that selected one of the items in the Likert
scale as well as a miniature bar plot representing the entire
distribution of answers. Bar plots contain six bars, in the
following order: I do not know, never, rarely, occasionally,
frequently, and all the time.

3.1 Documentation
The DOCUMENTATION of the program under test is used, in
one way or another, by all developers (except for P6, who
was fully guided by the source code and barely looked at
the documentation) as an important source of information.

We observe developers using the documentation as a
way to build an initial MENTAL MODEL of the program
under test, which is then leveraged as the main source
of inspiration for testing during the rest of task. We use
P2 (a very experienced software developer, but with little
experience in testing), as an example. As his first action,
P2 thoroughly read the documentation of the program (he

followed sentence-by-sentence using his mouse pointer, and
read it out loud); after finishing reading, P2 then never
went back to it, and used solely the MENTAL MODEL he
had about what the program was supposed to do. P12 (a
very experienced software developer and tester) presented
a similar behaviour. Interestingly, P12 did not even finish
reading the documentation to start with his first test. Once a
part of the documentation caught his attention, he jumped
straight to the test, and then was mostly guided by his
mental model and source code.

Participants also often resorted back to the documenta-
tion in moments of confusion and lack of understanding.
We observed P1, P5, P7, P8, P10, P11, and P13 revisiting
the documentation whenever they did not know what the
program was supposed to do in a specific case. P1, for
example, after directly experimenting (via test code) with
what the program would return in case of input strings
with empty spaces and null delimiters, goes back to the
documentation to see if there is a mention of the expected
behaviour in such cases. P8 experimented with passing a
negative number as an input to the program. Before writing
the test, he said he would expect the method to either return
null or throw an exception. When the program showed a
different behaviour, he resorted back to the documentation.

Given that developers tend to resort back to the doc-
umentation only when in doubt, one might argue that the
quality of the documentation plays a vital role in supporting
the developer. While this was not part of the experiment,
one participant explicitly mentioned that the quality of
the documentation provided in this experiment was high.
According to the participant, the documentation provided
him with clear business rules that he can use to get started
with testing. He says: “in real life, whenever the ticket9 comes
with a nice documentation, testing gets easier”.

We also observed two erratic behaviours from develop-
ers when using the documentation. P6, in a moment of con-

9. He used the term “ticket” as a reference to tickets in issue trackers,
which is often used by software development teams to keep track of
the requirements to refer to the documentation.
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fusion about what the code had to do, resorted back to the
documentation. His main doubt was explicitly mentioned
in the documentation; however, he simply could not find
it. For some reason, the participant focused his attention on
the open text part of the documentation, but did not look at
the documentation of the specific input parameter he was
having trouble with. In addition, we observed P2, at the end
of the task, affirming that he did not test other exceptional
cases (in his specific case, passing an empty string to the
program) because the specification said that empty strings
and null strings are treated the same way; however, he did
not ensure the implementation handled it correctly.

Survey results. Documentation also seems to be a popular
source of information for testing among the survey partici-
pants. Around 37% of the participants affirm to frequently
use the documentation as main source for testing, and 19%
affirm to use it all the time; on the other hand, 16% of
participants use it rarely and only 4% never use it ( ).
Participants also disagree that reading it at the beginning
only (as done by P2 and P12) is enough to write the tests.
25% of the participants say this is never possible, and 30%
say this only rarely happens; interestingly, 19% affirm to do
it all the time ( ). In fact, revisiting the documentation
looking for more tests is a common activity, as 27%, 38%,
and 20% of our participants affirm to do it occasionally,
frequently, and all the time, respectively ( ). The quality
of the documentation is also something that participants of-
ten perceive as not complete in their daily jobs. Participants
affirm to stumble across a case where the documentation is
not clear about what the program should do occasionally
(33%), frequently (34%), or all the time (20%); only 10%
say that this is a rare situation, and only one participant
affirmed to never have this problem ( ). Finally, the
erratic behaviour we observed from P2 does not seem to
be common in the wild, as survey participants affirm to not
take the current behaviour of the method as correct when
the documentation does not talk about the case: 40% of them
affirm they never do it, and 23% do it only rarely ( ).

Main takeaways (DOCUMENTATION):
(D1) Developers use the documentation to build an

initial mental model of how the program under
test works.

(D2) Developers resort back to the documentation
mostly when they lack the knowledge on what
to expect from the program in a specific case.

(D3) Incomplete or unclear documentation might pre-
vent developers from understanding what pre-
cisely they have to test for. Moreover, incomplete
and unclear documentation seem to be prevalent
in the wild.

3.2 Source code
While source code alone is rarely used as a sole source of
information for testing (P6 only), reading and comprehend-
ing source code is a prevalent activity when devising tests.
Except for P2, P9, and P10, all other participants dived into
the source code for comprehension. The number of times

that participants resorted back to the source code varies
significantly. For example, we observed P11 going back to
the source code eight times throughout the task, while P5
went back only once.

The participants’ objectives when inspecting the source
code highly varied. We observe participants exploring the
code in a systematic manner, i.e., line-by-line or branch-by-
branch (P3, P11), to understand how the method would
behave in a specific case (P1, P4, P6, P7, P11, P12), to
get an overall idea of what the implementation is about
(P4, P7, P8, P13), to find a way to reach a specific branch
(P5), and to understand a test failure and why their mental
model/expectations did not match with what the method
actually did (P6, P8).

Interestingly, while code comprehension is a constant
activity, not fully comprehending code did not stop some
of our participants to continue writing tests (P3, P11). For
example, P3 tried to comprehend why the implementation
declares an array of characters with a strLen/2+1 size,
but failed; he just decided to move on and keep building an
overall understanding of the method. The same happened
with P11; in his case, the participant could not figure out the
reason behind the array access padLen[i%strLen], and
decided to continue comprehending the rest of the code.

Another interesting behaviour we observed was that
many participants (P1, P3, P4, P6, P8, P9, P10), after being in
doubt about what the method should do for a specific case,
accepted the provided output without double-checking in
the documentation whether this was indeed the expected
behaviour. For example, P1 wrote test methods solely to
help him explore the behaviour of the method for a given
input. However, he accepted the return of the method as
the correct/expected output. P4, after observing the execu-
tion result of the method, went to the production code to
understand, implementation-wise, why that was the return
of method; nevertheless, the participant did not confirm it
in the documentation. P6 even vocalized such an action.
After the failing of a test, the participant observed JUnit’s
assertion message (i.e., expected X but returned Y), and said:
“Oh, this is what the method should return.”.

The process of comprehending the source code of a
program under test is often augmented through the use of a
debugger (P2, P4, P5, P6, P11, P13), with some participants
making intensive use of the tool (e.g., P6 used the debugger
a total of five times). Some participants do not even wait for
a test to fail in order to start the debugger (P5, P6, P13). We
also observe participants debugging as a way to build an
initial understanding of the method at the very beginning
of the task (P2), to improve their current understanding of
the program (P6, P11), to better understand how to reach a
specific branch of the code (P4, P5), or to confirm that the
target branch was indeed covered (P6, P11).

As for rare behaviours, P7 was the only participant that
performed slight modifications to the production code to
better understand it. Somewhat similar, P11 added com-
ments to the production code to improve his understanding
of the code.10 Finally, we also saw participants resorting to

10. We make no conclusions regarding these practices, as participants
may be held to believe that they were not supposed to change the
production code in this experiment. We discuss that in our threats to
validity section.
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websites like Stack Overflow to better understand some Java
constructs or API calls (P3, P7).

Survey results. The survey results confirm our observation
that source code is a popular source of information for
testing. 25% of the participants affirm to use it all the time,
and 39% to use it frequently ( ). In fact, if we compare
the numbers with the ones presented in the documentation
section, we see that source code is slightly more popular.

The survey also shows that comprehending what the
production code does is a very intense activity. The clear
majority of participants affirm that a large part of their time
is spent on comprehending what the code does ( ): 16%
affirm that the majority of the time goes to comprehension
all the time, and 43% say frequently. Trying to understand
the method under test completely before testing it also
seems to be a common behaviour by the developers ( ),
as 12% affirm to do it all the time, and 41% to do it
frequently, while 18% rarely or never do it. On the other
hand, testing a method even without full understanding (as
we observed in the first part of this study) does not seem
to be a default behaviour, as 18% never did it, and 25% say
they do it only rarely; nevertheless, 25% still affirm to do it
frequently ( ).

Resorting immediately to the documentation once a
piece of code is not clear enough ( ) is a popular be-
haviour, as 11% and 30% of the participants either do it
all the time or frequently. The use of the debugger to nav-
igate and better understand the code ( ) is also highly
common, as 32% and 26% do it all the time or frequently.
The debugger is also useful to understand how to make the
test visit a specific branch of the code ( ), and 45% do
it all the time or frequently. Interestingly, a large number
of survey participants affirm to resort to the debugger right
away as soon as they have a failing test: 29% of our partici-
pants affirm to do it all the time, and 29% frequently ( ).
Moreover, the use of code coverage tools as a way to have
more ideas on what to test is also popular, with 25% and 26%
of the survey participants affirming to use them all the time
or frequently ( ). Finally, making slight modifications to
the production code to better understand it is not a common
behaviour, with 37% of participants never doing it, and 15%
only doing it in rare occasions ( ).

Main takeaways (SOURCE CODE):
(S1) Developers strongly rely on the source code to

comprehend the program under test.
(S2) The (partial) lack of comprehension in parts of the

implementation does not prevent developers from
continuing their testing activities.

(S3) Developers often trust the outcomes of a method
without double-checking the documentation.

(S4) The debugger supports developers in better un-
derstanding the code as well as to help them un-
derstand how to reach specific branches. Resorting
to the debugger immediately after a test failure
happens is a common behaviour.

(S5) Developers frequently use code coverage reports
to augment their test suites.

3.3 Mental Model

The MENTAL MODEL that developers build throughout the
task plays an important role in the testing process. In the
previous sections, we discussed how developers use the
documentation and the source code of the program under
test to build a mental model of how the program behaves.
In this section, we discuss two other important factors that
support developers in building and improving their mental
models: hypothesis testing and learning from previous failures.

Throughout the tasks of the 13 participants, we have
identified 61 moments where participants were raising
hypotheses about the behaviour of the code. Participants
would then test those hypotheses (by means of an auto-
mated test case), observing the behaviour of the program,
and updating their mental model. We provide a few exam-
ples to illustrate this idea. P1 knew that whitespaces were
considered a special character in the input. He then asked
himself: “is a \n also considered a whitespace [i.e., has the same
behaviour as whitespace]?” Instead of looking at the imple-
mentation, the participant simply tested his hypothesis by
writing an automated test case and observing its output. P1
later raised another hypothesis: “what happens if I repeat the
delimiter [part of the input]? Actually, what happens if I have
a sequenec of delimiters in the input? I have no idea.” He then
tried it out in another test method. P2 questions himself as
to whether the program was case sensitive or insensitive.
He then wrote a test case based on this hypothesis, and said
to himself: “I believe this will fail.” The test indeed failed,
showing that his mental model was already correct. P5
asked himself: “what happens if I pass an empty string? Will
it return an empty string back?” P8 hypothesizes: “If pad string
[the input] is null, I expect it to add a space [to the output].”
We observed similar hypotheses in all the participants. It
is interesting to note that developers rarely resort back to
the documentation or to the source code to validate their
hypotheses. The most common way was to quickly write
a unit test that calls the production method with the given
input and observe its output.

Moreover, something we repeatedly observed among
participants (especially P1, P3, P5, P6, P7, P8, P12, and P13),
was that the first hypotheses and test cases were always
focused on “simple” test cases, i.e., test cases with basic
rather than complex inputs, as to facilitate the process of
building an initial mental model. P6, after writing a first test
case passing null as input, says: “I made this one simple, so
that I get the rhythm.” P7 says: “Let’s do a first exploratory test.
Let me start with a first basic test here.” P12 says: “I would start
with things I know of how it works.”

Often, their beliefs were disproven by the test result.
In such cases, we observed developers then reflecting on
the differences between their conjectures and the concrete
output of the model. We observed many “a-ha moments”
where participants clearly improved their understanding of
the program under test. Having a failing test, or a wrong
hypothesis is a common behaviour. We have seen all partic-
ipants learning from failures, with the exception of P3 who
never had a failing test. Interestingly, in some cases, partic-
ipants were able to understand why their conjectures were
incorrect right after observing the output of the method. In
such cases, participants would simply move to the next test,
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which was often inspired by the new knowledge they just
acquired. In other cases, developers experienced more dif-
ficulty in understanding why that was the output. In these
cases, developers often resorted back to the documentation
and the source code (often via debugging) to precisely un-
derstand what was happening. P6, for example, after a quick
debug session and documentation and source code reading
says: “Oh, I understood it [the expected behaviour] wrongly.
The correct behaviour should be [...]”. We also observed an
interesting behaviour from P7 and P13. After not being
able to understand the current failing test, P7 went back
to the previous test, and tried to slightly simplify its input
in an attempt to isolate the precise behaviour he was not
understanding. Similarly, P13 decided to simplify the input
in its current test (i.e., from a long string to a short string),
hoping that this would help him understand the output.
Finally, P2, P4, P10, P11, P12, and P13, faced situations
where the test was failing not because they understood it
wrongly, but because the test code was wrong; we discuss
more about this later.

As for rare behaviours, we note that one participant (P13)
was never able to figure out why a test was failing, even
after many attempts. At the end, he conjectured that there
was a bug in the program under test, which was not the case.
We also note that P9, at the beginning of the task, affirmed
to be familiar with the program under test. He says: “I do
not know this particular implementation, but we have a similar
leftPad() function in our project, so I understand what it does.”.
While we did not notice any clear difference between P9 and
the other participants that worked on the left pad task, we
conjecture that previous domain knowledge may influence
the way participants engineer test cases. We discuss work
related to the effects of experience and testing in the related
work section of this paper.

Survey results. The survey results show that participants
perceive the use of their mental model while testing, al-
though less than other sources of information. 11% of the
participants affirm to use it all the time, and 40% to use it
frequently. 25% of participants affirm to use it only occa-
sionally, 8% to rarely use it, and 12% to never use it ( ).
Interestingly, making use of test code to learn about the
program behaviour, instead of reading from the documen-
tation or source code, is less prevalent in the survey than
in the observations of the 13 participants. Only 11% affirm
to do it all the time, and 20% to do it frequently; 31%
affirm to rarely do it, and 11% to never do it ( ). On
the other hand, reflecting about a test failure first, before
jumping to the documentation or source code, as noted in
the observational study, is a very popular behaviour among
our survey participants, with 20% doing it all the time, and
43% doing it frequently ( ).

Main takeaways (MENTAL MODEL):
(M1) Although not explicitly noted by developers, the

mental model that they build while testing plays
a role in the test cases they engineer.

(M2) The mental model is built not only through the
documentation and the source code, but also
through hypothesis testing and failures.

(M3) Developers start building their mental model by
exploring simple cases first (i.e., small inputs fo-
cused on good weather cases).

3.4 Test case

The TEST CASEs engineered by the developers are the core
of the testing activity. As we saw before, test cases are often
derived after what participants observe in the documen-
tation, after the source code, and after the mental model
that they build. Across the 13 participants, we observed
32 moments where developers were clearly guided by the
structure of the source code (i.e., developers engineered a
test after identifying a branch or line that they wanted to
exercise), 10 moments clearly guided by the documentation
(i.e., developers engineered a test after looking at a spe-
cific part of the documentation), and 22 moments where
developers were clearly guided by their mental models (i.e.,
guided by the hypotheses they generated). While quantita-
tively comparing these numbers is not our main goal, they
show that developers make intense use of varied sources of
information.

We also observed 48 moments where developers con-
sidered testing a boundary or exceptional case. In fact, we
observed such tests coming from all participants, but P4
and P13. While this massively varies among the participants
(e.g., we counted nine moments for P1, and six moments for
P5, P7, and P10, but observed it in only a single moment
for P3, in two occasions for P2 and P9, and zero times for
P4 and P13), this clearly shows that testing exceptional and
boundary cases is part of the developers’ testing activities.

Another interesting characteristic of the engineered test
cases is that all of them were composed of simple, short,
single, random inputs. For example, string parameters,
participants rarely went for strings larger than just a few
characters. The same happened with integer inputs, where
participants rarely went for large integers. Interestingly, we
observed P1 attempting to create a test case with a very com-
plex string; however, after having some issues in writing the
proper assertion for the complex input, he stopped and said:
“That is too complex and it’s not really needed [adapted from a
slang].” The participant then went for a simpler input. In
addition, we never observed a specific pattern or systematic
way of proposing the concrete inputs, i.e., they were all
randomly chosen by the developers. Moreover, we notice
that developers also tend to pick single inputs for each test
case they engineer rather than trying several inputs for the
same partition. The only exception being P10 who provides
multiple inputs, all equivalent, per test case.

As for the less frequent observations, we observed P9
and P12 purposefully not writing specific test cases. P9 de-
cided not to test extreme integer values (e.g., the maximum
value allowed for an integer in Java). He says that, for such
a case, he would prefer to wait and see if the problem would
really happen in production before writing a test for it.
Similarly, P12 argued that he would try out more extreme
values if that piece of code belonged to a critical part of
the software system, otherwise he would consider it not
necessary.
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Survey results. The survey results confirm our observations.
First, we see that survey participants indeed aim at testing
all the exceptional cases ( ; 20% all the time, 39% fre-
quently) and boundary conditions ( ; 22% all the time,
47% frequently) they can see. Testing the behaviour of the
method with extreme values (e.g., maximum integer value
possible) is less popular than others, but still, developers
affirm to do it quite often ( ; 15% all the time, 22%
frequently). Finally, survey participants affirm to opt for
short and simple inputs in their test cases, with 11% doing it
all the time, 30% doing it frequently, and 38% doing it occa-
sionally ( ); we nevertheless note that this behaviour was
observed in 100% of the participants in the first part of the
study. Finally, while we could not figure out “from where”
the concrete input values came that participants provided to
the test cases, and we assumed they were random, survey
participants seem not to fully choose these values randomly.
17% affirm to never pick them randomly, 26% to only do it
rarely, and 20% to only do it occasionally ( ).

Main takeaways (TEST CASE):
(TC1) Test cases are derived from varied sources of

information, i.e., documentation, source code,
and mental model.

(TC2) Developers focus not only on “happy path”
cases, but also on boundary and exceptional
cases.

(TC3) The inputs used in test cases tend to be simple,
short and random. Test cases contain a single
input that exercises the intended behaviour.

3.5 Test code

The test cases that developers engineered (after the doc-
umentation, source code, or mental model) were always
concretely implemented as TEST CODE or, in the case of this
study, JUnit methods. As such, developers were focusing on
producing test code all the time.

The primary observation related to test code is how
developers reused previously implemented test methods
as a starting point for the next test method. In fact, all
participants made use of some sort of code reuse throughout
their tasks. After writing the first working test method,
participants rarely wrote another test method from scratch;
rather, they tended to copy and paste the previous method,
modify its name, inputs, and assertions.

The reusability goes beyond the structure of the test
method. Interestingly, participants, more often than not,
“took inspiration” from the input values defined in the pre-
vious test; when devising the next new test case, participants
tended to only make slight changes in the previous input,
enough for the input to serve for the scenario they wanted
to test. For example, P1’s first test used the string A B C D
as input. His next tests make use of Aa Bb Cc Dd and Ab
aB AB; note how the next inputs are highly influenced by
the first defined input, i.e., once P1 decided to go for “A B
C D”, other tests were only variations of this initial seed.

When it comes to the internal code quality of the test
code, participants often stopped devising new test cases to

refactor the test code. The number of refactorings varied
among participants (ranging from zero refactorings from P2,
P3 and P8 up to five refactoring moments from P11 and
eight refactoring moments from P9). We observed different
types of refactorings, i.e., variable renaming (P1, P4, P6,
P10), extracting variables (P5, P6, P9; although P5 later
decided to rollback the refactoring as he believed that the
repetition, while bad, increased legibility of the test code),
adding code comments in the test (P5, P11; although P11
later removed the code comments), method renaming (P5,
P6, P7, P9, P11, P12, P13), and statically importing libraries
as to make method calls shorter (P9, P11). We note the
emphasis on renaming the test methods. We observe that,
after having a clear understanding of what the test case
should be about, participants often refined the name of
their test method to better explain what that test case was
about. We highlight P9 who engaged in method renaming
several times throughout the task. His test methods were
initially called t1(), t2() and t3(). At some point (we
conjecture once the participant had a better understanding
of the problem), he started to look for better names for the
tests. Test t1(), for example, first became “should Return
The Same String When Size Is Equals To String Size”11, and
then later was changed to “should Return The Same String
When Size Is Equals To Number of Characters In Str”, as
the participant felt that “number of characters in the string”
was more specific than “string size”.

Test code may contain bugs, and we indeed observed
tests failing not due to wrong understanding of the pro-
gram, but due to a bug in the test code itself (P2, P4, P10,
P11, P12, P13). P2 wrote a test that threw an exception due to
bad coding; the participant mistakenly understood that as if
the program did not behave as he expected. After some time,
the participant found the real cause of the failure. Forgetting
to update the new test code after copying and pasting the
previous one happened for three of the participants (P4, P10,
P13). P4 and P13 forgot to change the assertion, which let
the test fail for wrong reasons. P10 made this mistake three
times. The first time, he also forgot to change something in
the test that was copied and pasted from the previous one.
The second time, the participant managed to make the test
pass, without writing the precise assertion for that test. The
third time, the participant was never able to identify that
the cause of the bug was the test code. P11 made a slight
mistake in the assertion (the expected output should have
been “BBAA”, but he wrote “AABB“ instead), a mistake
which he quickly identified.

As for other behaviours, we observed developers re-
flecting about whether two tests were duplicated or not
(P7, P11), developers deleting previously created tests (P7),
making use of a single test method for more than one test
case (P10, P12), reorganizing the order that tests appear
in the test class as to put methods that exercise similar
behaviour closer to each other (P9, P10), weak assertions
rather than strong assertions (P2), wrong usage of the test-
ing framework (P10, P11) or searching on the internet for
specific features in the framework (P5, P8, P11), making use
of a print statement to print the output of the method (P8,

11. Translated literally to English. Spaces added just to improve the
readability of the text.
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P9, P13), and to simplify the input of a previously working
test case (P7, P13).

Survey results. Our survey results show that copying and
pasting a previous test method as a way to start the next one
is indeed a common behaviour ( ; 19% all the time, 47%
frequently). On the other hand, participants affirm to not
use the same base/seed for the inputs of their tests ( ;
36% occasionally, 26% rarely, 7% never). This somewhat
contradicts our observation in the first part of this study
where this happened more often. Test code refactoring also
seems to be a common practice among our survey partici-
pants, with introducing variables to explain what a specific
value or operation means ( ), renaming the test method
to better explain what it tests ( ), reorganizing the order
in which methods appear in the class ( ), and removing
test duplicates ( ) being popular. Also in line with our
observations, writing code comments is not so often done
by participants ( ). Interestingly, participants also affirm
to write “buggy test methods” ( ). Although only one
person affirms to do it all the time, 25% affirm to do it
frequently, and 48% to do it occasionally.

Main takeaways (TEST CODE):
(C1) Developers commonly reuse previously written

test methods by means of copying and pasting.
(C2) The input values defined in previous tests often

serve as inspiration for the input values of the
next tests, although surveyed developers affirm
that not to be a regular behaviour.

(C3) Developers perform several refactoring operations
in their test code. Extracting variables (to explain
an input value) and renaming the test methods (to
explain what the test cases are about) are among
the most popular ones.

(C4) Bugs in test code happen, often due to copying-
and-pasting the previous test method or due to
the wrong definition of the test assertion.

3.6 Adequacy criterion

Finally, the last concept we discuss is the ADEQUACY CRITE-
RION or, in other words, how participants decided that their
developed test suites were “good enough”. We observed
different tactics used by participants.

Six participants (P1, P3, P4, P5, P6, P12) made use of
code coverage reports to understand how close they were to
being done. All the aforementioned six participants but P4
wrote a few test cases before running the code coverage. P3,
for example, just before running the report, said: “Ok, let me
see what I am already covering.”; P5, near the end of the task,
stated: “I believe I covered everything.”. He then checked his
perception against the code report. P4, on the other hand,
systematically checked the code coverage report after every
single test case he wrote.

Exploring the production code (P1, P7, P8, P9, P11, P12)
and the test cases produced so far (P4, P7, P9, P10, P11, P12),
without the help of code coverage tools, was also a common
approach used by the participants near the end of the task.

P1, near the end of the task, stated: “Now, I’m gonna skim
the [production] method to see if I missed something.” P8, after
looking at the production code for missing tests, stated: “I’m
ready. I do not see [in the production code] any other test case
that I can add.” Interestingly, from an observational point of
view, we did not observe any participants doing a thorough
comprehension; rather, most of them skimmed the source
and test code quite lightly.

Finally, only three participants (P1, P3, P5) performed
what we call “documentation coverage analysis”. These par-
ticipants went back to the documentation and systematically
looked for what they were still not testing. P1 even copied
the documentation to the test file as to have it closer to the
tests. P3 systematically looked sentence-by-sentence of the
documentation.

Survey results. The survey results also show that participants
make use of varied sources of information to decide whether
they have tested enough. Interestingly, the distribution of
answers among the four options we provided was quite
similar. Using code coverage, as also mentioned before, is a
popular choice with 19% of participants using it all the time,
and 35% using it frequently ( ). Manually exploring the
source code as a way to ensure everything is tested is per-
formed all the time by 23% of participants, and frequently
by 40% of them ( ). Re-reading the documentation is
done by 14% of the participants all the time, and by 30%
of them in a frequent manner ( ). Finally, participants
also may use their personal experiences to decide whether
they have tested enough; 10% affirm to use it all the time,
and 37% of them to use it frequently ( ).

Main takeaways (ADEQUACY CRITERION):
(A1) Developers use code coverage and revisit the pro-

duction and test code as a final check to ensure
they covered everything.

(A2) Systematically revisiting the documentation is a
less popular adequacy criterion.

(A3) While not systematically, the personal experience
a developer has with software development and
testing also plays a role in deciding when to stop
testing.

4 TESTING STRATEGIES

The framework we presented above (and illustrated in Fig-
ure 1) depicts the main concepts that one can use to explain
how developers engineer test cases. As we explained, devel-
opers engineer test cases after exploring the documentation,
the source code, or using their own mental models of the
program’s behavior. In this section, we study which sources
of information developers use and how often.

In the following, we describe the three different so-
called strategies that we observed from our participants.
We name these strategies after the source of information
that developers gave more emphasis to. The three different
strategies can also be observed in Table 2 as a sequence of
events, per participant.

• Strategy 1: Guided by documentation. In this strategy,
developers intensively rely on the documentation as a
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main source of information for deriving test cases, and
very little on the source code itself. In other words,
developers that follow this strategy kept going back
to the documentation after creating every test case; the
implementation itself was not used much as a source
of information. In a way, this strategy is similar to
what is known as black-box testing. This strategy was
applied by P1, P2, and P9. One participant (P9) even
systematically applied domain testing [36] techniques
to derive the test cases. A slight variation of this strat-
egy is to, once test cases are done, leverage the structure
of the source code as a way to check whether tests are
missing and, in such case, to augment the test suite.
This augmentation strategy was applied by P5.

• Strategy 2: Guided by source code. In this strategy,
developers build an initial intuition of the program by
reading its documentation, and later are purely guided
by the structure of the code (often supported by code
coverage tools). More specifically, developers follow
“line-by-line” or “branch-by-branch” in the source code
and derive tests for each line or branch. As we illustrate
in Table 2, developers that followed this strategy barely
looked at the documentation of the program. This
strategy was applied by P4, P6, P11, and P12. A slight
variation of this strategy is to, once test cases are done,
resort back to the documentation and explore whether
there is any missing test. This strategy was applied by
P3.

• Strategy 3: Ad-hoc (or mixed). In this strategy, par-
ticipants leverage the documentation, the source code
of the program under test, and the mental model they
build out of both sources, to engineer test cases. Par-
ticipants do not clearly stick with a single source of
information as main source, and may resort back to
both at any given time. This strategy was applied by
P7, P8, P10, and P13.

We can see that participants that are guided by the
documentation (strategy 1) indeed make little use of the
source code (i.e., few to no dark blue events). Most of the
tests come from the mental model (light blue events) that
they build from the documentation (red events). P5 is the
only participant that somewhat pays attention to the source
code, but more at the end of the task (the dark blue event
in the middle of the task is because P5 made use of the
debugger).

On the other hand, participants that are guided by source
code (strategy 2) intensively rely on it to engineer test cases
(many dark blue blocks). Finally, developers that follow an
ad-hoc method (strategy 3) have a more mixed approach,
varying between the documentation, source code, and their
mental models. Interestingly, we note that all developers,
regardless of their strategy, leverage the documentation at
the beginning of the task as to build an initial understanding
of the problem.

Survey results. The survey results show a clear preference for

TABLE 2
The different strategies applied by the participants (N=13). The bars

represent the sequence of actions during the analysis. The number in
parenthesis indicates the total number of actions for that participant.

Actions related to MENTAL MODEL are represented as light blue,
DOCUMENTATION as red, and SOURCE CODE as dark blue. The size of
the block does not indicate time, but number of actions in a row from

that same concept.

Strategy 1: Guided by documentation

P1 (25)

P2 (10)

P5 (16)

P9 (19)

Strategy 2: Guided by source code

P3 (15)

P4 (15)

P6 (38)

P11 (38)

P12 (11)

Strategy 3: Ad-hoc (or mixed)

P7 (27)

P8 (20)

P10 (11)

P13 (10)

the ad-hoc method.12 Thirty-one participants (or 43%) claim
to explore both the documentation and the source code,
whichever is best, to write tests. Moreover, 17 participants
(23%) affirm to be purely guided by the source code, and 14
participants (19%) to be purely guided by the documenta-
tion. Only five participants (6%) go directly to the test code
and explore the behaviour of the method from there.13 The
remaining five participants opt for an open answer. Two
of them mentioned Test-Driven Development (TDD) [18],
another participant says that they also communicates with
product owners and business teams to understand the ex-
pected behaviour, and another says it is a mixture of the
options we give in the survey.

When we asked participants to explain their rationale
about the strategy they follow, we observe a set of main
relevant topics: the lack of good documentation and the
reliance on communication with stakeholders to deeply
understand the software under development, the presence
of good documentation and how much it helps to test,
how much documentation and source code complement
each other as a reason to use both, the use of previous

12. We conjecture that this might be caused by developers not being
able to realize whether they tend to focus more on a specific source of
information. Future work should explore whether developers have the
right perspective about how they leverage different sources to engineer
test cases.

13. We did not list this specific strategy in this section, but the survey
question was triggered by our observation that participants often use
test code to explore the behaviour of the method.
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experience and knowledge of the domain to support more
ad-hoc testing processes, and test-driven development.

Participants mention indeed the lack of good documen-
tation (15 out of 72 survey participants). More specifically,
participants complain about it being non-existent, lacking
clarity, being incomplete or too minimalistic, not discussing
corner cases, being ambiguous, and not always being up-
to-date with the implementation. As a good example, one
participant says: “In the environment I’m in, the documentation
often does not exist and, when there is one, it lacks quality and
clarity. That is why going straight to the source code is more
common to me.” Nevertheless, participants seem to find their
way by leveraging communication channels with product
owners and stakeholders in general (7 participants). One
participant even affirms that “sometimes it is just faster / more
practical to go to the analysis or even work with them in pairs;
my relationship with them is my main source of understanding of
the system, and so documentation works as a secondary source.”
The experience and knowledge that they accumulated over
time, as software developers and in the domain of the
system, also helps participants in understanding what to
test, especially in cases where the documentation is not
available (5 participants).

On the other hand, participants that do have access to
good documentation in their working environments seem
to perceive it positively when it comes to supporting the
testing (7 participants). A participant says: “Today I work
together with an architect that documents all features we are
developing. Therefore, creating tests is just much easier.” Another
interesting remark came from a participant that identified
him/herself as a tester. For them, given that they only focus
on testing, their main source of information has to be the
documentation.14 Another participant also mentions that
s/he prefers to focus on the documentation, as it is less
biased.

Several participants also affirm that both documentation
and source code are important for testing (12 participants).
All answers are about how the two sources complement
each other (i.e., the documentation explains what the pro-
gram should do whereas the source code explains how
the program does it) and that more information is always
beneficial to the testing process. A participant states: “With
the understanding of the documentation and my eyes on the source
code, I can more clearly see how the class works and therefore I
can test it in the best way possible.”

Finally, eight participants also mention that they follow a
Test-Driven Development approach. Differently from what
participants did in the observational study, these partic-
ipants affirm building the tests together with the feature
itself. Interestingly, a participant says TDD gives them more
confidence in knowing that they are not doing something
wrong, leading them to less mental effort.

Main takeaways (Testing Strategies):
(T1) Developers mainly use three different strategies:

intensively guided by documentation, intensively
guided by source code, and ad-hoc. When also

14. We conjecture that this survey participant has no access to the
source code and only performs black-box testing.

developing the feature as part of the process, some
participants make use of TDD.

(T2) Using the other source as a way to validate and
augment the engineered test cases (e.g., using
source code to augment tests derived from the
documentation) is a possible variation for the
strategies that tend to focus more on either doc-
umentation or source code.

(T3) While we see a clear distribution of strategies
among participants in the observational studies,
surveyed developers claim to use a more ad-hoc
approach, where both sources are used.

(T4) The lack of good documentation to support the
testing process makes many developers resort
more to source code than they want.

5 RELATED WORK

In this section, we discuss the current related work and
how their findings relate to the observations we make in
this paper. More specifically, we divide this section into two
parts. First, we discuss empirical studies that have explored
the behaviour of developers when testing their software
systems. We then draw parallels between their findings and
our observations. Second, we discuss papers that propose
tools to support the testing process. In both sections, we
propose studies that should be tackled by empirical soft-
ware engineering researchers in the near future.

5.1 Developers’ behaviours

Focus on testing. Beller et al. [37], after monitoring 416 soft-
ware developers closely for around five months, concluded
that the majority of the developers do not really test the
code they produce (also because a lot of the projects do
not contain test suites), that developers rarely run tests
in their IDEs, that TDD is not widely practised, and that
although developers estimate that they spend half of their
time testing, they only spend a quarter of their time. Beller at
al. [38] later extended the study to a total of 2,443 developers
in four different IDEs (for Java and C#) and observed them
for 2.5 years. The same results still held. Interestingly, the
participants in our study executed their test cases very often.
The difference between our observations and Beller et al.’s
studies might be explained by the fact that our participants
were fully focused on the testing activity, whereas Beller et
al.’s were monitored during all their activities. Similar to our
discussion on the need for more systematic testing, we argue
that developers having clear testing objectives may help
them to focus. Another key observation from both studies
that relates to our study, is that the most typical reaction that
developers exhibit when confronted with a failing test is to
read the test code and the production code. Understanding
exactly what the test code exercises in the production code
seems to be a vital task when understanding the cause of
the failed test. We conjecture that better tool support would
help developers in understanding the cause of the failing
test faster.
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In a large-scale survey with 5,971 responses, where pro-
fessional software developers self-reported on their daily
activities and reflected about what made their workdays
good and typical, Meyer et al. report on “testing days” [39].
During a testing day, developers spend considerablyt more
time on testing compared to other activities. Meyer et al.
highlight how these testing days happen more frequently
among junior developers, that developers mostly consider
these testing days to be “good workdays”, and that “devel-
opers spend more time learning new things [on these days]
than on other days.”

Itkonen et al. have explored manual testing practices
of 11 software engineering professionals [40]. They found
that the observed software engineers use either exploratory
testing strategies, or are guided by forms of documenta-
tion to guide their testing activities. The important role of
documentation that was observed by Itkonen et al. is also
apparant from our own observations.

The use of the debugger. We also observed our participants
making intense use of the debugger (takeaway S4). Using
the debugger to understand the (dynamic perspective of
the) code is also a pattern that has previously been de-
scribed, as both Demeyer et al. [41] and Spinellis [42] call
this “stepping through the execution”. Moreover, in their
field study, Beller et al. [43] observed that around 30%
of the developers use the debugger regularly. Given that
the use of the debugger seems to be common, also when
writing tests, we suggest researchers in the future to explore
how debuggers can be enhanced to support, not only the
understanding of the code, but also the creation of test cases.

Refactor to understand. As for rare behaviours, P7 was the
only participant that performed slight modifications to the
production code to better understand it. While other par-
ticipants may not have done it due to our experimental
settings, surveyed developers also affirm not to do it often.
While rare in the context of engineering unit tests, the more
general pattern “refactor to understand”, is a well-described
approach to improve program comprehension [41, 44]. We
suggest future studies to understand why developers do
not apply these comprehension patterns in test code and
whether their application would bring benefits to the testing
process.

Characterisation tests. We have also seen our participants
writing tests as a way to characterise what the code does
(takeaways M2 and M3). In other words, our participants
often wrote a test that they knew would fail, only to im-
prove the assertion later on when they had complemented
their mental model with the information from the failing
test. This iterative process resembles a reverse test-driven
development strategy. The same behaviour was already
observed in the practitioners’ literature. Feathers makes a
case for writing “characterisation tests”, or tests that help
the developer understand what the code actually does [45].
Given that characterisation tests play such a fundamental
role in the testing process, we suggest future work to explore
best and more productive ways of conducting such activity.

Bad weather testing. We have observed that developers do
not solely focus on “happy path” test cases, but also spend
time on engineering boundary and exceptional test cases,

the so-called “bad weather tests” (takeaway TC2). The im-
portance of these bad weather tests has been discussed in
the literature before by Çalıklı and Bener [46], Salman et
al. [47], and Teasley et al. [48]. In particular, Çalıklı and
Bener [46] highlight how confirmation bias often drives
software engineers to focus on testing positive scenarios,
thereby neglecting bad weather tests. Salman et al. also
investigated whether confirmation bias can be linked to time
pressure when writing tests, noting that confirmation bias
can be observed regardless of time pressure [47]. This was
not the case for our participants, as all of them focused on
bad weather tests. Again, we conjecture that such a focus
could be caused by the fact that they were focused on the
testing activity.

Test code refactoring. The participants in our study often
refactored their test code (takeaway C3). While we have a
large body of literature on test code quality and how to
refactor test code (e.g., [49, 50, 15]), test smells [51, 52] are
still quite prominent in test suites. For example, Bavota et
al. [53], after manually analysing around 1,000 test classes,
noticed that 86% of the JUnit tests exhibited at least one test
smell. Tufano et al. [54], after analysing the life cycle of test
smells, observed that test smells tend to be introduced right
in the very first version of the class. Moreover, the test smells
tend to stay in the codebase for a long time.

We did not observe any severe test smells [15] in the
code produced by the participants during the observational
study. Our participants may have paid more attention to the
code quality because they were being observed, a common
threat in observational studies. Regardless of that, the fact
that participants refactored their test code quite often shows
that they indeed care about code quality. Caring about test
code quality has also been observed by other researchers,
e.g., Spadini et al. [55] noticed that most comments in the
code reviews of test code are related to improving the
code. Similarly, Daka and Fraser [56] have observed that
maintainability of the test cases is a primary concern among
the respondents.

Prior studies have also highlighted the intertwined na-
ture of refactoring and testing. In particular, Moonen et
al. [57] have shown how around 1/3 of the refactorings
from Fowler [58] somehow invalidate unit tests, making
the refactoring of test code a necessity. In this context, they
have coined the term “test-driven refactoring”, where the
tests are first refactored, and then the production code is
adjusted to fit. Kashiwa et al. build on this investigation and
mine software repositories to find refactorings that break
the tests [59]. They observe that in practice most types
of refactoring operations do not break test suites. In case
the refactoring does break a test, fixes are typically small.
However, some refactoring operations, like add paramater
inherenty break the test. In other research, Vonken and
Zaidman have studied how useful the presence of test
code is in the light of production code refactoring. Their
study indicates that students who dispose of tests during
refactoring of production code perform the refactorings both
more quickly and more correctly [60].

Test-Driven Development. Test-driven development (TDD) is
an agile software development approach in which soft-
ware developed in small iterative testing-coding cycles [61].
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In a family of experiments, Santos et al. investigate why
the results of several studies revolving around TDD have
provided a set of mixed observations when it comes to
perceived benefits of TDD. They argue that the lengthy of
the observation, the unit of analysis, the project length, and
the programming environment all contribute to the outcome
of the studies. In related work, Beller et al. tracked 2443
software engineers in the wild, and noted that TDD is not
frequently applied [38].

Zaidman et al. found that test code does not always
immediately co-evolve with production code [62, 63, 64].
In fact, they have observed intense periods of working
on production code, after which developers transitioned
into test-centric periods of development work. Contrasting
the test-driven development idea, this phenomenon corre-
sponds more to the notion of test-last development [65],
albeit sometimes with longer time intervals. Fucci et al. [65]
investigated whether a test-first or test-last development
strategy actually influences the external quality of a software
system. They concluded that it is not so much the test-first or
test-last strategy that influences external quality, but rather a
short development cycle that positively influences external
quality.

Experience and prior knowledge in testing. In the paper by
Yu et al. [66], the authors show that experience and prior
knowledge may play a role in the developers’ productivity
(i.e., knowledge of domain reduces test read time) and
quality of tests (i.e., more experience with testing and devel-
opment influence the developers’ abilities to produce more
test cases).

The 13 developers as well as the 72 surveyed devel-
opers have varied levels of experience. While we did not
objectively measure the influence of experience, we indeed
observed some developers being more productive than oth-
ers. P12 (14 years of experience as a developer, 10 years
of experience with testing), for example, finished the task
within only 12 minutes. P4, who has the exact same number
of years of experience as P12, finished the experiment in 32
minutes. On the other hand, P9, also quite experienced (12
years of experience as a developer, and 6 with testing), took
a little more than 1 hour. Interestingly, P9 also have affirmed
to have previous knowledge regarding the method he was
supposed to test. Finally, we also note that experience may
play a role in deciding when to stop testing (takeaway A3).
Future work should focus on understanding what makes
some developers more productive than others.

Moreover, it is interesting to note that, although we
categorise the different strategies into three buckets (guided
by documentation, guided by source code, and ad-hoc), we
see great variability in how they are applied, even among
developers that opt for the same strategy. While the main
goal of this study was not to compare the different strategies
in terms of performance and achieved coverage (the 13 data
points we have also do not enable us to generalise), from the
numbers in Table 1, we see that all participants were able
to achieve similar coverage. Nevertheless, understanding
whether one practice may lead to a comprehensive test suite
faster than other practices might be useful information for
developers. In the program comprehension field, evidence
suggests that different developers apply different strategies,

such as top-down or bottom-up comprehension [67], and
that developers can be equally productive in both. We see
similar studies focused on testing as necessary.

Itkonen et al. [68] have investigated prior knowledge
in the context of exploratory testing and have reported that
software testers apply knowledge of the system under test
and its application domain, including users’ needs and
goals. More specifically, personal knowledge is applied in
exploratory testing to evaluating the overall behavior of the
system, comparing the features with other features (of simi-
lar systems), and applying knowledge of earlier versions of
the system.

Bai et al. report on perceptions of students on test-
ing [69]. In particular, students report that they encounter
the following two key challenges: (1) understanding the
source code implementation to test, and (2) understanding
when to step testing.

Mocking. Mocking is a common technique used by develop-
ers when they face more complicated pieces of code to test.
In particular, Spadini et al. [34, 35] explored how different
Java systems make use of mocking. The authors observe that
developers tend to mock infrastructure classes (e.g., classes
that access databases or webservices) and/or classes that are
too complex to be instantiated in the test code. Moreover,
authors observe, while mocks may facilitate testing, the
test code becomes more coupled to production code. In
fact, the authors have observed a significant number of
times where a change in the production code required a
change in the code of the mock. We argue that mocking
brings a whole new dimension to the testing process, as
developers have to decide whether a dependency should
be mocked, to reason about the contract of the dependency
being mocked, as well as to define the behaviour of the
mocked object. While the work of Spadini et al. already shed
some light on the decision-making process of developers,
this data was collected by means of interviews. We suggest
future observational studies to explore the challenges that
developers face when reasoning about the use of mocks.

Unit vs integration testing. In this study, participants solely
focus on engineering unit tests [70, 71]. While the difference
between unit and integration testing might be somewhat
blurry in practice (see Trautsch et al. [72]), we conjecture
that the developers’ needs and decision-making processes
might be different between the different test levels. There-
fore, we argue that future studies should investigate how
developers engineer integration and system tests. However,
based on the observations of Greiler et al., we do know that
unit testing plays a key role in open source projects, with
unit test suites comprising thousands of test cases. System,
integration, and acceptance testing, on the other hand, are
adopted and automated less frequently [73].

People analytics and the social side of testing. Finally, people
analytics [74] has also been explored by the community as
a way to engage developers in testing. Pham et al. [75] pro-
posed an extension to the IDE that shows how much other
developers in the team were testing. After an experiment
with bachelor students, authors observed that students that
were reminded of their lagging test progress were often
induced to test more. Moreover, the “feeling of competition”
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also made students want to write more tests. In another
study by Pham et al. [76], after interviewing and surveying
active open-source developers, the authors reported other
social factors that may affect the testing behaviour of de-
velopers, such as the current existence of test suites in the
project or how hard the initial barrier to provide test cases
is in the project. There was no way for our participants to
exercise their “social side” in our experiment, given that
participants worked alone on their tasks. An interesting
future work would be to repeat our observational study,
but inside of different software companies, where different
social factors may also play a role in how developers test.

Cognitive aspects. As software testing is an intellectual ac-
tivity that requires analysis, reasoning, decision making,
abstraction and collaboration, Enoiu et al. present a theory
on software testers’ cognitive proceses [77]. From a ensuing
study, the authors found that, on average, 39% of their time
was spent on analyzing their knowledge regarding the test
goal and planning different approaches on how to create test
cases. Participants organized information via inferencing
and case-based reasoning. When they had gathered the
necessary information, the subjects to create test scripts.

Best practices. Kochar et al. have interviewed 21 and sur-
veyed 261 practitioners with regard to their best practices
when it comes to developer testing [78]. They have estab-
lished 29 characteristics of good test cases in 6 dimensions
(i.e., test case contents, size and complexity, coverage, main-
tainability, bug detection and others). Some of the obser-
vations from Kochar et al. reinforce our own observations,
for example: (1) their observation on the importance of
traceability links between test cases, code, and requirements,
(2) that code coverage can be used to steer test engineering
activities, and (3) that the understandability of the test cases
is important.

In other work, Athanasiou et al. determined whether the
code quality of test cases influencese the speed by which
developers can react to maintenance operations [79]. Their
findings highlight how developers are quicker to implement
code additions if they have high-quality test to protect them
against regressions.

5.2 Tool support

Code coverage. Berner et al. [80] report an experience with a
code coverage tool in a project at the Swiss National Bank.
After introducing a tool that would enable developers to fol-
low the coverage of their systems over time, authors made
interesting observations regarding how the behaviour of
developers changed. For the senior developers, the authors
note that the coverage rate was stalled; however, after the
introduction, the coverage rate increased immediately, but
moderately, and slowed down again a month later. For the
junior developers, while they required a longer period to
get comfortable with the visualizations, the duration of the
effect was longer and the relative increase of the coverage
rate was higher when compared to the senior developers.
For both junior and senior developers, the authors observed
an increase in the number of tests focused on error handling.
Lawrance et al. [81], on the other hand, in a controlled
experiment with 30 experienced software developers, did

not observe significant differences between developers us-
ing and not using code coverage visualization tools, both in
terms of test effectiveness and amount of tests written. In
addition, the authors observed that even more experienced
developers may perform counterproductive testing strate-
gies, such as changing the parameters of a method under
test or deleting failed tests. In our study, we observed some
developers making use of the code coverage tool support
provided by Eclipse and IntelliJ to understand what they
had already tested and what to test next (takeaways S5
and A1). For the developers that opted for such tools, we
perceived the coverage information to be fundamental in
their testing strategy. Because we have mixed evidence sup-
porting the use of code coverage visualizations, we suggest
more replications of such studies.

Also related to code coverage, we note that our study
focuses on testing a single snippet of code that had no
prior tests. Developers also have to evolve a piece of code
to, e.g., add new functionality. Elbaum et al. [82] have
showed that even slight modifications to the production
code might drastically affect the coverage of the existing test
suite. Hilton et al. [83] have studied the evolution of code
coverage of a large number of projects, and have established
that at the project-level, fluctuations in coverage are hard to
discern. As such, they make a case for establishing code
coverage at the patch level. Hurdugaci and Zaidman [84]
have proposed a tool that helps developers in identifying
which test cases they should change, given a change in the
production code. We suggest future studies to explore how
developers behave when extending existing functionality
and its related test suite, as their needs might be different
when compared to the ones observed in this study.

Test frameworks. Kochar et al. have investigated the test
automation culture among app developers [85]. They found
that Android app developers prefer using standard frame-
works like JUnit, but that many developers also still like to
test manually without making use of any testing framework
or tool.

Test-to-production traceability. Regarding the traceability be-
tween production and test code, we conjecture that such
information may support developers in better understand-
ing the cause of failing tests (takeaways D2, S4, M2, TC1).
Other studies have also shown that developers indeed see
such traceability as a feature that would help them in testing
(e.g., [55, 86]). We see some work in the literature that
aims at establishing such links. For example, the work of
Van Rompaey and Demeyer [87] evaluated different strate-
gies and showed that a simple strategy such as relying
on test conventions already yields highly accurate results.
We suggest future user studies to explore how developers
would make use of such tools and what benefits they would
concretely bring to the process.

Test amplification. The field of test amplification [88, 89]
(i.e., amplifying the test suite by leveraging the already
existing developer-written test cases) is also emerging quite
rapidly in the community. In a literature review, Monper-
rus et al. [90] show that test amplification improves test
suites in terms of coverage, mutation score, fault detection
capability, and debug effectiveness. A related observation
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from our study is that, although developers did not make
use of any test amplification tools, they seem to “manually
perform test amplification” quite often (takeaway C2). In
other words, developers often make use of test cases they
previously engineered as an inspiration for the next test
case. Also related to help developers in augmenting their
test suites, we note the UnitPlus tool, work of Song et
al. [91]. UnitPlus observes the source code being tested and
suggests assertions to developers, based on static analysis
of the code being tested (e.g., if a method modifies a specific
attribute of a class, UnitPlus will recommend for that field
to be asserted). We suggest future observational studies to
understand how developers would combine their developer
tests with the tests amplified by a tool.

Parameterized testing. We highlight that we did not observe
developers making much use of parameterized tests, but
we argue that the type of tests they have written is a
perfect fit for such a feature. Researchers have explored
the possibility of automating the refactoring of test code
towards parameterized tests. While some work has been
done in automatically generating parameterized tests (e.g.,
[92, 93]) and retrofitting unit tests to a more generic and pa-
rameterized unit testing (e.g., [94]), such works are focused
on helping developers in identifying more test cases. We are
not aware of any work that refactors the existing test code of
the developer in a form of a JUnit parameterized test, simply
for the purpose of code maintenance, which we suggest as
an interesting tool to be developed.

6 RECOMMENDATIONS

In this section, we discuss how our observations may be
actionably leveraged by toolmakers, software developers,
educators, and researchers.

6.1 Recommendation to toolmakers
We propose four recommendations to toolmakers:

Mechanism to easily derive test skeletons. Developers seem
to strongly rely on copying-and-pasting mechanisms when
writing test code (takeaway C1). This is clearly understand-
able given that test methods, especially for programs such
as the ones we selected as tasks where they receive a clear
input and return a clear output without the need for instan-
tiating other objects or mocks, tend to share a large amount
of similar code. JUnit does offer the ParameterizedTest
functionality that enables developers to write the skeleton of
the test method and passing several inputs via parameters.15

However, only P1, P5, and P11 reflected on its usage. We
suggest a tool that notices such patterns in test code (i.e.,
test methods that are similar in structure, but with different
inputs and outputs) and suggests (or even automatically
applies the refactoring) to condensate the tests into a single
parameterized test.

Lightweight and fast code coverage. Code coverage seems to
be commonly used by many developers (takeaways S5 and
A1). However, for that to happen, developers need to explic-
itly go for the “coverage” option in their IDEs. The IDE then

15. See documentation: https://junit.org/junit5/docs/current/
user-guide/#writing-tests-parameterized-tests.

commonly runs the entire test suite and presents the results
to developers. We argue that such a feedback loop should
happen faster (i.e., without the need of running the entire
test suite every time), in a less intrusive way (i.e., without
really requiring developers to manually select the “run
coverage” option), and with explicit differences between
the current and the previous runs. Understanding what
lines of code a single test covers may also bring benefits to
developers, as this is often what they do whenever they face
a failing test case.16 One possible way of implementing such
a tool would be with continuous code coverage calculations
(maybe only relying on the currently added or modified test
method) in the background.

Detection of “accidentally buggy” test methods. We have seen
developers accidentally writing bugs in their test code
(takeaway C4). From our observations, we note that most
of the bugs were caused by copying-and-pasting, e.g., not
changing the inputs or the assertions of the copied test. We
there argue that tool support is needed in order to support
developers in identifying such buggy test methods before
they confuse the developer.

Support for testing the most common corner and edge cases.
Testing extreme, corner, and edge cases is a fundamental
part of the developers’ process (takeaway TC2). As a way
to support developers in testing their code in a more sys-
tematic way, we envision a tool that suggests test cases to
developers that they did not write yet. For example, the
tool can remind the developer to try out an empty string
for each input that is of type string, or zeroes and negative
numbers for integer inputs. Moreover, the tool could rely on
the structure of the code under test and suggest developers
to engineer test cases that force loops to be executed zero or
one time only (i.e., similar to what is suggested by the loop
adequacy criteria [95, 31]).

6.2 Recommendation to developers
We propose five recommendations to developers. Interest-
ingly, these recommendations are not fully novel; many
of them are already (intuitively) known by our scientific
community, e.g., the importance of systematic testing. Our
findings show, however, that there is a disconnect between
what the scientific community suggests and what develop-
ers do in practice. We hope this paper will serve as another
piece of evidence supporting the benefits of such practices.

More systematic software testing. A large chunk of the software
testing literature focuses on making the testing process
somewhat systematic. For example, books on domain test-
ing (e.g., Kaner et al. [36]) provide developers with clear
sets of steps on how to systematically derive tests after
a given requirement, e.g., first identify and characterize
the input variables, then determine their type and scale,
understand how they are related to each other and how
the program uses each of them, etc.; boundary testing
techniques (e.g., [26, 27, 28, 29, 30]) support developers
in ensuring that the boundaries of every partition in their
domain input are exercised.

16. Somewhat similar to what has been proposed by
Tasktop in the past: https://www.tasktop.com/blog/
incremental-code-coverage-debugging-tool/
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While we categorize the different strategies we observed
in three buckets, rarely did we see a developer following a
systematic approach within that strategy (takeaways T1 and
T3), with the exception being P9, who followed a similar
domain testing strategy. Developers that were guided by
the source code tended to derive tests following the order
in which the code appeared in the program under test,
although this was more prevalent at the beginning of the
method (where the programs we selected perform pre-
condition checks such as inputs not being null), but more
ad-hoc later when the “real implementation” of the program
started. We make a similar observation for boundary testing.
While developers did focus on exercising different branches,
they rarely focused on systematic boundary testing.

Although most participants achieved a branch coverage
of 90% or more (see Table 1), showing that they can achieve
high coverage regardless of their strategy, we argue that
the systematic application of such techniques would help
participants in covering more cases. For example, P12, a
highly experienced software developer (14 years of expe-
rience) and tester (10 years of experience) achieved 100%
branch coverage in under 13 minutes. He was clearly the
fastest participant in finishing the task. However, we see
that he achieved “only” 88% mutation coverage. When
looking at which mutants survived, we see that two “condi-
tional boundary changed” mutants in conditions if (pads
<= 0) (with condition replaced by <) and if (pads <
padLen) (with condition replaced by <=) survived. While
a more in-depth understanding of the mutations revealed
that the mutant in the second condition cannot be killed
(due to an if instruction just before the targeted condition),
the first mutant can be actually killed. In fact, we observe the
same in P4, P6, P9, and P11, as all of them achieved 100%
code coverage but missed more thorough testing in that
boundary. None of these developers has noticed missing
such tests during their tasks.

Do not make assumptions about the behaviour of the program. We
have seen seven cases where the developer simply accepted
that the behaviour of the method was correct without really
double-checking with the documentation (takeaway S3).
This can be a consequence of the tasks we have chosen
for this experiment; the tasks are all about common string
manipulations that developers have (and use) in libraries,
and “guessing” what they have to do in such cases is
possible. Nevertheless, we saw cases where developers were
clearly in doubt about the expected behaviour and did not
resort back to the official source to consult. Interestingly, in
the survey, developers affirm to not trust the outcomes of a
method as the correct output. Still, we suggest developers to
“fight their instincts” and, whenever in doubt, resort back
to the documentation and/or a trusted source about the
expected behaviour of the program.

Have a clear adequacy criterion. Several participants did not
have a clear adequacy criterion to decide when they were
done testing (takeaways A1, A2, A3). Many relied on their
experiences while skimming the source code and the doc-
umentation one last time. This means we observed uncer-
tainty from most participants at the end of the experiment:
“I guess I am done” and “I think I tested it all” were common
final sentences. While this again could be a consequence

of our study being quite a controlled one, and developers
may have an adequacy criterion defined as a team, we
recommend developers to define a clear adequacy criterion
to avoid such uncertainty.

Vary testing inputs. We observe developers often using,
maybe unintentionally, the same base input for all the tests,
e.g., a string abc that becomes abd in one next test and
abcc in another one (takeaway C2). We conjecture that such
small variations in the same input help developers in build-
ing knowledge about the behaviour of the program faster,
and maybe that is why several of them do it. Interestingly,
survey developers seem not to make use (or realize that
they make use) of a base seed as often as we observed in
the observational study. Nevertheless, varying test inputs
is important [96]. We therefore recommend developers to
keep using base inputs to build understanding, and to
complement such test cases with varying inputs once they
fully understand the behaviour of the program.

Ensure good documentation to support the testing process. We
have observed developers trying to resort back to the doc-
umentation and not finding the precise information they
needed (takeaways D1, D3). The surveyed developers also
seem to perceive this issue as a recurrent one in their daily
jobs. While somewhat out of the scope of a testing process,
we argue that software development teams should invest
their time in either building up documentation that can be
used by teams to improve their testing or, as agile methods
suggest, to have an active product owner that developers
can resort back to.

6.3 Recommendation to educators
We propose two recommendations to educators:

Make developers aware of the framework and the benefits of the
different sources of information. We argue that understanding
and being aware of how developers reason about testing
is a fundamental stepping stone towards improving their
behaviour. First, we recommend educators to explain to
novice developers the basis of the framework we propose in
this paper. We hope that, with that knowledge, developers
will better understand how test cases are engineered, how
documentation, source code and the mental model are used
to derive test cases, and how adequacy criteria are chosen.

Moreover, our study shows that different developers
seem to give different emphasis to the two different possible
sources of information for testing we provided them; some
developers made more use of documentation, others made
more use of the source code. We note that documentation
and source code bring different types of information to the
testing process. One would therefore expect developers to
make use of both when they are available. Interestingly, in
the survey, developers showed a clear preference for an ad-
hoc strategy, where both sources are used; we did not see
that in the observational study. We conjecture a reason for
such a difference would be that, given the familiarity of the
participants with the proposed methods to be tested, they
did not need to resort too much to either the documentation
or the source code. Nevertheless, we recommend educators
to explain to novice developers what the different sources
of information bring to the table.
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Teach JUnit best practices, how to use code coverage, and bound-
ary testing. Moreover, our results also show that developers
may benefit from better understanding JUnit (and, e.g.,
parameterized tests), how to use code coverage tools (not
only in continuous integration [97, 98, 99] but as a tool that
supports coding), and boundary testing (so that developers
exercise all the boundaries of the implementation more
systematically).

6.4 Recommendation to researchers

We propose three suggestions for empirical software engi-
neering researchers.

Study how test cases are engineered in different domains, contexts,
and software systems with different levels of complexity. First,
while we believe that the complexity of the methods in our
study is good enough for us to observe and draw sound con-
clusions on how test cases are engineered, there are many
other cases that are worth investigating. For example, (i) our
study does not capture how developers reflect whenever
they are testing a class that depends on another class; how
do developers engineer test cases for classes that depend
on other parts of the system? (ii) testing for specific type of
applications, e.g., mobile; how do developers engineer test
cases for mobile applications? (iii) how would the devel-
opers’ behaviors be affected when they are the ones also
implementing the production code?, (iv) how do human
aspects of software engineering influence how test cases
are engineered, e.g., teams with multiple developers, the
relationship with the customer of the system, and even tight
deadlines, (v) how much does the accumulated knowledge
about the software system that developers obtain over time,
i.e., the long-term mental model, influence the test case engi-
neering process?, (vi) how much does the level of experience
influence the test case engineering process; would novice
developers behave differently than senior developers, and if
so, how?

Engineering test cases is a complex phenomenon, highly-
dependent on too many factors. Future work should explore
the aforementioned points by means of not only observa-
tional studies like the one we conducted in this paper, but
also through controlled experiments, action research, and
ethnographical studies. We argue that the framework we
propose in this paper can serve as basis for these future
studies.

Better understand some of the behaviors we observed. In this
paper, we did our best to report and explain all the behavior
we could observe and for which we had data to back up
our observations. Nevertheless, there is still more to dive
into. For example, we have seen cases where developers
misunderstood the documentation, i.e., the documentation
is correct but the engineered test case was wrong. How often
do such situations happen in real life? How long does it take
for the developer to notice their mistake? We have also seen
some developers exploring more boundary situations than
others; what makes some developers do it, and others not?

Understand why the survey participants disagreed with some of
our observations. In a few cases, the survey participants did
not agree with what we observed. In other words, they

affirm not to do the behavior we saw during the observa-
tional study. For example, we noticed that developers tend
to jump right into testing even without fully understanding
the program under test. Survey participants affirm not to do
that so often. We also observed developers engineering test
cases out of the mental model that they constructed of the
program (through reading the documentation and exploring
the source code). In the survey, participants affirm to use the
mental model less often than the other methods. While we
have no explanation derived from our data, we conjecture
that it might be hard for developers to perceive their own
behavior when it comes to these two points; after all, it
does not make sense to start testing something one does not
fully understand although, as we have seen, it does happen.
Exploring more about how developers build and use their
mental models to engineer test cases is an interesting future
work.

Another point of disagreement was in how developers
picked specific inputs to the test cases. From our observa-
tional study, we could not see any pattern or reason for the
specific values that developers chose; we therefore argued
that these values do seem to be picked at random. We also
observed that, once the first input values are chosen, the
next inputs tend to be derived from the first ones. The
survey participants affirmed not to select values at random
or to use the same seed for the different inputs that often.
The developers’ lack of awareness on how they pick input
values may explain such differences. Another possibility
would be that developers do tend to pick values that matter
to their business (not at random), which did not happen
in our study given that participants were testing utility
methods. Future work may focus on understanding how
developers pick input values for their test cases.

7 THREATS TO VALIDITY

In this section, we discuss the possible threats to the validity
of this study and the actions we took to mitigate them. We
categorize our study as research comprising semi-structured
or open-ended interviews, according to the empirical stan-
dards for software engineering research [100].

7.1 Construct validity
Construct validity is the degree to which our instruments
measure what they claim to be measuring. In the case of
this study, threats to the construct validity are related to
the tasks we provided to participants, to the thinking-aloud
protocol, and to the survey we devised.

First, as we discussed together with the recommenda-
tions for researchers, the methods that participants tested
have limited complexity, and their domains are somewhat
familiar for software developers. That being said, we did not
observe any unexpected behaviour from participants (e.g., a
participant that did not have to look at the documentation
or the source code to start doing the task); on the contrary,
all participants had their own challenges while testing the
programs. We, therefore, argue that the choice of the tasks
enabled us to observe real-life behaviour. That being said,
as we discussed in Section 6.4, testing is a complex phe-
nomenon and should be studied from many different angles
and contexts, which we leave as future work.
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Moreover, developers were asked to record a video and
to talk aloud. A first possible threat is whether participants
are actually able to think-aloud while performing the task.
We note that all 13 participants were very talkative, and
that their thoughts were augmented by the video recording.
Therefore, we do not have a reason to believe that partici-
pants were not able to express their thoughts while testing.
Participants also clearly knew that they would be watched
later, thus making them susceptible to the Hawthorne effect
(i.e., individuals modifying their behaviour just because
they know they are being watched) and social desirability
bias (i.e., individuals perform in the way society expects
them to behave in a specific situation). Because of that, some
participants may have been more thorough in the testing
process during the experiment than what they really are
in their daily jobs, e.g., they tested more bad weather tests
than they would. Nevertheless, given that our goal was to
understand how they reason (and not how thorough they
are), we do not see such a change in behaviour as a signif-
icant threat. Finally, in the task description, we suggested
participants to use Zoom17 to record their videos. Although
Zoom is a conference tool, it enables people to record their
screens without a lot of effort and platform-independent.
Zoom, however, gives only 40 minutes to free users. Some
participants may have felt pressured to finish their videos
within the time limit. We did not ask participants how
they recorded their videos or whether that limit played
any role. From the videos themselves, we did not notice
any participant “rushing” to get their testing done and no
participant said anything in the videos about them running
out of time.

Finally, the survey challenges the main observations in
the observational study. For each of the observations, we
proposed a statement that could be answered by means of
a Likert scale that captures frequency (i.e., how often that
particular event happens in a participant’s daily job as a
developer). Even though we did our best to disambiguate all
the statements, they are always subject to the interpretation
of the respondents. Before sending to participants, the sur-
vey was reviewed by the second author of this paper (using
Google Translate’s functionality) and by a PhD candidate
that has the native language of the survey as first language.
We also did not receive any questions about the survey
itself from participants. We also make all the questions and
answers available in our online appendix for inspection [33].
Moreover, another instance of a possible interference of such
social biases is in the survey questions that tackle “bad
behaviour”. For example, we ask how often participants test
a method without fully understanding it. Responses there
were mostly negative, contradicting what we noticed in the
observational study. More replications with different control
measures need to be done, to especially understand how
often developers resort to “bad behaviours”, even when
they are not willing to admit.

7.2 Internal validity
Internal validity is the extent to which the evidence we bring
supports the claims of this study. In the scope of this paper,
possible threats to the validity of this work stem from the

17. https://www.zoom.us
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Fig. 2. Number of unique codes after analyzing each participant’s video.

qualitative analysis we conducted from observing the 13
participants in action.

First, the participants were recruited via a single tweet
made by the first author. The first author has around 8k
followers on Twitter and many of his followers are Brazilian
developers. Although our initial goal was to search for
participants in rounds and leverage the network of all the
three authors, we achieved saturation without the need of
a second round. As shown in Figure 2, the total number
of unique codes in our data only increased by four with
the last three participants, while we had obtained 50 such
unique codes from the analysis of the first ten participants.
Nevertheless, the participants (followers of the first author
who tweets often about software testing) may have biases
that we do not know. While we did not observe any partic-
ular behavior, we suggest researchers to replicate this work
in different communities.

Most of the analysis was conducted by the first author
of this paper (the only author that speaks the language
that participants spoke in the video). As explained in the
methodology section of this paper, the first author tran-
scribed the videos. To avoid any possible mistakes, the
first author watched every video at least twice. The second
author of this paper then watched three randomly chosen
videos, following the notes (written in English) to confirm
that the notes reflected the observed behaviour.18 This vali-
dation step was meant to give us confidence that the video
transcripts are a faithful description of the videos.

With the observation documents in hands, the first
author then fully coded the document, which was then
reviewed by the second author. When designing this study,
we discussed the possibility of a second researcher to code
the transcribed version of the videos, as commonly done
in qualitative research. We highlight the fact that the first
author had a much more complete view of the data than
the other two researchers. After all, although the transcripts
of the videos that we created are factual and anyone can
understand the actions of the participants by reading them,
the videos are naturally a richer data source. While the first
author was the one responsible for the initial coding, the
derived framework was done through several discussions

18. Although the second author does not speak Brazilian Portuguese,
many of the actions can be followed without the audio.
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among the three researchers. The second and third author
of the paper constantly challenged the analysis of the first
author, which was then reflected back to the codes.

Even with all the checks, we agree that the analysis
may reflect, even unconsciously, the first author’s views on
testing. For transparency, we make the readers aware that
the first author is an expert in the area of software testing,
and is aware of the current state-of-the-art tools, techniques,
and practices being published in both the academic and in
the technical fields. The first author has also authored two
technical books on software testing, one about Test-Driven
Development [101] and one about test automation [102],
and is currently responsible for the software testing course
offered in the computer science bachelor at Delft University
of Technology.19

In addition, analyzing the participants’ behaviour is a
complex task as it involves understanding their concrete
actions and thoughts that they verbally explain. We made
sure to annotate only behaviours that were made explicit by
either actions or words. This means that our results do not
contain implicit actions or intentions that developers might
have had in their minds, but that were never vocalized.

Finally, while the 13 participants were recruited at once,
at the end of the analysis, we believed we had achieved
information saturation. We do not believe more participants
would have provided us with more relevant data due to
the very low number of new codes that were emerging
while analyzing the last videos. In other words, we believe
we have observed all different types of behaviors from the
developers, at least the ones that could be triggered given
our experimental setup. There was no need for more data
collection. Nevertheless, as we recommended to researchers,
replications of this work with a different set of participants
and tasks may bring different perspectives on how develop-
ers engineer test cases.

The observation notes and the final codebook are avail-
able for inspection in our appendix [33]. Note that we do
not share the raw videos of the participants as (i) we did not
ask for their permissions, (ii) some videos contain private
information (e.g., their e-mails or chat applications appear
for a few seconds).

7.3 External validity

External validity refers to the extent that the conclusions of
the study apply to other contexts. In the case of this study,
threats to the external validity are related to how much we
can generalize the behaviour of our participants as well as
the strategies and detailed explanations of their thought-
processes to other software developers.

The 13 developers that participated in the observational
study, as well as the 72 developers that took part in our
survey have varied levels of experience in software de-
velopment and in software testing. Moreover, the tasks
we use in this study, while coming from a domain that
is particularly known to developers, are complex enough
to force developers to reason about testing. Nevertheless,
these participants were selected by means of convenience

19. https://studiegids.tudelft.nl/a101 displayCourse.do?course id=
55100

sampling. Our original call for participation in the observa-
tional study tweet was retweeted by 80 different people and
earned ≈24k impressions, and the call for participation for
the survey was retweeted by 20 people and earned a total
of ≈10k impressions.20 While these numbers indicate that
the calls went much beyond our network bubble, we can
not still rule out the possibility of participants being biased
in ways we do not know. Moreover, all the tasks in the
study are from a single domain (i.e., string manipulation),
which may not be representative of all types of domains
that developers write tests. Therefore, we do not argue our
findings generalize to any developers working in any types
of software systems and domains. Replications of this work
are necessary before we can formulate a general theory on
how developers test.

Finally, while we make several recommendations to
developers, toolmakers and educators, we again highlight
the fact that they are derived after what we observed in
the 13 participants. Given the small sample size, one may
argue that our recommendations may not be generalizable
enough. We note that, although the sample size is small,
we believe we have achieved saturation. In other words, we
do not expect any behavior other than the ones we saw in
our study, at least not with the same experimental tasks and
goals. We also challenged our results through a survey with
72 practitioners. While we believe our recommendations
are sound enough to be applied by developers, we remind
readers that more replications are needed until we can be
conclusive about them.

8 CONCLUSION

Engineering test cases is a challenge activity for software
developers. In this paper, we aim at understanding the
thought-process of developers when performing this ac-
tivity. After observing 13 developers with varied levels of
experience writing test cases for real-world open-source
code and surveying 72 developers, we propose a framework
and a set of strategies that explain how developers engineer
test cases. Based on our observations, we suggest several
actionable points for developers to improve the way they
engineer test cases, tools that we believe would make de-
velopers more productive, and suggestions for educators on
how to augment their testing courses.

Our findings support developers in two ways: First,
we provide a framework that can be used to formally
explain how developers reason about engineering test cases.
We hope our framework will support developers in better
understanding how they engineer test cases and by un-
derstanding how others engineer test cases, and whether
they see a way to improve their own practice. Second, we
show that some of the knowledge we already have as a field
(especially in the academic community), such as the benefits
of systematic testing and clear adequacy criteria, are not
really applied by developers. We hope that our empirical
findings serve as a first piece of evidence for developers to
see the value of such practices.

Finally, while we believe this paper is the first of its
kind when it comes to understanding the reasoning behind

20. According to Twitter Analytics, on February 27th, 2021.
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how developers devise test cases, it only paves the road
towards a deeper understanding of the phenomenon. This
paper suggests an extensive research agenda for empirical
software engineering researchers that aim at improving the
way developers test.
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[46] G. Çalıklı and A. B. Bener, “Influence of confirmation
biases of developers on software quality: an empirical
study,” Software Quality Journal, vol. 21, no. 2, pp. 377–
416, 2013.

[47] I. Salman, B. Turhan, and S. Vegas, “A controlled
experiment on time pressure and confirmation bias
in functional software testing,” Empirical Software En-
gineering, vol. 24, pp. 1727–1761, 2019.

[48] B. Teasley, L. Leventhal, C. Mynatt, and D. Rohlman,
“Why software testing is sometimes ineffective: Two
applied studies of positive test strategy,” Journal of
Applied Psychology, vol. 79, no. 1, pp. 142–155, 1994.

[49] A. van Deursen and L. Moonen, “The video store
revisited–thoughts on refactoring and testing,” in
Proc. 3rd Int’l Conf. eXtreme Programming and Flexible

Processes in Software Engineering. Citeseer, 2002, pp.
71–76.

[50] A. van Deursen, L. Moonen, A. Van Den Bergh, and
G. Kok, “Refactoring test code,” in Proceedings of the
Int’l Conference on Extreme Programming and Flexible
Processes in Software Engineering, 2001, pp. 92–95.

[51] F. Palomba, A. Zaidman, and A. De Lucia, “Automatic
test smell detection using information retrieval tech-
niques,” in International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2018, pp. 311–322.

[52] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and
A. Bacchelli, “On the relation of test smells to software
code quality,” in International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp.
1–12.

[53] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and
D. Binkley, “Are test smells really harmful? an em-
pirical study,” Empirical Software Engineering, vol. 20,
no. 4, pp. 1052–1094, 2015.

[54] M. Tufano, F. Palomba, G. Bavota, M. Di Penta,
R. Oliveto, A. De Lucia, and D. Poshyvanyk, “An
empirical investigation into the nature of test smells,”
in Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, 2016, pp. 4–
15.

[55] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and
A. Bacchelli, “When testing meets code review: Why
and how developers review tests,” in 2018 IEEE/ACM
40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 677–687.

[56] E. Daka and G. Fraser, “A survey on unit testing
practices and problems,” in 25th IEEE International
Symposium on Software Reliability Engineering, ISSRE
2014, Naples, Italy, November 3-6, 2014. IEEE
Computer Society, 2014, pp. 201–211. [Online].
Available: https://doi.org/10.1109/ISSRE.2014.11

[57] L. Moonen, A. van Deursen, A. Zaidman, and
M. Bruntink, “On the interplay between software test-
ing and evolution and its effect on program compre-
hension,” in Software Evolution. Springer, 2008, pp.
173–202.

[58] M. Fowler, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley, 1999.

[59] Y. Kashiwa, K. Shimizu, B. Lin, G. Bavota, M. Lanza,
Y. Kamei, and N. Ubayashi, “Does refactoring break
tests and to what extent?” in Proceedings of the Interna-
tional Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2021.

[60] F. Vonken and A. Zaidman, “Refactoring with unit
testing: A match made in heaven?” in 19th Work-
ing Conference on Reverse Engineering, WCRE 2012,
Kingston, ON, Canada, October 15-18, 2012. IEEE
Computer Society, 2012, pp. 29–38.

[61] A. Santos, S. Vegas, O. Dieste, F. Uyaguari, A. Tosun,
D. Fucci, B. Turhan, G. Scanniello, S. Romano, I. Karac,
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