
Hey Teachers,
Teach Those Kids Some Software Testing

Baris Ardic
Delft University of Technology

Delft, The Netherlands
b.ardic@tudelft.nl

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
a.e.zaidman@tudelft.nl

Abstract—Software testing is generally acknowledged to be
an important weapon in the arsenal of software engineers
to produce correct and reliable software systems. However,
given the importance of the topic, little is known about where
software engineers get their testing knowledge and skills from.
Is this through (higher) education, training programmes in the
industry, or rather is it self-taught? In this paper, we investigate
the curricula of 100 highly ranked universities and survey 51
software engineers to shed light on the state-of-the-practice in
software testing education, in terms of both academic education
and education of software engineers in the industry.

Index Terms—software testing, software engineering,
education

I. INTRODUCTION

Software testing is essential to ensure the quality of the
software systems that we as a society rely on [1]. Inadequate
testing can have severe consequences, with repercussions of
software failures ranging from users getting frustrated [2], over
huge financial losses [3] or years of lost research [4], to caus-
ing injury or even death [2]. As Aniche et al. state “Making
sure software works is maybe the greatest responsibility of a
software developer” [5].

With this great responsibility for software engineers, we
wonder where and how software engineers acquire their
software testing knowledge and skills. In particular, we are
curious to better grasp what the role of higher education is in
teaching budding software engineers about software testing.
But we are equally interested in understanding how the work
environment, or professional education, contributes to the
software testing skills of practitioners. As such, our curiosity-
driven investigation approaches this from two angles:

1) We investigate the curricula of the top 100 universities
in the “computer science subject ranking” of the Times
Higher Education [6]. In this investigation, we look
through their curricula to find dedicated testing courses.

2) We survey 51 practitioners to better understand where
they acquired their testing knowledge and skills from.

Our investigation is steered by these research questions:
RQ1 How common are dedicated software testing courses

in the curricula of the universities that we consider?

This research is sponsored by the Swiss National Science Foundation
(SNSF Grant 200021M 205146) and the Vici “TestShift” project (No.
VI.C.182.032)

How common is it for practitioners to have followed a
dedicated testing course?

RQ2 What are the topics being discussed in these dedicated
testing courses? What are testing topics that are in de-
mand from practitioners?

RQ3 What are the learning objectives of these dedicated
testing courses?

RQ4 How and where do practitioners acquire their testing
knowledge and skills from?

Our high-level observations are that around half of the 100
computer science curricula that we have screened contain a
dedicated testing course. We also observe that there is a high
demand among practitioners to get more education on testing
subjects and that the most popular way for practitioners to
learn about new software testing techniques is to learn it by
themselves or learn it from peers.

II. RELATED WORK

The academic community is well aware of the gap between
software testing education and the industry’s expectations. We
structure the earlier research around two axes, namely: (1)
higher education curricula, and (2) industry experience.

A. Software Testing Curricula Related

Garousi et al. have performed a systematic literature map-
ping study on papers related to software testing education [7].
Their analysis provides a broad overview of educational ap-
proaches in software testing education. They have also sum-
marized the contributions in terms of pedagogical approaches
for software testing education.

Zhu and Zhang propose structural reforms for a software
testing course where they divide it into instruction and prac-
tical stages, involving case-based teaching and project-driven
employment-oriented training [8].

Clarke et al. augment a testing course with testing tool
tutorials and observe improvements in student test suites when
code coverage tools are used [9].

Deng et al. designed five auxiliary resources to be used in
testing courses. These resources use open-source software to
improve the hands-on testing experience the course provides.
These additional activities span multiple aspects of software
testing from unit testing to test driven development [10].

Aniche et al. investigate the prevalent challenges, mistakes,
and favourite activities of their students in their testing course.
Subsequently, they pragmatically reengineer their course to fit
the goals obtained from the student experiences [5].

B. Analysing Industry Expectations

Garousi et al. surveyed practitioners to establish testing
challenges in the industry. Their findings point to test man-
agement and automation being the more challenging aspects
of software testing [11].

Florea and Stray directly look into what employers demand
from software testing-related positions. To do so, they mine
job advertisements and analyse them. Their analysis shows test
design, execution, and planning to be the most consistently
sought-after skills [12].

Hynninen et al. designed an outline for a testing course
using a constructive alignment approach. In order to determine
their learning objectives, they constructed a survey regard-
ing testing processes in the Finnish software industry. This
information was then used to create industry-facing learning
objectives and teaching methods [13].

III. STUDY SET-UP FOR THE CURRICULUM ANALYSIS

A. Dedicated Software Engineering Courses

We assume that for many budding software engineers,
higher education is the first time that they come into contact
with software testing. This might happen as part of their
introductory programming courses, or in a course dedicated to
software quality assurance (or even software testing entirely).
In this study, we focus on courses of which at least 50% of
its contents are about software testing, the so-called dedicated
software testing courses. We define the ones that teach some
software testing, but are below this threshold, as partial testing
courses. We focus on dedicated courses because we believe
that the combination of the importance of software testing, and
the amount of important topics to be discussed in it, requires
a course that dedicates sufficient time to it.

B. Course Selection

We start our investigation by looking into the top 100
universities in the computer science and engineering subject
rankings by Times Higher Education (THE) [6]. We manually
searched for software testing courses in the catalogues of these
universities (we coined this the THE100 dataset). In some
instances, the course catalogue was unreachable, incomplete
or outdated. For these cases, we used auxiliary search strings
that directly target dedicated testing courses.

Through this process, we found 49 dedicated and 34 partial
testing courses. For 18 universities, we have not been able
to detect any testing-related courses. This is either caused
by an actual lack of courses or a lack of publicly available
information on the offerings of the institution.

These dedicated testing courses include both graduate and
undergraduate level courses. We do not distinguish between
them because this information is frequently not available or
hard to infer. There are regional differences that significantly

change the rate of obtaining a graduate degree which decreases
the value of making a distinction.

C. Data Collection

To further investigate the contents of dedicated testing
courses, we attempted to find their syllabi. We found a
syllabus for each course, except for one, but the level of
detail that we could find per course varied considerably. The
documents obtained for each course range from a complete
and detailed syllabus to a short description. In the rest of this
study, all of these findings are referred to as course syllabi.
We utilized manual keyword extraction while separating the
outcomes from course descriptions. Some syllabi also listed
their own keywords in the form of lecture-topic schedules
or talking points. When they were available, we preserved
those keywords. All methods, concepts, and tools that relate to
software engineering are extracted as keywords. There are 13
description and 2 outcome keywords on average per syllabus.
Study data is available in the replication package [14].

IV. RESULTS OF THE CURRICULUM ANALYSIS

A. Topics Taught and Co-Occurring Topics

During our investigation of dedicated testing course syl-
labi, we observed the topics that were being taught alongside
software testing. These topics are mainly verification, code
review, risk management, and DevOps. There are also some
courses that include recent research topics or outputs from the
software testing academic community (e.g., fuzzing). Under-
standing which topics are frequently taught next to software
testing enables us to better understand modern software testing
education. Figure 1 depicts an up-scaled set representation
of the topics taught. The figure demonstrates the intersection
sizes in and between each category. Additionally, if a course
does include any additional topic they are included in the first
intersection category. Some interesting observations are:

• There are 9 dedicated testing courses that include soft-
ware engineering research in their syllabus. Teaching
software engineering research-oriented material is as
common as risk management and DevOps combined.
This indicates that the popularity of software testing as
an academic field is also reflected in the syllabi. Almost
all of these courses are graduate-level and have some
research-oriented outcomes.

• There are 16 courses that focus only on software testing,
while 19 courses combine software verification and test-
ing. Teaching software testing and verification together is
more common than teaching just software testing.

B. Regional Course Availability

In the overall THE100 dataset, we notice that around 50%
of the universities have a dedicated testing course. However,
we observe a regional disparity: ∼61% of the European uni-
versities have a dedicated testing course, ∼49% of the North
American universities, and ∼25% of the Asian universities.
The low percentage in Asian universities might be due to the
difficulty in accessing the information on university websites

Fig. 1. Distribution of topics taught alongside testing

in Asia, even though we asked a colleague for help with the
language barrier.

C. Common Resources

We analysed the course descriptions to find out which
recommended resources (including textbooks) are listed. We
found that the 4 most popular resources are textbooks (starting
with their number of occurrence):

5: The Art of Software Testing by Myers et al. [15].
5: Introduction to Software Testing by Ammann and Of-

futt [16].
4: Software Testing and Analysis by Pezzè and Young [17].
3: Software Testing by Patton [18].

There are about 120 unique resources that were cited in the
collection including books, research papers and grey literature.
Other resources appeared in at most two courses. The full list
is available in our replication package [14].

D. Common Outcomes

In terms of course outcomes or learning objectives, 32 out
of the 49 syllabi of dedicated testing courses in our collection
report them. Most of the text related to outcomes consists of
abstract and verbose sentences. This is quite different from the
almost list-like qualities of course descriptions. Therefore our
evaluation of the common outcomes is done slightly differently
than the rest of the syllabus evaluations.

There are various generic learning outcomes that are
put into course syllabi such as “communicate effectively
in English for general project presentation” [14, case 33].
We ignore these and evaluate software engineering outcomes
by clustering the individual outcomes manually. The most
common outcome categories are demonstrated below with
examples and the number of occurrences:

• Practical experience (25) - Participants are able to write
maintainable test code by avoiding well-known test code
smells [14, case 30].

• Testing techniques (17) - Understand the range of
approaches to testing that can be applied to software
systems [14, case 13].

• Tools and frameworks (12) - Getting to know methods
and tools of software testing [14, case 31].

• Fundamentals of software testing (11) - Know the
goals, concepts, models, and basic terms of software
quality assurance [14, case 28].

• Quality assurance techniques (11) - Understand the
strengths and weaknesses of different quality assurance
techniques [14, case 3].

• Proper technique (10) - Evaluate the suitability of differ-
ent techniques for a given software and set of constraints
[14, case 18].

• Testing strategy and plan (9) - Design and implement
strategies for testing software in structured and organized
ways. [14, case 43].

• Measure quality (8) - Identify appropriate quality goals
for moderately sized software [14, case 46].

• Research (8) - Critically evaluate research papers in the
field of program testing and analysis [14, case 26].

• Automated testing (7) - Understand how automated
testing and analysis techniques work [14, case 20].

The above list indicates that practical experience with
testing, testing techniques, and tools are highly valued by
educators. Some other interesting observations are that un-
derstanding and utilizing quality assurance techniques, which
include testing and static quality analysis, is one of the
top categories. This corresponds to the observation made in
Figure 1 where we see that code review is a popular topic.

Another prevalent learning outcome is the selection of the
proper quality assurance technique, likely instigated by the
plethora of software testing techniques that are available.

E. Software Testing Skills
We investigate software testing skills in multiple cate-

gories. The overall structure of these categories is intended to
match an existing structure from Florea and Stray [12]. This
structure is built from software testing job advertisements and
the ISTQB Foundation Level syllabus [19]. Figure 2 provides
an overview of the distribution for these software testing skill
categories. We extract keywords from each syllabus and further
organise these keywords into the following five categories:

• Static Testing covers all forms of code inspection and
other static quality testing methods.

• Test Level covers different scopes of testing which are
unit, integration, system and acceptance testing.

• Test Process consists of keywords related to automated
testing, test design, test plan, and defect management.

• Test Tools include keywords that relate to all test-related
tools, frameworks, and libraries.

• Test Type has all the different techniques and methods
taught in our collection of courses.

Our analysis of the syllabi aims to avoid evaluating data
at a keyword level. This is because a syllabus is a loosely
defined type of document with varying levels of information.
Therefore, a syllabus failing to mention a specific topic does
not necessarily mean that it is not addressed.

V. STUDY SET-UP OF THE PRACTITIONER SURVEY

In order to get a glimpse of what practitioners think of
software testing education at the academic level, but equally

22 (46%)

15 (31%)

31 (65%)

22 (46%)

31 (65%)

Static Testing Test Level Test Process Test Tools Test Type
0

5

10

15

20

25

30

Keyword group

N
um

be
r

of
 c

ou
rs

es

Fig. 2. Distribution of software testing skills

education that happens within a professional environment, we
have conducted a short online survey. The intended partici-
pants for this part of the study are people who regularly carry
out software testing-related activities. The survey is distributed
via convenience sampling where the most frequently utilized
channels are social media platforms and online message
boards, e.g., Twitter, Reddit, and LinkedIn. This sampling
method is common among empirical software engineering
studies [20] and is also appropriate for this study because the

TABLE I
SUMMARY OF PRACTITIONER SURVEY QUESTIONS

Q1 Consent
Q2–8 Demographic questions
Q9 How frequently do you perform the following types of soft-

ware testing activities?
Q10 In your opinion, which testing activities are more difficult to

adequately perform?
Q11 How frequently have your projects been negatively impacted

by your or your colleagues’ lack of software testing capabili-
ties?

Q12 Have you ever taken a university course that dedicated any
time to teaching software testing?

Q13 How much time did this course spend on testing?
Q14 Which testing activities would you have liked to learn more

about at your university?
Q15 Please rank the methods below from most impactful to least

impactful regarding your software testing education. If you
are unfamiliar with a source rank it last.

Q16 How often do you read technical papers or articles on new
developments in software testing?

Q17 Select any resources that you use regularly for testing
knowledge-related issues.

Q18 Please specify the resources that you had in mind in the
previous question.

Q19 “Software testing should not be taught during higher education
programs.” Do you agree with this statement?

Q20 Why did you agree with the statement?
Q21 How was your first experience applying testing practices in a

professional context? What had the biggest impact on how you
experienced testing practices at that time compared to today?

focus is on exploration instead of assuring generalizability.
The responses were collected between December 1st and 31st
of 2022. Some potential participants only responded to the
demographics questions, after omitting these we were left with
51 actual responses. Since none of the questions are required
to be able to submit the survey, throughout the analysis the
number of respondents per question might differ slightly.
Conversely, people with a high school degree only did not
get specific questions on courses during university.

Our survey broadly explores the participants’ experience
with software testing education, both at the academic level and
on the job. We gauge what testing activities they frequently
perform, which ones they find difficult, and which ones they
would like to have learned more about. A summary of the
questions that we have asked in our survey can be found in
Table I; throughout the rest of this paper, we refer to this table
by referencing the question numbers in parentheses.

VI. RESULTS OF THE PRACTITIONER SURVEY

A. Participant Demographics

The participants of the survey were asked several questions
to determine their experience and background. In this section,
we present the data obtained from these questions.

• Current position: The participants could pick any num-
ber of fitting roles from a predefined list; they could also
opt to fill in a role not on our list. The most selected
options were software developer (20), quality assurance
(11), software tester (9), and higher management (7). All
other options were selected less than twice.

• Subject experience: Participants indicated that they have
on average 7.4 years of software development experience.
Software testing experience is at 7.7 years on average,
mainly because Q&A profiles have more experience.

• Education background: The most frequently obtained
degrees obtained by the respondents are: Bachelor’s (21),
Master’s (18), High school (5) and Doctoral (3). The most
common subjects of study are computer science (16),
software engineering (4), informatics (2), and software
development (2). These degrees are obtained in institu-
tions established in 20 countries with the most popular
options being the Netherlands (8), the United States (6),
Turkey (6), and the United Kingdom (4).

• Company Size : The most common type of workplace
had more than 500 employees (21), followed by 51-500
(13), and less than 50 (10).

B. Software Testing Activities

This section of our survey aims to investigate participants’
experiences with common testing activities. To do so, some
of the upcoming questions utilize a list of software testing
activities that we compile together from “test type” and “test
level” in the taxonomy provided by Florea and Stray [12].
We have extended the nonfunctional testing activities to be
more specific since we have not encountered this analysis
before. The final list consists of unit, integration, system and
acceptance testing coming from “test level” and functional,

2

11

13

10

9

13

18

15

14

6

4

7

1

5

10

13

11

17

8

6

10

4

5

8

14

10

10

17

15

10

17

14

10

6

9

13

9

12

10

17

11

4

1

4

30 20 10 0 10 20 30

Sometimes

Rarely

Never

Frequently

Very frequently

How frequently do you perform the following?

8

13

14

10

16

13

15

13

8

8

17

17

13

9

14

24

20

21

1

3

3

1

2

4

5

9

13

11

8

12

12

12

4

4

4

13

4

1

7

8

8

1

1

30 20 10 0 10 20 30

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Functional Testing

GUI testing

Performance Testing

Load Testing

Security Testing

How difficult is it to perform the following?

Very Difficult

Difficult

Neutral

Easy

Very Easy

Never

Rarely

Sometimes

Frequently

Very frequently

Fig. 3. Frequency and difficulty of software testing activities

1

3

1

2

3

12

<1w <2w [2w-50%] ~50% >50% ~100%
0

2

4

6

8

10

12 Type
Partial
Dedicated

Course time

N
um

be
r

of
 p

ar
tic

ip
an

ts

Fig. 4. Time spent on testing from the courses taken by participants

security, load, performance and GUI testing from “test type”.
The first question was about the frequency of these activities
[Q9], which was followed by their relative difficulty [Q10].

When we investigate the results presented in Figure 3, we
identify security, load, and unit testing as the least frequently
performed activities. Moreover, functional and system testing
are the more frequently carried out testing activities. When
we turn our attention to the right side of Figure 3, we observe
that security, load, and performance testing are considered to
be more difficult testing activities; functional and unit testing
are considered as easier activities.

When we focus on unit testing, we observe in the left
side of Figure 3 that the number of respondents that indicate
to perform unit testing is balanced, i.e., around half do unit
testing frequently, while the other half do not. When we cross-
check this with the profiles of the respondents, we observe that
those respondents that do not perform unit testing (frequently)
are mostly QA-engineers, while the group that (frequently)
unit tests are mostly software engineers.

The next question asks about respondents’ frustrations:
“How frequently have your projects been negatively impacted

by your or your colleagues’ lack of software testing capabili-
ties?” [Q11] Figure 5 shows the distribution of answers: ∼40%
of participants are (very) often negatively affected. Only
one participant reports that their projects are never affected.
The overall results indicate that almost all participants have
observed or experienced shortcomings in testing competency.

C. Participants and Testing Courses

In section III-A we have established the concept of a dedi-
cated testing course. During our analysis of the curricula of the
top-ranked universities, we have tried to establish the presence
of such courses in the curricula. Now, we augment our findings
by asking the respondents whether they participated in such a
course.

First, we asked the participants whether they have taken
any course that dedicated any time to teaching software testing
[Q12]. Around 45% (22) of the participants had taken such a
course, while ∼49% (24) did not. Three participants did not
remember whether they had taken a software testing course
or not. Upon closer inspection, we found out that participants
who took testing courses were mostly from computer science

1

10

18

12

8

Never Seldom Sometimes Often Very often
0

2

4

6

8

10

12

14

16

18

Option

N
um

be
r

of
 p

ar
tic

ip
an

ts

Fig. 5. Negative impact of lack of capabilities on projects

(11) and software engineering (4) majors. Moreover, when we
cross-examine these results with overall degree types from the
participant demographics, we see that ∼69% of the computer
science graduates and all of the software engineering graduates
had taken a testing-related course.

We asked these participants to classify the course they took
in terms of the amount of time spent on learning testing [Q13].
The question had options ranging from one or two weeks spent
on testing, to half or more of the total time. Figure 4 lays out
the information we collected. Most of the courses taken by
the participants are dedicated testing courses.

The next question directed to the participants was “Which
testing activities would you have liked to learn more about
at your university?” [Q14] This question was directed to all
participants, not just the ones who had taken dedicated testing
courses. Figure 6 visualises the participants’ preferences.

Globally, we can observe that the “I would have liked to
learn more” is frequently chosen across all types of testing that
we presented to the respondents. The top-3 of testing types that
participants want to learn more about are respectively security,
load, and performance testing.

The activities that are most adequately known by the par-
ticipants are integration, functional and unit testing indicating
that these topics are handled well by higher education.

To provoke the respondents to our survey, we also asked
them if they agree with the following statement: “Software
Testing should not be taught during higher education pro-
grammes” [Q19]. Around 92% (45) of the participants said
“No, it should be taught”, reinforcing our intuition of the
necessity of testing education.

D. Practitioner Sources

The rest of the survey included questions about the learn-
ing resources of the practitioners. To discover the most impact-
ful learning resources of the participants, we gave them the
following list and asked them to rank it from most impactful
to least impactful [Q15].

3

2

2

2

3

1

1

3

1

16

13

12

9

9

8

5

4

4

12

15

16

18

16

21

26

26

27

0 10 20 30

Unit Testing

Functional Testing

Integration Testing

Acceptance Testing

GUI testing

System Testing

Performance Testing

Load Testing

Security Testing I would have liked to learn less

Adequate

I would have liked to learn more

What would you like to learn more or less?

Fig. 6. The learning preferences of participants per testing activity

10

5

25

9

5

4

10 26

4

10

11

10
8

10

12

12

2

3

20

12 17

2

3 15

Industrial training University course Self-taught Peer learning MOOC
0

10

20

30

40

50

Rank 1st 2nd 3rd 4th 5th

Resource

N
um

be
r

of
 p

ar
tic

ip
an

ts

Fig. 7. Most impactful learning resources of the participants

• Industrial training
• University course
• Self-taught
• Peer learning (learning from colleagues, etc.)
• Massive open online courses (MOOC e.g Udemy,

Coursera)
Figure 7 demonstrates our findings as a stacked bar chart

where each bar represents a learning resource. For each bar,
starting from the bottom with the first rank, we can see how
many participants placed a resource in a particular position.

For example, we can see that “self-taught” category is the
most popular option with about half of the participants ranking
it as their primary source of testing knowledge and skill. The
most popular second-ranked item is “peer learning”. The rest
of the ranks do not have a dominant option. However, we can
still observe that “MOOC” is almost never picked for the first
two ranks. “Industrial training” and “University course” have
very similar distributions.

In a following question, we asked them how frequently
they read technical papers or articles related to software test-

38 (79%)

35 (73%)

20 (42%)
19 (40%)

15 (31%)

Stack Overflow Tool Documentation Reddit Other Testing books
0

5

10

15

20

25

30

35

40

Resource

N
um

be
r

of
 p

ar
tic

ip
an

ts

Fig. 8. Regularly used resources

ing [Q16]. According to our results, ∼43% of the participants
read at least one related article per month, while ∼23% never
read any related literature.

Moreover, we asked participants which testing-related
resources they regularly use for testing knowledge-related
issues [Q17]. The predefined resources and their popularity is
shown in Figure 8. Keep in mind that participants were able to
select all of the resources they were using. We allowed them
to add their own resources as well. The most popular option
that we did not include in our list was “software testing related
blog” which was mentioned by six participants.

VII. DISCUSSION & CONCLUSION

A. Revisiting the Research Questions

RQ1: How common are dedicated software testing courses
in the curricula of the universities that we consider? How
common is it for practitioners to have followed a dedicated
testing course? In our initial sample of 100 universities, we
found 49 dedicated testing courses. However, the existence of
one does not mean that it is always offered; we did not have a
feasible way of looking into the aspect of course availability.
Comparing this to the results of the survey, 17 (∼35%)
participants had taken a dedicated software testing course (see
Figure 4). The decrease in the percentage can be explained by
variables like student interest or course availability.

RQ2: What are the topics being discussed in these ded-
icated testing courses? What are testing topics that are in
demand from practitioners? The most popular testing skill
categories are “test process” and “test type” (Figure 2).
These categories of keywords can be observed in ∼65%
of the dedicated testing courses. Previous studies on testing
education had already drawn attention to automated testing,
test design and planning [11], [12], which are included in
the “test process” category. In this study, we observed that
security, load, and performance testing are in high demand
as they are the top testing types that participants wanted to
learn more about (Figure 6) at university. These are also seen
as harder to perform by the participants in Figure 3. These
findings together point to a need for further investigation
regarding budding engineers’ opportunities regarding learning
these skills.

RQ3: What are the learning objectives of these dedicated
testing courses? In the syllabus analysis, we observed that
the common course outcomes were about practical experience,
techniques, tools and fundamentals. These objectives create the
backbone of the testing knowledge that these courses aim to
convey. However, having a specific outcome such as “proper
technique” high on the list points to the sheer number of
techniques that are available.

RQ4: How and where do practitioners acquire their testing
knowledge and skills from? In our survey with 51 software
testing practitioners we have observed that individual learning
approaches like “self-taught” and “peer learning” are more
popular than more organized ways of learning like industrial
training or university courses; this also includes MOOCs.

Popular resources for software testing practitioners to learn
more are StackOverflow and tool documentation. An important
prerequisite question when studying knowledge gathering from
practitioners is then obviously whether there is a need for
additional learning. In Figure 6 we can see that most partici-
pants think they could have learned more about many testing
activities.

B. Implications

The general implications of our study are that an important
computer science topic like software testing is taught through
a dedicated course in about half of the 100 computer science
curricula that we analysed. We acknowledge that this is not
the only way to teach software testing, e.g., through project
work, but it does raise the question of whether the wide range
of software testing techniques is conveyed to students.

When we look at the results from the survey among
practitioners, we see a general need for more knowledge in
many areas of testing ranging from systems and acceptance
testing to security, load, and performance testing. The latter
three categories of testing are interesting because they obtain
the most votes in terms of testing activities that practitioners
want to learn more about (practitioners also consider these
to be more difficult). We see two potential reasons for this:
(1) it could be that these topics have gained more importance
recently, for example, because load testing is more important
for software that is offered as a service, or because of the
additional security requirements that need to be tested for
preventing cybersecurity threats, and (2) it could be that higher
education does not prepare students for these types of testing.

In terms of how software testing practitioners gain new
knowledge and skills, it is very apparent that the respondents
to our survey clearly prefer to learn new software testing
techniques either by themselves or from peers. More organ-
ised forms of education are not appreciated as much. This
potentially calls for a rethink in how we offer software testing
education to practitioners.

C. Threats to Validity

Our study is exploratory in nature, and therefore we
acknowledge that there are threats to the validity of our
conclusions. We will now discuss the most important ones:

External validity. For the syllabus collection process we
have used the Times Higher Education (THE) subject-based
rankings for Computer Science [21]. We opted to use a higher
education institution ranking to circumvent having to use
random sampling. We are aware that taking highly ranked
institutions might skew the data towards having more dedi-
cated testing courses; we consider this an interesting avenue
for further investigation.

For our survey, we used convenience sampling to recruit
participants. We are aware that this recruitment method might
skew our results, as it is likely that only people with a clear
interest in software testing have filled out the survey. We
have potentially observed this phenomenon in our results, as
the majority of the testing courses taken by the respondents

were dedicated testing courses, which might indeed indicate
an elevated interest in software testing from the participants.
In future research, we should set out a broader recruitment
campaign to avoid sampling bias.

Construct validity To ensure the validity of the syllabus
analysis process, the keyword extraction process was done
in three passes. We identified course descriptions, outcomes,
and resources in each syllabus document in the first pass and
recorded them. In the later passes, we performed keyword
extractions for descriptions and outcomes. We merged the
keyword groups that we identified into larger groups ending
up with the data that we used for analysis. Throughout the
process, the authors checked each other’s work.

We can not argue for the completeness of the syllabi: if
a syllabus document does not mention a particular topic, it
does not mean that the topic is not addressed. Vice versa, if
a resource is mentioned in the syllabus, it does not mean that
it is extensively used in the course.

D. Future Work

The implications of this study show a need for further
investigation into the learning process of non-functional soft-
ware testing. The subjects of security, performance and load
testing require additional domain knowledge to comprehend
and teach. Creating resources to aid in teaching these subjects
effectively is, therefore, an undertaking that is required from
the software engineering community.

We also intend to further explore the process of learning
software testing by utilizing participants’ perspectives starting
with a qualitative analysis of the experiences reported in [Q21]
which was out of the scope of this study. We aim to conduct
interviews with key individuals on the details of the process
of learning software testing.

REFERENCES

[1] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, 2019.

[2] A. J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software
problems in the news,” in Int’l Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). ACM, 2014, pp. 32–39.

[3] S. Matteson, “Report: Software failure caused 1.7 trillion
in financial losses in 2017,” 2018. [Online]. Avail-
able: https://www.techrepublic.com/article/report-software-failure-
caused-1-7-trillion-in-inancial-losses-in-2017/

[4] G. Miller, “A scientist’s nightmare: Software problem leads to five
retractions,” Science, vol. 314, no. 5807, pp. 1856–1857, 2006.

[5] M. Aniche, F. Hermans, and A. van Deursen, “Pragmatic software
testing education,” in Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education, 2019, pp. 414–420.

[6] Times Higher Education. Subject rankings - computer science.
[Online]. Available: https://www.timeshighereducation.com/world-
university-rankings/2022/subject-ranking/computer-science

[7] V. Garousi, A. Rainer, P. Lauvås Jr, and A. Arcuri, “Software-testing
education: A systematic literature mapping,” Journal of Systems and
Software, vol. 165, p. 110570, 2020.

[8] B. Zhu and S. Zhang, “Curriculum reform and practice of software
testing,” in Int’l Conf. on Education Technology and Information
System (ICETIS). Atlantis Press, 2013, pp. 846–849.

[9] P. J. Clarke, D. L. Davis, R. Chang-Lau, and T. M. King, “Impact
of using tools in an undergraduate software testing course supported
by WReSTT,” ACM Transactions on Computing Education (TOCE),
vol. 17, no. 4, pp. 1–28, 2017.

[10] L. Deng, J. Dehlinger, and S. Chakraborty, “Teaching software testing
with free and open source software,” in 2020 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 2020, pp. 412–418.

[11] V. Garousi, M. Felderer, M. Kuhrmann, and K. Herkiloğlu, “What
industry wants from academia in software testing? hearing practition-
ers’ opinions,” in Proc. of the International Conference on Evaluation
and Assessment in Software Engineering (EASE), 2017, pp. 65–69.

[12] R. Florea and V. Stray, “The skills that employers look for in software
testers,” Software Quality Journal, vol. 27, no. 4, pp. 1449–1479,
2019.

[13] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Guidelines
for software testing education objectives from industry practices with
a constructive alignment approach,” in Innovation and Technology in
Computer Science Education. ACM, 2018, pp. 278–283.

[14] B. Ardic and A. Zaidman, “Replication package for “Hey teachers,
teach those kids some software testing”,” 2023. [Online]. Available:
https://doi.org/10.6084/m9.figshare.21895701.v3

[15] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[16] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed.
Cambridge University Press, 2016.

[17] M. Pezze and M. Young, Software Testing and Analysis: Process,
Principles and Techniques. Wiley, 2008.

[18] R. Patton, Software testing. Pearson Education India, 2006.
[19] F. ISTQB, “Foundation level syllabus version 2011,” International

Software Testing Qualifications Board, 2011.
[20] S. Baltes and P. Ralph, “Sampling in software engineering research:

A critical review and guidelines,” Empirical Software Engineering,
vol. 27, no. 4, pp. 1–31, 2022.

[21] Times Higher Education. University rankings. [Online]. Available:
https://www.timeshighereducation.com/world-university-rankings

Baris Ardic received the BSC and MSc degrees
in Computer Engineering from Bilkent University,
Turkey. He is currently a PhD candidate in the
Software Engineering Research Group (SERG) at
the Delft University of Technology. His research
interests include software engineering education,
software testing and empirical software engineer-
ing.

Andy Zaidman received the MSc and PhD de-
grees in computer science from the University of
Antwerp, Belgium, in 2002 and 2006, respectively.
He is currently a full professor with the Delft Uni-
versity of Technology, The Netherlands. In 2013,
he was the laureate of a prestigious Vidi mid-
career Grant and in 2019, the most prestigious Vici
career grant from the Dutch science foundation
NWO.

