
Managing trace data volume through a heuristical clustering process based on
event execution frequency

Andy Zaidman Serge Demeyer

University of Antwerp
Department of Mathematics and Computer Science

Lab On Re-Engineering
Middelheimlaan 1
2020 Antwerpen

Belgium
{Andy.Zaidman, Serge.Demeyer}@ua.ac.be

Abstract

To regain architectural insight into a program using dy-
namic analysis, one of the major stumbling blocks remains
the large amount of trace data collected. Therefore, this pa-
per proposes a heuristic which divides the trace data into
recurring event clusters. To compose such clusters the Eu-
clidian distance is used as a dissimilarity measure on the
frequencies of the events. Manual inspection of these event
sequences revealed that the heuristic provides interesting
starting points for further examination.

1. Introduction

When programming a piece of software, the pro-
grammer has to build a mental bridge that connects the
code he’s writing and the program behavior he’s trying
to accomplish [13]. Conversely, when a programmer is
trying to get an understanding of a system, he’s actually
trying to get the reverse mapping: from the functionality
he’s trying to understand to the code that’s making it all
happen. It is estimated that 30 - 40% of a programmer’s
time is spent in studying old code and documents in order
to get an adequate understanding of a software system
before making changes [16, 20]. The manner in which a
programmer gets understanding of a software system varies
greatly and depends on the individual, the magnitude of the
program, the level of understanding needed, ... [8] While
in principle it is necessary to understand the entire system
before making changes, in practice it is essential to use an
as-needed strategy: you want to get an understanding of
the part of the system that you’re concerned with as quickly
and as thoroughly as possible [10].

In the reverse engineering literature, several program
understanding techniques have been explored. Most of
them can be classified as static since they start from a static
description of the program under study: either the program
code or the documentation, or a combination of both. A
few program understanding techniques however, exploit
dynamic information, because they analyse the program’s
behavior while its running, or study a post-mortem dump
of its event trace. Dynamic analysis is especially relevant
for program understanding, because of the ”use as needed”
strategy mentioned before: you only trace those parts of the
program that you’re really concerned with, as such getting
a very quick and thorough overview of what’s actually
happening.

Unfortunately, this thoroughness comes at a cost. Even a
short program run quickly generates thousands of events,
so the question of scaleability inevitably arises [9, 15].
Therefore it’s necessary to study techniques which group
trace data into interesting event clusters. In traditional
dynamic analysis, where most research concentrates around
program optimization, soundness plays a crucial role in
developing a technique to guarantee behavior preservation
[11]. Dynamic analysis for program understanding relaxes
the problem considerably, because in this context we can
afford a few misses.

Therefore, this paper proposes a heuristic [6] which
provides a reverse engineer with interesting starting points
for code and program-structure discovery. The heuristic
itself is based around the following idea: in object-oriented
systems, objects work together to reach a certain goal,
i.e. perform a certain functionality. This collaboration is

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



expressed through the exchange of messages according to
a certain interaction protocol. This interaction protocol,
although not static in the sense that the sequence of
exchanged messages is always identical, is based on a
common theme. It is this that makes it interesting to go
and have a look at the frequencies of the messages used.
More specifically: the assumption is that messages that
work together to reach a common goal, will always be
executed more or less the same number of times. It is on
this assumption that we build a heuristic.
As case studies we use Fujaba and Jakarta Tomcat. The
former being a good example of an application with a
heavy GUI, the latter being a good representative for a
server-like application.

2. Formal background

In a more formal way, we can say that we are actually
looking for evidence of the concepts of dominance and
post-dominance [18]:

We say that an instruction x dominates an instruc-
tion y if the trace prefix which ends with y also
contains an instruction x. In other words an in-
struction x dominates an instruction y if and only
if the only way to make sure that y gets executed
means that x has already been executed. x post-
dominates y if every trace postfix which begins
with y also contains x. Or one can say that x post-
dominates y if every execution of y indicates that
x will also be executed in a relatively short period
of time.

Frequency of execution can help us determine whether two
events will always be executed at – more or less – the same
time.

3. The Heuristic

Applying the heuristic and analyzing its results is defined
as a six-step process. In this section, we’ll describe each of
these six steps and explain the inner workings.

Step 1: Define a filter A first reduction step is the elim-
ination of irrelevant events from the trace, i.e. low-level
method calls or method calls to parts of the system we’re
not interested in. Table 1 shows the results of a normal trac-
ing operation and of a tracing operation which filters out all
method calls belonging to classes from the Java API1 (Java
2 Standard Edition, release 1.4.1).

1The Java API is a standard library that contains functionality for deal-
ing with strings, inter process communication, containers, ...

Jakarta Tomcat Fujaba 4
4.1.18

Execution time 48s 70s
(without tracing)
Classes (total) 13 258 15 630
Events 6 582 356 12 522 380
Unique events 4 925 858 505
Classes (filtered) 3 482 4 253
Events 1 076 173 772 872
Unique events 2 359 95 073

Table 1. Comparison of total tracing versus
filtered tracing.

As we can see in Table 1, the reduction is significant as the
resulting trace is between 7 and 15% of the original trace.

Step 2: Trace using the filter This step consists of run-
ning the program according to a specific scenario which ac-
tivates the functionality the reverse engineer is interested in.
The result of this step is a file which contains a chronolog-
ical list of all method calls which were executed during the
scenario. The filter defined under step 1 is crucially impor-
tant here, because it allows to reduce the probe effect2 [1].

Step 3: Frequency Analysis This step is inspired on the
Frequency Spectrum Analysis (FSA) work of Thomas Ball
[2]. The idea is that using the calling frequency of the exe-
cuted methods, we can distinguish (1) high-level function-
ality from more low-level functionality and (2) can relate
certain method-calls through their frequency.
In our case, we count the events, i.e. we create a map which
contains for each unique method found in the trace the num-
ber of times it has been called. We decided to perform this
step post-mortem, i.e. after the tracing operation itself (Step
2), in order to make sure that the tracing operation remained
lightweight and thus didn’t influence the program under ob-
servation (see also the probe effect2).

2This effect can be compared to the Heisenberg principle (1927), well-
known in the field of quantumphysics. This principle states that the more
is known about the place of a particle, the less can be known about it’s
speed, and vice versa. The same is true in our context: if the level of detail
of the trace capturing mechanism is high, i.e. the more you know about the
program, the behavior of the program gets more affected. The converse is
also true.
Some examples of how the program under review can be influenced are:
different scheduling of threads, slow responsiveness from the application
which gets users agitated so that the users keeps repeating his/her com-
mands to the program, ... All these factors can influence the quality of the
trace data.

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



Step 4: Frequency Annotation We walk over the orig-
inal trace and annotate each event with the frequency we
find in the map we’ve created in Step 3. The result is
a chronological list of executed methods, with an added
first column which respresents the frequency of execu-
tion of the method listed in column two. Remark that
the values found in the first column represent the total
number of times a method is executed during the sce-
nario. It is important to use the total frequency of execu-
tion because we want to distinguish methods working to-
gether based on their relative frequencies. An example:

...
543 XMLParser.init()
978 XMLParser.parseString(String)
1243 XMLParser.closingTagFound()
1243 XMLParser.validXMLElement()
543 XMLParser.close()
...
543 XMLParser.init()
978 XMLParser.parseString(String)
1243 XMLParser.closingTagFound()
...
As we wish to make an abstraction, we explictely omit ob-
ject identifiers (OID’s) as we aren’t looking for specific in-
stances of interaction protocols.

Step 5: Dissimilarity Measure Using the annotated
trace we sample the frequencies of a sequence of method
calls, resulting in a characteristic dissimilarity measure for
that sequence of events. Conceptually this characteristic
dissimilarity measure can be compared with a fingerprint.
When a regular pattern emerges in the values of the
characteristic measure, we talk about a frequency pattern.
The sampling mechanism uses a sliding window mecha-
nism to walk over the annotated trace. When going over
the trace, we let the window fill up; once the window
size is reached, we apply the dissimilarity measure on the
frequencies of the events in the window and then discard
the contents of the window. We repeat the process until the
end of the trace is reached.

... ...
fi−1 eventi−1

fi eventi
fi+1 eventi+1

fi+2 eventi+2

fi+3 eventi+3

fi+4 eventi+4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
apply dissimilarity measure

fi+5 eventi+5

... ...
We illustrate the process with a window size 5. The dissim-
ilarity index is applied on the frequencies of the events that

lie in the interval [fi, fi+4], after that ’i’ is incremented by
5, the window size, and the process is repeated. The current
implementation thus uses simple consecutive blocks for the
windows. In the future we will also be looking at a sliding
window mechanism, which would allow for overlaps to be
taken into account.

In our experiment, we’ve taken the most commonly
used distance metric, namely the Euclidian distance [5, 7].

d =
∑w−1

j=1

√
(fj−1 − fj)2

Euclidian distance: with ’w’ the window size and fj as the
frequency of the j-th event in the current window on the

trace

Step 6: Analysis When we’ve covered the previous steps,
we are now in a position to analyze the dissimilarity mea-
sure and the trace looking for clues that point to interesting
event clusters.

• On the one hand we are looking for regions in the trace
where the frequency of execution is (almost) identical.
Looking at the events in these regions, we observe that
there is a very small number of methods, i.e. less than
ten, that is frequently executed for some time. From
our two case studies we found that a good example of
this situation is the traversal of a linked list where the
same operations are performed on the listmembers.
Other cases, where the dissimilarity value is near-zero,
are where there is a frequently executed interaction
protocol.

• On the other hand we look for recurring patterns in the
dissimilarity index. As we’ve mentioned before, we
call this category frequency clusters. A single occur-
rence of such a recurring event cluster is then called a
frequency signature. Finding clusters of events with a
similar pattern in the dissimilarity index points to the
recurrent activation of the same (end-user) function-
ality. The fact that the dissimilarity index for these
regions is not the same, but similar, can be attributed
to the polymorphic behaviour of the application. The
same polymorphic behaviour is also one of the reasons
why the dissimilarity index isn’t near-zero.

Hypothesis Having explained the inner workings of the
heuristic, we are now ready to formulate our four-part hy-
pothesis.

1. The majority of the found clusters will in fact be fre-
quency patterns. Frequency patterns are mostly the
result of using polymorphism and because polymor-
phism is abundantly present in object-oriented soft-
ware, we expect this type of clusters to be numerous.

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



2. Enlarging the window size introduces noise in the
frequency signatures because sequences of methods
which logically form a whole are perhaps smaller than
the window size. This can lead to false negatives.

3. Shrinking the window size introduces noise on the re-
sults because when frequency signatures become so
small, everything becomes a frequency pattern. This
can lead to false positives.

4. Regions in which a certain action is repeated become
easily discernible: if at a point in time x a certain func-
tionality is activated and at another point in time y the
same functionality is activated, this will be visible in
the dissimilarity values.

4. The experiment

This section will provide empirical data on and anec-
dotal evidence about the clusters found in the event traces
in the two case-studies we used. We consider these results
to be preliminary, because (1) the validation of the results
has only been done for two cases, (2) the results have
only been compared manually with the traces. We want to
verify the results more thoroughly in another experiment
which would allow us to visualize the clusters in parallel
to browsing the traces in order to do a more thorough
validation.

We use two well-known open-source Java programs
in our experiments:

1. For the representative of a non-graphical, server-like
program we chose Jakarta Tomcat of the Apache Soft-
ware Foundation3. This application is well-known and
widely used for its excellent Java Servlet and Java
Server Pages (JSP) implementations.

2. On the other hand we have chosen Fujaba4, an open-
source UML tool with Java reverse engineering capa-
bilities. Due to its heavy use of the Java Swing API
it’s an excellent representative for applications with a
heavy GUI.

We performed three experiments. We will present them in a
brief overview to give a clearer view on why we performed
each of them.

1. The first experiment, performed on Jakarta Tomcat,
was executed in order to validate our hypothesis about
window sizes. Starting from the same event trace we

3More information can be found at: http://www.apache.org/
4Fujaba stands for ”From UML to Java and Back Again”,

more information on this project can be found at: http://www.uni-
paderborn.de/cs/fujaba/

used different window sizes when applying our algo-
rithm.

2. The second experiment recreates the first one, but this
time for our other case-study, namely Fujaba.

3. The third experiment on the other hand, focusses on
a slightly different aspect. We wanted to know how a
very specific usage scenario would be projected onto
the dissimilarity graph. Therefore, we defined a usage
scenario with a small number of repetitive actions in it
and looked at the results of our heuristic.

As a final note we wish to add that for all three experi-
ments we made use of the filteringtechnique that eliminates
method calls to classes from the Java API, see also Table 1.

4.1. Jakarta Tomcat 4.1.18

4.1.1 Experiment 1

As we pointed out in the previous subsection, this ex-
periment was set-up to show the results of differing the
window size in our heuristic. We discuss the results of
the experiment by looking at Figures 1 through 4. These
figures represent the dissimilarity value of a group of
methods, the current window, at a certain point in time
during the execution of the program. As such, the X-axis
can be interpreted as being time. The Y-axis then is the
dissimilarity value.

We start by looking at the smaller window sizes and
then gradually increase the size of the window. The reason
behind this is that we want to make sure that by increasing
the window size, we don’t get any false negatives due to
the noise we expect when using larger window sizes.
For the purpose of detecting the frequency patterns we
talked about earlier, we zoomed in on an interval of the
chart in Figure 4. The result of this is shown in Figure
5. When comparing the results of our first experiment
with the hypotheses we introduced in the previous section,
where does this leave us?

1. From figures 1 through 4 it is clear that regions where
the dissimilarity is near-zero are rather limited. In this
trace we can only detect a handful of them. Frequency
patterns however are much more frequent, just look at
Figure 5: between index 86000 and 99000 on the X-
axis there is a clear repetition in the dissimilarity mea-
sure.

2. Increasing the window size doesn’t seem to have an
influence on the regions with near-zero dissimilar-
ity. This is mainly due to the fact that the execu-
tion sequences in these regions remain constant for

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



0 1115650
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y 
va

lu
e

As the chart shows, until the 150.000th x-value the
dissimilarity measure (Y-axis) remains low. After that there
is a small period where the dissimilarity is near-zero. The
interval where the dissimilarity is low, points to a high
repetition of method invocations (either identical method
invocations or method invocations related through their
frequency of invocation). The most common instances of
this kind of repetition are for example the traversal of a

linked list.

Figure 1. Visualization of Tomcat with dissim-
ilarity measure using window size 2

some time, i.e., the execution pattern is longer than
the (large) window size. Experimenting with window
sizes in the neighborhood of 100, however, does show
that noise is introduced. This is true for both the re-
gions with near-zero dissimilarity and the frequency
patterns. On the other hand, frequency patterns are
more easily discernible with slightly larger window
sizes: in figures 3 and 4 for example, they are much
easier to spot than in figures 1 and 2.

3. Taking a small window size on the other hand makes
no real difference for distinguishing regions with near-
zero dissimilarity. Frequency patterns however do be-
come more difficult to see in the trace with small win-
dow size.

Before going over to our second experiment, we first turn
our attention to the specifics of the already mentioned fre-
quency patterns. Some intervals show a recurring pattern in
the dissimilarity measure. We took Figure 4 and blew up
the interval [80000, 100000] for the X-axis. The result is
shown in Figure 5.

0 1115650
0

1

2

3

4

5

6

7

8
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y 
va

lu
e

Low or almost zero values for the dissimilarity measure are
still clearly visible when using a window size of 5 events.
No extra places where there is a low dissimilarity value
have been added, so there’s no report on false positives.
The false negatives didn’t come through either: no regions

where the dissimilarity value is near-zero have
disappeared with regard to Figure 1

Figure 2. Visualization of Tomcat with dissim-
ilarity measure using window size 5

Frequency patterns are even more interesting than the re-
gions that have a near-zero dissimilarity value. Why? Be-
cause (1) these frequency patterns are much more com-
mon and (2) because of the polymorphic nature of object-
oriented software, it is much more realistic to find clusters
in which not every event is executed the same number of
times over and over again. This can be explained by the late
binding mechanism in which the exact method invocation
depends on the type of data to be processed. We illustrate
this with an example:

execution sequence 1 execution sequence 2
eventa eventa
eventb eventb
eventc eventx
eventd eventy
evente evente

In this example, after eventa and eventb have been executed,
due to polymorphism there is a choice between for example
events c, d or events x, y.
Let’s suppose fa = fb = fe and that fa �= fc, fa �= fd.
Neither for execution sequence 1 nor execution sequence
2 would this yield a zero dissimilarity value. The chance

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



0 1115650
0

2

4

6

8

10

12
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y 
va

lu
e

When doubling the window size to 10, there is still no
indication of false negatives. Intervals with low

dissimilarity are still easily discernible.

Figure 3. Visualization of Tomcat with dissim-
ilarity measure using window size 10

0 80000 1115650
0

2

4

6

8

10

12

14

16

18
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y 
va

lu
e

We again doubled the window size and have no indication
of false negatives.

Figure 4. Visualization of Tomcat with dissim-
ilarity measure using window size 20

that fc = fx and fd = fy is pretty slim. That’s why both
execution sequences give rise to a unique frequency signa-

ture. Unique, because when fc �= fx or fd �= fy they will
certainly generate different values for the dissimilarity mea-
sure.
Recording these frequency patterns as clusters when they
tend to be present multiple times in the event trace is a good
idea, because they have some interesting properties:

• They often tend to repeat themselves in the same lo-
cality.

• From manual inspection we’ve learned that the repe-
tition of method invocations is more realistic because
of the greater number of unique events involved. More
realistic because in the case of clusters formed through
the near-zero dissimilarity measure criterium, the rep-
etition seems concentrated around only a few methods.
The clusters based on the frequency pattern criterium
however are constituted out of a variety of method in-
vocations. That makes these clusters much more real-
istic in large-scale object-oriented systems.

80000 90000 100000
0

0.5

1

1.5

2

2.5
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y 
va

lu
e

We’ve made an annotation with two horizontal stripes to
the figure where there is a clear pattern of repetition. In
fact, if you look closely, you see a one-time repetition

pattern in the annotated region. Considering the fact that
this pattern ranges over around 10000 events, we have to
say that this is important enough to investigate further.

Figure 5. Blowup of the interval [80000,
100000] of Figure 4 to show frequency pat-
terns

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



4.2. Fujaba 4.0

For this case-study we’ve opted to perform two separate
experiments. One experiment is a repeat of the Tomcat ex-
periment, but this time on Fujaba. The second is an exper-
iment whereby a scenario with some repetitive actions is
observed.

4.2.1 Fujaba experiment 1

Wewon’t show the results for all window sizes as we did for
the Tomcat case-study, we’ll just go straight to the largest
window size, namely window size 20.
When looking at Figure 6, what immediately stands out is
the oscillation of the dissimilarity measure in the interval
[1, 35000]. From manual inspection, we learn that this be-
havior stems from the animated ”splash screen”5 from Fu-
jaba. From index 35 000 onwards, we begin executing the
scenario. This scenario consists of the drawing of a simple
class hierarchy. Intuitively it’s logical to assume that draw-
ing a number of classes also invokes a sequence of methods
the same number of times. This is exactly what Figure 6
shows when you look at the interval [35000, 45000].

0 1 2 3 4 5 6

x 10
4

0

5

10

15
x 10

4

Samples

D
is

si
m

ila
rit

y 
va

lu
e

The most interesting interval is [35000, 45000]. Here we
clearly see a four-time repetition pattern.

Figure 6. Visualization of Fujaba with dissim-
ilarity measure using window size 20

5A splash screen is an introduction screen for a program that’s start-
ing up. In the case of Fujaba it is animated and has text scrolling over
it. Graphically it is quite heavy, so this can explain the heavy oscillating
behavior of the dissimilarity measure.

Although this second experiment isn’t a good example for
the near-zero dissimilarity measure, it clearly does support
the frequency patterns theory. The regular pattern that is
visible after X-index 35000 is a good example of this. With
respect to our hypotheses, we can say that the conclusions
from the Tomcat case remain valid here: medium to large
window sizes remain the most interesting to distinguish the
frequency patterns.

4.2.2 Fujaba experiment 2

Remaining with Fujaba, we conducted a second experi-
ment. We defined a specific usage-scenario with a highly
repetitive nature. This scenario can be described as follows:
after starting the program, we defined a class-hierarchy.
The hierarchy consisted of one abstract base class, several
child-classes, who themselves also had a number of child-
classes. The total hierarchy consisted of 8 classes with a
maximum nesting depth of 3.
Intuitively we expect that the visualization of the dissim-
ilarity metric would show an 8-time repetition. Figure
7 shows that this is indeed the case. The graph clearly
shows 9 peaks in the dissimilarity value. Although these
are interesting, we are more interested in the 8 interlying
”valleys” (or depressions). The reason that these 8 regions
are valleys and not peaks can be explained by the fact
that the methods who are working together to draw such a
class are closely related through their frequencies. These 8
valleys point to the functonality that’s activated for drawing
the class that’s added to the hierarchy. Note however, how
the valleys become more stretched as we add more classes
to the hierarchy. Inspection of the trace showed that this is
due to the layout algorithm which needs more actions to
perform the (re)layout operation due to the higher number
of objects that have to be placed.

Instead of showing listings from the actual trace to
show you the repetitive nature of the actions that can
be seen around the X-axis interval [44 000, 54 000], we
decided to use techniques for the detection of duplicated
code. This allows us to show you that the valleys in Figure
7 contain a lot of repetition in the executed methods. This
evidences only the repetitive nature of method invocations
when performing a specific functionality. The second
aspect, namely that methods working together to achieve a
common goal have the same (or related) method invocation
frequency became clear after manual inspection of the
annotated trace (see also section 3, step 4).
The result of applying duplicate code detection techniques
is shown in the mural view of Figure 8. Two interesting
properties of this figure are:

1. (short) lines that run parallel to the main diagonal. This
points to (quite lengthy) duplication.

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

1.5

2

2.5
x 10

5

Samples

D
is

si
m

ila
rit

y 
va

lu
e

8 "valleys" 

This graph shows the dissimilarity evolution of Fujaba
scenario with a high degree of repetition. The executed

scenario consisted of drawing a class hierarchy consisting
of 8 classes. The 8 corresponding ”valleys” are annotated
on the graph. Note that the valleys become somewhat
larger towards the end, this can be attributed to the fact
that the layout algorithm has to be called more times as

more objects are placed on the drawingcanvas.

Figure 7. Visualization of a Fujaba scenario
with a high degree of repetition

2. recurring patterns in the lower right quadrant of the
figure. The very similar shape of the white spots in the
lower right quadrant also points to a lot of repetition in
the execution trace.

Moreover, when we compare this with the findings from
Figure 7 we find that the regions which are white in Fig-
ure 8 are the regions which come out as ”peaks” in Figure
7. This evidences the fact that the methods which are per-
formed during the peaks can in fact be seen as glue code.
This is in accordance with our earlier findings from the dis-
similarity value: regions with a high degree of repetition
(and/or methods who work together) show a relatively low
dissimilarity value.

4.3. Results

What can all these charts learn us?

1. Regions with near-zero dissimilarity value are easy to
spot, even with a window size that’s quite large. This
means that we can easily use a big window size, thus

Figure 8 shows a mural view of the trace in the interval 44
000 till 54 000. This mural view is produced by Duploc

[4], a tool for detecting duplicated code.
In short, this technique plots a point every time a duplicate
line in the event trace is found. Logically, the diagonal
(from top left to bottom right) always contains such a dot.
However, it becomes more interesting when you can see
other lines and/or patterns in it: this points to real
duplication. As such, this plot evidences that there is

indeed a lot of repetition in the trace.

Figure 8. Duploc output of part of the trace
(event interval 44 000 to 54 000).

reducing the amount of data and still find sequences of
events that logically form a whole.

2. Frequency patterns are much more common than the
first type of clusters. How common they are exactly
is difficult to state at the moment. We presume that
the size of the program, i.e. the number of classes and
methods, plays a crucial role. Programs in which cer-
tain actions are performed frequently also form bet-
ter candidates for detecting frequency patterns. Both
Tomcat and Fujaba fall into this category. From our

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



experiences with the two case studies presented here,
our predictions are that of the full event trace, some
70% of the events can be catalogued as belonging to a
detected cluster. This number sounds reasonable, but is
nevertheless perhaps not optimal. A full 100%, how-
ever, can in our opinion never be reached because of
the necessary ”glue code” between components of a
large software system.

3. The experiment in which we used a scenario with
a highly repetitive nature learned us that it is quite
easy to spot functionality when using our heuristic.
A groups of methods working together for reaching a
common goal leave behind a very characteristic fre-
quency pattern.

4.4. Open questions

After performing our case studies, some open questions
remain. For example, we didn’t establish an optimal win-
dow size for our heuristic. Indeed, a large window size
makes the analysis-step more efficient because there is less
data, i.e. less dissimilarity measures, to work with; fre-
quency patterns are also easier to distinguish. Taking the
window size too large, however, means a loss of precision.
The ideal window size doesn’t exist however, because it’s
related to the size and structure of the program. More re-
search however can be spent in determining a window size
that’s acceptable for a wide range of programs.
A second open question is the dissimilarity measure used.
Although the Euclidian distance is the most commonly used
distance metric, it isn’t perhaps the best one for our type of
experiment [5, 7]. Future experiments with different dis-
tance metrics should bring clarity here.

5. Related work

A number of techniques have been proposed to present
the end-user with an analyzed trace. These techniques try
to formulate a synthesis for the user, so that the huge raw
data is reduced to a more scalable, more readable, easier to
interpret format. We will give a brief overview of some of
these techniques.

Remark that the techniques listed below are – like
ours – based solely on dynamic analysis. Other techniques
that combine static and dynamic analysis are the works of
Tamar Richner [14] and Tarja Systä [17].

Software reconnaissance ”Software reconnaissance”
[20] is a technique whereby several execution scenarios
are defined. The set of scenarios can be divided in two:
one subset of scenarios activate a certain functionality

the user is interested in, while the other subset doesn’t
have this functionality activated. The resulting traces from
these 2 subsets are than analyzed for that piece of trace
that is present in the positive subset, i.e. the traces that
result from executing the scenarios that contain the specific
functionality, and not present in the negative subset.

Mapping traces to architectural views This technique
[19] aims to cluster events together into architectural views
based on basic - a priori - knowledge the user has of the
system, i.e. the main components have to be known. The
fact that there has to be some knowledge of the system can
be seen as a disadvantage, but in practice due to the iter-
ative nature of regaining architectural insight, this will al-
most surely be the case with many techniques.

Statistical clustering The technique of real-time statis-
tical clustering [12] was designed for use in parallel pro-
cessing environments. The basic idea behind it however re-
mains interesting when considering ways to reduce event
trace data. Using performance measures from the proces-
sors in this multi-processor environment, similar temporal
trajectories in the performance measures are detected. Re-
gions of the trace which coincide with these similar tem-
poral trajectories are considered clusters. It is easy to see
that this technique can also be adapted to single-processor
systems.

6. Future work

Up until now we’ve concentrated on discovering clusters
in the event trace. These clusters can help in visually de-
tecting patterns in the trace, but can also help in analyzing
the trace further. One of the steps we hope to make in the
near future is finding clusters that are (1) identical or (2)
very similar and abstracting these clusters into a pattern of
execution. When we can make this abstraction, we will be
able to reduce the size of the trace considerably [3].

7. Conclusion

We have shown that clustering event traces based on the
frequency of events is a real possibility. We employed the
Euclidian distance as the dissimilarity measure and have
also shown that increasing the window size, doesn’t impair
with distinguishing regions with near-zero dissimilarity val-
ues. Moreover, we have found that regions that contain so-
called frequency patterns are even more interesting, because
the conditions causing them are (1) more frequent and (2)
more realistic in object-oriented software. We conclude by
saying that from the manual inspections we did of the case-

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)



studies our predictions are that using our heuristic helps in
dividing around 70% of the trace into clusters.

References

[1] J. Andrews. Testing using log file analysis: tools, methods,
and issues, 1998. Proc. 13 th IEEE International Conference
on Automated Software Engineering, Oct. 1998, pp. 157-
166.

[2] T. Ball. The concept of dynamic analysis. In ESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[3] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Ex-
ecution patterns in object-oriented visualization. In Pro-
ceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), 1998.

[4] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code. In
H. Yang and L. White, editors, Proceedings ICSM’99 (Inter-
national Conference on Software Maintenance), pages 109–
118. IEEE, 1999.

[5] C. Fraley and A. E. Raftery. How many clusters? which
clustering method? answers via model-based cluster analy-
sis. The Computer Journal, 41(8):578–588, 1998.

[6] J. H. Jahnke and A. Walenstein. Reverse engineering tools
as media for imperfect knowledge. In Proceedings of the
Seventh Working Conference on Reverse Engineering, pages
22–31. IEEE, 2000.

[7] L. Kaufman and P. Rousseeuw. Finding groups in data.
Wiley-Interscience, 1990.

[8] A. Lakhotia. Understanding someone else’s code: Analysis
of experiences. Journal of Systems and Software, pages 269–
275, Dec. 1993.

[9] J. R. Larus. Efficient program tracing. Computer, 26:52–61,
May 1993.

[10] K. Lukoit, N. Wilde, S. Stoweel, and T. Hennessey. Trace-
graph: Immediate visual location of software features. In
ICSM 2000 Proceedings, pages 33–39, 2000.

[11] M. Mock. Dynamic analysis from the bottom up, 2003. In
ICSE 2003 Workshop on Dynamic Analysis (WODA 2003)
Portland, Oregon May 9, 2003.

[12] O. Y. Nickolayev, P. C. Roth, and D. A. Reed. Real-time
statistical clustering for event trace reduction. The Inter-
national Journal of Supercomputer Applications and High
Performance Computing, 11(2):144–159, Summer 1997.

[13] M. Renieris and S. P. Reiss. ALMOST: Exploring program
traces. In Proc. 1999 Workshop on New Paradigms in Infor-
mation Visualization and Manipulation, pages 70–77, 1999.
http://citeseer.nj.nec.com/renieris99almost.html.

[14] T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In H. Yang and L. White, editors, Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 13–22. IEEE, 1999.

[15] R. Smith and B. Korel. Slicing event traces of large software
systems. In Automated and Algorithmic Debugging, 2000.

[16] D. Spinellis. Code Reading: The Open Source Perspective.
Addison-Wesley, 2003.

[17] T. Systa. Understanding the behavior of java programs. In
Proceedings of the Seventh Working Conference on Reverse
Engineering, pages 214–223. IEEE, 2000.

[18] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of for-
mal concept analysis support for software engineering activ-
ities. In G. Stumme, editor, Proceedings of the First Interna-
tional Conference on Formal Concept Analysis - ICFCA’03.
Springer-Verlag, February 2003. to appear.

[19] R. J. Walker, G. C. Murphy, J. Steinbok, and M. P. Ro-
billard. Efficient mapping of software system traces to ar-
chitectural views. Technical Report TR-2000-09, 07 2000.
http://citeseer.nj.nec.com/walker00efficient.html.

[20] N. Wilde. Faster reuse and maintenance using software re-
connaissance, 1994. Technical Report SERC-TR-75F, Soft-
ware Engineering Research Center, CSE-301, University of
Florida, CIS Department, Gainesville, FL.

Preprint of the paper to appear in the Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'04)


