
Regaining Lost Knowledge through Dynamic Analysis and Aspect Orientation

— An Industrial Experience Report —

Andy Zaidman1, Bram Adams2, Kris De Schutter2, Serge Demeyer1, Ghislain Hoffman2, and Bernard
De Ruyck3

1Department of Mathematics and Computer Science, University of Antwerp, Belgium
{Andy.Zaidman, Serge.Demeyer}@ua.ac.be
2SEL, INTEC, University of Ghent, Belgium

{Bram.Adams, Kris.DeSchutter, Ghislain.Hoffman}@UGent.be
3Koninklijke Apothekersvereniging Van Antwerpen (KAVA), Antwerp, Belgium

bdr@kava.be

Abstract

This paper describes our experiences of applying dy-
namic analysis solutions on an industrial legacy applica-
tion written in C, with the help of Aspect Orientation (AO).
We use a number of dynamic analysis techniques that can
help in alleviating the problem of (1) establishing the qual-
ity of the available regression test and (2) regaining lost
knowledge of the application. We also show why our as-
pect language for C, aspicere, is well-suited for using dy-
namic analysis in legacy environments. Finally, we present
the case study itself, the results we have obtained and the
validation thereof by the original developers and current
maintainers of the application. We also mention some typ-
ical pitfalls that we encountered while dealing with legacy
applications in a reengineering context.

1 Introduction

Legacy software is omni-present: software that is still
very much useful to an organization – quite often even indis-
pensable – but a burden nevertheless [4]. A burden because
the adaptation, integration with newer technologies or sim-
ply maintenance to keep the software synchronized with the
needs of the business, carries a cost that is too great. This
burden can even be exaggerated when the original develop-
ers, experienced maintainers or up-to-date documentation
are not available [20, 5, 17, 15, 7, 8].

Apart from a status-quo scenario, in which the business
has to adapt to the software, a number of scenarios are fre-
quently seen:

1. Rewrite the application from scratch, from the legacy
environment, to the desired one, using a new set of
requirements [4].

2. Reverse engineer the application and rewrite the appli-
cation from scratch, from the legacy environment, to
the desired one [4].

3. Refactor the application. One can refactor the old ap-
plication, without migrating it, so that change requests
can be efficiently implemented; or refactor it to mi-
grate it to a different platform.

4. Often, in an attempt to limit the costs, the old appli-
cation is ”wrapped” and becomes a component in, or
a service for, a new software system. In this scenario,
the software still delivers its useful functionality, with
the flexibility of a new environment [4]. This works
fine and the fact that the old software is still present is
slowly forgotten. This leads to a phenomenon which
can be called the black-box syndrome: the old applica-
tion, now component or service in the new system, is
trusted for what it does, but nobody knows – or wants
to know – what goes on internally (white box).

5. A last possibility is a mix of the previous options, in
which the old application is seriously changed before
being set-up as a component or service in the new en-
vironment.

Certainly for all scenarios but the first, the software en-
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gineer would ideally like to have:

• a good understanding of the application in order to start
his/her reengineering operation (or in order to write
additional tests before commencing reengineering)[19,
7]

• a well-covering (set of) regression test(s) to check
whether the adaptations that are made are behavior-
preserving [8]

However, in practice, legacy applications seldom have up to
date documentation available [17], nor do they have such a
set of tests.

In this paper we describe the application of a num-
ber of dynamic-analysis-based reverse engineering solu-
tions in the context of an industrial legacy C software sys-
tem [6, 17]. Our goals are to (1) regain lost knowledge, (2)
determine test coverage and (3) identify problematic struc-
tures in the source code. We build upon a number of recent
dynamic analysis techniques that were originally developed
for object-oriented software [22, 21].

However, applying dynamic analysis in a legacy context
is not without its pitfalls. This is where we think that As-
pect Oriented Programming (AOP) can make a difference
[11]. With the general ability to insert advice in all func-
tions and procedures or the fine-grained injection of code
with the help of precisely defined pointcuts, we are able to
perform dynamic analysis in a clean and efficient way.

This paper is organized as follows: Section 2 starts off
with a description of the dynamic analysis solutions we ap-
ply. Section 3 introduces our AOP implementation, while
Section 4 introduces the case study. The approach we fol-
lowed is explained in Section 5, while the results and vali-
dation thereof are shown in Section 6. Section 7 mentions
some typical legacy environment pitfalls we had to deal
with. Section 8 concludes and points to future work.

2 Dynamic analysis

Recently a number of novel dynamic analysis techniques
that deal with program comprehension have been developed
[9, 10, 22, 21]. Most of these techniques have been devel-
oped in the context of object-orientation, but we considered
it worthwhile to verify whether these techniques could be
”transplanted” to the context of procedural systems. Fur-
thermore, the techniques proposed in [22, 21] have previ-
ously been validated using publicly available documenta-
tion from open source software. In the context of this in-
dustrial case study however, we will be able to validate the
results with the original developers and current maintainers
(see Section 6).

This section will briefly discuss two techniques that aim

at improving the program comprehension process (sections
2.1 and 2.2) and a simple algorithm that allows to calculate
test coverage (section 2.3).

2.1 Dynamic coupling based — webmining

The basis for this technique is the measurement of run-
time coupling between modules of a system. Modules that
have a high level of runtime export coupling, are often mod-
ules that contain important control structures, and request
other modules to do work for them. As such, these are ideal
candidates to study during early program comprehension.
To overcome the typical problem of coupling measurements
—each is between two classes or modules— we add web-
mining techniques. This makes sure that not only coupling
between two separate modules is taken into account, but
also a transitive measurement is used for determining the
most important modules of a system [21].

In datamining, many successful techniques have been
developed to analyze the structure of the web. Typically,
these methods consider the Internet as a large graph in
which important web pages can be identified based solely
on the hyperlink structure. By interpreting call graphs as
web graphs, we show how to apply these ”webmining”
techniques to call graphs, in order to uncover important
classes.

Based on the call graph of an execution trace of the ap-
plication, the HITS webmining algorithm [12] allows us to
identify so-called hubs and authorities. Intuitively, on the
one hand, hubs are pages (classes) that refer to other pages
containing information rather than being informative them-
selves. Standard examples include web directories, lists of
personal pages, ... On the other hand, a page is called an
authority if it contains useful information.

The first step to perform is to compact the call graph,
which removes duplicate tuples from the form (call origin,
call destination) and replaces it with a weight on the edge
indicating the number of calls. For more details about this
process, please consult [21].
Next we apply the HITS algorithm: every node in the graph
i gets assigned to it two numbers; ai denotes the authority of
the page, while hi denotes the hubiness. Let i → j denote
that there is a calling relationship between modules i and j,
and let w[i, j] be the number of unique calls between i and
j. The recursive relation between authority and hubiness is
captured by formulas (1) and (2).

hi =
∑

i→j

w[i, j] · aj (1)

aj =
∑

i→j

w[i, j] · hi (2)
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After each update, the values are normalized1 (for simplic-
ity, not done in the example of Table 1), The HITS algo-
rithm is known to converge to stable sets of authority and
hub weights after around 11 iterations [12].

The resultset obtained from this analysis is a list of
classes, ranked according to their importance.

From previous case studies in the context of object-
oriented systems, we have learned that the classes that are
catalogued as ”hubs” by the algorithm are the most critical
components of the system and are thus excellent candidates
for early program understanding [21].

1 2

4

3

5

Figure 1. Example web-graph

Example Consider the graph given in Figure 1. Table 1

Nodes
1 2 3 4 5

It
er

at
io

ns 1 (1,1) (1,1) (1,1) (1,1) (1,1)
2 (2,0) (1,3) (0,3) (2,1) (2,0)
3 (4,0) (3,8) (0,5) (6,2) (6,0)
4 ... ... ... ... ...

Table 1. Example of the iterative nature of the
HITS algorithm. Tuples have the form (H,A).

shows three iteration steps of the hub and authority scores
(represented by tuples (H,A)) for each of the five nodes from
Figure 1. From this, we can conclude that 2 and 3 will be
good authorities as can be seen from their high A scores in
Table 1. Looking at the H values, 4 and 5 will be good hubs,
while 1 will be a less good one.

2.2 Frequency of execution based analysis

Thomas Ball [3] introduced the concept of ”Frequency
Spectrum Analysis”, a way to correlate procedures, func-
tions and/or methods through their relative calling fre-
quency. The idea is based around the observation that a
relatively small number of methods/procedures is responsi-
ble for a huge event trace. As such, a lot of repeated call-
ing of procedures happens during the execution of the pro-

1In this context, this means mapping everything to the range [0, 1].

gram. By trying to correlate these frequencies, we can learn
something about (1) the size of the inputset, (2) the size of
the outputset and —most interesting for us— (3) calling re-
lationships between methods/procedures. In [22] we built
further upon this idea, by proposing a visualization of the
trace that allowed for visual detection of parts of the event
trace that showed tightly collaborating methods.

For our case study, we will use this technique to uncover
coupling relations between procedures by looking at their
calling frequencies.

2.3 Test coverage analysis

Refactoring, migrating, wrapping or limited forms of
reengineering require that the basic functionality of the ap-
plication remains unchanged or at the very least similar. The
best way to enforce behavior preservation, is to make sure
that a well-covering regression test is available [8].

As such, before commencing a refactoring operation it is
worthwhile to verify the coverage of the tests, as to get an
idea whether the subsystems that need adaptation are indeed
tested.

When static and dynamic information about the applica-
tion are available, measuring code coverage becomes easy
[18]. Equation 3 shows how to calculate procedure cover-
age for a particular module.

coverage(A) = dynamic(A)/static(A) ∗ 100 (3)

where
dynamic(A) : # called procedures in module A
static(A): # procedures in module A

We also performed a similar calculation for establish-
ing the statement coverage percentage.

3 AOP for legacy environments

3.1 Introduction

AOP is a relatively new paradigm, grown from the limi-
tations of Object Orientation (OO) [11], and a fortiori those
of older paradigms. When faced with crosscutting concerns,
i.e. concerns which don’t walk nicely along the lines set out
by inheritance, association, etc., OO degrades to the proce-
dural programming style it ought to replace. AOP, however,
allows to isolate these crosscutting concerns in dedicated
modules (called aspects). More formally, aspects allow us
to select by quantification (through pointcuts) which events
in the flow of a program (join points) interest us, and what
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we would have happen at those points (advice). Hence we
can ‘describe’ what some concern means to an application
and have the aspect-weaver take care of the hard and repet-
itive bits for us.

3.2 Justification

Thusfar, we only mentioned OO environments and that is
also the direction AOP research was heading until recently.
Nevertheless, it is important to recognize that crosscutting
concerns have been in existence for many years without ad-
equate solutions. In practice, this has led to lots of scattered
and tangled code, making badly documented code very hard
to maintain. Having said that, it is now clear that backport-
ing new modularisation techniques like AOP to legacy en-
vironments is a sound research area.

Why AOP? Having a technology at one’s disposal able to
adapt the functionality of an application’s code without ac-
tually changing it physically, is very beneficial in the busi-
ness climate described above. At a very low level, this al-
lows to factor out tracing, null pointer checks, bug patch-
ing, . . . without breaking anything. At a higher level of ab-
straction, one can define a set of coding [14] or quality con-
ventions and enforce them. Even more abstract, mining for
business rules [16] and program logic in order to refactor
legacy systems to more sound architectures is a viable pos-
sibility. Knowing all this, AOP in the context of Cobol, C,
PL/1, . . . really makes sense and that is why we chose it for
this case study.

The authors at Ghent University have developed a frame-
work for introducing AOP in legacy languages. Cobble [13]
leverages this for Cobol applications, whereas aspicere2

[2, 1] instantiates it for C. This paper applies the latter on
an industrial case study, provided by one of our partners in
the ARRIBA (Architectural Resources for the Restructuring
and Integration of Business Applications) research-project3.

As our industrial partner has a large codebase, mainly
written in C, we used aspicere for our experiments4.

3.3 Aspicere

It is easiest to explain aspicere by a simple example (in
section 5, we’ll see another one). The C-libraries on our in-
dustrial partner’s (see section 4) old system were very fault-
tolerant with regard to string handling. When e.g. atoi()

2”aspicere” is a Latin verb and means ”to look at”. Its past participle is
”aspectus”, so the link with AOP is pretty clear.

3Sponsored by the IWT, Flanders. Also see: http://www.iwt.be
4aspicere is freely available from http://users.ugent.be/

˜badams/aspicere/

was passed a null pointer, the particular implementation of
this standard function didn’t throw up a segmentation fault,
but gracefully returned 0. This behaviour was the compiler
vendor’s own decision, and not illegal as his system was not
ANSI-compliant. When converting to Linux and its GCC-
compiler, suddenly the safety net around strcpy(), atoi(), . . .
disappears, resulting in random segmentation faults.

There are numerous solutions to this problem, rang-
ing from tedious manual editing to pure hacking (define
macro’s named strcpy(), atoi(), . . . ). Using AOP, we get a
very elegant, cleanly modularised treatment: surround calls
to infected methods by a null pointer check and only if ev-
erything is alright, the originally called method should be
invoked. This is implemented in the following advice:

1 ReturnType around safe_ato (Src,ReturnType)
2 on (Jp):
3 call(Jp,"ato.",[Src])
4 && type(Jp,ReturnType) {
5 ReturnType dst;
6

7 if (Src == NULL)
8 dst = 0; /* compiler does the cast */
9 else

10 dst = proceed();
11

12 return dst;
13 }

Here, we defined an advice called safe ato. It catches
calls to all ato.()-functions5, and guards the argument
against null pointers. If everything is safe, the original
call to ato.() proceeds, otherwise zero is returned. This
advice also illustrates aspicere’s binding mechanism. In-
deed, thanks to the type variable “ReturnType”, we only
need to write down one advice to check three functions.
Another use of bindings is the capturing of function call
arguments like Src does6. So, our bindings are comparable
to C macro’s or C++ template parameters, enriched with the
extra power of Prolog unification.

Advice is the only AOP-specific construct in aspicere.
Aspects are merely normal compilation units, with their
own methods, variables, . . .

4 Case study

The industrial partner that we cooperated with in the con-
text of this research experiment is Koninklijke Apothekersv-

5The “.” shows that we allow full regular expression support. Note that
we also advise atok(), atom(), . . . if these exist, but we can circumvent this
using metadata.

6It is also perfectly possible to alter Src before doing the proceed()-
call, although the latter notation doesn’t make this clear.
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ereniging Van Antwerpen (KAVA)7. Kava is a non-profit
organization that groups over a thousand Flemish pharma-
cists. While originally safeguarding the interests of the
pharmaceutical profession, it has evolved into a full fledged
service-oriented provider. Among the services they offer is
a tarification service – determining the price of medication
based on the patient’s medical insurance. As such they act
as a financial and administrative go-between between the
pharmacists and the national healthcare insurance institu-
tions.

Kava was among the first in its industry to realize the
need for an automated tarification process, and have taken
it on themselves to deliver this service to their members.
Some 10 years ago, they developed a suite of applications
written in non-ANSI C for this purpose. Due to successive
healthcare regulation and technology changes they are very
much aware of the necessity to adapt and reengineer this
service.

Kava has just finished the process of porting their ap-
plications to fully ANSI-C compliant versions, running on
Linux. Over the course of this migration effort, it was noted
that documentation of these applications was outdated. This
provided us with the perfect opportunity to undertake our
experiments.

As a scenario for our dynamic analysis, the developers
told us that they often use the so-called TDFS application
as a final check to see whether adaptations in the system
have any unforeseen consequences. As such, it should be
considered as a functional application, but also as a form of
regression test.

The TDFS-application finally produces a digital and de-
tailed invoice of all prescriptions for the healthcare insur-
ance institutions. This is the end-stage of a monthly control-
and tariffing process and acts also as a control-procedure as
the results are matched against the aggregate data that is
collected earlier in the process.

5 Approach

To analyse the dynamic behaviour of the TDFS applica-
tion, we needed a detailed trace of some representative runs
of the system. As already explained in section 3, this is very
easily and unintrusively done using aspects. Here, we show
one of the two advices we used 8:

1 RetType around tracing (RetType,FileStr)
2 on (Jp):
3 call(Jp,"ˆ(?!.*printf$|.*scanf$).*$")
4 && type(Jp,RetType)

7http://www.kava.be/
8The other one is needed for methods returning void.

5 && !str_matches("void",RetType)
6 && logfile(FileName)
7 && stringify(FileName,FileStr) {
8 FILE* fp=fopen(FileStr,"a");
9 RetType i;

10

11 fprintf (fp,"before ( %s in %s ) \n",
12 Jp->functionName,Jp->fileName);
13 fflush(fp);
14 i = proceed ();
15 fprintf (fp,"after ( %s in %s ) \n",
16 Jp->functionName,Jp->fileName);
17 fclose(fp);
18

19 return i;
20 }

In the body of the tracing advice (between braces), nor-
mal C code is set up to write out tracing statements to a
file. However, we need some extra things, like access to
join point context (names of method and current file) and
some means to continue the original function call. To make
the advice code generic, we also need to know the correct
return type of the advised function (RetType). All this in-
formation is accessible either from the logic variables in the
binding list (the comma-separated list on line 1) or from
the join point context (line 2). Both have gotten their values
(are bound) in the pointcut (lines 3–7). It suffices to say that
this is in fact a Prolog query denoting all calls to functions
whose name does not end in either “printf” or “scanf” and
which return something useful (i.e. non-void). In the mean-
time a variable is bound to this return type and out of some
metadata repository the name of the log file is fetched (and
quoted).

Again, this advice perfectly confirms the points we made
in 3. Instead of modifying directly the base applications
with the imminent danger of sabotaging them, AOP allows
to isolate new concerns in their proper modules, giving
more confidence and courage to system maintainers. The
aspects are written in almost plain C (no steep learning
curve), while the pointcut predicates and metadata can be
provided in libraries or designed by domain experts. Abuse
of this extra power is still possible though, and that is why
the tooling community still has a lot of work to do.

Once we got our traces, we fed them into analysis-
specific scripts. For further details about their implemen-
tation, see Section 2.

6 Results

This section will cover the results we have obtained from
applying each of the three dynamic analysis techniques.
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Furthermore, for each of the techniques we will also
present the developers’ opinions on the resultset we have
confronted them with. For this particular module, the TDFS
application, two developers were available at Kava. From
now on we will call them D1 and D2. Both have a thorough
knowledge of the structure and the inner workings of this
particular application.

Before we began discussing the results with the devel-
opers, we first presented them with a schema consisting of
each of the 15 modules and 3 questions:

1. Which is the most essential?
2. Which tends to contain the most bugs?
3. Which is the hardest to debug?

We noted their answers and also asked if there were any
particular reasons why they believed a certain module to be
important, hard to debug or to contain bugs.

We presented our results, technique by technique, to
each of the two developers separately and wrote down their
answers. Afterwards, during a short session we discussed
the results with both developers and highlighted the simi-
larities and differences in their answers.

6.1 Dynamic coupling based – webmining

6.1.1 Resultset

Our tool needed slightly over 10 hours to give us the results
listed in Table 2. The results are ranked according to the
hubiness values in the right column. This hubiness value
lies in the range [0, 1]. Some important facts that can be
derived from Table 2 are:

• the module e tdfs mut1.c stands out.
• only 7 out of the 15 modules have a value greater than

zero. Modules with a value of zero, do not call other
modules.

• the 4 modules that are specific to the TDFS application
show up in the 4 highest ranked places.

6.1.2 Discussion with developers

D1 mentioned e tdfs mut1.c and tdfs mut2.c as
being the most essential modules for the TDFS application.
io.c and cache.c are also important from a technical
point of view, but are certainly not specific to the TDFS ap-
plication, as they are used by many other applications of the
system. D1 was actually surprised at the fact that cache.c
wasn’t catalogued as being more important. csrout.c
and csroutines.c are difficult to debug, but they have
only once had to change some details in these file in a time
period of 10 years.

Module Value
e tdfs mut1.c 0.814941
tdfs mut1 form.c 0.45397
tdfs bord.c 0.397726
tdfs mut2.c 0.164278
tools.c 0.164278
io.c 0.12548
csrout.c 0.0321257
tarpargeg.c 0
csroutines.c 0
UW strncpy.c 0
td.ec 0
cache.c 0
decfties.c 0
weglf.c 0
get request.c 0

Table 2. Results of the webmining technique

D2 clearly ranks the e tdfs mut1.c module as being
the most important and most complicated module: it con-
tains most of the business logic. tdfs mut2.c makes a
summary of the operations carried out by e tdfs mut1.c
and checks the results generated by e tdfs mut1.c.
tdfs mut1 form.c is mainly responsible for building
up an interface for the end-user, while tdfs bord.c is
concerned with formatting the output.

6.1.3 Discussion

As such, the opinions of D1 and D2 are indeed very similar.
D1 ranks e tdfs mut1.c and tdfs mut2.c as being
most important, D2 points to e tdfs mut1.c as being
the most important module.

The resultset of our own technique (see Table 2) clearly
ranks e tdfs mut1.c as being the most important mod-
ule in the system. Furthermore, all modules that are specific
to this application appear at the top of the ranking.

A last remark on one of the drawbacks of this web-
mining technique: container classes or modules are often
ranked very low, because of the fact that their export cou-
pling is low [21]. This fact partly explains why cache.c
– a caching data-structure – which was expected to rank
higher according to D1, is placed quite low.

6.2 Frequency analysis

Due to the huge size of the event trace (90GB ≈ 4.86 ×
108 procedure calls), the visualization we presented in [22],
didn’t scale up to this huge amount of data. Therefore, we
opted for a slightly different solution. We still use frequency
of execution as the underlying model, but summarize the
results before visualizing.
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28580
e_tdfs_mut1::ReadCache

cache::Init_Periode
cache::memcpy

29986
io::InitMyData

io::isopen

6093357
tdfs_mut2::UW_atoi

UW_strncpy::atoi

(a)

(b)

(c)

Figure 2. Three frequency clusters from the
TDFS application

A fragment of the result is shown in Figure 2. This shows
three ”frequency clusters”. Each cluster shows the total ex-
ecution frequency, and the procedures that fall into this fre-
quency interval. Figure 2 shows different kinds of boxes, to
indicate cohesion within a frequency cluster: a box with a
full line (Figure 2.c) indicates that ≤ 50% of the methods in
the cluster come from the same module, a dashed line ((Fig-
ure 2.b) indicates total cohesion as all procedures belong to
the same module. A dotted line (Figure 2.a) meanwhile in-
dicates a level of cohesion within the frequency-cluster of
between 50 and 100%.

In total, 237 unique procedures were executed during
the scenario. Of these, 160 could be clustered into 25
frequency-clusters. In other words, 67.5% of the proce-
dures could be catalogued in clusters. When considering
the cohesion of each of these frequency-clusters, we have
the following results: two of these clusters had a full line,
i.e. they didn’t show cohesion. 12 had a dashed line, mean-
ing that all procedures within a frequency-cluster originated
from a single module, while the 11 others had a dotted line,
also indicating a strong level of cohesion.

This technique provides an easy way to find procedures
that share common goals, because they are related through
their frequency of execution. Furthermore, it allows to eas-
ily audit the system when it comes to cohesion.

The total time to perform this analysis and compute the
results was 5 hours.

6.2.1 Discussion with the developers.

D1 immediately remarked that one of the two frequency
clusters with a full line, i.e. a cluster with a limited degree
of cohesion, was actually a wrapper construction they had
hastily constructed when performing the migration from
UnixWare to Linux. These are exactly the wrappers dis-
cussed in 3.3.

The clusters found didn’t surprise the developers either.

6.2.2 Discussion

For our particular case study, 48% of the clusters were
found to be fully cohesive. These fully cohesive clusters are
accountable for 20% of the procedures. 44% were found to
be strongly cohesive; these clusters contain 49% of the to-
tal number of procedures. The largest non-cohesive cluster
had a frequency of execution of 1, consisting mainly out of
procedures with initialization functionality. The other non-
cohesive cluster was the one that caught D1’s attention for
containing wrapper functionality.

As such, we can conclude that the system is actually
well-structured, as most clusters were cohesive and these
account for 70% of all procedures.

6.3 Test coverage

6.3.1 Resultset

Starting from the event trace, determining the test coverage
of the scenario that was handed to us by the developers took
around 5 hours. For each module present in the system, we
calculated the number of covered procedures and the num-
ber of covered statements. We presented the results of this
analysis to the developers in the form of a simple HTML-
based website, similar to the way code coverage tools for
e.g. Java (e.g. Emma9) present their results.

Unfortunately, due to non-disclosure agreements we are
not able to disclose precise numbers with regard to the test
coverage of the application.

6.3.2 Discussion with developers

D1 knew that certain procedures were not tested within the
scenario of the TDFS application and told us that they were
tested in other scenarios.

D2 immediately recognized that the parts of the module
that showed up as being not tested, were actually functions
that were no longer in use. Some 5 years ago, new functions
were written for the conversion from the Belgian Franc to
the Euro and each of the functions that shows up as being
not tested by our analysis has a Euro counterpart, prepended
with e .

9http://emma.sourceforge.net/
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gcc -c -o file.o file.c

Figure 3. Original makefile.
gcc -E -o tempfile.c file.c
cp tempfile.c file.c
aspicere -i file.c -o file.c \

-aspects aspects.lst
gcc -c -o file.o file.c

Figure 4. Adapted makefile.

6.3.3 Discussion

The results from the test coverage itself were in range with
the expectations from the developers. However, our cover-
age analysis turned out to have a positive side-effect in that
the developers at Kava saw that they still had to remove por-
tions of dead code after the switch from the Belgian Franc
to the Euro was made10.

7 Pitfalls of reengineering legacy code using
AOP

Applying aspects onto a base program, is intended to
happen transparently for the end user. However, while using
our experimental legacy AOP tools during our experiments
at our industrial partner, we encountered several problems.
This section describes some of these.

7.1 Adapting the build process

The Kava application uses make to automate the build
process. Historically, all 269 makefiles were hand-written
by several developers, not always using the same coding-
conventions. During a recent migration operation from
UnixWare to Linux, a significant number of makefiles has
been automatically generated with the help of automake11.
Despite this, the structure of the makefiles remains hetero-
geneous, a typical situation in (legacy) systems.

We built a small tool, which parses the makefiles and
makes the necessary adaptations. (A typical example is
shown in Figures 3 and 4.) However, due to the hetero-
geneous structure, we weren’t able to completely automate
the process, so a number of makefile-constructions had to
be manually adapted. The situation becomes more difficult
when e.g. Informix esql preprocessing needs to be done.
This is depicted in Figures 5 and 6.

10The switch from Belgian Franc to the Euro was made in the first 6
months of 2002

11Automake is a tool that automatically generates makefiles
starting from configuration files. Each generated makefile com-
plies to the GNU Makefile standards and coding style. See
http://sources.redhat.com/automake/.

.ec.o:
$(ESQL) -c $*.ec
rm -f $*.c

Figure 5. Original makefile with esql prepro-
cessing.

.ec.o:
$(ESQL) -e $*.ec
chmod 777 *
cp ‘ectoc.sh $*.ec‘ $*.ec
esql -nup $*.ec $(C_INCLUDE)
chmod 777 *
cp ‘ectoicp.sh $*.ec‘ $*.ec
aspicere -verbose -i $*.ec -o \

‘ectoc.sh $*.ec‘ -aspects aspects.lst
gcc -c ‘ectoc.sh $*.ec‘
rm -f $*.c

Figure 6. Adapted makefile with esql prepro-
cessing.

Using our scripts to alter the makefiles takes a few sec-
onds to run. Detecting where exactly our tool failed and
making the necessary manual adaptations took us several
hours.

7.2 Compilation

A typical compile cycle of the application consisting of
407 C modules (453 KLOC in total) takes around 15 min-
utes12. We changed the cycle to:

1. Preprocess
2. Weave with aspicere
3. Compile
4. Link

This new cycle took around 17 hours to complete. The rea-
son for this substantial increase in time can be attributed to
several factors, one of which may be the time needed by
the inference engine for matching up advice and join points
(still unoptimized).

7.3 Legacy issues

Even though Kava recently migrated from UnixWare to
Linux, some remains of the non-ANSI implementation are
still visible in the system. In non-ANSI C, method dec-
larations with empty argument list are allowed. Actual
declaration of their arguments is postponed to the corre-
sponding method definitions. As is the case with ellipsis-
carrying methods, discovery of the proper argument types
must happen from their calling context. Because this type-
inferencing is rather complex, it is not fully integrated yet

12Timed on a Pentium IV, 2.8GHz running Slackware 10.0
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in aspicere. Instead of ignoring the whole base program,
we chose to ”skip” (as yet) unsupported join points, intro-
ducing some errors in our measurements. To be more pre-
cise, we advised 367 files, of which 125 contained skipped
join points (one third). Of the 57015 discovered join points,
there were only 2362 filtered out, or a minor 4 percent. This
is likely due to the fact that in a particular file lots of invoca-
tions of the same method have been skipped during weav-
ing, because it was called multiple times with the same or
similar variables. This was confirmed by several random
screenings of the code.

Another fact to note is that we constantly opened, flushed
and closed the tracefile, certainly a non-optimal solution
from a performance point of view. Normally, aspicere’s
weaver transforms aspects into plain compilation modules
and advice into ordinary methods of those modules. So, we
could get hold of a static file pointer and use this through-
out the whole program. However, this would have meant
that we had to revise the whole make-hierarchy to link these
uniques modules in. Instead, we added a “legacy” mode to
our weaver in which advice is transformed to methods of
the modules part of the advised base program. This way,
the make-architecture remains untouched, but we lose the
power of static variables and methods.

7.4 Scaleability issues

Running the program Not only the compilation was in-
fluenced by our aspect weaving process. Also the running
of the application itself. The scenario we used (see Sec-
tion 4), normally runs in about 1.5 hours. When adding our
tracing advice, it took 7 hours due to the frequent file I/O.

Tracefile volume The size of the logfile also proved prob-
lematic. The total size is around 90GB, however, the linux
2.4 kernel Kava is using was not compiled with large file
support. We also hesitated from doing this afterwards be-
cause of the numerous libraries used throughout the various
applications and fear for nasty pointer arithmetic waiting to
grab us. As a consequence, only files up to 2GB could be
produced. So, we had to make sure that we split up the
logfiles in smaller files. Furthermore, we compressed these
smaller logfiles, to conserve some diskspace.

Effort analysis Table 3 gives an overview of the time-
effort of performing each of the analyses. As you can see,
even a trouble-free run (i.e. no manual adaptation of make-
files necessary) would at least take 29 hours.

Task Time Previously
Makefile adaptations 10 s –
Compilation 17h 38min 15min
Running 7h 1h 30min
Code coverage 5h –
Frequency analysis 5h –
Webmining 10h –

Total 44h 38min 10s 1h 45min

Table 3. Overview of the time-effort of the
analyses.

8 Conclusion and future work

This paper describes our experiences with applying dy-
namic analysis in an industrial legacy C context. We used
two dynamic analysis techniques that we had previously
developed and validated for Object Oriented software and
added a simple test coverage calculation. Furthermore, this
paper describes how we used aspicere, our “AspectC” im-
plementation for collecting the traces we needed for per-
forming the dynamic analyses.

From the resultsets we obtained from our dynamic anal-
ysis experiments, we can conclude that:

• The webmining approach results in a ranking of mod-
ules according to their importance from a program
comprehension point of view. Interviews with the de-
velopers fully confirm the results that our heuristic de-
livered. The only false negative we could note, was a
container class that the developers deemed important,
but was judged as being unimportant by our technique.
This is due to the low to non-existent level of export
coupling from this particular module.

• The frequency analysis approach allowed to easily au-
dit the system’s internal structure. We found that most
of the modules are (strongly) cohesive, which indicates
that the structure is well balanced and reuse is a defi-
nite possibility. The developers agreed with our views
and told us that many modules are frequently reused.

• The test coverage itself wasn’t surprising: most results
were well in line with the developers’ expectations.
However, perhaps it still was the most interesting tech-
nique for Kava, our industrial partner. It allowed them
to remember that they still had significant portions of
dead code in their system.

As a vehicle to perform our dynamic analysis, we used
aspicere, which allowed us to use the clean and non-
intrusive, yet powerful mechanism of Aspect Orientation to
trace the entire application.
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As a clear downside of our approach, we should note the
effort it takes to perform the entire analysis. If no problems
are encountered, the entire analysis we described takes just
under 45 hours, for a system that should be considered as
medium-scale. As such, we acknowledge that we should
improve the efficiency of our tools.

In the future we will work on techniques that allow for
more fine-grained knowledge mining. One of the paths we
are currently pursuing is one where we start from the most
important classes as identified by our webmining technique
and then use Aspect Orientation to gather more fine-grained
information such as changes to parameter values, return val-
ues, etc. Another path we are examining is to perform sim-
ilar experiments to the ones we described in this paper, but
then using cobble — sibling to aspicere — to extract knowl-
edge from Cobol systems.
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