
Scalability Solutions for Program Comprehension through Dynamic Analysis

Andy Zaidman

Lab on Reengineering (LORE)
Department of Mathematics and Computer Science

University of Antwerp, Belgium
Andy.Zaidman@ua.ac.be

Abstract

Dynamic analysis has long been a subject of study in
the context of (compiler) optimization, program compre-
hension, test coverage, etc. Ever-since, the scale of the
event trace has been an important issue. This scalability
issue finds its limits on the computational front, where time
and/or space complexity of algorithms become too large to
be handled by a computer, but also on the cognitive front,
where the results presented to the user become too large to
be easily understood.

This research focusses on delivering a number of pro-
gram comprehension solutions that help software engineers
to focus on the software system during their initial program
exploration and comprehension phases.

The key concepts we use in our techniques are ”fre-
quency of execution” and runtime ”coupling”. To validate
our techniques we used a number of open-source software
systems, as well as an industrial legacy application.

1 Introduction

Any reengineering operation is preceded by a phase in
which the software engineer is trying to become familiar
with the system up to a level that allows him/her to accom-
plish the reengineering task in an orderly fashion. This pro-
cess is generally termed program comprehension[2]. Gain-
ing understanding of a system is an intensive process that
according to studies can take up to 40% of the budget of the
total reengineering operation [3].

Dynamic analysis, the (post-mortem) study of running
software, has long been studied for the purpose of program
comprehension [1, 8, 10]. Recently however, a renewed in-

terest in this topic can be witnessed [4, 5, 6, 12, 13].
This PhD work focusses on providing solutions to de-

velopers wanting to acquaint themselves with an unknown
software system in the shortest possible timeframe. Further-
more, the techniques we present are specifically targeted at
the initial phases of the program comprehension process,
when one is trying to find hooks for understanding the sys-
tem. These hooks that can than be revisited, with more in-
depth knowledge coming from targeted source-code reading
or by using other program comprehension solutions.

A further non-functional requirement for our work is
scalability, a typical pitfall of dynamic analysis solutions.
As such, the techniques we present here should be consid-
ered as heuristics, where some work has been done to find
an optimum for both recall and precision.

The results of our techniques are validated against a
number of open source case studies that provide extensive
documentation and one industrial case study.

2 Process and techniques

In this section we discuss two techniques that we have
developed over the course of this research project. The
first technique we discuss (Section 2.2) uses the relative fre-
quency of execution of methods as a basis for determining
closely related methods. The second technique uses run-
time coupling measures to identify key classes in a system
(Section 2.3).

Each technique was validated on two open source case
studies, before being tested on an industrial case study. The
industrial case study was graciously provided to us by our
industrial research partner Kava1. It concerns a legacy C ap-

1http://www.kava.be, the Royal Pharmacists Union of Antwerp

Preprint of paper to appear in Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'06)



plication, that at the time, was being ported from UnixWare
to Linux.

Before discussing the two techniques (sections 2.2 &
2.3), we first give an overview of the dynamic analysis pro-
cess we follow in order to apply both our techniques.

2.1 Dynamic analysis process

Applying both the techniques we discuss in this paper
can be seen as a 4-step process. This section briefly explains
these steps:

1. Define execution scenario
Applying dynamic analysis implies that the software
system is executed at least once. Choosing an exe-
cution scenario is of the utmost importance as it can
heavily influence the resultset. In our case, we tried
to balance coverage and preciseness of the execution
scenario. Coverage means the degree of possible exe-
cution paths that are executed, while preciseness refers
to the fact that we only execute those features that we
need (or want) to understand. In terms of UML, this
would be the same as limiting the number of use cases
that are executed.

2. Trace the application
Once the execution scenario is defined, the program is
executed. Every call to and return from method-calls
is logged in the event trace. The mechanism to log calls
and returns differs depending on the case study. For
our Java case studies, we used a custom-made JVMPI
profiler2, while for our industrial case study, which was
entirely written in C, we relied on Aspicere, an aspect-
weaver-framework for C [11].

The last two steps are technique-dependent and will be dis-
cussed in the subsequent sections.

3. Apply technique
4. Interpret results

2.2 Frequency of execution based

Thomas Ball [1] introduced the concept of ”Frequency
Spectrum Analysis”, a way to correlate procedures, func-
tions and/or methods through their relative calling fre-
quency. The idea is based around the observation that a
relatively small number of methods/procedures is responsi-
ble for a huge event trace. As such, a lot of repeated calling
of procedures happens during the execution of the program.
By trying to correlate these frequencies, we can learn some-
thing about (1) the size of the inputset, (2) the size of the
outputset and —most interesting for us— (3) calling rela-
tionships between methods/procedures.

2Java Virtual Machine Profiler Interface. For more information see:
http://java.sun.com/j2se/1.4.2/guide/jvmpi/jvmpi.html

In [13] we built further upon this idea, by proposing a
visualization of the trace that allows for visual detection of
parts of the event trace that show tightly collaborating meth-
ods. This technique was applied on two open source case
studies, namely Apache Tomcat 4.1.183 and Fujaba 4.04.

Figure 1 shows a small part of this visualization. To be
more specific, it concerns the execution of Tomcat. The
figure resembles a ”heartbeat” and should also be inter-
preted in that way. The X-axis is time, whereas the Y-axis
is the dissimilarity between successive method-calls based
on their frequency of execution. In the case of Figure 1 this
regular heartbeat indicates a lot of repetitive method-calls.
After close inspection, this repetitive region, consisting of
10000 method-calls, was revealed to be the iteration over a
linked list with a certain operation on each element of that
list.

80000 90000 100000
0

0.5

1

1.5

2

2.5
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y 
va

lu
e

Figure 1. Visualization of a small part of the
Tomcat trace.

For the two case studies above, the proposed visualiza-
tion proved useful for navigating through the trace. Further-
more, it remained scalable for around the 10 × 106 method
calls. However, when we tried to apply this exact visual-
ization on the industrial case study from Kava that we had
at our disposal, the visualization didn’t scale. In this case
study the event trace consisted of around 0.5 × 109 proce-
dure calls.

Although we didn’t manage to visualize this huge event
trace in the style of Figure 1, we constructed an alternative
visualization, which is shown in Figure 2. In this visualiza-
tion, we tried to group together procedures (we are talking
in terms of procedural languages for this case study) that

3http://tomcat.apache.org
4http://www.fujaba.de/

Preprint of paper to appear in Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'06)



are executed the same number of times. Each box mentions
the number of times the procedures that are contained in
the box are executed and, additionally, the edge of each box
also gives an indication of the level of cohesion between
those procedures. For example:
• box (a) is cohesive as ≥ 50% of the contained proce-

dures originate from one module
• box (b) is fully cohesive as all contained procedures

originate from the same module
• box (c) is non-cohesive as < 50% of the contained pro-

cedures originate from one module
This schema allowed us to not only quickly audit the sys-

tem’s structure, but also gain insight in wrapper-like solu-
tions and procedures implementing low-level functionality
[11].

28580
e_tdfs_mut1::ReadCache

cache::Init_Periode
cache::memcpy

29986
io::InitMyData

io::isopen

6093357
tdfs_mut2::UW_atoi

UW_strncpy::atoi

(a)

(b)

(c)

Figure 2. Frequency clusters.

2.3 Coupling based

The basic idea behind this technique is the fact that struc-
tural dependencies between modules of a system can indi-
cate modules that are interesting for initial program compre-
hension [9]. As a measure we use runtime export coupling,
which — provided we have a well-covering execution sce-
nario — gives us all actual dependencies that happen at run-
time. Modules which exhibit a high level of export coupling
request other modules to do work for them (delegation) and
often contain important control structures.

Coupling measures however are typically between two
classes or modules, where we want to take into considera-
tion the complete structural topology of the application. To
overcome this strict binary relation between modules, we
add a transitive measurement for reasoning over the topol-
ogy. We use webmining techniques for this [12].

Webmining, a branch of datamining research, analyzes
the topological structure of the web trying to identify im-
portant web pages based solely on their hyperlink structure.
By interpreting call graphs as web graphs, we are able to
retrieve important classes.

The HITS webmining algorithm [7] allows us to identify
so-called hubs and authorities in (web) graphs. In terms

of the Internet hubs are pages that mainly have a referring
function, e.g. web directories, lists of personal pages, ... On
the other hand, an authority contains useful and/or highly
detailed information regarding a specific subject. In terms
of program comprehension, hubs are modules that contain
the core high-level logic of the application, while authorities
are implementers of more low-level functions.

The resultset obtained from this heuristic is a list of all
the modules of which containing procedures were executed
during the scenario. These modules are ranked from being
important to being irrelevant during early program compre-
hension phases.

A detailed description of this technique is available in
[12]. The same paper also describes the validation of this
technique on two open source case studies, namely Apache
Ant 1.6.15 and Jakarta JMeter 2.0.16. For these two case
studies, validation was done by comparing the results ob-
tained to extensive design documentation that was publicly
available. For these two case studies our heuristic delivered
a result with a recall of 90% and a precision of 60%. Al-
though we are satisfied with the recall of 90%, we remain
cautious over the fact that we have a reasonably low level
of precision.

In [11] we applied this approach on an industrial legacy
C system. In contrast to the open source case studies where
we had to rely on documentation available on the internet,
we were now able to validate the results we obtained with
the original developers and current maintainers of the appli-
cation. The results of this industrial experiment confirm the
value of this technique.

3 Conclusion

The solutions we proposed during this research project
can help developers and maintainers to (re)gain insight into
the software they are developing, maintaining or extending.
With a special focus on the early stages of program compre-
hension, they allow (1) to quickly determine sets of meth-
ods or procedures that work tightly together during a certain
execution scenario and (2) to quickly identify those classes
that are most interesting to investigate further for initial un-
derstanding purposes.

We validated our work with a number of object-oriented
open source case studies, before applying it on a large in-
dustrial legacy application written in C. The open source
case studies helped us demonstrate the effectiveness of the
two techniques, when comparing the results against pub-
licly available design documentation, while the industrial
case study allowed us to assess the satisfaction of the devel-
opers and maintainers. Furthermore, the issue of scalability

5http://ant.apache.org
6http://jakarta.apache.org/jmeter/index.html

Preprint of paper to appear in Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'06)



was also verified up to a certain point by applying it on a
large-scale industrial case study.

4 Acknowledgements

I would like to thank prof. Serge Demeyer for giving me
carte blanche when it comes to doing research, for giving
precious advise and supporting me during this PhD work.

Andy Zaidman received support within the Belgium re-
search project ARRIBA (Architectural Resources for the
Restructuring and Integration of Business Applications),
sponsored by the IWT, Flanders.

References

[1] T. Ball. The concept of dynamic analysis. In ESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
ICSE, pages 482–498. IEEE, 1993.

[3] T. Corbi. Program understanding: Challenge for the 90s.
IBM Systems Journal, 28(2):294–306, 1990.

[4] O. Greevy and S. Ducasse. Correlating features and code us-
ing a compact two-sided trace analysis approach. In CSMR,
pages 314–323. IEEE, 2005.

[5] O. Greevy, A. Hamou-Lhadj, and A. Zaidman. Work-
shop on program comprehension through dynamic analysis
(PCODA). In WCRE, pages 232–232. IEEE, 2005.

[6] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces.
In CSMR, pages 112–121. IEEE, 2005.

[7] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. Journal of the ACM, 46(5):604–632, 1999.

[8] T. Richner and S. Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic infor-
mation. In ICSM, pages 13–22. IEEE, 1999.

[9] M. P. Robillard. Automatic generation of suggestions
for program investigation. SIGSOFT Softw. Eng. Notes,
30(5):11–20, 2005.

[10] T. Systa. Understanding the behavior of java programs. In
WCRE, pages 214–223. IEEE, 2000.

[11] A. Zaidman, B. Adams, K. De Schutter, S. Demeyer,
G. Hoffman, and B. De Ruyck. Regaining lost knowledge
through dynamic analysis and aspect orientation — an in-
dustrial experience report. In CSMR. IEEE, 2006.

[12] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to support
the program comprehension process. In CSMR, pages 134–
142. IEEE, 2005.

[13] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event exe-
cution frequency. In CSMR, pages 329–338. IEEE, 2004.

Preprint of paper to appear in Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR'06)


