
Understanding Ajax Applications by

Connecting Client and Server-Side

Execution Traces

Andy Zaidman*, Nick Matthijssen**, Margaret-Anne Storey***, and
Arie van Deursen*

*
Delft University of Technology, The Netherlands

a.e.zaidman@tudelft.nl, arie.vandeursen@tudelft.nl
**Delft University of Technology, The Netherlands & University of Victoria, Canada

nick8maal@gmail.com
***University of Victoria, Canada

mstorey@uvic.ca

Abstract

Ajax-enabled web applications are a new breed of highly interac-
tive, highly dynamic web applications. Although Ajax allows develop-
ers to create rich web applications, Ajax applications can be difficult
to comprehend and thus to maintain. For this reason, we have created
FireDetective, a tool that uses dynamic analysis at both the client
(browser) and server-side to facilitate the understanding of Ajax ap-
plications. We evaluate FireDetective using (1) a pretest-posttest user
study and (2) a field user study. Preliminary evidence shows that the
FireDetective tool is an effective aid for web developers striving to
understand Ajax applications.

1 Introduction

Over the last decade, web development has evolved from creating static
web sites to creating rich and highly interactive web applications. One of
the enabling technologies for creating these interactive web applications is
Ajax (Asynchronous Javascript and XML), an umbrella term for existing
techniques such as JavaScript, dynamic manipulation of the Document Ob-
ject Model (DOM), and JavaScript’s XMLHttpRequest object. Since the
term Ajax was coined in 2005 [20], a vast amount of Ajax enabled web
sites have emerged, numerous Ajax frameworks have been created and “an
overwhelming number of articles in developer sites and professional maga-
zines have appeared” [32]. A well-known example of an Ajax application is
Gmail, which uses Ajax technologies to update only a part of the page when

1

you open an email conversation, and to suggest email addresses of recent
correspondents as you type.

Unfortunately, Ajax also makes web development more complex. Clas-
sical web applications are based on a multi-page interface model, in which
interactions are based on a page-sequence paradigm [32]. Ajax changes this
by allowing asynchronous requests to be made after a page has been loaded
and allowing JavaScript code to update parts of the page in the browser,
effectively making delta-updates without reloading the complete page.

Before the dawn of Ajax, Hassan and Holt already noted that “Web
applications are the legacy software of the future” and “Maintaining such
systems is problematic” [23]. We expect that the interactivity and complex-
ity that Ajax adds will certainly not improve this situation.

Software maintenance starts with building up understanding and sub-
sequently making the necessary modifications. This understanding step is
known to be very costly, with Corbi reporting that as much as 50% of the
time of a maintenance task is spent on understanding [8]. However, papers
focusing on program understanding specifically for Ajax applications are
scarce, as observed by Cornelissen et al. [13].

These observations, together with the rapidly growing number of Ajax
enabled web applications, motivated us to examine ways to support web
developers in maintaining this new breed of web applications. In particular,
in this paper we investigate what kind of problems web developers struggle
with when understanding an Ajax application and how we can leverage
dynamic analysis [4] to better support web developers in understanding Ajax
applications.

Our choice for dynamic analysis is instigated by the fact that specific
to Ajax applications is the potential difficulty of following the control flow
through an application. This stems from the fact that an Ajax application
consists of a collection of heterogeneous resources, such as web templates,
client-side scripts and server-side scripts, which are dependent on each other
and all of which contribute to the application. Links between these artifacts
are often established at run-time. Next, HTML pages can be generated and
updated dynamically, and client side scripts can be generated on the fly and
executed. Finally, the languages that are used themselves are highly dy-
namic, such as JavaScript and server-side scripting languages such as PHP.
Antoniol et al. [2] already argued that static analysis alone is insufficient
for web applications. We argue that the even higher degree of dynamicity
in Ajax applications makes static analysis insufficient for Ajax applications
as well.

In order to facilitate a better understanding of Ajax-based web applica-
tions, we have built FireDetective, a tool that records execution traces on
both the client (browser) and server, and subsequently visualizes them in a
combined way.

This paper builds upon our previous work [29,30] in which we proposed

2

FireDetective, and evaluated it using an exploratory pretest-posttest user
study experiment. In this paper, we broaden our approach to evaluating
FireDetective, as we add a field user study that we conducted with the
help of two expert Ajax developers. This evaluation approach allows us to
address the following research questions:
RQ1 Which strategies do web developers currently use when trying to un-

derstand Ajax applications?
RQ2 Can we use dynamic analysis, as presented through the FireDetective

tool, to improve program understanding for Ajax applications?
The rest of this paper is organized as follows. Section 2 describes the

design and implementation of FireDetective. Section 3 documents the design
of our user study, while Section 4 describes and discusses the findings of this
user study. Sections 5 and 6 respectively describe the experimental design
and the findings of the field user study that we performed. Threats to
validity are covered in Section 7. Section 8 discusses related work. Finally,
Section 9 presents our conclusions and identifies future opportunities.

2 Tool design

FireDetective1 is a tool that records execution traces of the JavaScript code
that is executed in the browser and of the server-side code on the server.
The level of detail that is used is the “call” level: the tool records the names
of all functions and methods that were called, and in what order they were
called, allowing the tool to reconstruct a call tree representation of each
trace. From our own experiences as Ajax developers we realized that relat-
ing these separate traces to each other would be essential for obtaining a
good understanding of the control flow through an Ajax application. Conse-
quently, the tool also records information about abstractions that are specific
to the Ajax/web-domain, such as (Ajax) requests, DOM events, time-outs,
etc. This is a key element of the tool: it enables us to link the aforementioned
execution traces in meaningful ways. Moreover, the abstractions can be used
as familiar starting points for program understanding. The tool presents the
network of traces and abstractions to the user in a set of interactive views.

2.1 Architecture

The architecture of FireDetective is shown in Figure 1. The tool consists
of a Firefox add-on which records JavaScript traces and information about
Ajax abstractions, and a server tracer which can be hooked into a Java EE2

web server. Both of these components forward the data that they record

1FireDetective is open source and can be downloaded from http://swerl.tudelft.

nl/bin/view/Main/FireDetective.
2Java Platform, Enterprise Edition. See http://java.sun.com/javaee/.

3

Firefox

FireDetective Add-On

FireDetective

Visualizer

Trace data

Java EE Web Server

FireDetective

Server Tracer

FireDetective

Visualizer

Trace data

Figure 1: Architecture of FireDetective.

(via sockets) to the visualizer, the third and final component of FireDetec-
tive. The visualizer then processes and visualizes the data in real-time. A
benefit of this architecture is that it allows users to use Firefox to inter-
act with an Ajax application, as they normally would, and then use the
FireDetective visualizer to inspect what is going on “under the hood”. The
architecture also enables components to run across different machines. Cur-
rently, the tool is built for Ajax applications with a Java + JSP back-end,
a decision that was influenced by the target application that we chose for
our study (see Section 3). However, the same techniques can be applied to
Ajax applications with other back-ends, such as PHP or Ruby.

2.2 Using abstractions to link traces

We use a number of abstractions from the Ajax/web domain to which we
link traces or calls within traces. They are listed below.

• Full page requests occur when a whole page is loaded. We use a
full page request to group all requests and JavaScript traces that take
place before the next full page request occurs, into a chronological list.
A full-page request is thus the request to load an entirely new HTML
(or dynamically generated HTML) page.

• Non-Ajax requests are contained within a full page request. They
are also associated with the server-side trace that was recorded for that
particular request. Examples of non-Ajax requests are the loading of
additional resources on top of the full-page in the previous category:
cascading style sheets (CSS), JavaScript (js) files, etc.

• Top-level script load invocations occur when the browser has
loaded scripts and executes them. These script loads are linked to
the resulting JavaScript trace.

• DOM events are events such as “element was clicked” or “page was
loaded”. They are associated with one or more JavaScript traces that
were recorded as a result of event handlers firing for the DOM event
in question.

4

• Ajax requests, like other requests, are associated with a single server-
side trace. They are also linked to the JavaScript call that sent the
request and the JavaScript traces that were recorded when handling
the response.

• Time-outs (in JavaScript) can be set to trigger a time-out handler
after a specified time period has elapsed. We link time-outs to the
JavaScript traces that were recorded as a result of the time-out handler
being invoked, and to the JavaScript calls that started and stopped
that particular time-out3.

• Web template invocations are not specific to Ajax, and are used
in many web applications. In our case, we are working with JSP
templates. Since these templates are compiled prior to use, they do
not end up in the trace in their original form. Therefore, we reconstruct
JSP invocations from the original trace and link them to the points in
the traces where they took place.

Some links between traces/calls and abstractions represent a causal re-
lationship, e.g., some JavaScript call causes an Ajax request, which then
causes a server-side and – when the response is received – JavaScript trace
to be created. By following these links in one direction, tool users are able
to answer “what?” and “how?” questions about the program, e.g. “how
was this DOM event handled?”. Moreover, links can also be followed in the
reverse direction, enabling tool users to answer “why?” questions, e.g. “why
did this Ajax request occur?”.

The abstractions were identified through our own experiences as Ajax
developers. In Section 4 we offer possible additions to this list. We used dif-
ferent mechanisms for recording and reconstructing these abstractions, and
linking them to the relevant traces. These mechanisms are briefly described
in Subsection 2.6.

2.3 Interactive visualization

The visualizer displays the collection of traces and abstractions to the user.
Its interface is shown in Figure 2. The visualization’s design is loosely based
on guidelines outlined by Shneiderman [42]: information visualization tools
should allow for creating overviews, zooming, filtering, and providing de-
tails on demand. This design correlates with a top-down comprehension
strategy [31].

Three main views are used, each of which shows a different level of detail.
The first view is a high-level view, which shows a tree representation of
the aforementioned abstractions (except template invocations). Expandable

3The last two types of links were only implemented after conducting the user study.

5

Figure 2: The visualizer, showing an analysis of a small sample application.
1. Dynamically generated high-level view. An Ajax request is expanded;
related traces/calls are shown. 2. Trace view. 3 Code view. 4. Resource
list, showing only the files that were used on the current page.

6

tree nodes may reveal more detail, e.g., expanding an Ajax request node
shows its relation to particular traces and calls, i.e., the life cycle of the
request. The second view is a trace view which displays one execution trace
at a time, as a call tree (this also means that different invocations of the
same functions are represented separately). Each tree node represents a
single call, with expandable subcalls. The third view is a standard source
code view.

The three views are linked: selecting a high-level entity in the first view
shows the related trace in the trace view, and selecting a call in the trace
view shows the related code. There is also one side view, which contains a
tree representation of the resources (e.g., code files) of the Ajax application.
Clicking a resource shows the file in the code view. The view can be filtered
to only show the files that were used for the current page, which greatly
reduces the number of files that are shown, and allows a tool user to quickly
see which resources are involved on the current page. The user can also
select a block of code (e.g., a JavaScript function) to highlight and cycle
through invocations of that block of code in the high-level view and trace
view.

A disadvantage of execution traces is that they can quickly grow to
massive proportions. In order to reduce the size of traces, we use two simple,
well-known trace reduction mechanisms [11]. The first one is to filter out
all library calls and only keep calls that are specific to the Ajax application
that is being analyzed. Both client-side libraries (such as Dojo4) and server-
side libraries (such as Java EE server internals) are filtered out. The second
mechanism concerns allowing the user to start and stop trace recording.
This allows the user to time slice the Ajax application, and, for example, to
find out how a particular interaction with the Ajax application is handled.

2.4 Relation to FireBug

FireBug5 is a popular Firefox plug-in that allows to edit, debug and mon-
itor CSS, HTML, DOM and JavaScript. In essence, it is often used as a
“debugger” for Ajax web applications, in which capacity it also frequently
serves as a program comprehension tool [26].

While FireBug is currently part of the typical web developer’s arsenal of
standard tools, the goals of FireBug and FireDetective are not quite simi-
lar. In contrast to FireBug, which simply displays a list of (Ajax) requests,
FireDetective is also able to relate these request to relevant code fragments,
both on the browser-side (the JavaScript) and on the server-side (in our
case, Java code). FireBug allows to inspect the current values of variables,
parameters, and of the XMLHttpRequest object. As such, it allows you to
see which parameters are sent to the server back-end, but it does not allow

4See http://dojotoolkit.org/.
5See http://getfirebug.com/.

7

you to immediately relate that request to what is happening on the server.
Moreover, it is mainly targeted at program comprehension in the small,
for understanding situations where you already have a good starting point,
which you can mark with a breakpoint.

FireDetective on the other hand, does not offer these low-level inspection
features, but instead, focuses on program comprehension in the large, by
offering the ability to relate actions in the JavaScript code in the browser
to code that is being executed on the server.

As a tool, FireBug is very important as it is currently widely used by
web developers. FireBug is also be part of our experiment in Section 3.

For completeness, we also mention DragonFly, an Opera plug-in with
functionality similar to FireFox’s FireBug plug-in6, and the Google Chrome
Web Developer Tools7.

2.5 Barriers to comprehension

One caveat regarding JavaScript tracing is that the language allows a de-
veloper to define anonymous functions, a mechanism which is commonly
used by web developers. Since many trace visualizations (including ours)
display the names of invoked functions, this becomes a problem: e.g., a call
tree showing “anonymous” functions calling each other is not particularly
helpful.

In practice, it turns out that a function is often assigned to exactly one
variable, e.g., var f = function(...) { ... }. Therefore, whenever
this is the case, we use the name of the variable to identify the function.
We parse all JavaScript files and for every anonymous function definition
that we encounter, we try to find a variable or instance variable that pre-
cedes it. Note that this approach is not always correct: in the example, f
could be reassigned another function. However, the approach seems to work
well in practice: for example, the Firefox FireBug add-on currently8 uses a
similar technique (albeit simpler, based on regular expressions) to “name”
anonymous functions.

Another potential issue is the “lazy loading” of JavaScript files, a tech-
nique that is used in the Dojo library. “Lazy loading” refers to retrieving
a script file by means of an Ajax request, and subsequently “eval”-ing it,
reducing the initial page load time. However, because of the “eval” call,
the link between original filename and code is lost. This can lead to the
undesirable situation of having a fragment of code and not knowing where
it came from, except that it was dynamically generated at some point.

The tool solves this problem by computing a hash code for the response
text of every Ajax request, and every “eval”-ed string. When the tool shows

6For more information, see: http://www.opera.com/dragonfly/
7For more information, see: http://code.google.com/intl/nl/chrome/devtools/
8FireBug version 1.5.0.

8

a fragment of “eval”-ed code and finds a matching Ajax response text hash,
the tool can reconstruct the filename of the “eval”-ed code.

2.6 Implementation details

JavaScript function calls and Java calls are recorded using Firefox’ debugger
interface and the Java VM tool interface, respectively. This has the advan-
tage that no code needs to be instrumented, and that the approach also
works for JavaScript code that is generated dynamically and “eval”-ed on
the fly.

The connection between browser and server is made by appending a
custom header X-REQUEST-ID containing an id, to every outgoing HTTP
request in Firefox. Upon receiving the request on the server-side, the id
can be detected by the server tracer. DOM events are registered in Fire-
fox by adding event listeners for all possible DOM events, for the window

and document objects. Ajax requests and JavaScript time-outs (and inter-
vals) are registered by wrapping all related properties and functions (e.g.,
XMLHttpRequest.responseXML, window.setTimeout) and callbacks. JSP
invocations are reconstructed by recognizing certain calls that occur within
the JSP engine, which works well for our target application. However, it
fails to scale up to bigger applications with multiple JSP files with the same
name, but in different directories. One possible solution would be to in-
strument JSP files prior to analysis, which has the additional benefit of not
depending on implementation details of the JSP engine.

3 Design of the user study

We used an exploratory pre-experimental user study to address our research
questions: which strategies do web developers currently use, and, can dy-
namic analysis improve program understanding for Ajax applications? The
type of experiment is called pre-experimental to indicate that it does not
meet the scientific standards of experimental design [3], yet it allows us to re-
port on facts of real user-behavior, even those observed in under-controlled,
limited-sample experiences. In particular, we are using a one group pretest
posttest design, which entails that there is only an experimental group and
no control group. This type of experiment is called pre-experimental because
it does not allow to identify an event related to the dependent variable that
intervenes between the pretest and the posttest where the effects could be
confused with those of the independent variable [3].

In the user study, we observed eight participants working on a number of
program understanding tasks. Two were full-time software developers; the
other six were computer science or software engineering students, of which
five had a part-time software development job (see Section 3.6 for details).
Each participant’s session consisted of two distinct parts:

9

• Part A: Observing current understanding strategies. Partic-
ipants used a standard set of web development tools: Eclipse and
Firefox with the popular FireBug add-on. The purpose of this part is
to provide insight into which strategies web developers use when try-
ing to understand Ajax applications, and whether these strategies are
sufficient (RQ1).

• Part B: Support through dynamic analysis. Participants used
Eclipse and Firefox with FireDetective. The purpose of this part is
to provide insight into whether dynamic analysis techniques as pro-
vided through FireDetective can improve understanding, and if so, how
(RQ2).

Our approach is exploratory as we are still at an early stage in this
research project. We focus on observing participants as they work on as-
signed tasks with and without the FireDetective tool. We asked participants
to think aloud during the study, and since the study was conducted in a lab
setting we were able to make audio and screen recordings for later analysis.
We also gave questionnaires to the participants to determine their percep-
tions of the benefits of using dynamic analysis both before and after using
FireDetective. After each part, participants were subjected to a short inter-
view. In the following sections, these aspects are described in more detail.

3.1 Design of Part A: Observing current understanding strate-
gies

Part A started with a background interview and questionnaire, to gauge
the development experience of the participant. This was followed by a 10-
minute introduction to the tools used in this part of the study: Eclipse and
FireBug. Since participants were likely to have experience with these tools
(this was indeed the case, see section 4), the introduction served mostly to
refresh the participants’ memory.

After the introduction, participants worked on a set of program under-
standing tasks for 35 minutes. We emphasized that they could use any
feature they wished, to minimize bias towards using the features that we
had shown them. Participants were informed that they could move on to
the next task if they failed to make progress on their current task, and that
they could ask questions about the tools at any time (questions about the
target application itself were not answered, for obvious reasons). Also, if the
experiment leader noticed that a participant was struggling with a particu-
lar tool feature, the participant would be given a short explanation of the
feature. Since our goal was to find out as much as we can about the strate-
gies that participants use, we did not want them to be stalled with a tool
issue for too long. A short interview asking participants about encountered
problems concluded part A.

10

3.2 Design of part B: Support through dynamic analysis

After a short break, participants continued with part B, during which they
used Eclipse and FireDetective. Ideally, we would have included FireBug
as well, but unfortunately, FireDetective and FireBug were incompatible
at the time of the user study. This incompatibility originates in Firefox’
debugger service, which only allows a single listener per notification type,
which is a problem because FireBug and FireDetective both listen for the
same type of events. Additionally, FireDetective injects extra JavaScript
code into each web page that is being viewed. This code is again stripped
out in FireDetective’s visualizer. However, the injected code still shows up
in FireBug, which can lead to confusion. These factors made it non trivial
to make FireBug and FireDetective compatible.

As in part A of the study, the focus lies on observing participants as
they work on tasks. However, in part B we also collected data on the user’s
perceptions of the benefits from using the FireDetective tool. We use a
pretest-posttest design [6], in which a pretest questionnaire was used to
measure the participants’ expectations prior to using FireDetective, while a
posttest questionnaire measured the participants’ experience after using the
tool (see [28, p.85]). In particular, we evaluated four attributes:

• Better understanding. Will the tool allow web developers to un-
derstand Ajax applications more effectively?

• Quicker understanding. Will the tool allow users to understand
Ajax applications more efficiently?

• More confident about understanding. Will use of the tool make
web developers more confident about their understanding of an Ajax
application?

• Minimal value. This attribute is inversely related to the above at-
tributes. Will the tool provide value?

For the pretest, participants were given a short abstract description of
a tool like FireDetective. To avoid influencing participants’ expectations by
exposing them to part A of the study, the pretest was conducted during the
beginning of part A (after the background questionnaire). The posttest took
place after working with FireDetective. In both the pretest and posttest,
each of the four attributes was tested via a multiple choice question for which
we used a 5-point Likert scale, ranging from strongly disagree to strongly
agree (see Tables 1 and 2 for the pretest and posttests, more information is
also available in [28, p.85]).

After a 10-minute introduction in which we showed all features of FireDe-
tective, participants worked on a different set of program understanding

11

A. Software development experience

1 = never used it
2 = used it for a couple of hours or less
3 = used it for one or two projects
4 = I use it regularly
5 = I’ve been using it regularly for over two years now

1. Java
2. Java Server Pages (JSP)
3. JavaScript
4. Dojo JavaScript framework
5. Eclipse
6. Firefox
7. FireBug
8. Java PetStore

B. Understanding web applications

In this experiment, you will be using a tool that uses dynamic analysis to
show the real-time execution of web applications. It displays the execution
of scripts and functions in the browser (JavaScript code), the execution of
class methods on the server (Java code), and how the browser and server
communicate.
For each of the next statements, please indicate to what extent you agree with
them, ranging from 1 (completely disagree) to 5 (completely agree).

1. Such a tool could allow me to better understand web apps.
2. Such a tool could allow me to be more confident that I really understand
the web application that I’m investigating.
3. The value added by such a tool will be minimal.
4. Such a tool could save me time.

Table 1: Pretest questionnaire

tasks for 25 minutes. The decision to have less time for this part was made
to keep the complete duration of the study under two hours.

Working on the tasks was followed by the posttest questionnaire. We
also asked participants to rate their top 3 features in FireDetective. Finally,
another short interview was conducted, asking about encountered problems,
least and best liked parts of the FireDetective tool and suggestions for im-
provement.

3.3 Target application

To gain real world insights, we required a target application that was rep-
resentative of a real world Ajax application and written using languages
and technologies that our participants were familiar with. The Java Pet
Store satisfied these requirements. It is a reference application, “designed
to illustrate how the Java Enterprise Edition 5 Platform can be used to de-
velop an AJAX-enabled Web 2.0 application”9. The application consists of
12KLoc, which are written in a variety of languages, such as HTML, CSS

9See http://java.sun.com/developer/releases/petstore/, retrieved on November 14th,
2010.

12

For each of the next statements, please indicate to what extent you agree with
them, ranging from 1 (completely disagree) to 5 (completely agree).

A. Tool user experience

1. I found FireDetective easy to use.
2. FireDetective should have been integrated with Eclipse.

B. Tool adequacy

1. There’s added value in using dynamic (i.e., runtime) information for ana-
lyzing web applications.
2. The value added by a tool like FireDetective is minimal.
3. A tool like FireDetective saves me time.
4. A tool like FireDetective allows me to better understand web apps.
5. A tool like FireDetective makes me more confident that I really understand
the web application that I’m investigating.

C. Tool features

Below are a number of features of the FireDetective tool. Please select your
top 3 features. Put a “1” next to the best feature, a “2” next to the second
best, and a “3” next to the third best feature.
Please mark features that you didnt find useful with an ‘X’.

1. Having an overview of events and the JavaScript functions that handle
them.
2. Being able to directly jump from (Ajax) requests to the corresponding
server side code.
3. Real-time trace analysis, i.e.: (almost) no delay between capturing traces
and analyzing them.
4. Marking sections of a trace using the Firefox add-on, by using Begin mark
and “End mark”.
5. Being able to easily track xhr (Ajax) requests.
6. Filtering packages and java files based on the current page or trace.

Table 2: Posttest questionnaire

and JavaScript on the client-side, and Java and JSP on the server-side. All
of these files were made available in an Eclipse workspace.

The Java BluePrints library is used extensively in the Pet Store, and we
found that not including its client-side code limited us in the task design.
Moreover, this code would show up in FireBug and FireDetective anyway.
Hence, we made sure that all client side code that was potentially visible in
FireBug and FireDetective could also be found in Eclipse. This amounted
to +6KLoc for BluePrints and +97KLoc for Dojo.

3.4 Task design

The study required the design of two task sets, one for each part of the study.
We constructed the tasks ourselves, drawing from our own experience with
the Pet Store. Each task set consisted of 4 tasks, divided into 2 or 3 subtasks
each, adding up to a total of 10 subtasks per task set. See Tables 3 and 4
for an overview of the two task sets10.

10The complete task descriptions can be found in [28, p.88].

13

For the generalizability of the study it is important to make sure that
the tasks are realistic and that they accurately represent a significant part
of the program understanding task domain. Therefore, we used open-ended
questions rather than multiple choice questions. Moreover, we designed tasks
using Pacione et al.’s taxonomy of 9 principal activities [35], and strove
for coverage of the first 6 principles he suggests: A1. Investigating the
functionality of (a part of) the system; A2. Adding to or changing the
system’s functionality; A3. Investigating the internal structure of an artifact;
A4. Investigating dependencies between artifacts; A5. Investigating runtime
interactions in the system; A6. Investigating how much an artifact is used.
We did not cover the last three principles, (1) to limit the number of tasks,
(2) to reduce the risk of our participants becoming fatigued during the study
and (3) because these three activities are less atomic and can be composed
of several activities that are already captured in the first six activities. For
completeness, the other three principle activities from Pacione et al. are: A7.
Investigating patterns in the systems execution, A8. Assessing the quality
of the systems design and A9. Understanding the domain of the system.

Since we were keen to observe how FireDetective would be used on unfa-
miliar code, we strove to choose tasks for the second set that would involve
code not inspected in part A of the study. Nevertheless, a learning effect
might be possible due to the fact that the software system remains the same.
However, this should not impact our results, as we are not measuring an in-
crease (or decrease) in efficiency from developers using FireDetective, but
instead, we are gauging the FireDetective user experience.

3.5 Pilot sessions

Three pilot sessions were conducted to fine tune the study. Two of the three
pilot participants were co-workers of the second author of this paper; the
third pilot participant was recruited via the same route that we recruited
all of the other participants. All pilot sessions were done in a similar way
as the actual study, except for the fact that we were particularly interested
in whether all tasks were clear, whether the tasks were deemed too difficult
and in what other ways could we improve the settings of our experiment.

The first pilot session did not use think aloud, and it turned out to be
hard to reconstruct the participant’s thinking steps. As a result, we switched
to think aloud with audio and screen recordings. Also, the questionnaires
were reduced in size, with more emphasis on participant interviews. To keep
the total length of the study under 2 hours, the duration of the second part
(during which participants use FireDetective) was reduced from 35 to 25
minutes.

During the second pilot we found that the tasks were too difficult, so
they were altered to make them slightly easier. To reduce pressure on par-
ticipants, we decided to give out tasks one at a time. Also, at the beginning

14

Task 1 – The headline bar

Near the top of most pages of the Java Petstore application is a gray
headline bar. The headline text switches from time to time.
a) Give the names of the JavaScript functions that are related to the switch-

ing of the headline text.
b) Explain how these functions call each other when the text switches, and

how they keep the switching going.
c) From what web URL does the application get the headlines? Where in

the code can you change that? (give file name + line number)

Task 2 – Server code

The Petstore consists of 6 sub pages: home, seller, search, catalog, maps
and tag.
a) Which of those sub pages call either directly or indirectly methods of the

GeoCoder class? (package: com.sun.javaee.blueprints.petstore.proxy)
b) Is the class SQLParser (package: com.sun.javaee.blueprints.petstore.search)

being called - either directly or indirectly - on the search page?

Task 3 – Seller page

Navigate to the seller page.
a) Clicking on the next button does not trigger the forms validation check.

The Java Petstore manager has encountered several users who complained
about this. He asks you to change the pet store, such that validation is
also performed after clicking the next button. Which function or method
do you need to modify? How do you modify it?

b) The user is required to enter a city and state on the second page of the
form. As the user types in these text fields, an auto complete box shows
up that allows the user to select cities and states but only US cities are
listed. Of course, this is unacceptable! Which parts of the application
(e.g. which functions or class methods) need to be modified for Canadian
provinces and cities to show up in the auto complete box?

Task 4 – Popup view

Navigate to the search or tags page. Note that a popup appears when
you hover over a pet name with the mouse.
a) What JavaScript functions are involved on the client side? (give their

names and locations: file name(s) + line numbers)
b) What Java classes and JSP files are involved on the server side?
c) How come the popup doesnt appear if you quickly hover over a descrip-

tion?

Table 3: Task set A

of the study we made it clear that if participants were unsure what to do
next, they could indicate this and move on to the next task. Finally, FireDe-
tective’s user interface was improved and simplified.

The third pilot session ran without major problems and only a few minor
adjustments were made afterwards. In particular, we altered the introduc-
tion to Eclipse to exclude explanations of Eclipse features (such as “Call
hierarchy”) as such explanations may bias participants towards using these
features. Also, some of the task descriptions were adjusted to make them
clearer.

15

Task 1 – Search & tag page

Navigate to the search page and click “Submit”. Clicking the little icons
under “Map” allows you to (un)check all checkboxes.
a) List the JavaScript functions that are involved in this process.
Navigate to the tags page. Notice how you can click the tags to update
the list.
b) Does clicking the tags trigger an ajax request? If yes, which JSP file(s)

and server class(es) are involved?

Task 2 – Server code

a) Is the IndexDocument class (package:
com.sun.javaee.blueprints.petstore.search) really being used on the
search page? If yes, give a possible chain of events/calls leading to a use
of the class (e.g., “user moves mouse” → handled by handleEvent → etc.
→ calls IndexDocument).

b) The Petstore consists of 6 sub pages: home, seller, search, cat-
alog, maps and tag. Which of those sub pages make use ei-
ther directly or indirectly of the EntryFilter class? (package:
com.sun.javaee.blueprints.petstore.controller)

c) What is the purpose of the ImageAction class (package:
com.sun.javaee.blueprints.petstore.controller.actions)?

Task 3 – Catalog page

Navigate to the catalog page.
a) The Pet store owner asks you to speed up the scrolling of the filmstrip at

the bottom. Which parts of the code do you modify? (give file names(s)
+ line numbers)

b) Go to the “fish” and then “small fish” category. Scroll to the right in
the bottom bar and try to flag “Nicks goldfish” as inappropriate. This is
supposed to delete the pet. Why does this not work? (i.e.: where’s the
bug?)

Task 4 – Catalog & search page

Go to the catalog page.
a) You can click on the “star strip” to rate a pet. How is the rating com-

puted?
b) Moving over a category on the left causes the category to expand and

show its subcategories underneath. List the JavaScript functions that
are involved.

Go to the search page.
c) At the moment, searching causes the whole page to refresh. In order

to improve the user experience of the pet store, we want to ajaxify this
process: i.e., we want search results to appear without refreshing the
page. Which parts of the application (client side + server side) would we
need to modify?

Table 4: Task set B

3.6 Participant profile

All participants in the user study were required to have web development
experience. Since the term “web development experience” can be interpreted
quite broadly, we specifically asked for basic Java and JavaScript experience.
We assumed that when people had experience with these two languages,
especially the latter, they would also have experience with web development.

16

4.5 4.5

2

1

2

3

4

5

Java JavaScript JSP

Level

1

4

4.5

Dojo Eclipse FireBug

Figure 3: Box plots of participants’ experience with relevant technologies
and tools. The values on the 5-point scale (vertical axis) correspond to
1 = “Never used it”, 2 = “Used it for a couple of hours or less”, 3 = “Used
it for one or two projects”, 4 = “I use it regularly” and 5 = “I’ve been using
it regularly for over two years now”.
This turned out to be the case for 8 out of 9 participants that we recruited.
One participant had no web development experience and this was reflected in
the results: the participant was only able to complete the most basic tasks.
Since the participant was clearly not representative of the target population
we excluded this data. As such, only 8 participants are considered in the
analysis from now on.

Our 8 participants represent our target population quite well. Five had
a professional web development job: one full-time and four part-time. Two
others had a professional software development job: one full-time and one
part-time. Both of these participants indicated that they worked on web
development projects for at least a part of their jobs. Except for the two
full-time developers, the six other participants were either computer science
or software engineering students: four undergraduate and two PhD students.
Participants’ median number of years of web development experience was 2
years (min. 1 year, max. 5 years); it can be argued that this is a low number.
However, technologies like Ajax have not been around for that long: at the
time of our study, the term Ajax had been coined less than 5 years ago [20].
Moreover, the median number of years of software development experience
was 5.5 years (min. 2 years, max. 10 years), which shows that participants
did have general software development skills.

Participants rated their experience with particular technologies that were
relevant to the study. They did so on a 5-point Likert scale; the results
are shown in Figure 3. We can clearly see that participants have a good
understanding of Java, JavaScript, Eclipse and FireBug, yet, we can also
see that they are not familiar with JSP and the Dojo library. The impact
of this on the generalizability of the study is discussed in Section 7, which
covers threats to validity. Participants did not have a prior understanding
of the Pet Store or BluePrints library, which we could see from observing
participants working on the tasks.

17

4 Findings and discussion of the user study

Our findings cover the Ajax understanding strategies currently used (part
A, Section 4.1), as well as the way in which dynamic analysis in general
and FireDetective in particular can support this understanding (part B,
Section 4.2).

Although our focus in this study was not to assess the number of com-
pleted tasks, but rather the strategies used for solving them, it is interesting
to note that the median number of subtasks worked on is 6 (min. 4, max. 8)
for part A, and 7 (min. 5, max. 9) for part B. Roughly two thirds of these
attempts led to the correct answer in both parts of the study (for details see
Tables 5 and 6).

0

1

2

3

4

5

6

– – – o + ++

(a) Better understanding

0

1

2

3

4

5

6

– – – o + ++

(b) Quicker understanding

0

1

2

3

4

5

6

– – – o + ++

(c) More confident

0

1

2

3

4

5

6

– – – o + ++

(d) Minimal value

Pretest

Posttest

(e) Legend

Figure 4: Distributions of participants’ expectations before (pretest, light
gray) and experiences after (posttest, blue) using FireDetective. Horizontal
axes: 5-point Likert scale, ranging from strongly disagree (“– –”) to strongly
agree (“+ +”). Vertical axes: number of participants.

Mean Min Median Max

Attemped 6 4 6 8
Correct 4 2.5 3.75 6.5
Fraction correct 0.66 0.5 0.65 0.81

Table 5: Correctness scores for part A of the user study (0.5 scores were
given in case of a partially correct solution).

18

Mean Min Median Max

Attemped 6.75 5 7 9
Correct 4.69 3.5 4.75 6
Fraction correct 0.71 0.39 0.71 0.9

Table 6: Correctness scores for part B of the user study (0.5 scores were
given in case of a partially correct solution).

4.1 Part A: Observing current understanding strategies

Central to the first part of the study is our first research question: “which
strategies do web developers currently use when trying to understand Ajax
applications?” While participants were working with Eclipse and FireBug,
we were able to make a number of observations.

First of all, participants relied almost solely on bottom-up comprehen-
sion strategies, i.e., starting at the lowest level—e.g., code fragments— and
trying to piece the fragments that they found together. Participants mainly
focused on exploring control flow relationships [37], i.e., finding definitions
and/or occurrences of functions, methods and classes.

In order to explore these control flow relationships, all participants made
heavy use of text search. While Eclipse provides functionality for exploring
control flow, e.g., the “Open Declaration” and “Call Hierarchy” functions,
these functions were only occasionally used by participants (far less than
text search). A possible reason for this might be that these functions (at
the time of the study) do not always work as expected for web applications:
for instance, opening the “Call hierarchy” of a Java method does not show
calls made from a JSP file, and “Open Declaration” does not always work
well with JavaScript’s anonymous functions.

Another use of text search, specific to web applications, was mapping
an id of an element in the DOM tree (usually found through the FireBug
element inspector) to where the id was used in the code. We also noticed
more ad hoc uses of text search, such as searching for (part of) a URL or
searching for some text of the web page, used both successfully and unsuc-
cessfully by participants to get an idea of where a particular element or URL
was generated on the server.

Text search leads to a number of problems. Important results are some-
times missed because of cluttering of the search results window or choosing
the wrong search scope. The biggest problem is that text search only allows
the user to explore one control flow link at a time, making it easy to lose
track. During a task when participants were required to follow a small but
branching call tree, participants quickly lost track of which branches they
had already explored, causing them to make mistakes: only two participants
were able to provide a correct answer.

Discussion. From this we conclude that the strategies that web devel-

19

opers currently use can be improved. Participants rely mostly on looking
at code and text search, which can be better supported by tools. Since
following control flow constitutes a fairly big chunk of participants’ actions,
supporting this process seems useful. Considering the incompleteness of
static analysis and the highly dynamic nature of web applications, our find-
ings support our argument that dynamic analysis would be beneficial in tool
support.

4.2 Part B: Support through dynamic analysis

Central to this part of the study is our second research question: “Can dy-
namic analysis improve program understanding for Ajax applications?” We
explore this question by considering whether dynamic analysis as provided
by the FireDetective tool can be used to improve understanding of Ajax web
applications. Furthermore, if this is indeed the case, we would also like to
learn more about how this works, and what we can do to further improve
understanding. We obtained insights into these questions via four different
routes: the pretest-posttest questionnaires, the questionnaire about feature
usefulness, observations of participants using the tool and the final interview.

4.2.1 Pretest–posttest

The results of the pretest and posttest are shown in Figure 4. From the
results we can see that the pretest and posttest results are fairly similar:
the participants did not completely switch their opinions before and after
using the tool. The pretest results are quite positive, which suggests that
users feel they could benefit from tool support. The posttest results are
positive as well, and show that participants were not disappointed with
FireDetective.

In particular, participants indicate that the tool can help them to under-
stand web applications more effectively (Figure 4(a)) and more efficiently
(Figure 4(b)). Participants also seem convinced that the tool helps them
to be more confident about their understanding of the web application they
are investigating (Figure 4(c)), although their answers are somewhat more
distributed compared to the other questions. One participant answered
“strongly disagree” during the posttest, as can be seen from the figure. In-
terestingly enough, when asked why this was, the participant answered that
the tool made some tasks almost too easy: “It seemed like I caught [the
answer] a lot quicker than I was expecting, so that questioned how much
I really trusted the results that I came up with.” Finally, participants ac-
knowledged that the tool adds value (Figure 4(d)).

Discussion. While these are preliminary findings, we consider them en-
couraging. They suggest that FireDetective, which leverages dynamic anal-
ysis techniques, is indeed capable of improving program understanding for

20

1 2 3 4 5 6 7 8

F1: High-level overview 1 1 2 1 3

F2: Filtered files view 3 2 2 2 2 2

F3: Jumping between client-server 3 3 3 1 1

F4: Following Ajax requests' life cycles 3

F5: Time slicing 1 1 1 2

F6: Real-time analysis 2 3 3

Figure 5: Participants’ top 3 features. Each column represents one partici-
pant. The 1’s, 2’s and 3’s indicate the participant’s best liked, second best
and third best liked features respectively.

Ajax applications.

4.2.2 Features

We asked the participants’ opinion on six features of FireDetective (see
Figure 5) that we wanted to investigate in more detail: the high-level view
(F1), the files view which is filtered and only shows the files that were used
on the current page (F2), the ability to jump between client and server
traces (F3), the ability to follow the life cycle of an Ajax request (F4), time
slicing the analysis by starting and stopping tracing (F5), and the fact that
the analysis is real-time (F6). By looking at the screen recordings we were
able to reconstruct feature use; feature usefulness was measured by asking
participants to indicate their top 3 features in the final questionnaire.

All participants used the first three features (F1, F2, F3). This is not too
surprising, since these features are central to the tool. 6 out of 8 participants
used the time slice feature (F5) and 4 participants briefly explored the life
cycle feature (F4). Use of F6 is implicit. Participants’ subjective preferences
towards features are shown in Figure 5. We can see that there is no clear
preferred feature. However, we can observe some trends, which may give us
some insight into how FireDetective helped improve program understanding.

The high-level overview (F1) and time slicing of the high-level view (F5)
seem to be popular with three #1 votes each, as well as jumping between
client and server (F3) – two #1 votes. A possible explanation for this pop-
ularity could be that these three features all play a role in enabling a more
top-down understanding process, which, as we could see from part A of the
study, participants did not previously use. Rather than starting with low-
level code, participants can now look at abstractions such as Ajax requests
and DOM events and use them as starting points to explore the code. The
filtered files view (F2) has the largest number of votes in general, and may
play a similar role. From part A of the study, we saw that participants often

21

did not know all of the files that were relevant to a certain page of the Pet
Store: the filtered files view provides an initial overview of these relevant
files, such that participants have a better starting point for investigation.

Discussion. It is hard to determine exactly which elements of FireDetec-
tive are the main contributors to its usefulness. Some features are untestable
via a questionnaire, such as “code view” and “naming of anonymous func-
tions” (automatic): these features are used all the time, but because of
that it can be hard for participants to determine whether these features are
actually useful.

4.2.3 Observations and interview

Besides the expected learning curve and usability issues (see [28]), partici-
pants encountered a number of issues when working with FireDetective.

One interesting issue that several participants encountered had to do
with Java servlet filters, server-side classes defined by the web application
that process requests. Since the tool records calls to all methods, it also
shows calls made to filter classes. However, it cannot show why these calls
occur, since the internal server logic that calls the filters is hidden from view,
and even if the tool were to show these internal calls, it would produce a
distorted picture, since the real cause of the filter being called is a binding
specified in an XML file. During the study, several participants encountered
this problem. They were wondering why the EntryFilter class of the PetStore
was invoked, but the tool was unable to give them this information.

Another problem occurred during a task in which participants had to
examine a bug, caused by a click handler that contained a syntax error.
Participants, still unaware of the cause of the bug, would trigger the click
event and search for it in the high-level view of the tool. However, the
click event handler did not show up because it failed to compile. Since
the tool did not capture information about JavaScript compilations, it was
unable to show the reason for the event handler not being called. When
participants noticed the syntax error (mostly by hovering over the element,
causing Firefox to show the associated script in the status bar), they wanted
to find where the event handler was set. Most participants said they would
have liked to use FireBug at this point, to use the element inspector to
find the id of the element, and look through the code for that id. They
essentially wanted to link DOM (element) mutations to code, something
which FireDetective cannot currently do since it does not record information
about the DOM mutation abstraction.

Finally, participants were slightly confused by the way the tool presents
full-page requests. The high-level view was filtered to show only the last
full-page request. However, participants did not always notice this, causing
them to think that they were dealing with an Ajax request, while it was
actually a full-page request. This confused them because they were looking

22

for an Ajax request that did not exist.
When asked about potential tool improvements, participants often indi-

cated integration with FireBug, providing a first indication that features of
FireBug and FireDetective are considered complementary. Participants also
asked for mechanisms to reduce the amount of visible information: they
were sometimes overwhelmed by the information shown. Since we used
only basic trace visualization and reduction techniques, this was to be ex-
pected. Participants asked for particular static analysis techniques, such as
full text search, possibly because they are attached to their old way of work-
ing, but probably because static and dynamic analysis are complementary
techniques.

Discussion. From the observations that we made in this initial study we
can extract three ways in which this work can be continued:

• Other types of abstractions. The absence of certain abstractions
in the tool hampered the understanding process. Our first suggestion
is to record information about various types of XML bindings and
link them to traces. Candidates include the aforementioned filters,
servlet mappings and taglibs (custom JSP tags, which are linked to
their implementation via XML). XML bindings in general represent
connecting information, and hence, they can be very helpful for im-
proving understanding. Other abstractions that we found evidence for
being useful are the JavaScript script parsing process and the errors
that occur during it and DOM mutations.

• Different kinds of visualizations. FireDetective’s visualizations
are straightforward representations of the recorded abstractions and
traces. Only simple trace reduction techniques were used, which –
expectedly – caused participants to be overloaded with information
on various occasions. We should investigate how to visualize the con-
nected network of abstractions, traces and code in better ways.

• Integration with existing tools. From the study it became clear
that FireDetective and FireBug are complementary tools. It could
be interesting to investigate how these tools exactly complement each
other and how they can be integrated more tightly.

5 Design of the field user study

The user study we describe in Sections 3 and 4 helps us understand how a
tool such as FireDetective can aid in understanding Ajax applications. How-
ever, the time that each participant spent with FireDetective was limited
to 25 minutes. Moreover, the study was also conducted in a controlled lab
setting using mainly student programmers (although most had industrial
experience) and doing preassigned tasks. What we lack is a more in-depth

23

look at how FireDetective can be used in more open ended tasks. Further-
more, we also wanted to gauge whether professional web developers with
more background in Ajax and related technologies would have a different
opinion on the strengths and weaknesses of FireDetective. This section de-
scribes the experimental setup of a user study conducted in a field setting
with these goals in mind. This field user study is meant to strengthen and
broaden our insights into RQ2 in which we investigate whether dynamic
analysis, as presented through the FireDetective tool, can improve program
understanding for Ajax applications.

5.1 Field setting

In order to get a more in depth perspective of how FireDetective would
be used by seasoned and experienced professional programmers, we set up
a field user study with two professional web developers from a company
called Mendix11. Mendix was founded in 2005 as a spin-off from the Delft
University of Technology and the Erasmus University of Rotterdam. In
5 years, the company has grown from a start-up to a company with 75
employees. Their core business is to rapidly develop business applications
that can easily be integrated into existing IT environments. Mendix is at the
forefront of technology, as they are actively using relatively new technologies
from the realms of model-driven engineering (MDE) and Ajax. Mendix
was kind enough to be willing to cooperate in evaluating FireDetective and
two experienced web developers volunteered to participate in our field user
study12.

5.2 Experimental setup

The field user study consisted of a single half-day session with the two de-
velopers from Mendix. The study was again centered around the Java Pet
Store (see Section 3.3). This provided us with the benefit that we already
had a reasonable level of knowledge of the application, while the two de-
velopers that participated in the field user study had no experience with
it.

Step 1: Demo of FireDetective. We started the session with a short
demo of FireDetective, in which we showed the two developers all features
of FireDetective on a very small toy Ajax application.

Step 2: Free exploration. In this step we asked the two developers to
freely explore the Java Pet Store application for around 1.5 hours. We gave

11More information: http://www.mendix.nl
12One of these two developers was an undergraduate student in the Software Engineering

Research Group of the Delft University of Technology a few years back.

24

them the goal of getting a good understanding of the implementation of the
major functionality in the Java Pet Store, and told them that we would
discuss the implementation details of this functionality later on during the
session. We provided technical assistance during the user study. The two
developers were allowed to work in pair-programming style and we asked
them to think aloud, which allowed us to gain insight into their way of
working with FireDetective.

Step 3: Questionnaire. When the two developers were satisfied with
their reconnaissance mission of the Java Pet Store, we gave them the same
same set of questions that we also used in the posttest of our user study (see
Section 4.2). This step only took a few minutes and was mainly done to be
able to compare between both groups of subjects.

Step 4: Contextual interview. While we already gained quite a lot of
information during the free exploration phase, we intensified the interview
once the developers felt they were comfortable with their understanding
of the Java Pet Store. In particular, we used a contextual interview [24].
This contextual interview already started during the second step, where
we observed how the developers explored the system. In particular, we
took note of which questions they were asking and how they were using
FireDetective to answer these questions. Subsequently, we continued the
interview and we aimed to further explore the possibilities of FireDetective
and identify circumstances in which FireDetective can be of benefit. In
order to steer this conversation, we used the work by Sillito et al. [43], who
identified a set of 44 typical questions developers have when maintaining
a piece of software. In order to save the participants’ time, we focused on
questions that could benefit from the dynamic analysis of web applications.
The eliminated questions could either easily be answered using other static
analysis features in an IDE such as “Where does this type fit in the type
hierarchy?” or they were not pertinent for web applications. See Table 8
for the 25 questions that we asked the developers. For each of the questions
that we discussed, we asked the two developers to rate the usefulness of
FireDetective to answer the question. For this, we used a 5-point Likert
scale that ranged from “totally disagree” (score 1) to “totally agree” (score
5). This interview took close to two hours and during the interview, the
developers frequently went back to FireDetective to get a good appraisal
of FireDetective on specific aspects that are highlighted by Sillito et al. ’s
questions.

5.3 Participant profile

Both Mendix developers can be considered experienced software engineers,
with a broad experience in web technology. One developer has a university

25

background and 4 years of professional experience, the other developer has
10 years of development experience and holds a college degree in IT. In a
similar manner to Section 3.6, we gauged their experience with some key web
application development technologies. Both developers have been working
for more than 2 years with technologies such as Java, JavaScript, the Dojo
JavaScript Framework, Eclipse, Firefox and FireBug on an almost daily
basis. They consider their experience with Java Server Pages (JSP) to be
rather limited, but they have previously come in contact with it. Besides
the aforementioned technologies, they have experience with other JavaScript
frameworks such as JQuery13 and Prototype14. Other technologies that they
are familiar with are HTTP proxies for analyzing the traffic between client
and server, various JavaScript debuggers and profilers (e.g., Venkman15),
HTML, and Cascading Style Sheets (CSS).

6 Findings and discussion of the field user study

We already indicated in Section 5 that the developers first had the opportu-
nity to freely explore the Java Pet Store application for 1.5 hours. During
this free exploration they formed and refined hypotheses. When they were
satisfied with an initial hypothesis on the implementation of a particular
feature, they started investigating the application itself in order to verify
their hypothesis.

For understanding the Java Pet Store, they typically investigated the
HTML and/or JavaScript code and/or used the FireDetective tool. During
the exploration, they continued to think aloud and continuously shared their
thoughts and told each other which direction they should follow during their
reconnaissance.

After the free exploration of FireDetective, we presented the two Mendix
developers with a short questionnaire (Section 6.1), and we continued our
contextual interview with the aim of getting more in-depth feedback on tool
requirements (Section 6.2).

6.1 Questionnaire

About FireDetective as a tool. Both developers indicated that they
found FireDetective easy to use (and gave it a score of 4 on a 5-point Likert
scale ranging from “Totally disagree” to “Totally agree” — also see Table 7).
Both developers gave a score of 5 to the statements that there is added value
in using dynamic analysis for analyzing and understanding web applications.
They also gave a score of 5 for the statement that FireDetective allows them

13http://jquery.com/
14http://www.prototypejs.org/
15http://www.mozilla.org/projects/venkman/

26

to better understand web applications. One score of 4 and one of 5 was given
to the statement that “FireDetective makes me more confident that I really
understand the web application”, while “FireDetective is likely to save me
time” got a score of 5 from both developers.

D
ev

el
o
p

er
1

D
ev

el
o
p

er
2

I found FireDetective easy to use 4 4
FireDetective should be integrated into Eclipse (or another IDE) 1 3
There’s added value in using dynamic analysis for analyzing web
applications

5 5

There’s added value in using dynamic analysis for understanding
web applications

5 5

A tool like FireDetective is likely to save me time 4 4
A tool like FireDetective allows me to better understand web
applications

5 5

A tool like FireDetective makes me more confident that I really
understand the web application that I’m investigating

4 5

Table 7: Results to the questionnaire about the FireDetective tool on a scale
of 1 (totally disagree) to 5 (totally agree).

While both developers filled in their questionnaire forms individually,
their scores agree on almost all statements. When we then compare their
answers to Figure 4, subgraphs (a), (b) and (c) we see that these two expe-
rienced developers are equally positive (if not slightly more) about FireDe-
tective than the participants from the user study were.

Features of FireDetective. In a similar style to the user study, we also
asked the two developers to provide their opinion on the key features of
FireDetective (also see Figure 5). We asked them to indicate their top
3 most-liked features. Both developers liked the overview of events and
the JavaScript functions that handle them the most, with both developers
stating that other tools like FireBug allow them to place breakpoints during
debugging, but failing to give them a chronological overview, something
which FireDetective does provide. The second-best feature of FireDetective
is the fact that FireDetective allows them to track Ajax requests. For the
third feature, one of the developers indicated the fact that you can mark
sections of a trace, which helps to avoid cluttering, while the other developer
indicated the fact that FireDetective allows to jump directly from Ajax
requests to the corresponding server-side code, avoiding the need for context-
switches when going from one tool to another.

27

N
u
m

b
er

Q
u
es

ti
o
n

D
ev

el
o
p

er
1

D
ev

el
o
p

er
2

Q2 Where in the code is the text in this error message or UI element? 4 4
Q3 Where is there any code involved in the implementation of this

behavior?
5 4

Q12 Where is this method called or type referenced? 2 2
Q13 When during the execution is this method called? 2 2
Q14 Where are instances of this class created? 2 1
Q15 Where is this variable or data structure being accessed? 2 2
Q18 What are the arguments to this function? 2 2
Q19 What are the values of these arguments at runtime 2 1
Q20 What data is being modified in this code? 3 3
Q21 How are instances of these types created and assembled? 3 2
Q22 How are these types or objects related? 1 2
Q23 How is this feature or concern implemented? 5 5
Q25 What is the behavior these types provide together and how is it

distributed over the types?
4 4

Q26 What is the “correct” way to use or access this data structure? 2 3
Q27 How does this data structure look at runtime? 1 3
Q28 How can data be passed to (or accessed at) this point in the code? 5 5
Q29 How is control getting (from here to) here? 5 5
Q30 Why isn’t control reaching this point in the code? 4 2
Q31 Which execution path is being taken in this case? 5 5
Q32 Under what circumstances is this method called or exception

thrown?
2 2

Q33 What parts of this data structure are accessed in this code? 4 4
Q37 What is the mapping between these UI types and these model types? 4 5
Q39 Where in the UI should this functionality be added? 4 4
Q40 To move this feature into this code, what else needs to be moved? 1 1
Q41 How can we know this object has been created and initialized cor-

rectly?
1 2

Table 8: The 25 questions that we selected from [43] and that we asked the
developers, including the score of the developers with 1 indicating “Totally
disagree” and 5 indicating “Totally agree”. The question-numbering is taken
from [43].

6.2 Contextual interview

As we already discussed in 5.2, part of the contextual interview is based
on the typical maintenance questions that were presented by Sillito et al.
[43]. The responses to each of these questions can be seen in Table 8. While
we will not touch upon all 25 questions in detail in our discussion, we will
highlight those questions that sparked the most interesting discussions. For
the remainder of this section, we will adhere to the question numbering as
used by Sillito et al. [43].

We first gave the two Mendix developers the aforementioned set of ques-

28

tions and asked them to think about the questions and rate the usefulness
of FireDetective for answering each of the questions, on a 5-point Likert
scale. In a subsequent step, we compared the responses of the developers in
group and tried to bridge differing opinions. In all cases where we identi-
fied differing opinions – 2 cases to be precise –, this was due to a different
interpretation of the question. In addition, we did not only compare notes,
we also collected anecdotes on how FireDetective was useful for answering a
question. In particular, when we were discussing the questions in a group,
the developers were frequently referring to using some FireDetective func-
tionality to investigate the implementation of a particular feature. In the
next paragraph, we highlight some of the more interesting anecdotes. Im-
portant to note as well is that during the entire interview, FireDetective was
available to the developers so that they could check up on certain ideas or
opinions.

Interview highlights. We will now discuss some of the highlights of the
interview.

Q2 Where in the code is the text in this error message or UI element?
Both developers agreed here that FireDetective is useful (score: 4)
and that finding the origins of an error message in the trace is actually
more efficient than using a textual search tool, which would sometimes
need to be applied on both the client and server-side code in order to
find the origins of an error message.

Q3 Where is there any code involved in the implementation of this behav-
ior? Many times during the exploration of the Java Pet Store case,
the two developers formed a hypothesis that a particular functionality
was purely implemented on the client side, or both on the client and
the server-side. FireDetective helped them to verify their hypotheses.
As an example, the two Mendix developers hypothesized that when
the Java Pet Store puts a marker on the Google Map when clicking
on the address of a physical shop, this functionality is purely imple-
mented on the client-side. Investigation with FireDetective confirmed
their initial hypothesis. The developers valued FireDetective’s ability
to answer this question with scores of 4 and 5.

Q23 How is this concern or feature implemented? Both developers strongly
agreed that FireDetective comes in very handy for answering this ques-
tion and both gave a score of 5 for FireDetective’s ability to answer
this question. Both developers really appreciated the trace marking
feature of FireDetective, which effectively enabled them to do feature
location [47].

Q28 How can data be passed to or accessed at this point in the code? Both
developers immediately indicated that FireDetective makes it very

29

easy to see how data can be passed to a point in code, but how it
is accessed is not always clear. For the first option, both developers
decided to give a score of “totally agree” (5) for FireDetective’s capa-
bilities to support this question. What they particularly liked about
FireDetective in this regard, is its ability to connect the client and the
server-side code, with the added benefit of having the possibility to
navigate both the client and the server side code from within FireDe-
tective. This effectively allows them to follow the control flow, which
helps to understand how data can be passed.

Q29 How is control getting (from here to) here? Again, both developers in-
dicated that FireDetective supports this question very well (score of 5
by both). Furthermore, the developers stressed that the FireDetective
allowed them to get a really good overview of everything that is hap-
pening at the client-side, and while they appreciated the connection
to the server, they thought that the main strength of FireDetective
was its way of visualizing calls and interactions that occur within the
client-side (browser). At this point, they also compared FireBug with
FireDetective, stating that for understanding purposes FireDetective
is superior because it provides a better overview of what is going on,
compared to the breakpointing facility offered by FireBug.

Q31 Which execution path is being taken in this case? FireDetective’s fa-
cilities to answer this question were rated with a score of 5 by both
developers.

Additional insights obtained from the contextual interview. In
this section we will briefly discuss some of the additional insights that we
gained during the contextual interview with the two developers. These ad-
ditional insights could not be directly mapped to one of the comprehension
questions in the previous part.

One of the developers suggested to incorporate profiling functionality
into FireDetective, to provide more obvious insights into the performance of
the application. This would effectively mean integrating some of the func-
tionality of DynaTrace, a tool both developers knew (also see Section 8),
into FireDetective. There was actually no consensus on the benefits of in-
tegrating all functionality (for understanding and for profiling) in one tool
versus using two separate tools, while each separately would possibly be
more powerful in its own right.

With regard to FireBug, the two Mendix developers would appreciate
the ability to investigate the actual values of parameters, variables and re-
turn values in FireDetective, a feature that FireBug currently does have.
Intuitively, one of the developers wanted to start up FireBug during the
exploration phase, but quickly abandoned this route, when he realized that

30

FireDetective and FireBug were unable to be used on the same installation
of Firefox.

They also added that they did not see any benefit from using the Java
IDE to inspect the application under study, as most of the material they
needed could be inspected right from within FireDetective. They did add
however, that they would prefer to see the whole JavaScript file instead of
only snippets of JavaScript code. Technically, FireDetective always tries to
provide users with a context, instead of just showing a single function. How-
ever, currently FireDetective cannot reconstruct a context for most types of
dynamically generated code (e.g., eval(’alert(123)’)), which is what the
developers were alluding to in their remarks.

They finished the interview by stating that they felt that FireDetective
excelled at giving the developer a feeling of confidence of his understand-
ing, which they rated as more important than any time-gain from using
FireDetective.

6.3 Discussion

The two experienced web developers from Mendix that we recruited for this
user study have provided us with additional indications of the perceived use-
fulness of FireDetective as a program comprehension tool for understanding
complex Ajax web applications. Their opinions are similar to the results
that we obtained from our first user study.

In particular, if we compare the results from the posttest of the user study
(see Figure 4) to the opinion of the two Mendix developers, we see a similar
trend: web developers are convinced that FireDetective can help them in un-
derstanding applications. From the insights that we gained from interacting
with the two expert developers, however, we gathered that while FireDetec-
tive might speed up the comprehension process, the ultimate benefit they
see is that FireDetective increases their confidence in their understanding.

Also of interest to note is that the two expert developers found FireDe-
tective’s features to investigate client-side interactions to be the most useful,
because it is at the client side that things often become difficult to follow.
They still appreciated the fact that they also had the opportunity to inves-
tigate the server-side behavior, without having to make a context-switch to
an IDE or another tool.

Furthermore, the hypothesis-driven approach that the developers fol-
lowed for understanding the Java Pet Store gives an indication that they
were following a top-down comprehension strategy, where they created a
hypothesis, executed part of the application under study, and started in-
vestigating the behavior drilling down to the source code level to accept or
reject their hypothesis. This is similar to what we saw in our user study.

31

7 Threats to validity

In this section we identify factors that may jeopardize the validity of our
results and the actions we took to reduce or alleviate the risk [41,48].

7.1 Internal validity

Participants might have been inclined to rate the tool more positively than
they actually value it, because they might have felt this was the more desir-
able answer. For both user studies, we mitigated this concern by indicating
to participants that only honest answers were valuable. Nevertheless, we
recognize that such a bias possibility still exists.

Next, the introduction sessions might have biased participants towards
using the features that we showed them. We tried to neutralize this threat
in the following way. During the introduction session for part A of the user
study we only showed participants basic information on where they could
find the different parts (i.e., server-side code, client-side code) within the
Eclipse project, and the basic FireBug views. Explanations of other features
were not included and participants were told they could use any feature they
desired. For part B of the user study, we made sure to explain all features
of FireDetective, so that participants would not be biased towards using
any feature in particular. For the field user study, we showed all features of
FireDetective to the two developers.

The tasks of the user study might have been too easy or too difficult.
However, through three pilot sessions we adjusted the task difficulty level
accordingly. Also, participants of the user study might have felt time pres-
sure, causing them to behave differently. We minimized this problem by
telling them that the number of tasks completed was not important and by
handing out tasks one at a time, without revealing how many there were to
come. For the field user study, we indicated that the free exploration period
would take approximately 1.5 hours, but that if the developers felt the need,
they could continue beyond this time frame.

7.2 External validity

A concern regarding the generalizability of the results of the user study
is that most participants of the user study were students. However, as
shown in Section 3.6 a lot of these participants had a relevant part-time job.
Participants of the user study were not familiar with two of the technologies
used in the study, JSP and Dojo. We admit that the learning curve involved
has likely impacted the results. Yet, we also think that this impact is limited
because both JSP and Dojo are technologies that are very similar to rivaling
technologies. Moreover, participants were given a brief introduction to JSP,
and were allowed to ask questions about the technologies involved at any

32

time. Additionally, for the field user study that we performed, we recruited
two experienced web developers and while they did not execute the same
tasks, their opinion of FireDetective does not differ much.

The Java Pet Store, our target application, is a showcase application.
This might cause one to question whether this application is representative
of a real-world Ajax application. However, the application represents the
state-of-the-practice and manual inspection of the application shows that it
uses Ajax on most of its pages and is clearly more than just a “toy example”.
Moreover, the application has been used in previous program understanding
research efforts, e.g., [27]. While the two experienced web developers that
we recruited for the field user study had no prior knowledge of the Java Pet
Store, they actually acknowledged that this project contains many of the
typically (Ajax) idioms that you would also find in industrial-strength Ajax
web applications, which is an extra argument for the representativeness of
the Java Pet Store application.

The tasks for the user study might not have been representative of real-
world tasks. Because of the limited time frame, tasks are likely to be shorter
than real-world tasks, and they might not have covered all program under-
standing aspects. We tried to mitigate this threat by using Pacione’s frame-
work of principal comprehension activities [35] to make sure that the tasks
are realistic and cover a significant portion of the program comprehension
spectrum.

Similarly, the questions that we discussed with the two Mendix develop-
ers might not have been realistic. In order to mitigate this threat, we reused
the list of questions that was previously identified by Sillito et al. [43].

Both the user study that we describe in Section 3 and the industrial field
study from Section 5 let the participants deal with a software system that
they are not familiar with; both experiments deal with a situation in which
the participants are considered software immigrants [44], i.e., developers
that are getting to know the domain of the case study, in this case the Java
Pet Store. As such, the findings that we report upon are based on developers
trying to find their way in a previously unknown software system and do not
reflect situations were developers are already familiar with the system. We
acknowledge that a follow-up study should also investigate the usefulness of
FireDetective in situations where the developers are already familiar with
the domain.

8 Related work

Reverse engineering approaches can generally by categorized into static, dy-
namic or hybrid (combining static and dynamic) analysis techniques. This
section provides a brief overview of approaches that use dynamic analy-
sis [13]. We start by discussing some general trace analysis techniques, after

33

which we focus specifically on techniques for reverse engineering and under-
standing web applications.

8.1 Trace analysis

Trace analysis concerns itself with with sequences of run-time events and
how these sequences can be used to gain insight into the workings of the
program. Since traces may quickly grow to massive proportions [49, 50, 53],
we need ways to deal with their size [13]. We consider two common ways to
do so: trace reduction and trace visualization, which are often combined.

Trace reduction Trace reduction, or trace compaction, refers to the act
of transforming traces such that they become smaller. Most techniques
are automatic, i.e., they require no user intervention. Techniques may be
divided into several categories [11]:

• Ad-hoc methods like (1) defining start and end points within the
code, (2) extracting time slices from a trace, and (3) sampling of
traces [7, 19].

• Language-based filtering methods in which particular kinds of
programming constructs can be omitted from a trace without sacri-
ficing too much of the information the trace conveys. Examples are
getters and setters that are called from within a class (when called
between classes, getter and setter accesses can indicate important re-
lationships!), and constructors and destructors of unimportant or un-
used objects [9, 21]. We can also filter elements of the program or its
libraries, i.e., calls to specific components, classes, methods, etc.

• Metric-based filtering methods can be used to determine which
parts to keep and which parts to discard from a trace. Examples are:
using stack depth as a metric, i.e., filtering all calls above a specific
depth [36] or below a specific depth [9]. Hamou-Lhadj and Lethbridge
put forward a utilityhood metric that indicates the probability that a
specific method is a utility method, which is based on fan-in and fan-
out analysis, and use a threshold value to filter parts of the trace [22].
A similar technique for finding important classes has been proposed
by Zaidman and Demeyer [52].

• Trace summarization is meant to find patterns within traces to
compact these patterns. Typically, there are a lot of those patterns,
since programs often contain repetitions, and “execution patterns of
iterative behavior rarely justify the space they consume” [36]. Exam-
ples are methods based on string matching [45], run-length encoding
or grammars [39], techniques that are borrowed from the signal pro-
cessing field [25, 51] and approaches that use information from source

34

code [33]. A question that arises when identifying patterns, is how far
we should go with generalizing parts of traces to patterns. Seldomly
will we see many exact recurrences of a pattern. Instead, each recur-
rence often differs by a slight amount [36]. De Pauw et al. propose
various measures to decide which parts can be considered equivalent,
such as: class identity (the same classes are being called), message
structure identity (the same methods are being called) and repetition
identity (different numbers of repetition are considered the same) [36].

Trace visualization Trace visualization is a popular research area: many
techniques have been suggested. Sequence diagrams - and variations of them
- are the most common way to visualize execution traces. Bennett et al.
investigate the importance of several features of sequence diagrams, and
provide a survey of different approaches [5]. Rather than mentioning ev-
ery trace visualization technique that has been proposed over the years, we
mention several techniques that, in our opinion, are among the more in-
teresting and novel ones. Reiss [38] puts forward a real-time visualization
of program activity in the form of real-time-box views. Such a view con-
sists of a grid in which every square represents information about a single
problem element (e.g., class, method, etc.). Ducasse et al. take this idea
a step further by introducing polymetric views, a more general version of
the former views [18]. For example, instead of squares in a grid, they use
nodes in a graph to represent program elements. Cornelissen et al. describe
the idea of circular bundle views, in which a systems components are shown
on the boundary of a circle, and bundles within the circle represent rela-
tionships between components [10, 15]. In subsequent research, they also
investigated the effectiveness of their circular bundle views in a controlled
experiment [14].

8.2 Dynamic analysis for understanding web applications

Early web application reverse engineering efforts were mainly focused on
architecture reconstruction, e.g., [2,17,23,40,46]. Static analysis alone does
not suffice because of the dynamic nature of web applications [2, 46], so in
most cases the static analysis is complemented by dynamic analysis. How-
ever, many client-side aspects that are common in Ajax applications are not
taken into account.

De Pauw et al. [16] present the Web Services Navigator, a tool that
offers insight into message and transaction flows in systems of multiple web
services. The tool combines multiple web service event logs to reconstruct
meaningful abstractions in the web service domain and has some similarities
with FireDetective, albeit applied to a different domain.

Recent efforts have focused on understanding only client-side aspects of
Ajax applications. Li and Wohlstadter [27] present a tool named Script

35

InSight, which uses dynamic analysis to record DOM mutations and relate
them to the JavaScript functions that caused them. This allows a web
developer to map a DOM element on the page to locations in the code
where the element was modified.

Oney and Myers [34] present FireCrystal, which enables a user to view
a timeline of DOM events and DOM modifications, and view code coverage
per DOM event.

Our approach differs from these last two approaches in a number of
ways. First, our approach visualizes execution traces. Second, it combines
client and server-side information to show a complete picture of an Ajax
application. Third, it uses a different and larger set of abstractions from
the Ajax/web domain to link traces together (in contrast to only DOM
mutations and DOM events).

Finally, there is one commercial tool of interest: DynaTrace Ajax 16.
DynaTrace Ajax and FireDetective are quite similar: they both record ex-
ecution traces, they both use abstractions from the Ajax domain to link
traces, and they both combine client-side and server-side data. However,
DynaTrace is primarily focused on performance analysis, whereas FireDe-
tective is primarily focused on improving understanding. FireDetective lacks
performance analysis features, but instead has features that aid the program
understanding process, such as showing code in its original context.

A recent development is DynaRIA, which is a tracing tool for Rich In-
ternet Applications (RIAs) [1]. DynaRIA is similar to FireDetective in the
sense that it records JavaScript traces and visualizes them. However, it does
not record any server-side information.

9 Conclusions and future work

In this paper we have introduced FireDetective, a dynamic analysis tool for
analyzing Ajax applications. FireDetective records execution traces on both
the browser and server, captures information about Ajax/web abstractions,
and presents this information in a linked way.

We conducted an exploratory user study and an in-depth field user study
to answer our two research questions:
RQ1 Which strategies do web developers currently use when trying to un-

derstand Ajax applications? In the user study we gauged how the
user study participants work with traditional web development tools.
We witnessed that participants mainly use a bottom-up approach, and
heavily rely on text search. This strategy is ad hoc and problematic
for understanding Ajax applications, of which the logic is spread over

16See http://ajax.dynatrace.com/. DynaTrace Ajax Edition was released in Septem-
ber 2009, after we built FireDetective.

36

the client and server-side. It is our argument that tool support can
improve on this situation.

RQ2 Can dynamic analysis be used to improve program understanding for
Ajax applications? Participants of the user study indicated that FireDe-
tective – which uses dynamic analysis, in particular trace analysis –
allows them to understand Ajax applications more effectively, more
efficiently and with more confidence. A possible explanation could be
that the tool offers the option to switch to a more top-down way of un-
derstanding. From the observations and interviews conducted during
the user study we identify three different ways to further support the
understanding process: incorporating information about additional
abstractions (such as various kinds of XML bindings and JavaScript
parsing errors), exploration of other kinds of visualizations and inte-
gration with existing tools, such as Firefox’ FireBug add-on.
During the field user study that we performed with two experienced
Ajax web developers, we witnessed a hypothesis-driven top-down un-
derstanding strategy. When understanding Ajax applications, the de-
velopers found that visualizing the client-side interactions was actu-
ally the most beneficial part of FireDetective tool. On some occasions,
they also investigated the server-side information that FireDetective
provides, and they appreciated the fact that they could see all this
information integrated into a single tool. Finally, the two experi-
enced developers also noted that they feel that while they are not
sure whether FireDetective would save them time when trying to un-
derstand Ajax applications, they felt that FireDetective does make
them more confident in their understanding.

Contributions. In this paper, we have made the following contributions:

• We have designed and implemented FireDetective, a dynamic analysis
tool for understanding Ajax applications.

• We have shown how to employ abstractions in the Ajax/web domain
to link execution traces.

• We have carried out a preliminary user study that showed us (1) how
developers traditionally go about understanding Ajax applications and
(2) that dynamic analysis techniques, in particular the trace analysis
capabilities of FireDetective, can improve their understanding.

• We have carried out a field user study with two experienced Ajax de-
velopers that gave us additional insight into how experienced Ajax
developers use FireDetective for understanding complex web applica-
tions.

37

Future Work. An interesting avenue for future work is to explore ways
to further improve program understanding of Ajax applications. At the
same time we must carefully evaluate empirically how individual aspects
and techniques affect the understanding process.

In order to strengthen our evaluation, it is our aim to pursue two dis-
tinct routes, namely a longitudinal study and a controlled experiment. The
longitudinal study would explore the long term effects of using FireDetec-
tive in a real web development environment, while the controlled experiment
would give us additional insight into the actual effectiveness of FireDetec-
tive in terms of improvements in speed and correctness of maintenance tasks
performed with or without FireDetective, similar to [12].

Additionally, both experiments also gave us input for a number of tech-
nical challenges ahead. Some of those challenges are:

• Incorporating some FireBug features into FireDetective, e.g., the in-
spection of values of parameters and return values.

• Extending the server tracing facilities to encompass other platforms
besides Java EE.

• Creating a client-side plug-in for the WebKit17 browser development
platform, which would also enable the investigation of Ajax web ap-
plications developed for mobile platforms such as iOS or Android.

In a somewhat different direction for future work, it is our aim to in-
vestigate whether understanding rich client GUI applications suffers from
the same difficulties as understanding Ajax web applications. Furthermore,
if our assumption of seeing the same difficulties in that domain is true, we
might be able to reuse some of the ideas of FireDetective to also help devel-
opers understand these rich client GUI applications.

Acknowledgements

We would like to thank Ian Bull for providing valuable comments on earlier
versions of this paper. Additionally, our gratitude goes out to all volunteers
that participated in our user study. We also want to thank Johan den Haan,
Michiel Kalkman and Michel Weststrate from Mendix for enabling the field
user study.

This work has been sponsored by the Center for Dependable ICT (Ce-
DICT), an initiative of NIRICT, the Netherlands Institute for Research on
ICT.

17http://webkit.org/

38

References

[1] Amalfitano, D., Fasolino, A.R., Polcaro, A., Tramontana, P.: Dynaria:
A tool for ajax web application comprehension. In: Proceedings of
the International Conference on Program Comprehension (ICPC), pp.
46–47. IEEE Computer Society (2010)

[2] Antoniol, G., Di Penta, M., Zazzara, M.: Understanding web applica-
tions through dynamic analysis. In: Proceedings of the International
Workshop on Program Comprehension (IWPC), pp. 120–129. IEEE
Computer Society (2004)

[3] Babbie, E.: The practice of social research, 11th edn. Wadsworth Bel-
mont (2007)

[4] Ball, T.: The concept of dynamic analysis. In: Proceedings of the 7th
European Software Engineering Conference held jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE), pp. 216–234. Springer-Verlag (1999)

[5] Bennett, C., Myers, D., Storey, M.A., German, D.M., Ouellet, D., Sa-
lois, M., Charland, P.: A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams. Journal of Soft-
ware Maintenance and Evolution: Research and Practice 20(4), 291–
315 (2008)

[6] Campbell, D., Stanley, J., Gage, N.: Experimental and quasi-
experimental designs for research. Rand McNally Chicago (1963)

[7] Chan, A., Holmes, R., Murphy, G.C., Ying, A.T.T.: Scaling an object-
oriented system execution visualizer through sampling. In: Proceedings
of the International Workshop on Program Comprehension (IWPC),
pp. 237–244. IEEE Computer Society (2003)

[8] Corbi, T.: Program understanding: Challenge for the 1990s. IBM
Systems Journal 28(2), 294–306 (1989)

[9] Cornelissen, B., van Deursen, A., Moonen, L., Zaidman, A.: Visual-
izing testsuites to aid in software understanding. In: Proceedings of
the European Conference on Software Maintenance and Reengineering
(CSMR), pp. 213–222. IEEE Computer Society (2007)

[10] Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van Wijk, J.J.,
van Deursen, A.: Understanding execution traces using massive se-
quence and circular bundle views. In: Proceedings of the 15th Inter-
national Conference on Program Comprehension (ICPC), pp. 49–58.
IEEE Computer Society (2007)

39

[11] Cornelissen, B., Moonen, L., Zaidman, A.: An assessment methodol-
ogy for trace reduction techniques. In: Proceedings of the International
Conference on Software Maintenance (ICSM), pp. 107–116. IEEE Com-
puter Society (2008)

[12] Cornelissen, B., Zaidman, A., van Deursen, A.: A controlled exper-
iment for program comprehension through trace visualization. IEEE
Transactions on Software Engineering 37(3), 341–355 (2011)

[13] Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke,
R.: A systematic survey of program comprehension through dynamic
analysis. IEEE Transactions on Software Engineering 35(5), 684–702
(2009)

[14] Cornelissen, B., Zaidman, A., van Deursen, A., Van Rompaey, B.:
Trace visualization for program comprehension: a controlled experi-
ment. In: Proceedings of the International Conference on Program
Comprehension (ICPC), pp. 100–109. IEEE Computer Society (2009)

[15] Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen,
A., van Wijk, J.J.: Execution trace analysis through massive sequence
and circular bundle views. Journal of Systems and Software 81(12),
2252–2268 (2008)

[16] De Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.F.:
Web services navigator: visualizing the execution of web services. IBM
Systems Journal 44(4), 821–845 (2005)

[17] Di Lucca, G., Fasolino, A., Pace, F., Tramontana, P., de Carlini, U.:
WARE: A tool for the reverse engineering of web applications. In:
Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pp. 241–250. IEEE (2002)

[18] Ducasse, S., Lanza, M., Bertuli, R.: High-level polymetric views of con-
densed run-time information. In: Proceedings of the European Con-
ference on Software Maintenance and Reengineering (CSMR), pp. 309–
318. IEEE Computer Society (2004)

[19] Dugerdil, P.: Using trace sampling techniques to identify dynamic clus-
ters of classes. In: Proceedings of the Conference of the Centre for Ad-
vanced Studies on Collaborative Research, pp. 306–314. ACM (2007)

[20] Garrett, J.J.: Ajax: A new approach to web applications (2005). http:
//www.adaptivepath.com/ideas/essays/archives/000385.php, re-
trieved on December 14th, 2010.

40

[21] Hamou-Lhadj, A., Lethbridge, T.C.: Techniques for reducing the com-
plexity of object-oriented execution traces. In: Proceedings of the 2nd
IEEE International Workshop on Visualizing Software for Understand-
ing and Analysis, pp. 35–40 (2003)

[22] Hamou-Lhadj, A., Lethbridge, T.C.: Summarizing the content of large
traces to facilitate the understanding of the behaviour of a software
system. In: Proceedings of the International Conference on Program
Comprehension (ICPC), pp. 181–190. IEEE Computer Society (2006)

[23] Hassan, A.E., Holt, R.C.: Architecture recovery of web applications. In:
Proceedings of the International Conference on Software Engineering
(ICSE), pp. 349–359. ACM (2002)

[24] Holtzblatt, K., Jones, S.: Conducting and analyzing a contextual inter-
view (excerpt). In: R.M. Baecker, J. Grudin, W.A.S. Buxton, S. Green-
berg (eds.) Human-computer interaction, pp. 241–253. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (1995)

[25] Kuhn, A., Greevy, O.: Exploiting the analogy between traces and signal
processing. In: Proceedings of the International Conference on Software
Maintenance (ICSM), pp. 320–329. IEEE Computer Society (2006)

[26] Lerner, R.: At the forge: Firebug. Linux Journal 2007, 8– (2007). URL
http://portal.acm.org/citation.cfm?id=1243931.1243939

[27] Li, P., Wohlstadter, E.: Script InSight: Using models to explore
JavaScript code from the browser view. In: Proceedings of the Interna-
tional Conference on Web Engineering (ICWE), pp. 260–274. Springer
(2009)

[28] Matthijssen, N.: Understanding Ajax applications by us-
ing trace analysis. Master’s thesis, Delft University of
Technology (2010). URL http://repository.tudelft.

nl/assets/uuid:6afeebc9-b574-453d-ac21-5682f57686bc/

MScThesisNickMatthijssen.pdf

[29] Matthijssen, N., Zaidman, A.: Firedetective: Understanding ajax
client/server interactions. In: Proceedings of the International Con-
ference on Software Engineering (ICSE), pp. 998–1000. ACM (2011)

[30] Matthijssen, N., Zaidman, A., Storey, M.A., Bull, I., van Deursen, A.:
Connecting traces: Understanding client-server interactions in ajax ap-
plications. In: Proceedings of the International Conference on Program
Comprehension (ICPC), pp. 216–225. IEEE Computer Society (2010)

[31] von Mayrhauser, A., Vans, A.M.: Program comprehension during soft-
ware maintenance and evolution. IEEE Computer 28(8), 44–55 (1995)

41

[32] Mesbah, A., van Deursen, A.: A component- and push-based archi-
tectural style for ajax applications. Journal of Systems and Software
81(12), 2194–2209 (2008)

[33] Myers, D., Storey, M.A., Salois, M.: Utilizing debug information to
compact loops in large program traces. In: Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pp.
41–50. IEEE Computer Society (2010)

[34] Oney, S., Myers, B.: FireCrystal: Understanding interactive behav-
iors in dynamic web pages. In: Proceedings of the Symposium on
Visual Languages and Human-Centric Computing (VLHCC), pp. 105–
108. IEEE Computer Society (2009)

[35] Pacione, M., Roper, M., Wood, M.: A novel software visualisation
model to support software comprehension. In: Proceedings of the
Working Conference on Reverse Engineering (WCRE), pp. 70–79. IEEE
Computer Society (2004)

[36] Pauw, W.D., Lorenz, D., Vlissides, J., Wegman, M.: Execution pat-
terns in object-oriented visualization. In: Proceedings of the 4th
USENIX Conference on Object-Oriented Technologies and Systems, pp.
219–234. USENIX Association (1998)

[37] Pennington, N.: Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive Psychology
19(3), 295–341 (1987)

[38] Reiss, S.P.: Visualizing java in action. In: Proceedings of the Sympo-
sium on Software Visualization (SoftVis), pp. 57–65. ACM (2003)

[39] Reiss, S.P., Renieris, M.: Encoding program executions. In: Pro-
ceedings of the 23rd International Conference on Software Engineering
(ICSE), pp. 221–230. IEEE Computer Society (2001)

[40] Ricca, F., Tonella, P.: Analysis and testing of web applications. In:
Proceedings of the International Conference on Software Engineering
(ICSE), pp. 25–34. IEEE Computer Society (2001)

[41] Runeson, P., Höst, M.: Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering
14(2), 131–164 (2009)

[42] Shneiderman, B.: The eyes have it: A task by data type taxonomy
for information visualizations. In: Proceedings of the Symposium on
Visual Languages (VL), pp. 336–343. IEEE Computer Society (1996)

42

[43] Sillito, J., Murphy, G.C., De Volder, K.: Questions programmers ask
during software evolution tasks. In: Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), pp. 23–34.
ACM (2006)

[44] Sim, S., Holt, R.: The ramp-up problem in software projects: a case
study of how software immigrants naturalize. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp. 361–370.
IEEE Computer Society (1998)

[45] Systä, T., Koskimies, K., Müller, H.: Shimba - an environment for
reverse engineering java software systems. Software - Practice & Expe-
rience 31(4), 371–394 (2001)

[46] Tonella, P., Ricca, F.: Dynamic model extraction and statistical analy-
sis of web applications. In: Proceedings of the International Workshop
on Web Site Evolution (WSE), pp. 43–52. IEEE Computer Society
(2002)

[47] Wilde, N., Scully, M.C.: Software reconnaissance: mapping program
features to code. Journal of Software Maintenance: Research and Prac-
tice 7(1), 49–62 (1995)

[48] Yin, R.K.: Case Study Research: Design and Methods, 3 edition. Sage
Publications (2002)

[49] Zaidman, A., Adams, B., De Schutter, K., Demeyer, S., Hoffman, G.,
De Ruyck, B.: Regaining lost knowledge through dynamic analysis and
aspect orientation — an industrial experience report. In: Proceedings of
the European Conference on Software Maintenance and Reengineering
(CSMR), pp. 91–102. IEEE Computer Society (2006)

[50] Zaidman, A., Calders, T., Demeyer, S., Paredaens, J.: Applying web-
mining techniques to execution traces to support the program compre-
hension process. In: Proceedings of the 9th European Conference on
Software Maintenance and Reengineering (CSMR), pp. 134–142. IEEE
Computer Society (2005)

[51] Zaidman, A., Demeyer, S.: Managing trace data volume through a
heuristical clustering process based on event execution frequency. In:
Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pp. 329–338. IEEE Computer Society (2004)

[52] Zaidman, A., Demeyer, S.: Automatic identification of key classes in a
software system using webmining techniques. Journal of Software Main-
tenance and Evolution: Research and Practice (JSME) 20(6), 387–417
(2008)

43

[53] Zaidman, A., Du Bois, B., Demeyer, S.: How webmining and coupling
metrics improve early program compehension. In: Proceedings of the
14th International Conference on Program Comprehension (ICPC), pp.
74–78. IEEE Computer Society (2006)

44

