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Abstract

During initial program comprehension, software engi-
neers could benefit from knowing the most need-to-be-
understood classes in the system under study in order to
kick-start their software reconnaissance.

Previously we have used webmining techniques on run-
time trace data to identify these important classes. Here,
we reprise this webmining technique and make a thorough
comparison of its effectiveness when collecting static infor-
mation of the software system under study.

Apache Ant and Jakarta JMeter, two medium-scale open
source Java software systems, serve as case studies. From
publicly available developers notes we conclude that the
webmining technique in combination with dynamic analy-
sis provides the best results with a level of recall of 90%
when comparing with the developers’ opinion.

1 Introduction
In [7] we proposed a heuristic that helped software

engineers during the early phases of program compre-
hension by identifying need-to-be-understood classes, i.e.
classes which are essential before any meaningful change-
operation can take place. This heuristic is based on col-
lecting trace information from program runs and applying
a webmining technique on the resulting graph. The exper-
iments were carried out on two medium-scale open-source
case studies, Apache Ant and Jakarta JMeter. In [6], we
reprised the same technique and applied it on a large-scale
commercial software system. During these experiments
however, we noticed that the use of dynamic analysis is of-
ten not so evident, mainly due to constraints such as the un-
availability of tracing mechanisms in legacy environments
(e.g. non-ANSI C on UnixWare) and the size of the event
trace of larger scale systems (e.g. 90 GB).

These constraints have made us add a third leg to this
research: we propose to apply webmining techniques on a
static topological structure of the application. We instanti-
ate this static topological structure with a number of static
coupling metrics that we will compare with the results we
have obtained from using dynamic information and with the
developers’ opinion. By using static information, we hope
to overcome a number of constraints of dynamic analysis,
namely (1) the necessity of a good execution scenario, (2)
the availability of a tracing mechanism and (3) scalability
issues such as the size of the trace file or the overhead from
the tracing mechanism.

2 Webmining
Webmining deals with analyzing the structure of the

world wide web. Webmining solutions see the web as a
large graph, where each node represents a page and each
edge represents a hyperlink. Using this graph as an input,
the algorithm identifies so-called hubs and authorities [4].
Hubs are pages that refer to other pages containing informa-
tion rather than being informative themselves, while a page
is called an authority if it contains useful information.

Software systems can also be represented by graphs. As
such, we found it worthwhile to try and reach our goal of
identifying important classes in a system through the HITS
webmining algorithm [4, 7].

The basis for this technique is the measurement of run-
time coupling between modules of a system. Modules that
have a high level of runtime import coupling, are often mod-
ules that contain important control structures, and request
other modules to do work for them. As such, these are ideal
candidates to study during early program comprehension.

Coupling measurements typically do not take into ac-
count indirect coupling. With the help of the iterative re-
cursive algorithms such as HITS webmining, this indirect
relationship can be taken into account.
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Webmining more formally Every node i in the graph
gets assigned to it two numbers: ai denotes the authority
of the page, while hi denotes the hubiness. Let i → j de-
note that there is a calling relationship between modules i
and j, and let w[i, j] be the weight of the calling relation-
ship between the modules i and j. The recursive relation
between authority and hubiness is captured by:

hi =
X
i→j

w[i, j] · aj (1)

aj =
X
i→j

w[i, j] · hi (2)

For an example, see [7].

3 Coupling measurements
Intuitively, coupling refers to the degree of interdepen-

dence between parts of a software system’s design, while
cohesion refers to the internal consistency within parts of
the design [3]. In object-oriented designs cohesion is de-
sirable, while coupling is undesirable. Although coupling
should be minimized, a certain degree of coupling is un-
avoidable as classes collaborate in certain ways in order
to provide the required functionality. The definition from
Wand [3, 5] captures the concept of coupling:

Two things are coupled if and only if at least one
of them ”acts upon” the other. X is said to act
upon Y if the history of Y is affected by X, where
history is defined as the chronologically ordered
states that a thing traverses in time.

3.1 Dynamic coupling

Recently a framework for dynamic coupling metrics was
set up by Arisholm et al [1]. This framework defines a set of
12 dynamic coupling metrics for object-oriented software.

The coupling measurement we used in our experi-
ments in [7] can be translated into the dynamic coupling
terminology of Arisholm, see Table 1. Having calcu-

C Set of classes in the system.
M Set of methods in the system.
RMC RMC ⊆ M × C

Refers to methods being defined in classes.
IV IV ⊆ M × C × M × C

The set of possible method invocations.
IC CC’(c1, c2) = # {(m2, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC )

∧ c1 6= c2 ∧ (m1, c1, m2, c2) ∈ IV }

Table 1. Dynamic coupling measure [1].

lated the IC CC ′ (Import Coupling, Class level, Distinct
Classes [1]) metric, we can build up the so-called com-
pacted callgraph [7]. The algorithm works as follows:

1. For each class that participated in the execution sce-
nario, add a node to the graph.

2. For each pair (c1, c2):

• if IC CC’(c1, c2) > 0 add an edge c1 → c2 with
weight IC CC ′.

• if IC CC’(c1, c2) == 0, do nothing.

3.2 Static coupling

Previously we validated the results of the dynamic cou-
pling metric we presented in Section 3.1 against the Cou-
pling Between Objects (CBO) metric [7, 2, 3]. CBO how-
ever, is often ill-defined [2] and the tool we used for deter-
mining CBO previously, did not mention the exact metric-
implementation. As such, for this experiment, we wanted
to have more control over the static metric calculation. Fur-
thermore, we use static coupling metrics that are as close
as possible to the IC CC’ metric we used in the previous
section.

The framework from Arisholm does not need to make
a distinction between static and polymorphic calls due to
the dynamic nature of its measurements. We add notations
from the unified framework for object-oriented metrics
from Briand et al. [2] to ensure that the notation as used
by Arisholm still holds for our purposes. Some helpful
definitions are:

Definition1 Methods of a Class
For each class c ∈ C let M(c) be the set of methods of class c.

Definition 2 Declared and Implemented Methods.
For each class c ∈ C, let:
• MD(c) ⊆ M(c) be the set of methods declared in c, i.e., methods

that c inherits but does not override or virtual methods of c.
• MI ⊆ M(c) be the set of methods implemented in c, i.e., methods

that c inherits but overrides or nonvirtual noninherited methods of c.

Definition 3 M(C). The Set of all Methods.
M(C) = ∪c∈CM(c)

Definition 4 SIM(m). Set of Statically Invoked Methods of
m. Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ SIM(m)

⇔ ∃d ∈ C such that m′ ∈ M(d) and the body of m has a method
invocation where m′ is invoked for an object of static type class d.

Definition 5 NSI(m, m′). The Number of Static Invocations
of m’ by m. Let c ∈ C, m ∈ MI(c), and m′ ∈ SIM(m).
NSI(m, m′) is the number of method invocations in m where m′ is
invoked for an object of static type class d and m′ ∈ M(d).

Definition 6 PIM(m). The Set of Polymorphically Invoked
Methods of m. Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then
m′ ∈ PIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d) and the body of m

has a method invocation where m′ may, because of polymorphism and
dynamic binding, be invoked for an object of dynamic type d.

Definition 7 NPI(m, m′). The Number of Polymorphic Invo-
cations of m’ by m. Let c ∈ C, m ∈ MI(c), and m′ ∈ PIM(m).
NPI(m, m′) is the number of method invocations in m where m′ can
be invoked for an object of dynamic type class d and m′ ∈ M(d).
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1 public void foo() {
2 BaseClass base = new BaseClass();
3 base.doSomething();
4 base.doSomething();
5 }

Figure 1. Code snippet to explain metrics.

These notational constructs help us to write down
four static coupling measures that closely resemble the
measurements that were defined in Section 3.1.

The fact that one dynamic metric IC CC’ is translated
into 4 static metrics can be explained by the fact that the
static environment offers some degrees of choice when cal-
culating the metrics. Consider Figure 1:
• The choice between static calls and polymorphic calls.

In other words when considering Figure 1, do we only
count the reference to BaseClass or also to all sub-
classes of BaseClass?

• Do we count duplicate calls for the same (origin,
target) pairs? When considering Figure 1 do we count
the base.doSomething() call one or twice?

Definition SM SO Static Metric, Static calls, count every Occurrence
of a call only once.

SM SO(c1, c2) = #{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 6= c2 ∧ (m1, c1, m2, c2) ∈ IV ∧ m2 ∈ SIM(m1)}

Definition SM SW Static Metric, Static calls, count every oc-
currence of a call (Weighted).

SM SW (c1, c2) = identical to SM SO(c1, c2), but { } should be
interpreted as bag or multiset.

Definition SM PO Static Metric, Polymorphic calls, count ev-
ery Occurrence of a call only once.

SM PO(c1, c2) = #{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 6= c2 ∧ (m1, c1, m2, c2) ∈ IV ∧ m2 ∈ PIM(m1)}

Definition SM PW Static Metric, Polymorphic calls, count
every occurrence of a call (Weighted).

SM PW (c1, c2) = identical to SM PO(c1, c2), but { } should be
interpreted as bag or multiset.

4 Reverse engineering process
In [7] we explained that applying our webmining heuris-

tic in combination with dynamic analysis is a 4-step pro-
cess, (1) starting with the definition of an execution sce-
nario, over (2) calculating the basic metrics and (3) apply-
ing the webmining algorithm on them, to (4) interpreting
the resultset. This approach is characterized by a number of
drawbacks, which we will now discuss in some more detail:
• The necessity of a well-covering execution scenario.

This is not always evident as one needs knowledge of
how to operate the application and the execution sce-

nario can sometimes take several hours.
• The availability of a tracing mechanism for the lan-

guage/platform. For interpreted languages such as
Java, C# and Smalltalk, generic tracing mechanism ex-
ist, but in the case of e.g. Cobol or ANSI C, one often
has to revert to custom-made solutions such as those
presented in e.g. [6].

• Scalability issues of storing and analyzing the result-
ing trace file. Our dynamic analysis experiments with
Apache Ant and Jakarta JMeter resulted in tracefiles
of 2 and 0.6 GB respectively [7]. Larger-scale indus-
trial case studies however have resulted in trace files of
around 90GB [6].

When we look at the same process in this static experi-
ment, we see the following 3-step process:

1. Calculate the metrics. In our case we import the
project into Eclipse and used the JDT2MDR1 plugin
to calculate our specific metrics. This plugin trans-
forms the project to a graph representation closely re-
sembling the metamodel employed by Briand et al. [2],
thereby enabling the calculation of the coupling mea-
sures formalized in their paper.

2. Apply the HITS webmining algorithm.
3. Interpret the resultset.
The resultset that is presented to the user is a list of

classes ranked according to their relative importance ac-
cording to the webmining heuristic. By default, we only
present the 15% most highly ranked classes, the reasoning
behind this is as follows:
• From the documentation of both Apache Ant and

Jakarta JMeter we have learned that about 10% of the
classes of the systems need to be understood before
any meaningful change operation can take place. As
we are working with a heuristical technique we took a
5% margin.

• For cognitive reasons, the size of the resultset should
be kept at a minimum.

• Empirically, we found that lowering the threshold to
the top 20% classes, did not result in an increase in
recall. That is, we did not notice any classes mentioned
in the documentation showing up in the interval [15%,
20%] [7]. We again verify this empirically with the
resultset presented in the next section.

Validation As validation we use the concepts of recall
and precision. Each resultset obtained will be compared
to the baseline that is comprised of the developers’ opinion.

Threats to validity Comparing static and dynamic anal-
ysis poses some threats to the validity of our experimental
setup. When considering the 15% most highly ranked
classes, the size of this 15% resultset varies according to
the size of the inputset, namely the number of classes. In

1mailto: bart.dubois@ua.ac.be
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the case of the static process, the size of the inputset equals
the total number of defined classes, while in the dynamic
process, this equals the number of classes that participate
in the execution scenario(s).

5 Results
Apache Ant2 and Jakarta JMeter3 are two software

projects we previously used for our experiments [7].

5.1 Apache Ant 1.6.1

Table 2 gives an overview of the results we have obtained
from calculating the coupling metrics from Section 3 and
applying the HITS webmining algorithm on them. Classes
that belong to the 15% highest ranked classes are marked
with a

√
, while other classes are linked to their place in the

ranking.
As a general observation, we note that recall results of

the dynamic experiment (90%) are noticeably higher then
any other result, while precision is also higher. The fact
that precision for the 4 static metrics is much lower (8%
or less, compared to 60%) can be explained by the size of
the inputsets, as the inputset for the static experiment was
403 classes, while for the dynamic experiment this was only
127 classes. As such, when using our 15% highest ranked
classes rule of thumb for determining the final size of the
resultset, we end up with 60 and 15 classes respectively.

When considering the precision of the 4 static metrics,
we observe that taking into account polymorphism provides
a much better result. This can be explained by the fact that
(1) sometimes a base class is abstract or (2) the base class
is not always the most important class in the hierarchy. The
second variation point, namely whether to only count an oc-
currence of a call once or count every occurrence of a call
(weighted) does not seem to make any difference with re-
gard to our specific context (small variations exist, but these
do not influence our resultset).

A further point to be made is that when looking at the
ranking of classes that fall outside the top 15%, lowering the
bar to 20% would not have resulted in a (significant) gain in
recall, while precision would drop further. Furthermore, by
raising the bar to 10%, recall will generally fall with 10%.

5.2 Jakarta JMeter 2.0.1

Table 3 shows the results for the JMeter case. Consid-
ering that for the static approach there are 490 classes at
the core of the JMeter application, the 15% highest ranked
classes are ranked 1 → 74. A number of observations:
• The difference in recall between the dynamic metric

and the static metrics is rather big, as the dynamic
IC CC’ metric is able to recall 93% percent of classes

2For more information, see: http://ant.apache.org
3For more information, see: http://jakarta.apache.org/jmeter/

Class SM
PO

SM
PW

SM
SO

SM
SW

IC
C

C
’

A
nt

do
cs

Project
√ √ √ √ √ √

UnknownElement
√ √ √ √ √ √

Task 79 81 119 120
√ √

Main
√ √ √ √ √ √

IntrospectionHelper
√ √

116 105
√ √

ProjectHelper 97 99 90 190
√ √

RuntimeConfigurable
√ √

63 63
√ √

Target 89 93 100 100
√ √

ElementHandler 192 198 125 125
√ √

TaskContainer 398 403 381 383 N/A
√

→ recall (%) 50 50 30 30 90 -
→ precision (%) 8 8 5 5 60 -

Table 2. Ant metric data overview.

Class SM
PO

SM
PW

SM
SO

SM
SW

IC
C

C
’

JM
et

er
do

cs

AbstractAction 275 275 336 336
√ √

JMeterEngine
√ √

484 484
√ √

JMeterTreeModel
√ √

150 150
√ √

JMeterThread
√ √

147 147
√ √

JMeterGuiComponent
√ √

475 475
√

PreCompiler 362 362 293 293
√ √

Sampler 457 478 454 454
√ √

SampleResult 119 119 209 209
√ √

TestCompiler
√ √

145 145
√ √

TestElement
√ √

451 451
√ √

TestListener 450 443 449 449
√ √

TestPlan 113 113 234 234
√ √

TestPlanGui 93 93
√ √ √ √

ThreadGroup 140 140 157 157
√ √

→ recall (%) 43 43 7 7 93 -
→ precision (%) 8 8 1.4 1.4 62 -

Table 3. JMeter metric data overview.

deemed important by the developers, while the static
metrics cannot achieve more than 43% recall.

• A similar difference can be noted with regard to the
precision: a precision of 63% for the dynamic IC CC’
metric, while statically 8% is best case.

• The resultset for SM SW and SM SO is identical,
while only minimal differences exist between SM PW
and SM PO. In our opinion this is due to the fact that
most method calls happen only once per method (no
two identical calls in one method, also see Figure 1).

• There is a sizeable dissimilarity between the results ob-
tained when only taking into account static calls versus
also adding polymorphism (43% versus 7% recall).

Also, when considering the final resultset of the top 15%
ranked classes, lowering the bar to 20% would not have re-
sulted in a (significant) gain in recall.
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6 Trade-off analysis
Although we are satisfied with the results from the dy-

namic approach in terms of recall and precision, there are
a number of downsides to the dynamic analysis process.
These three drawbacks, added with the quality of the re-
sultset, will form the criteria during the trade-off analysis:

1. The necessity of a good execution scenario. When per-
forming static analysis, having an execution scenario is
no issue. However, access to the source code remains
a necessity4. Static analysis is to be favored here.

2. The availability of a tracing mechanism. Although a
tracing mechanism is no longer an issue, having a met-
rics engine remains a necessity. To implement such an
engine, either open source tools need to be available
or a parser needs to be constructed. Because a similar
precondition exists for both processes, neither of the
two approaches has an advantage here.

3. Scalability issues. In terms of scalability the dynamic
process is plagued by the possibly huge size of the
tracefile. This has consequences on multiple levels:
• The I/O overhead on the traced application (e.g.

for Ant: execution of 23 seconds without tracing
versus just under one hour with tracing).

• The size of the trace (2 GB in the case of Ant).
• The time it takes to calculate the IC CC’ metric

and perform the HITS webmining algorithm on
this 2 GB of data. In the case of Ant this takes
around 45 minutes.

As such, the time-efficiency of the dynamic process is
not optimal. Statically, however, our prototype met-
rics engine took one hour to calculate the metrics for
Ant and slightly over one hour for JMeter. Apply-
ing the HITS algorithm takes less than one minute, so
the total round trip time is around one hour for both
projects. While these times are not so different from
the dynamic process, the dynamic process still needs
the tracing step, which makes that the round trip time
for the dynamic process is significantly larger and in
the case of Ant takes around two hours.

4. Quality of the resultset in terms of recall and precision.
The dynamic approach has shown to be able to attain
the best level of recall at 90%. Recall for the static
metrics that take into account polymorphism (SM P*
ranges from 43 to 50% recall) is generally better than
that of their counterparts that do not take into account
polymorphism (SM S* ranges from 7 to 30%).
For precision, the situation is similar. Dynamically, a
satisfactory 60% precision is reached. Statically how-
ever, precision remains a lowly 8%, due to the fact that
the resultset, which we hold at the 15% highest ranked
classes by the webmining algorithm, is larger because

4Reverse engineering from binaries is sometimes possible.

of the larger input set.
The balance clearly swings towards the dynamic approach.
Although the static process has the advantage of (1) elimi-
nating the need for defining an execution scenario and (2)
having a shorter round trip time, it is severely let down by
its results, mainly its lack of recall is worrying, which is one
of the fortes of the technique when applied dynamically.

7 Conclusion
This paper describes an experiment in which we try to

detect ”important classes”, which are of use during initial
program comprehension phases, because they are responsi-
ble for a reasonable amount of high level actions or services
in at least one use case. The core of the experiment lies in
the fact that we introduce four static metrics and compare
them with an already existing dynamic coupling metric, that
has already been used to identify important classes [7, 6].
The rationale behind this experiment was to try and over-
come three drawbacks of the dynamic analysis approach,
namely (1) the necessity of having a good execution sce-
nario, (2) scalability issues inherent to dynamic analysis and
(3) the necessity of having a tracing mechanism available.

Although static analysis resolves issues (1) and (2), is-
sue (3) has a static counterpart, namely the availability of a
(customizable) metrics engine (or at the very least the avail-
ability of a parser for the language). Realistically, static
analysis is to be favored when considering the fact that it in-
curs much less overhead on the reverse engineering process
and has shorter round trip time. However, when taking the
results into account, specifically the level of recall, the bal-
ance clearly favors the dynamic solution. In our experiment
with dynamic analysis, the HITS webmining algorithm is
able to recall around 90%of the classes. Statically, recall
remains at 50% or less.
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