
Mining Software Repositories to Study Co-Evolution of Production & Test Code

Andy Zaidman1, Bart Van Rompaey2, Serge Demeyer2, and Arie van Deursen3

1Delft University of Technology, The Netherlands – a.e.zaidman@tudelft.nl
2University of Antwerp, Belgium – {bart.vanrompaey2, serge.demeyer}@ua.ac.be

3Delft University of Technology & CWI, The Netherlands – arie.vandeursen@tudelft.nl

Abstract
Engineering software systems is a multidisciplinary ac-

tivity, whereby a number of artifacts must be created — and
maintained — synchronously. In this paper we investigate
whether production code and the accompanying tests co-
evolve by exploring a project’s versioning system, code cov-
erage reports and size-metrics. Our main aim for studying
this co-evolution is to create awareness with developers and
managers alike about the testing process that is followed.
We explore the possibilities of our technique through two
open source case studies and observe a number of different
co-evolution scenarios. We evaluate our results both with
the help of log-messages and the original developers of the
software system.

1 Introduction
Lehman has taught us that a software system must

evolve, or it becomes progressively less useful [15]. When
evolving software, the source code is the main artefact typi-
cally considered, as this concept stands central when think-
ing of software. Software, however, is multidimensional,
and so is the development process behind it. This multi-
dimensionality lies in the fact that to develop high-quality
source code, other artifacts are needed, e.g. specifications,
constraints, documentation, tests, etc. [17].

In this paper we explore two dimensions of the multi-
dimensional software evolution space, as we focus on how
tests evolve with regard to the related source code. In or-
der to study the co-evolution of production and test code,
we rely on the data that is stored in version control systems
(VCS’s). Using a VCS to study co-evolution implies the
prerequisite that the tests should be committed to the VCS
alongside the production sources. Therefore, our primary
focus for this study is the co-evolution of production code
versus persistent software tests such as unit and integration
tests.

Knowing the necessity of a software system’s evolution,
the importance of having a test suite available and the cost

implications of building [4, 14] (and maintaining) a test
suite, we wonder how test and production code co-evolve
during a software project’s lifetime. We understand that,
ideally, test code and production code should be developed
and maintained synchronously, for at least two reasons:
• Newly added functionality should be tested as soon as

possible in the development process, e.g. via unit test-
ing [19].
• When changes, e.g. refactorings, are applied, the pre-

servation of behavior needs to be checked [6, p. 159].
In this context, Moonen et al. have shown that even while
refactorings are behavior preserving, they potentially inval-
idate tests [18]. Elbaum et al. concluded that even minor
changes in production code can have serious consequences
on test coverage, or the fraction of production code tested
by the test suite [7]. These observations reinforce the claim
that production and test code need to co-evolve.

This leads to the almost paradoxical situation whereby
tests are quasi essential for the success of the software (and
its evolution), while also being a serious burden during
maintenance. It is exactly this paradox that has lead us to
study the co-evolution of production and test code. In this
context we propose to use lightweight techniques and visu-
alizations, which, as Storey et al. observed, are common to
the field of studying software evolution [20].

For this study then, our main question is: How does test-
ing happen in open-source software systems? In order to
steer our research, we refine this question into a number of
subsidiary research questions:
RQ1 Does co-evolution happen synchronously or is it

phased?
RQ2 Can an increased test-writing effort be witnessed

right before a major release or other event in the
project’s lifetime?

RQ3 Can we detect testing strategies, e.g., test-driven de-
velopment [16]?

RQ4 Is there a relation between test-writing effort and test
coverage?

1



In a more practical context, knowing an answer to these
questions provides us with the opportunity to gain a deeper
insight into the current practice of testing in the real world.
This allows:
• Software engineers to quickly assess the testing pro-

cess in the light of future maintenance operations, e.g.
during first-contact situations [6].
• Quality assurance to monitor the testing process, to

identify trends and to compare the observed process
against the intended process.

In this paper we set up an experiment in which we study the
co-evolution of production and test code of two open source
software systems. Subsequently, we evaluate our findings
internally, by means of log messages that were written dur-
ing development, and externally, by presenting our findings
to the original developers and recording their remarks.

The structure of this paper is as follows. The next sec-
tion introduces three views on the two-dimensional soft-
ware evolution space, followed by Section 3 clarifying the
evaluation procedure for these views. Sections 4 and 5 then
present our two case studies on respectively CheckStyle and
ArgoUML. While Section 6 provides discussion, Section 7
relates our work to other work in the field, and Section 8
presents our conclusion and future work.

2 Test co-evolution views
As studying the history of software projects involves

large amounts of data, we make use of visualizations to
answer evolution-related questions. More specifically, we
introduce three distinct, yet complementary views, namely:

1. The change history view, wherein we visualize the
commit-behavior of the developers.

2. The growth history view that shows the relative
growth of production code and test code over time.

3. The test quality evolution view, where we plot the test
coverage of a system against the fraction of test code
at discrete times.

2.1 Change History View
Goal. With the change history view, we aim to learn
whether (i) production code has an associated (unit) test;
and (ii) whether these are added and modified at the same
time. As such, we seek to answer RQ1 and RQ3.

Description. In this view:
• We use an XY-chart wherein the X-axis represents time

and the Y-axis source code entities.
• We make a distinction between production files and

test files. A unit test is placed on the same horizon-
tal line as its corresponding unit under test. Further-
more, we also distinguish between files that are intro-
duced and files that are modified based upon the data
obtained from the VCS.
• We use colors to differentiate between newly added

(red square) and modified production code (blue dot);

Figure 1. Example Change history view.
newly added (green triangle) and modified tests (yel-
low diamond).

Interpretation. Consider the example view in Figure 1,
created from synthetic data. We are looking for patterns
in the plotted dots that signify co-evolution. Test files in-
troduced together with the associated production units are
represented as green triangles plotted on top of red squares.
Test files that are changed alongside production code show
as yellow diamonds on top of blue dots. Vertical green or
yellow bars indicate many changes to the test code, whereas
horizontal bars stand for frequently changed files. Other
patterns not specifically involving the tests, e.g., vertical or
horizontal blue bars, have been studied by others [9, 22].

Technicalities. The connection between production and
test code is established on the basis of file naming conven-
tions (e.g., a test case that corresponds to a certain produc-
tion class has the same file name with postfix “Test”). Unit
tests that cannot be correlated are considered to be integra-
tion tests and are placed on the top lines of the graph.

Trade-off. The change history view is mainly aimed at
investigating the development behavior of the developers.
However, it provides no information regarding, e.g., the to-
tal size of the system (throughout time) or the proportion
of test code in the system. It also does not show the size-
impact of a change. For these reasons, we introduce the
growth history view in the next section to complement the
change history view.

2.2 Growth History View
Goal. The aim of the growth history view is to identify
growth patterns indicating (non-)synchronous test and pro-
duction code development (RQ1), increased test-writing ef-
fort just before a major release (RQ2) and evidence of test-
driven development (RQ3).

Description. In this view:
• We use an XY-chart to plot the co-evolution of a num-

ber of size metrics over time.
• The five metrics that we take into consideration are:

Lines of production code (pLOC), Lines of test code
(tLOC), Number of production classes (pClasses),

2



(a) Synchronous (b) Time Delay (c) Test Backlog

Figure 2. Example patterns of synchronous
co-evolution.

Number of test classes (tClasses) and Number of test
commands1 (tCommands).
• Metrics are presented as a cumulative percentage chart

up to the last considered version (which is depicted
at 100%), as we are particularly interested in the co-
evolution and not so much in the absolute growth.
• The X-axis is annotated with release points.

Interpretation. First of all, we can observe phases of
relatively weaker or stronger growth throughout a system’s
history. Typically, in iterative software development new
functionality is added during a certain period after a major
release, after which a “feature freeze” prevents new func-
tionality to be added. At that point, bugs get fixed, testing
effort is increased and documentation written.

Secondly, the view allows us to study growth co-
evolution. We observe (lack of) synchronization by study-
ing how the measurements do or do not evolve together in
a similar direction. The effort of writing production and
test code is spent synchronously when the two curves are
similar in shape (see Figure 2(a)). A horizontal translation
indicates a time delay between one activity and a related one
(2(b)), whereas a vertical translation signifies that a histor-
ical testing or development backlog has been accumulated
over time (2(c)). Such a situation occurs, e.g., when the test-
writing effort is lagging the production code writing effort
for many subsequent releases. In the last version considered
in the view, both activities reach the 100% mark, which is
explained through the fact that we are measuring relative
efforts for both activities.

Thirdly, the interaction between measurements yields
valuable information as well. In Table 1 a number of these
interactions are outlined. For example, the first line in Ta-
ble 1 states that an increase in production code and a con-
stant level of test code (with the other metrics being unspec-
ified) points towards a “pure development” phase.

Technicalities. To separate production classes from test
classes we use regular expressions to detect JUnit test case
classes. As a first check, we look whether the class extends
junit.framework.TestCase. If this fails, e.g., because of
an indirect generic test case [21], we search for a combina-
tion of org.junit.* imports and setUp() methods.

Counting the number of test commands was done on the
basis of naming conventions. More specifically, when we
found a class to be a test case, we looked for methods that

1A test command is a container for a single test [21].

pL
O

C

tL
O

C

pC
la

ss
es

tC
la

ss
es

tC
om

m
an

ds

interpretation
↗ → pure development
→ ↗ pure testing
↗ ↗ co-evolution
→ ↗ → → test refinement
→ → ↗ ↗ skeleton co-evolution

→ ↗ test case skeletons
→ ↗ test command skeletons

→ ↘ test refactoring

Table 1. Co-evolution scenarios.

would start with test. We are aware that with the introduc-
tion of JUnit 4.0, this naming convention is no longer nec-
essary, but the projects we considered still adhere to them.

Trade-off. Both the change history and growth history
view are deduced from quantitative data on the development
process. To contrast this with the resulting quality of the
tests, we introduce a view incorporating test coverage.

2.3 Test Quality Evolution View

Goal. Test coverage is often seen as an indicator of “test
quality” [24]. To judge the long-term “test health” of a
software project, we draw the test coverage of the subject
system in function of the fraction of test code tLOCRatio
(tLOCRatio = tLOC/tLOC + pLOC) and in function of
time.

Description. In this view:
• We use an XY-chart representing tLOCRatio on the X-

axis and the overall test coverage percentage on the
Y-axis. Individual dots represent releases over time.
• We plot four coverage measures (distinguished by the

color of the dots): class, method, statement and block2

coverage.

Interpretation. Constant or growing levels of coverage
over time indicate good testing health, as such a trend indi-
cates that the testing-process is under control. The fraction
of test code, however, is expected to remain constant or in-
crease slowly alongside coverage increases. Severe fluctua-
tions or downward spirals in either measure implies weaker
test health.

Technicalities. For now we only compute the test cover-
age for the major and minor releases of a software system.
We do not compute coverage for every commit as: (i) we
are specifically interested in long-term trends in contrast to
fluctuations between releases due to the development pro-
cess; (ii) computing test coverage (for a single release) is
time-consuming; and (iii) automating this step for all re-
leases proved difficult, due to changing build systems and

2A basic block is a sequence of bytecode instructions without any
jumps or jump targets, also see http://emma.sourceforge.net/faq.html (ac-
cessed April 13, 2007)

3



(varying) external dependencies that were not always avail-
able in the VCS.

3 Experimental setup
To evaluate the value of the three test co-evolution views

we proposed, we apply the approach to two open source
software projects. First, we generate the three views for
each project and use them to summarize our interpretation
of the project’s history. Next, we apply both an internal and
an external evaluation to validate our observations.

Tool. Our tool3 is built around the Subversion VCS. With
the help of the cvs2svn4 script we can also address CVS. Us-
ing the SVNKit library5, we are able to query Subversion di-
rectly from our Java-built toolchain that automatically gen-
erates the change history view (Section 2.1) and the growth
history view (Section 2.2).

For the coverage history view, we used Emma6, an open
source test coverage measurement solution. We integrated
Emma in the Ant build process of the case studies with the
help of scripts and manual tweaking, as automating this pro-
cess proved difficult.

Case studies. Our main criteria for selecting the case stud-
ies were: (i) the possibility of having a local copy of the
project, for performance reasons, (ii) Java, as our current
tool is targeted towards Java, and (iii) the availability of JU-
nit tests. Checkstyle and ArgoUML matched these criteria.
When discussing them, note that not every type of visualiza-
tion is shown for both cases because of space restrictions.
However, all views can be seen in the online appendix3.

Evaluation. In the internal evaluation we verify our find-
ings using (i) log messages posted by developers during
commits to the versioning system and (ii) code inspections.
We split up our interpretation into individual statements that
we try to counter with the logs. A successful counter then
validates our claim. For the external evaluation, we send a
survey to lead developers of the considered projects, asking
to (i) chronicle the system’s (test) evolution; (ii) read about
the proposed views and our corresponding interpretation;
and (iii) to accept or reject our statements. With this struc-
tured survey we aim to prevent influencing developers with
our findings and techniques before they were interviewed.

Finally, we ask them to give feedback about the useful-
ness and possible improvements. The survey that we have
sent to the developers is outlined in Table 2.

4 Case 1: Checkstyle
Checkstyle7 is a tool that checks whether Java code ad-

heres to a certain coding standard. Six developers made

3See http://swerl.tudelft.nl/testhistory
4http://cvs2svn.tigris.org/
5http://svnkit.com/
6http://emma.sourceforge.net/
7http://checkstyle.sourceforge.net/

Questions on the developer’s view of the project’s test history.

• How would you summarize the test history of the project (which
kind of tests, when to test)?

• Within your project, do you have a policy regarding (codified)
tests? Has this policy been modified over time?

• When do developers commit? Is there a variation in commit style
(in time, in size?)

• Which testing tools do you use (testing framework, coverage
measurements, mutation testing, lint-style code checkers)? When
have such tools been introduced?

• Is there an interplay between reported/fixed bugs and associated
tests? e.g. do developers write a codified test to demonstrate the
bug or is a test written afterwards to demonstrate that a bug has
been fixed?

Questions on the evaluation of our interpretation.

• Which statements correspond with your experience based expec-
tations? Which ones are new to you? Which ones are not true?

• Which interesting events during the project’s history did we miss?
Concluding questions.

• How could you as developer or team lead benefit from such visu-
alizations?

• Which additional aspects would you like to see in visualizations
like these that try to summarize the project’s history?

Table 2. Developer Survey.

2260 commits in the interval between June 2001 and March
2007, resulting in 738 classes and 47 kSLOC.

4.1 Observations
Change history view. The change history view of Check-
style (Figure 3)8 results in the following observations with
regard to the testing behavior of the developers. At the
very beginning of the project up until commit #280, there
is only one test (with file ID 20), which is changed very
frequently (visible through the yellow horizontal bar). At
that point, a number of new tests are introduced. From
commit #440 onwards, a new testing strategy is followed,
whereby the introduction of new production code (a red
square) almost always entails the immediate addition of a
new unit test (a green triangle). From #670 onwards, in-
tegration tests appear (visible by the yellow diamonds at
the top of the chart). This commit is also interesting be-
cause it shows a vertical yellow bar, indicating that a large
number of unit tests are modified, suggesting that several of
the unit test files are affected by the adoption of integration
tests. This pattern returns around commit #780. Further-
more, around #870 and #1375 test additions can be seen
through the vertical bar of green triangles. Due to the mas-
sive number of unit tests involved this might indicate (i) a
“phased testing approach”, where an increased test effort
is taking place at certain points in time (with little or no
testing in between); or (ii) shallow changes to the test code
(e.g., import-optimization).

Note that the number of units shown in this visualiza-
tion is often higher than the number of classes present in

8Ideally, these visualizations should be seen in color. High-resolution
color images are also available at http://swerl.tudelft.nl/testhistory

4



Figure 3. Checkstyle change history view.

the latest version of the software system. This is due to the
fact that when a file gets deleted at a certain point in time,
it remains present in the visualization. In this context, we
also want to note the presence of “outliers” in the visual-
ization, dots that lie above the growing curve of classes that
are added. These outliers are caused by successive move op-
erations in the subversion repository, but remain associated
with their original introduction date.

Creating Figure 3 also provided us with the following
statistics of Checkstyle’s evolution: in total 826 classes
were added to the system over time, of which 363 have an
associated unit test. We also counted 36 integration tests.

Growth history view. From the change history view we
learned that Checkstyle’s classes and test classes are usu-
ally changed together, apart from a series of edit sequences
to the test files specifically. What cannot be seen from the
change history view, is how much of the code was affected
by the actual changes made. For that purpose, the growth
history view can be used.

The growth history view for Checkstyle, shown in Fig-
ure 4, displays curves that grow together, indicating a syn-
chronous co-evolution. In general, increases as well as de-
creases in the number of files and code in production are
immediately reflected in the tests. Complementing this ob-
servation with the change history view, the most likely ex-
planation of the phases is the occurrence of many concur-

rent, shallow changes.

In particular, the figure confirms the initial single test
code file that gradually grows and extensively gets rein-
forced after release 2.2 (during a phase of pure testing; see
annotation 1). Another period of test reinforcement happens
before release 3.0 (ann. 2): the amount of test code increases
while the number of test cases barely changes. In the period
from release 2.2 until beyond 2.4, development and testing
happen synchronously, with an additional effort to distribute
test code over multiple classes. This development approach
is maintained until approximately halfway between release
3.1 and 3.2, where a development-intensive period results
in a testing time backlog (ann. 3). Shortly after that there is
some additional test effort (increases in test code, test cases
as well as test commands). Thereafter, testing happens more
phased until 3.5 (ann. 4). In the last period, the co-evolution
is again synchronous, with a gradually decreasing time de-
lay towards the last considered version. In the figure, we
also observe test refactorings (see ann. 5 and Table 1).

Test Quality Evolution View. The test quality evolution
view in Figure 5 shows a generally relatively high level of
test coverage, with class coverage around 80%, climbing
towards 95% in the later versions of the software. For the
other levels of coverage, a similar steady increase can be
seen. Throughout the evolution, the fraction of test code
grows as well. This makes us assume that test coverage is

5



 0

 20

 40

 60

 80

 100

v4.3
v4.0

v3.5

v3.4

v3.3
v3.2

v3.1

v3.0

v2.4

v2.2

v2.0

v1.3
v1.1

(1)

(2)

(4)

(5)

(3)

Production Code
Test Code

Production Classes
Test Classes

Test Command

Figure 4. Checkstyle growth history view.
considered an attention point that is monitored carefully.

Two other observations stand out. First, release 2.2 has
an interesting phenomenon: a sudden sharp decline for
class, method and statement coverage, with a mild drop of
block coverage. Secondly, there is a decline in coverage (at
all levels) between release 2.4 and 3.0. The version numbers
suggest that the system has undergone major changes.

4.2 Internal evaluation
To evaluate these observations, we first contrasted them

with log messages at key points.
“Up until #280 there is a single unit test”. The single test

with file ID 20 is called CheckerTest. Inspection of this
file pointed out that this actually was not a typical unit test,
but rather a system test [3]. CheckerTest receives a num-
ber of input files and checks the output of the tool against
the expected output.

“Testing has been neglected before the release 2.2”. In-
spection reveals that this coverage drop is due to the intro-
duction of a large number (39) of anonymous classes, that
are not tested. These anonymous classes are relatively sim-
ple and only introduce a limited number of blocks per class,

Figure 5. Checkstyle Test Quality Evolution

and therefore, their introduction has a limited effect on the
block coverage level. Class coverage however, is more af-
fected because the number of classes (29) has more than
doubled with the 39 additional anonymous classes. In-depth
inspection taught us that the methods called by the anony-
mous classes are tested separately. In the next version, all
coverage levels increase because of the removal of most of
the anonymous classes. The drop is thus due to irregulari-
ties in the coverage measurement, falsifying the statement.

“There is a period of pure testing right after release 2.2
and before 3.0”. We sought for evidence that tests are ne-
glected during this period, but instead we encountered logs
for 2.2 such as Added [6 tests] to improve code coverage
(#285), updating/improving the coverage of tests (#286 and
#308) and even Added test that gets 100% code coverage
(#309). The assumption of a test reinforcement period be-
fore 3.0 is backed up by several messages between #700
and #725 mentioning improving test coverage and adding
or updating tests.

“From version v2.2 until beyond v2.4, synchronous co-
evolution happens”. To counter this, we looked for signs
that pure development was happening, e.g., by new fea-
tures being added. Investigation of the log messages around
that time however showed that it concerns a period of bug
fixing or patching (#354,#356,#357,#369,#370,#371,#415)
and refactoring (#373,#374,#379,#397,#398,#412). More-
over, during this period production classes and test cases
were committed together.

“Halfway between release 3.1 and 3.2 is a period of pure
development”. For this period, we could not find back the
habit of committing corresponding test cases alongside pro-
duction classes. Rather, a couple of large commits con-
sisting of batches of production files occur, with log mes-
sages reporting the addition of certain functionality (#1410-
#1420). Shortly after that, developers mention the addition
of new tests (#143x and #1457).

“Between 3.4 and 3.5 testing happens more phased
(ann. 4, Figure 4), followed by more synchronicity again”.
We could not really confirm this behavior nor distinguish
both phases by means of the log messages, as we deduce
that this period concerns mainly fixes of bugs, code style,
spelling, build system and documentation.

“Around #670 and #780, developers were performing
phased testing.” The message of #687 mentions “Upgrad-
ing to JUnit 3.8.1”, which makes us conclude that it con-
cerns shallow changes. The same accounts for the period
around #780: test cases are (i) modified to use a new test
helper function; and (ii) rearranged across packages.

4.3 External evaluation
Two Checkstyle developers completed the survey we

sent, sharing their opinions about our observations. As an
answer to questions about the system’s evolution and test
processs, they indicate that automated tests have always

6



been valued very highly. The JUnit suite is integrated in the
build system as a test target. Coverage measurements (with
Emma) as well as code checks (using Checkstyle on itself)
have been regularly performed since Checkstyle’s origin.
There is however no formal policy regarding their use.

The JUnit tests are implemented as I/O tests focused to-
wards a specific module. Especially while changing Check-
style’s internal architecture — between versions two and
three — the presence of the test suite was deemed invalu-
able. Regarding the synchronicity of development and test
writing effort, one developer confirms that code and regres-
sion tests are typically committed at the same time. Even
more, both developers indicate that they try to write a test
that fails first before fixing the bug, making the test pass.

Currently, the code base is considered mature and sta-
ble. As a result, changes are smaller yet self-contained, i.e.
contain all code, tests and documentation.

5 Case 2: ArgoUML
ArgoUML9 is an open source UML modeling tool that

includes support for all standard UML 1.4 diagrams. The
first contributions to ArgoUML go back to the beginning of
1998, and up to December 2005, 7477 subversion commits
were registered. The final release we considered for this
study was built by 42 developers who wrote 1533 classes
totaling 130 kSLOC.

5.1 Observations
Change history view. We observe that around commit 600
the first tests appear (figure not shown). The introduction of
these first test cases does not coincide with the introduction
of new production code, a trend that we witness through-
out the project’s history. Moreover, tests are typically also
not changed together with their corresponding production
classes. In addition, we observe periods of phased testing,
e.g. the vertical bars around commits #2700 and #4900.
Certain tests appear to change very frequently throughout
ArgoUML’s history, evidenced by horizontal yellow bars.
The derived statistics count 4213 Java production classes,
402 of which have a associated test. In addition, there are
36 integration tests.

Growth history view. From the growth view in Figure 6,
we deduce a slow introduction of test skeletons at around
0.10, followed by a more consistent use of codified tests
from 0.12 on. These tests are added and extended periodi-
cally (in phases), confirming the change-observations in the
change history view. We tag these as periods of pure test-
ing, as most of the time these steps do not correspond with
increases in production code (ann. 1). Besides these peri-
ods of testing, the test code is barely modified, except for
some test skeleton introductions early on (between releases
0.10 and 0.12 (ann. 2) and periodic test refinements (ann. 3)

9http://argouml.tigris.org/

 0

 20

 40

 60

 80

 100

v0.20a4

v0.18

v0.16

v0.14

v0.12

v0.10

v0.9

(1)

(2)

(3)

(4)

Production Code
Test Code

Production Classes
Test Classes

Test Command

Figure 6. Growth history view of ArgoUML.
and refactorings (ann. 4). From 0.16 on, coding and testing
happens in smaller increments, yet not synchronous as the
curves are not moving in similar directions.

Note that the initial “hill” in the production code curve
is due to architectural changes which are reflected in a
changed layout in the versioning system, resulting in the
source code residing in two locations at the same time.
Later on, before release 0.10, the old layout structure and
code-remains get deleted.

Test Quality Evolution View. Even without this side-
effect, the initial test-writing effort is rather low and only
slowly increasing. The fact that the first release of JUnit
(beginning of 1998) more or less coincides with the start
of the ArgoUML project might explain why the effort that
went to test-writing was rather low in the earlier phases, as
JUnit was not yet well known at that time. ArgoUML’s view
(not shown here due to space limitations) shows an increas-
ing coverage as the test code fraction grows over time be-
tween v0.14 and v0.18 to 37% block coverage for 9% test
code. The last considered version of ArgoUML, v0.20, is
characterized by a sudden drop in test coverage.

5.2 Internal evaluation
We again first contrasted our observations with log mes-

sages from key points in the development history.
“The initial test-writing effort is rather low and only

slowly increasing.” We looked for test case additions in the
early phases of the project, but could not find many. Ac-
cording to the change log, a first JUnit test has been in-
troduced in September 2001 (without JUnit included in the
repository). Follow up logs mention the introduction of first
version (#781) and simple (#824) test cases, indicating the
adoption of JUnit-style tests. Significant test reinforcements
happen from release 0.12 on. Around commit #1750 the de-
velopment branch 0.13 containing test cases is merged with
the trunk. At that time, a test suite as well as build targets
for testing are first introduced.

To counter the claim “There are regular periods of

7



phased testing”, we search the log for commits where code
and tests are changed together. This only happens during
merges of branches to the trunk10, where logs (e.g. #1991
and #2782) indicate that tests are reinforced before the com-
mit (and where the actual development has been done be-
fore the merge). Other test commit logs confirm the phased
nature of testing (e.g. #1796, #2166, #2411, #2811).

“From 0.16 on, coding and testing happens in smaller
increments, yet not synchronous.” We looked for log mes-
sages indicating synchronous co-evolution in the period
#6100-#6800, yet we could only detect a few bug fixes with
corresponding test case adaptations. Smaller coding com-
mits happened in between test commits of limited size.

“Version v0.20 of ArgoUML is characterized by a sud-
den drop in test coverage.” During the coverage measure-
ment, we noticed that ArgoUML’s mdr component, a stor-
age backend, was extracted into a separate project. As a
backend, this component was better tested than the remain-
der of the project, resulting in the coverage drop.

5.3 External evaluation
As a reaction to our inquiry, the ArgoUML project leader

and a developer completed the survey. They indicate that
codified testing within the project is done by developers in
an informal way. Before a release, the policy requires the
codified tests not to signal any problem. Furthermore, users
are involved in ad hoc testing of the application during alpha
and beta testing. Over the project’s lifetime, many develop-
ment tools have been adopted (and sometimes abandoned
again). JUnit has been introduced in October 2002, JCover-
age has been used as coverage tool until 2006. Test-driven
development is not a habit.

The developers acknowledge the limited early testing as
well as the phased testing approach, which they identify as
periods where the focus of different developers was peri-
odically moving between testing and code. However, these
testing efforts were not coordinated. Addressing the lower
coverage compared to Checkstyle, the project leader adds
that ArgoUML being a desktop GUI application implies
that most of the code is meant to control graphical com-
ponents. To write, maintain and deploy test code for such
systems is a larger effort than for batch-oriented applica-
tions.

6 Discussion
We now address the research questions that we have de-

fined in Section 1.

RQ1 Does co-evolution always happen synchronously or
is it phased? From the change history view, we deduce
whether production code and test code are modified to-
gether. Specifically, we witnessed (i) green or yellow verti-

10In a VCS, the trunk is the main development line. Sometimes, new
features, bug fixes or experimental changes are first tried in isolation in a
separate development line that is afterwards merged back into the trunk.

cal bars indicating periods of pure testing (both case studies)
and (ii) test dots on top of production dots as indicators for
the simultaneous introduction and modification of produc-
tion code with corresponding unit tests (e.g., Checkstyle).

To characterize this co-evolution, e.g., are (minimal)
changes necessary to obtain a running test suite?, or rather,
are additional tests being written?, we use the growth his-
tory view. In that view, we saw (i) curves following each
other closely denoting synchronous activities (e.g., Check-
style), while (ii) stepwise curves point to a more phased test-
ing approach (e.g., ArgoUML).

RQ2 Can an increased test-writing effort be witnessed
right before a major release or other event in the project’s
lifetime? In the case studies that we performed, we saw no
evidence of a testing phase preceding a release. We attribute
this to the nature of the chosen case studies. The devel-
opers of these open source projects contribute in their free
time. There are no strict schedules nor formal policies in
use. Checkstyle’s developers apply a continuous testing ef-
fort alongside development. ArgoUML’s development pro-
cess does prescribe a user testing phase before a release. As
this approach does not result in codified tests, it can as such
not be observed in these views.

RQ3 Can we detect testing strategies, e.g., test-driven de-
velopment? From a commit perspective, test-driven devel-
opment is translated as a simultaneous commit of a source
file alongside its unit test. We found indications of test-
driven development in Checkstyle, by means of “test” dots
on top of “code” dots in the change history view, signifying
concurrent introduction as well as co-evolution.

RQ4 Is there a relation between test-writing effort and test
coverage? For the two considered case studies we observed
that test coverage grows alongside test code fraction, espe-
cially during periods of steady, incremental development.
As such, we expect that the required test-writing effort for a
system can be approximated given the desired test coverage.
In future work, we want to quantify this relation and com-
pare the correlation across projects. Moreover, we expect
the following factors to have an influence:
• Kind of tests under consideration. We took the overall

coverage level into account, without making a distinc-
tion between unit tests and more integration kind of
tests. For the case studies considered here, we noticed
that Checkstyle indeed has a set of integration tests.
ArgoUML has, next to the unit test suite, a separate
suite of automated GUI tests.
• The quality focus of the developers of the respective

projects. In the change log messages of Checkstyle,
developers mention the use of a coverage tool to detect
opportunities for increases in test coverage. Compared
to a system with a similar fraction of test code, we no-
ticed a considerable yield in test coverage.

8



• The testability of the software system under test.
Bruntink and Van Deursen observed a relation between
class level metrics (especially Fan Out, Lines Of Code
per Class and Response For Class) and test level met-
rics [5]. This means that the design of the system under
test has an influence on the test-writing effort required
to reach a certain coverage criterion.

Consideration. When studying the co-evolution of pro-
duction code and test code, we have experienced the three
introduced views as complementary to judge the test health
of a software system. The log message of both projects con-
firm the test evolution need: regularly, test code is adapted,
cleaned and refactored. We found regular indications that
changes in production code resulted in a non-compilable
test suite (also see Moonen et al. [18]), effectively remov-
ing the safety net that a test suite is able to provide. Even if
the test suite remains compilable after changing production
code, the structure of the test suite is likely to degrade over
time [18]. Also, the test’s effectiveness might drop, even
with constant levels of test coverage, when, e.g., newly in-
troduced boundary values might not be tested.

Threats to validity. We identified the following threats
to validity. In order to create the change history view
(see Section 2.1) we use a simple heuristic that matches
the classname of the unit of production code to the class-
name of the unit test, e.g., we matched String.java to
StringTest.java. Distinguishing unit tests from integra-
tion tests purely based upon naming conventions might not
be generizable. At one hand, unit tests are not required to
contain the unit under test’s name in the file name. At the
other hand, a test source file with a similar name as the unit
under test does not have to be a unit test. Moreover, there
is a thin line between unit tests and integration tests. The
Checkstyle developers see their tests more as I/O integra-
tion tests, yet associate individual test cases with a single
production class by name. For each of the case studies that
we have performed in this study, we found that the heuris-
tical matching worked well, but we cannot guarantee that
this will be the case for other software projects. As such,
future work will be to perform a semantic analysis to make
the test/production code correlation.

The individual commit style — short cycles, one com-
mit per day, ... — of developers can slightly influence the
resulting visualization, but, as we are mainly looking for
general trends, we expect this effect to be minimal. The
Checkstyle developers informed us about a change in com-
mit style over time: as the project has become more mature,
it has become a habit to make commits self-contained, i.e.,
all changes to code, tests and documentation are added in a
single commit. During the experiments, we focused on the
main development line — the trunk in the versioning tree
— of the considered projects. Developers may branch from
the trunk to try different development paths (used for fixing

bugs in ArgoUML) that may be merged back into the trunk.
This gives a similar result in the views as a large commit.

During the internal evaluation, we use the versioning
system’s log messages to confirm or reject our observations.
As the use of such messages is unconstrained, we expect
large differences in its use across projects, tasks and devel-
opers. The developer survey complements these log mes-
sages as additional source of validation.

We acknowledge the fact that more than two case studies
are needed to draw more general conclusions.

7 Related work
We identified two research domains that are relevant in

the context of this work: software visualization (targeting
evolution) and research on traceability and co-changes.

Visualizing the revision history of a set of source code
entities has been used to study how these entities co-evolve,
e.g. Gı̂rba and Ducasse [10], Van Rysselberghe and De-
meyer [22] and Wu et al. [23]. Typically, these visualiza-
tions use one axis to represent time, while the other repre-
sents the source code entities. This visualization-approach
has been used to detect logical coupling between files, de-
termine the stability of classes over time, etc. These ap-
proaches however, do not make a clear distinction between
different types of source code entities, e.g., between pro-
duction code and test code. The use of source code met-
rics to characterize the evolution of a system has for ex-
ample been used by Godfrey and Tu to investigate whether
open source software and commercial software have differ-
ent growth rates [11]. To a certain degree, our research
interests are similar as we investigate whether production
code and test code grow at similar or different points in time
during a project’s history. Other research in the same area
does not rely on visualization but still identifies logical cou-
pling, e.g., Gall et al. [9] and Ball et al. [1].

In the domain of co-changes, Beyer and Hassan visualize
software history by displaying sequences of cluster layouts
based upon co-change graphs [2]. These graphs consist of
files as nodes and the level of co-change as weighted edges.
To identify co-changing lines, Zimmermann et al. [25] build
an annotation graph based upon the identification of lines
across several versions of a file. Kagdi et al. [13] apply
sequential pattern mining to file commits in software repos-
itories to discover traceability links between software arti-
facts. The frequent co-changing sets are subsequently used
to predict changes in newer versions of the system. Hindle
et al. [12] studied the release-time activities for a number of
artifacts — source, test, build and documentation — of four
open source systems by counting and comparing the num-
ber of revisions in the period before and after a release. The
observed behavior is summarized in a condensed notation.
Fluri et al. examine whether source code and associated
comments are changed together alongside the evolutionary
history of a software system [8]. This work is similar in

9



its (technical) approach to ours, i.e. mining the versioning
repository and refining file changes into categories to quan-
tify changes and observe (lack of) co-evolution.

8 Conclusion & Future Work
In this paper we studied the co-evolution between pro-

duction code and test code. In this context, we made the
following contributions:

1. We introduced three views: (i) the change history; (ii)
the growth history; and (iii) the test quality evolution
view. We combined them to study how test code co-
evolves over time.

2. We demonstrated the use of these views on two
case studies and distinguished more synchronous co-
evolution (Checkstyle) from a more phased testing ap-
proach (ArgoUML).

Moreover, over a project’s history we can identify the intro-
duction of tests, pinpoint periods of pure testing and pure
development, test reinforcement as well as coverage in-
creases. We did not observe testing phases right before a re-
lease. Indications of test-driven development were found, as
numerous unit tests were introduced alongside their corre-
sponding production code in Checkstyle. We noticed a vari-
ation in the fraction of test code needed to reach a certain
level of test coverage between Checkstyle and ArgoUML.

As for future work, it is our aim to extend this research
to industrial software projects, as the results might differ
greatly in a context where imposed testing standards are in
place. We also plan to package our toolchain as a monitor-
ing tool, so that the quality of the testing process can be con-
tinually monitored. In another step we aim to gain deeper
insight into factors that influence the relationship between
the fraction of test code and the level of test coverage.

Acknowledgments This work has been sponsored by (i)
the Eureka ∑ 2023 Programme; under grants of the ITEA
project if04032 (SERIOUS), (ii) the NWO Jacquard Reconstructor
project, and (iii) the Interuniversity Attraction Poles Programme -
Belgian State – Belgian Science Policy, project MoVES.

References
[1] T. Ball, J.Kim, A.Porter, and H.Siy. If your version control

system could talk. In ICSE Workshop on Process Modelling
and Empirical Studies of Software Engineering, May 1997.

[2] D. Beyer and A. Noack. Clustering software artifacts based
on frequent common changes. In Proc. Int’l Workshop on
Program Comprehension, pages 259–268. IEEE, 2005.

[3] R. Binder. Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley, 2000.

[4] F. Brooks. The Mythical Man-Month. Addison-Wesley,
1975.

[5] M. Bruntink and A. van Deursen. An empirical study
into class testability. Journal of Systems and Software,
79(9):1219–1232, 2006.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[7] S. Elbaum, D. Gable, and G. Rothermel. The impact of soft-
ware evolution on code coverage information. In Proc. Int’l
Conf. on Soft. Maint. (ICSM), pages 170–179. IEEE, 2001.

[8] B. Fluri, M. Würsch, and H. Gall. Do code and comments
co-evolve? On the relation between source code and com-
ment changes. In Proc. of the Working Conf. on Reverse
Engineering (WCRE). IEEE, 2007. To appear.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical cou-
pling based on product release history. In Proc. Int’l Conf.
Soft. Maint. (ICSM), pages 190–197. IEEE, 1998.

[10] T. Gı̂rba and S. Ducasse. Modeling history to analyze soft-
ware evolution. Journal on Software Maintenance and Evo-
lution: Research and Practice, 18(3):207–236, 2006.

[11] M. Godfrey and Q. Tu. Evolution in open source software:
A case study. In Proc. of the Int’l Conf. on Software Main-
tenance (ICSM), pages 131–142. IEEE, 2000.

[12] A. Hindle, M. Godfrey, and R. Holt. Release pattern discov-
ery: A case study of database systems. In Proc. of the Int’l
Conf. on Softw. Maint. (ICSM), pages 285–294. IEEE, 2007.

[13] H. Kagdi, J. Maletic, and B. Sharif. Mining software repos-
itories for traceability links. In Proc. Int’l Conf. on Program
Comprehension (ICPC), pages 145–154. IEEE, 2007.

[14] D. Kung, J. Gao, and C.-H. Kung. Testing Object-Oriented
Software. IEEE, 1998.

[15] M. Lehman. On understanding laws, evolution and conser-
vation in the large program life cycle. Journal of Systems
and Software, 1(3):213–221, 1980.

[16] E. Maximilien and L. Williams. Assessing test-driven devel-
opment at IBM. In Proc. Int’l Conf. on Software Engineer-
ing (ICSE), pages 564–569. IEEE, 2003.

[17] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in software evo-
lution. In Proc. of the Int’l Workshop on Principles of Soft-
ware Evolution (IWPSE), pages 13–22. IEEE, 2005.

[18] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink.
Software Evolution, chapter The interplay between software
testing and software evolution. Springer, 2008. Editors: T.
Mens, and S. Demeyer.

[19] P. Runeson. A survey of unit testing practices. IEEE Soft-
ware, 25(4):22–29, July/August 2006.

[20] M.-A. Storey, D. Čubranić, and D. German. On the use of vi-
sualization to support awareness of human activities in soft-
ware development: a survey and a framework. In Proc. of the
Symp. on Soft. Visualization, pages 193–202. ACM, 2005.

[21] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger.
On the detection of test smells: A metrics-based approach
for general fixture and eager test. IEEE Transactions on
Software Engineering, 33(12):800–817, December 2007.

[22] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proc. Int’l Conf. Soft. Maint., pages 328–337. IEEE, 2004.

[23] J. Wu, R. C. Holt, and A. E. Hassan. Exploring software
evolution using spectographs. In Proc. of the Working Conf.
on Reverse Engineering (WCRE), pages 80–89. IEEE, 2004.

[24] H. Zhu, P. A. Hall, and J. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

[25] T. Zimmermann, S. Kim, J. Whitehead, and A. Zeller. Min-
ing version archives for co-changed lines. In Proc. Int’l
Workshop on Mining Soft. Repositories, pages 72–75. ACM,
2006.

10


