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SUMMARY

Software engineers new to a project are often stuck sorting through hundreds of
classes in order to find those few classes that offer a significant insight into the inner
workings of the software project. To help stimulate this process, we propose a technique
which can identify the most important classes in a system, or the key classes of that
system. Software engineers can use these classes to focus their understanding efforts
when starting to work on a new software project. Those key classes are typically
characterized with having a lot of “control” within the application. In order to find
these controlling classes, we present a detection approach that is based on dynamic
coupling and webmining. We demonstrate the potential of our technique using two
open source software systems, which have a rich documentation set. During the case
studies we use dynamically gathered coupling information and vary between a number
of coupling metrics. The case studies show that we are able to retrieve 90% of the classes
deemed important by the orginal maintainers of the systems, while maintaining a level
of precision of around 50%.
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1. Introduction

Most successful software system are in a state of constant flux, evolving towards new business
needs, higher performance, better reliability and perhaps even a better internal structure [1].
When this evolution is applied to a system, a software engineer who is not completely familiar
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2 A. ZAIDMAN, S. DEMEYER

with the system that needs to be evolved, first needs to go through a process of acquiring
enough knowledge about the system before making alterations [2, 3]. This process, which is
termed the program comprehension process [4, 3], is known to take up between 30 and 60%
of a software engineer’s total allocated time [5, 6, 3]. When it comes to a definition of what
program comprehension means, we adhere to the definition introduced by Biggerstaff et al. [7]:

“A person understands a program when able to explain the program, its structure,
its behavior, its effects on its operation context, and its relationships to its
application domain in terms that are qualitatively different from the tokens used to
construct the source code of the program.”

Although the manner in which a programmer builds up his understanding of a software
system varies greatly [8, 9, 10, 3], we do realize that for large-scale software systems building
up knowledge of that system is a daunting task. Just think of how difficult it can be to find
your way in an unknown software system containing hundreds or thousands of classes: where
do you need to start looking in order to understand part of the system? Knowing where to start
looking, i.e., which classes are important, and from there on following links to other classes in
order to understand the inner workings of an application, is certainly more time-efficient.

These starting-point classes often have a controlling function within the software system
and they are typically characterized by the fact that they use a large amount of other classes
to implement their functionality. However, the identification of these classes with a controlling
function, so-called key classes is not so straightforward when working with an unfamiliar
system. Other resources like documentation might be outdated and fellow software engineers
might not know much about a specific application. In this light, we developed a heuristic
approach that automatically identifies a set of candidate classes within a system that are
prime candidates to be studied during initial program understanding.

In her research about design flaws, Tahvildari has also noticed these key classes [11]:

“These key classes are described as the classes that implement the key concepts of
a system. Usually, these most important concepts of a system are implemented by
very few key classes, which can be characterized by a number of properties. These
classes which we called key classes manage a large amount of other classes or use
them in order to implement their functionality. The key classes are tightly coupled
with other parts of the system. Additionally, they tend to be rather complex, since
they implement much of the legacy system’s functionality.”

It is our goal to automatically detect these key classes. The observation from Tahvildari
that these classes are characterized by being tightly coupled, made us build our key class
identification technique around detecting tight coupling. Our specific angle is to focus on
dynamic coupling, i.e., coupling information that was gathered from a running system. Two
reasons instigate our choice for dynamic coupling, namely: (1) we expect that a higher level
of precision can be obtained in the light of the abundant presence of polymorphism in object-
oriented software systems and (2) by actually only collecting coupling metrics of specific
execution scenarios we are able to follow a goal-oriented comprehension strategy, which will
focus the comprehension process even more. Another important ingredient of our approach is
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AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 3

Figure 1. Overview of the approach.
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the addition of indirect coupling, or coupling between two classes via a finite number of other
classes. We add this notion of indirect coupling through the use of a webmining algorithm.

The contributions of this paper are:
• We propose a technique to automatically identify so-called key classes of a software

system that can be useful for a software engineer who is trying to get a high-level overview
of system that he is unfamiliar with.

• Our technique is based on the identification of tightly coupled classes, where we also take
into account indirect coupling through the application of a webmining algorithm.

• The comparison of a number of dynamic and static coupling metrics for the purpose of
identifying the coupling metric that is best suited for our purposes.

• A demonstration of our technique using two open source case studies. For both case
studies we have extensive design documents from the original developers and maintainers
of the software projects, which helps us in establishing a program comprehension baseline
with which we are able to evaluate our retrieval technique.

The structure of this paper is as follows: Section 2 introduces our approach and provides
detailed information on dynamic coupling metrics and webmining. Section 3 explains our
experimental setup and talks about our case studies and research questions. Section 4 presents
the results of applying dynamic coupling to our case studies, while Section 5 continues with
static coupling. In Section 6 we discuss the overall results of our case studies, including threats
to validity to our experimental setup. Section 7 contains related work, while Section 8 presents
our conclusions and future work.

2. Approach

Our technique of automatically detecting the key classes of a software system is based on the
combination of two principles, namely (1) the identification of tightly coupled classes and (2)
also taking into account indirect coupling with the help of a webmining algorithm. Figure 1
shows an overview of the process of our approach. After defining an execution scenario, we
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4 A. ZAIDMAN, S. DEMEYER

trace the application. Post-mortem we use the trace to calculate coupling metrics between
individual classes. The next step has two alternatives, namely: (1) we simply aggregate the
coupling metric values that we have calculated between individual classes on a per class basis
or (2) if we want to take indirect coupling into consideration, we directly provide the metric
values between individual classes as input to the webmining algorithm. A final step consists of
ranking the results from strong coupling to weak coupling for each class in the result set, where
the actual rank of the class serves as an indicator for its importance during initial program
comprehension.

Sections 2.1 and 2.4 will elaborate on these techniques, while Section 2.5 will discuss how
we combine both mechanisms.

2.1. Coupling

This section introduces coupling and reasons on the usefulness of coupling when trying to
detect the key classes of a software system. We first introduce dynamic coupling metrics, after
which we discuss static coupling metrics.

2.1.1. Introduction to coupling

Software systems are typically composed from several software entities — be it modules,
classes, components, aspects,... These entities work together to reach their goal(s) and the
collaborations that exist between these entities give rise to the notion of coupling. Wand
defines coupling as [12]:

Two things are coupled if and only if at least one of them “acts upon” the other. X
is said to act upon Y if the history of Y is affected by X, where history is defined
as the chronologically ordered states that a thing traverses in time.

Although software engineers are constantly striving to minimize coupling in order to
improve, e.g., the understandability and reusability of software components [13], we intuitively
understand that coupling will always exist within software systems, as classes need to work
together to deliver the desired functionality [14].

2.1.2. Static and dynamic coupling

Coupling metrics have for some time now been subject of research, e.g., in the context of quality
measurements [15]. These metrics have mostly been determined statically, i.e., based upon
structural properties of the source code (or models thereof). However, with the wide-spread
use of object oriented programming languages, these static coupling metrics lose precision as
more intensive use of inheritance and dynamic binding occurs [16]. Another factor that possibly
negatively influences the measurements is the presence of dead code, which can be difficult to
detect statically in the presence of polymorphism.

This has led us to start looking at dynamic coupling metrics, a branch of software engineering
research that has only recently been developing [16]. We propose the following working
definition for dynamic coupling metrics:
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AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 5

Table I. Dynamic coupling classification [16].

Entity Granularity Scope Direction
(Aggregation Level) (Include/Exclude)

Object Object Library objects Import/Export
Class Framework objects

(set of) Scenario(s) Exceptional use cases
(set of) Use case(s)

System
Class Class Library classes Import/Export

Inheritance Hierarchy Framework classes
(set of) Subsystem(s)

System

Dynamic coupling metrics are defined based upon an analysis of interactions of
runtime objects. We say that two objects are dynamically coupled when one object
acts upon the other. Object x is said to act upon object y, when there is evidence
in the execution trace that there is a calling relationship between objects x and y,
originating from x. Furthermore, two classes are dynamically coupled if there is at
least one instance of each class for which holds that they are dynamically coupled.

The basic framework we use when considering dynamic coupling metrics was first introduced
by Arisholm et al. [16].

2.1.3. Classification of dynamic coupling metrics

Dynamic coupling can be measured in different ways. Each of the measures can be justified,
depending on the application context where such measures are to be used [16]. Table I gives
an overview of the variations. Each of the variations will also be discussed in this section.

1. Entity of measurement. Since dynamic coupling is calculated from dynamic data
stored in the event trace, we can calculate coupling at the object-level or at the class-
level.

2. Granularity. Orthogonal to the entity of measurement, dynamic coupling measures can
be aggregated at different levels of granularity. Different kinds of aggregations can be
made depending on the entity of measurement. Aggregations that can be made include:
at the (sub)system, inheritance hierarchy, use case or scenario level.

3. Scope. Another variation can be the classes we want to consider when calculating the
metric(s). For example, instances of library or framework classes can sometimes be of no
special interest and as such they can be excluded.

4. Direction (import or export). Consider two classes c and d being coupled by the
invocation of a method m2 of d in a method m1 in class c. This relationship can
be described as a client-server relationship between the classes: the client class c uses

Copyright c© 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–7
Prepared using smrauth.cls



6 A. ZAIDMAN, S. DEMEYER

(imports services), the server class d is being used (exports services). This situation gives
rise to the concepts of import and export coupling.

2.1.4. Dynamic coupling for program comprehension

Based on the classification schema presented in Section 2.1.3 we will now discuss which
properties we expect from a coupling metric in order to be useful for program comprehension
purposes. Based on these properties, we will find those dynamic coupling metrics that suit our
intentions best.

1. At a cognitive level, the software engineer trying to get a first impression of a piece of
software, will try to comprehend the software at the class-level, as these are the concepts
he/she can recognize in the source code, the documentation and the application domain.

2. As such we advocate either the use of classes as level of granularity or a further
aggregation up to the (sub)component (or in other terms package) level.

3. A general purpose tracing mechanism usually traces everything, also low-level calls to
libraries. In order to keep focus, we discard all classes foreign to the actual project (e.g.,
libraries), as they are not the target of the comprehension process. Furthermore, choosing
a well-defined execution scenario of the software that involves exactly those features that
the end-user wants to understand, is essential.

4. In Section 1 we already stated that we are looking for classes that have a prominent role
within the system’s architecture. We expect these classes to give orders to other classes,
i.e., tell them what to do and what to give in return. In terms of the direction of coupling,
this means that we are looking at import coupling. Vice versa, classes with strong export
coupling are classes that provide services to other classes.

Arisholm et al. defined twelve dynamic coupling metrics; two of these adhere to the criteria we
set out, namely: working at the class-level and measuring import coupling [16]. We will now
discuss these two metrics.

1. Distinct method invocations. This measure counts the number of distinct methods invoked
by each method in each object. This information is then aggregated for all the objects of
each class. Arisholm et al. call this metric IC CM (Import Coupling, Class level, Distinct
Methods). Calls to methods from the same object or class (cohesion) are excluded.

2. Distinct classes. This measure counts the number of distinct server classes that a method
in a given object uses. That information is than aggregated for all the objects of each
class. Arisholm et al. call this metric IC CC (Import Coupling, Class level, Distinct
Classes). Calls to methods from the same object or class (cohesion) are excluded.

Consider the formal definitions of IC CC and IC CM in Table II.
Reconsider the IC CC metric. When we are looking for a metric that points to classes that

import a lot of services from other classes, we see that IC CC has a limited range. IC CC
counts the number of (m1, c1, c2) triples. Because the first component in this triple is m1, the
maximum metric value is the product of the number of methods in the definition of c1 and
the number of classes c1 interacts with. Because the number of methods defined in c1 plays
a vital role in the calculation of this metric, this can become a limiting factor. Furthermore,
it does not give a true reflection as to how many other classes and in particular methods in
other classes are used.

Copyright c© 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–7
Prepared using smrauth.cls



AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 7

Table II. Dynamic coupling measures [16].

Helper definitions
C Set of classes in the system.
M Set of methods in the system.
RMC RMC ⊆ M × C

The set of all methods that are actually defined in a class.
IV IV ⊆ M × C × M × C

The set of all possible method invocations.

Metric definitions
IC CM(c1) = | {(m1, c1, m2, c2) | (∃ (m1, c1), (m2, c2)

∈ RMC ) ∧ c1 �= c2 ∧ (m1, c1, m2, c2) ∈ IV } |
IC CC(c1) = | {(m1, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC )

∧ c1 �= c2 ∧ (m1, c1, m2, c2) ∈ IV } |
IC CC′(c1) = | {(m2, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC )

∧ c1 �= c2 ∧ (m1, c1, m2, c2) ∈ IV } |

Therefore, we made a variation on the IC CC metric, called IC CC′. This variation does
not count the number of calling methods, but the number of called methods. In other words,
triples of the form (m2, c1, c2) are counted. This metric gives a more accurate reflection of
the number of “services”, i.e., distinct methods, that a class requests. A formal definition of
IC CC′ can be found in Table II.

Example. Consider the three classes depicted in Figure 2. The IC CC metric would yield a
score of 4 for class 1, as the number of unique (m1, c1, c2) triples is 4. For IC CC′ on the other
hand, the metric value for class 1 is 6, which corresponds with the number of unique methods
called in foreign classes (i.e., no cohesion). This example also shows that when a class contains
only one or a limited number of very long methods (which is typical for “god classes”), that the
IC CC metric value is limited in its range, while the IC CC′ metric’s range is not influenced.

In the first phase of our case studies (see Section 4) we will make a thorough comparison of
the effectiveness of the three aforementioned metrics.

2.2. Static coupling

In a previous experiment, we have compared these three dynamic coupling metrics for their
effectiveness in detecting the key classes of a software system. In that comparison, we have also
included the static Coupling Between Objects (CBO) metric [15, 17]. CBO however, proved to
perform poorly against the dynamic coupling metrics, which instigated us to research static
coupling metrics that are very close to the dynamic coupling metrics defined in the previous
sections.
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8 A. ZAIDMAN, S. DEMEYER

Figure 2. Comparison of IC CC and IC CC′
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After performing the first phase of our case study in which we compare the IC CM, IC CC
and IC CC′ metrics, we take the best performing of these three metrics and define one or more
static coupling metrics that are close to it. Sections 3.2 and 5 elaborate on the exact process
that we follow.

2.3. Indirect coupling

Up until now we have talked about direct coupling. Direct coupling is a relationship between
two entities. However, when considering large-scale software systems it is far from inconceivable
that more than 2 entities influence each other. Reconsider the coupling definition from Wand
(see Section 2.1.1) and let X, Y and Z be 3 entities where, respectively (X, Y) and (Y, Z) are
directly coupled, i.e., X acts upon Y and Y acts upon Z. Intuitively, it is easy to understand
that it is possible that X also (indirectly) acts upon Z, e.g., through parameter-passing and/or
polymorphism (e.g., double-dispatch).

Based upon this observation, we investigate the notion of indirect coupling [18]. Briand et
al. use the following definition [19]:

Direct coupling describes a relation on a set of elements (e.g., a relation “invokes”
on the set of all methods of the system, or a relation “uses” on the set of all classes
of the system). To account for indirect coupling, we need only use the transitive
closure of that relation.

The next section introduces the HITS webmining algorithm, which we will use for taking into
account indirect coupling.
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AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 9

2.4. The HITS webmining algorithm

2.4.1. Introduction

Webmining, a branch of datamining research, deals with analyzing the structure of the world
wide web [20, 21, 22]. Typically, webmining algorithms see the internet as a large graph,
where each node represents a webpage and each edge represents a hyperlink between two
webpages. Using this graph as an input, the algorithm allows us to identify so-called hubs
and authorities [22]. Intuitively, on the one hand, hubs are pages that refer to other pages
containing information rather than being informative themselves. Standard examples include
web directories, lists of personal pages, ... On the other hand, a page is called an authority if it
contains useful information and is referenced by others (e.g., web pages containing definitions,
personal information, ...).

Software systems can also be represented by graphs, where classes are nodes and calling
relationships between classes are edges. Furthermore, there is a “natural” extension to the
concepts of hubs and authorities in the context of (object-oriented) software systems. Classes
that exhibit a large level of import coupling call upon a number of other classes that do the
groundwork. In order for them to control these assisting classes, they often contain important
control structures. As such, they have a considerable amount of influence on the data and
control flow within the application. Conceptually, the classes that have a high level of import
coupling are similar to the hubs in web-graphs.

Export coupling on the other hand is a sign of very specific functionality, often frequently
reused throughout the system. Because of their specificity, they are conceptually similar to
authorities in web-graphs.

Because of this conceptual similarity, we found it worthwhile to try and reach our goal of
identifying important classes in a system through the HITS webmining algorithm [17], which
also explains why we focus on retrieving hubs for our technique.

2.4.2. HITS algorithm

The HITS algorithm works as follows. Every node i gets assigned to it two numbers; ai denotes
the authority of the node, while hi denotes the hubiness. Let i → j denote that there is a link
from node i to node j. The recursive relation between authority and hubiness is captured by
the following formulas:

hi =
X

i→j

aj (1)

aj =
X

i→j

hi (2)

The HITS algorithm starts with initializing all h’s and a’s to 1. In a number of iterations, the
values are updated for all nodes, using the previous iteration’s values as input for the current
iteration. Within each iteration, the h and a values for each node are updated according to the

Copyright c© 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–7
Prepared using smrauth.cls



10 A. ZAIDMAN, S. DEMEYER

Figure 3. Example graph and the accompanying first iterations of the HITS webmining algorithm.
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4 (8,0) (5,16) (0,15) (11,4) (11,0)
5 ... ... ... ... ...

formulas (1) and (2). If after each update the values are normalized, this process converges to
stable sets of authority and hub weights [22].

Adding weights to the edges of the graph is also possible and can capture the notion of
relative importance of edges. This extension requires only a small modification to the update
rules. Let w[i, j] be the weight of the edge from node i to node j. The update rules become:

hi =
X

i→j

w[i, j] · aj (3)

aj =
X

i→j

w[i, j] · hi (4)

Example. Consider the example graph of Figure 3. The accompanying table, shows the first
iteration steps of the hub and authority scores (represented by tuples (H, A)) for each of the
five nodes in the example graph. Even after only 3 iterations steps, it becomes clear that 2 and
3 will be good authorities, as can be seen from their high A scores. Looking at the H values,
4 and 5 will be good hubs, while 1 will be a less good one. The algorithm generally stabilizes
after around 11 iterations [22].

2.5. How it works in practice

We will now describe how each of the steps in our process are combined.

Step 1. Once the execution trace has been obtained, we start by calculating the metrics. For
each type of metric, i.e., IC CM, IC CC or IC CC′, we first calculate the individual coupling
strengths that are present between individual class pairs. An example of this can be see in the
listing below.

Main Task 1
Task Element 5
Task Dependency 7
Task Thread 3
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AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 11

Figure 4. Indirect coupling example.

An alternative representation is the compacted call graph (see Figure 4), which shows the
exact same metric data, but in graphical form [23, 17]. This graph is constructed by creating
a node for each class that is present in the execution scenario and by labeling the edges with
the coupling strength (as determined by either the IC CM, IC CC or IC CC′ metric).

Step 2. When we are interested in determining the direct coupling that exists within an
application, we simply aggregate the coupling per class, which, e.g., in the case of the Task
class would give an import coupling strength – only considering outgoing edges – of 15 in the
above example.

Step 3. The compacted call graph is used as input for the HITS webmining algorithm so that
the algorithm can reason over it and determine those classes that request a lot of services from
other classes, i.e., import functionality. Because the HITS algorithm is iterative in nature, it
not only takes into account direct links between classes, but also classes that are indirectly
coupled to each other. When we reconsider the example in Figure 3 on page 10 we see that
the hubiness score for node 1 benefits from the fact that node 4 is a good hub (because it
is connected to good authorities). Because the relationship between hubs and authorities is
mutually reinforcing (see formulas 1 and 2 on page 9), there is also no danger that the hubiness
(or authority) scores keep reinforcing themselves, which would result in every node becoming
strongly coupled to every other node [22].

Step 4. Rank the results from Step 2 and/or Step 3 according to respectively coupling strength
and hubiness from high to low.

3. Case study setup

This section elaborates on the hypothesis, the research questions and the experimental setup
that we have created for answering the research questions.
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12 A. ZAIDMAN, S. DEMEYER

3.1. Hypothesis

Our hypothesis is that dynamic coupling, which is very precise in its measurements with regard
to polymorphism in object-oriented software, is a good indicator of whether a class in a system
is actually a key class. In order to validate this hypothesis, we refine it into a number of
research questions:

1. Can dynamic coupling metrics provide an indication whether classes are “key classes”?
2. Which of the proposed coupling metrics — IC CM, IC CC and IC CC′ — performs the

best when retrieving key classes?
3. Can we improve our key class indicator by also taking into account indirect coupling?
4. As we know that dynamic analysis is typically an expensive operation due to the massive

amount of data involved [24], we want to know whether static coupling is able to match
the retrieval quality of dynamic coupling, while improving time-efficiency.

.

3.2. Case study setup

Our experimental setup is such that we use two open source software systems as case studies
for answering the above research questions. Section 3.3 elaborates on the choice of case studies.

We perform these case studies in two rounds: a first round that deals with dynamic analysis
and a second round that deals with static analysis. We now explain the rationale behind those
two rounds.

Round 1. In the first round we solely work with dynamic coupling metrics. As dynamic
coupling metrics have shown to be more precise in measuring coupling in object-oriented
software due to the presence of polymorphism [16], it is our expectation that these metrics will
perform best. An added benefit of using dynamic analysis in this context is that it becomes
possible to employ a goal-driven strategy, wherein the program comprehension process can
be steered by the definition of the execution scenario in such a way that only the features of
interest of a software system are exercised [23].

Round 2. The second round deals with static analysis, as we want to make a trade-off analysis
of computational cost versus recall of a dynamic analysis based solution versus a static analysis
based solution. For this second round we take the best performing dynamic coupling metric
and define a static counterpart for it.

3.3. Open source software systems

When selecting case studies, there are three requirements that we keep in mind due to our
program comprehension context:

• The case studies should be public in nature in order to ensure repeatability of this (or
similar) experiments within the research community.
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AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 13

Table III. Size-related information of the two case studies.
Ant 1.6.1 JMeter 2.0.1

Classes (traced) 127 189
Classes (total) 1 216 245

Lines of code (LOC) 98 681 22 234

• The case studies should have extensive design documentation available that lets us verify
whether we have actually detected all the classes that need to be understood early on
(i.e., the so-called key classes).

• Ideally, the design documentation is also freely available, which is a further bonus with
respect to the guarantee of repeatability of the experiment.

During our search, we found Apache Ant 1.6.1 and Jakarta JMeter 2.0.1 to adhere best
to these criteria. An added benefit of these two software systems is that they are completely
different kinds of applications: Ant is a command-line batch application, while JMeter features
a highly interactive graphical user interface.

Some metric-related data of both projects can be found in Table III. Please note here that
we mention both the total number of classes that are in the “source distribution” and the total
number of classes within that source distribution that solely belong to the project itself, i.e.,
we removed classes that, e.g., belong to the Xerces XML parser, log4j, etc. The removal of
library classes was done on the basis of the package structure, which, for both software projects,
adhered to a clear naming convention making identification of library classes straightforward.

Apache Ant

Apache Ant 1.6.1† is a well-known build tool, mainly used in Java environments. It is a
command-line tool, has no GUI and is single-threaded. It has a relatively small footprint,
but it does however use a lot of external libraries (e.g., the Xerces XML library) and is user-
extensible. Ant relies heavily on XML, as the build files that Ant processes are written entirely
in XML. Ant is used in both open-source and industrial settings and it has been integrated in
numerous (Java) Integrated Development Environments (IDE’s) (e.g., Eclipse, IntelliJ IDEA,
...).

The source-file distribution of Apache Ant 1.6.1 contains 1216 Java classes. Only 403 of these
classes (around 83 KLOC) are Ant-specific, as most of the classes in the distribution belong
to general purpose libraries or frameworks, such as Apache ORO (for regular expressions) or
Apache Xerces (XML parser). These libraries could easily be recognized through their package
structure and package name and were omitted from the tracing operation.

†For more information, see: http://ant.apache.org. For the design documentation, see:
http://codefeed.com/tutorial/ant config.html
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Jakarta JMeter

Jakarta JMeter 2.0.1‡ is a Java application designed to test webapplications. It allows to verify
the application (functionally), but it also allows to perform load-testing (e.g., to measure
performance or stability of the software system). It is frequently used to test webapplications,
but it can also handle SQL queries through JBDC. Furthermore, due to its architecture,
plugins can be written for other (network) protocols. Results of performance measuring can
be presented in a variety of graphs. JMeter is a tool which relies on a feature-rich GUI, uses
threads abundantly and relies mostly on the functionality provided by the Java standard API
(e.g., for network-related functionality).

The source-file distribution of Jakarta JMeter 2.0.1 consists of around 700 classes, while the
core JMeter application is built up from 490 classes (23 KLOC).

3.4. Program comprehension baseline

When performing case studies with new reverse engineering techniques aimed at understanding
a software system, there basically exist two paths to follow when trying to validate the results.
A first path is the intrinsic evaluation, where the original developers and maintainers serve as
an “oracle”. Another possibility is to perform an extrinsic evaluation, where, e.g., a controlled
experiment would serve as evaluator.

For this study we have chosen to follow the first route, namely to perform an intrinsic
validation with the help of design documents of open source software systems that were left
behind by the original developers and maintainers of the software projects.

Both software projects that we use in this paper have a particular type of documentation that
is aimed at developers who want to start contributing to the project, but are unfamiliar with
it. This documentation contains a high-level view of the control-flow of the system and for each
class involved in this high-level view a short description is given. The program comprehension
baseline is distilled from these design documents in such a way that each and every class
mentioned in this high-level overview is contained in this baseline.

Understanding the classes involved in this program comprehension baseline would thus give
the novice developer a general knowledge of the system. This “generality” should also be
reflected in the choice of execution scenario when using dynamic analysis. Details of the specific
execution scenarios that we use for both our case studies are explained in Sections 4.1 and 4.2.

3.5. Evaluation and validation

Typical in the field of information retrieval is the use of the concepts of precision and recall
for determining the retrieval power of a technique. As we have taken great care during our
case study selection process to have extensive design documentation available for our software
systems, we are able to define a program comprehension baseline, which in turn allows us to

‡For more information, see: http://jakarta.apache.org/jmeter/. The design documentation can be found on the
Wiki pages of the Jakarta JMeter project: http://wiki.apache.org/jakarta-jmeter
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evaluate our approach in terms of recall and precision. A third evaluation criterion, namely
the time it takes to run the analysis from start to finish, rounds out the evaluation criteria:

1. The recall of the result set, or in other words, the technique’s retrieval power (the
percentage of key classes retrieved by the technique versus the total number of key
classes present in the baseline).

2. The precision of the result set, or in other words, the technique’s retrieval quality (the
percentage of key classes retrieved versus the total size of the result set).

3. The time it takes to perform the complete analysis, i.e., the time it takes to run the
analysis from start to finish.

The first two criteria will serve as deciding factors for determining (1) which of the considered
metrics performs best, (2) whether taking into account indirect coupling serves its purpose and
(3) last but certainly not least whether the overall approach is indeed capable of detecting the
key classes in a system. The third criterion, the time it takes to perform the analysis, will be
used to perform a trade-off analysis and can also serve as a deciding factor when a number of
variations perform equally well on the first two criteria.

3.6. Evaluation of the results
In Step 4 of our approach (see Section 2.5) we mentioned that we ranked the results of our
approach (according to either their metric value or hubiness score, depending on the technique
used). The resulting list gives an indication of classes that are important (top-ranked) to less
important (low-ranked). However, for evaluation purposes we have to somehow draw the line,
as to what the most important classes are that we want to compare with the baseline.

For this purpose we set the mark of classes to be compared with the baseline at the top
15% highest ranked classes in the result set. The rationale behind choosing this 15% marker
is, firstly, the documentation from which we created the baseline mentioned around 10% of
the total number of classes that we considered. Because we still wanted to maintain a small
margin, we extended the set of classes to be evaluated to 15%. Secondly, because in practice we
would ideally want to have a concise set of key classes for starting to understand the software,
we did not want to extend the set of classes to be evaluated too much.

4. Case studies: 1st phaseIn a first phase we will compare how the dynamic coupling metrics that were defined in
Section 2.1.4 perform in retrieving the key classes of both of our case studies. We vary between
using direct and indirect coupling. Section 4.1 discusses the results of Ant, while JMeter’s
results are discussed in Section 4.2.
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4.1. Apache Ant

Execution scenario

We chose to let Ant build itself as the execution scenario of choice for our experiment. This
scenario involved 127 classes. At first sight this may seem rather low, considering that Ant
is built from 403 classes in total, however, this can be explained by the fact that the Ant
architecture contains some very broad (and sometimes deep) inheritance hierarchies. For
example the number of direct subclasses from the class Task is 104. Each of these 104 classes
stands for a typical command line task, such as mkdir, cvs, . . . As typical execution scenarios do
not contain all of these commands (some are even conflicting, e.g., different versioning system
or different platform-specific commands, e.g., ls versus dir), the execution scenario containing
127 classes covers all basic functionality of Ant.

The two main reasons why we chose this particular execution scenario are:
• From a post-mortem inspection of the trace, we know that this scenario offers a good

balance of features that get exercised. As such, this scenario activates the most common
features that are used to build a typical java project, including those for compiling,
copying files into different directories, generating jar (archive) files, etc. Because this
scenario activates the most common features, it serves our purpose of building up a
general knowledge of the software system, even though the class coverage of our scenario
is only 32%. We are aware that dynamic analysis techniques in general often use more
than one execution scenario, but as we are looking for general knowledge, we preferred
one general execution scenario, with the option of refining our results later on with more
specialized execution scenarios.

• Every source file distribution of Ant contains this specific execution scenario, through the
build.xml file that is included in the distribution, making replication of the experiment
straightforward.

Results

Table IV presents the metric-results for Apache Ant. We present the results for each of the 3
basic metrics, i.e., IC CM, IC CC and IC CC′, both with and without the webmining algorithm
applied in columns 1 through 6. Column 7 contains the program comprehension baseline.

The IC CM metric for a class c1, which counts quadruples of the form (m1, c1, m2, c2) §,
exhibits the lowest recall of all dynamic analysis solutions: 40%. The IC CM metric counts
distinct method invocations originating from the same source (m1, c1) combination. As such,
a class c1 using low-level functionality from c2 in each of its methods mi, will get a high metric
value. This causes noise in the result set, because we are actually looking for classes that use
other (high-level) classes. This explains its relatively low recall when compared to the baseline.

§A tuple of the form (m1, c1, m2, c2) is the combination of a method m1 from a class c1 that calls a method
m2 from class m2. The exact definition can be found in Table II on page 7.
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Table IV. Ant dynamic metric data overview.
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Project
√ √ √ √ √

UnknownElement
√ √ √ √ √ √ √

Task
√ √ √ √ √ √

Main
√ √

IntrospectionHelper
√ √ √ √ √ √

ProjectHelper
√ √ √ √ √ √

RuntimeConfigurable
√ √ √ √ √ √ √

Target
√ √ √ √ √ √ √

ElementHandler
√ √ √ √

TaskContainer N/A N/A N/A N/A N/A N/A
√

→ recall (%) 40 70 70 60 80 90 -
→ precision (%) 21 37 37 32 42 47 -
Trace collection 1h 1h
Metric calculation 45 min 45 min
HITS algorithm 30 sec
→ total time 1h45 1h45:30

The IC CC and IC CC′ metrics, which count (m1, c1, c2) and (m2, c1, c2) respectively, exhibit
a similar recall of 70%. Although at this point, we would have expected IC CC′ to perform
considerably better, there is no noticeable difference with regard to the recall. Our expectation
for a better performance from IC CC′ stems from the fact that, just as is the case for IC CM,
IC CC focusses on counting the originating class/method pair, while IC CC′ shifts focus
towards the target class/method pair.

When we apply the HITS webmining algorithm on the obtained results (columns 4 through
6), we see that the retrieval power of each of the metrics improves. IC CM now retrieves 60%
of the program comprehension baseline, IC CC goes from 70% to 80%, while IC CC′ improves
to a recall of 90%.

The one class that none of the metrics detect is the TaskContainer class. Upon closer
inspection, we noticed that this class is no longer part of the Ant distribution in version 1.6.1
and hence, we put N/A in Table IV. We decided to explicitly mention the TaskContainer class,
because it is a good example that the documentation is often outdated. Table IV only shows
the scores for the 10 classes that are mentioned in the baseline, while each of our metric-
variations detect more than 10 classes, 19 to be exact for this experiment (we have taken
15% of the 107 traced classes). For completeness sake, we add that the IC CC′ metric has
also detected the following classes: ComponentHelper, AbstractFileset, SelectSelector,
DirectoryScanner, TaskAdapter. Altough these classes are not mentioned in the baseline,
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further inspection indicated that these classes also have a controlling function, meaning that
they are also potentially useful to study early on.

Considering precision, applying the webmining algorithm allows to improve precision for all
of the considered metrics. In the case of IC CC′ it is able to bring precision to a level of 47%,
which is a very satisfying result, given the fact that other than an execution scenario no domain
knowledge is required for our key class detection technique. Nevertheless, we should keep in
mind that around 50% of the program comprehension “pointers” returned are potentially of
lesser value to the user.

On a final note, we also want to add that we have experimented with changing our retrieval
rate to the top 20% ranked classes. By doing so, we have seen that recall did not significantly
increase, to be more precise recall for IC CM increased by 10% with all others remaining
stable. Precision dropped for each of the metric variations. Lowering the retrieval rate to 10%
of the highest ranked classes made recall drop significantly all over the line.

Time-effort analysis

When we run Ant according to the previously defined execution scenario, the execution takes
23 seconds without collecting trace-information. Table IV shows that when we enable trace
collection, this scenario now takes slightly under 1 hour¶, generating a trace of roughly 2 GB
of data. Metric-calculation takes 45 minutes (the three metrics were calculated in parallel, only
calculating one of these at a time lowers the time needed by only a fraction), while applying
the HITS webmining algorithm on the metric data takes less than 30 seconds.

Discussion

For our first case study, we see that the IC CC′ metric in combination with the HITS webmining
algorithm outperforms the other metric-variations: it is able to retrieve 90% of the classes in
the program comprehension baseline, with a precision of 47%. This kind of result makes the
technique extremely useful for getting an initial, high-level view of the software component
under study.

With regard to the time-effort, the complete analysis takes roughly 1 hour 45 minutes. This
seems long, but we expect to be able to improve our tools, which are currently in a prototype
state, and the algorithm can also be parallelized.

4.2. Jakarta JMeter

Execution scenario

The execution scenario for this experiment consists of testing a HTTP (HyperText Transfer
Protocol) connection to a large online store. More precisely, we configured JMeter to test the

¶Experiment conducted on an AMD Athlon 800 with 512MB memory running Fedora Core 3 Linux.

Copyright c© 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–7
Prepared using smrauth.cls



AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 19

Table V. JMeter dynamic metric data overview.
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AbstractAction
√ √ √ √ √ √

JMeterEngine
√ √ √ √ √

JMeterTreeModel
√ √

JMeterThread
√ √ √ √

JMeterGuiComponent
√ √ √ √

PreCompiler
√ √

Sampler
√ √ √ √ √ √

SampleResult
√ √ √ √ √

TestCompiler
√ √ √

TestElement
√ √ √ √

TestListener
√ √ √

TestPlan
√ √ √ √ √

TestPlanGui
√ √ √

ThreadGroup
√ √

→ recall (%) 14 21 71 36 50 93 -
→ precision (%) 7 11 36 18 25 46 -
Trace collection 45 min 45 min
Metric calculation 30 min 30 min
HITS algorithm 30 sec
→ total time 1h15 1h15:30

aforementioned connection 100 times and visualize the results in a simple graph. Running
this scenario took 82 seconds. The scenario is representative for JMeter, because many of the
possible variation points in the execution scenario lie in (1) the usage of a different protocol
(e.g., FTP) or (2) in the output format of the data (e.g., different type of graph or plain-text).
Also of importance to note here is that these 100 connections are initiated by a number of
different threads, in order to simulate concurrent access to the web application. This entails
that this particular experiment is an example of a multi-threaded application.

Results

Table V provides an overview of the results of the Jakarta JMeter case study, taking into
account that the baseline contains 14 classes. For determining recall and precision, we again
looked at the highest 15% ranked classes, i.e., 28 classes (15% of 189 classes).

The IC CM metric clearly lags behind the other dynamic metrics proposed with a recall of
14% and a precision of 10%. The explanation for this relatively bad result is identical to the
reasoning given for Ant.
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In contrast with the previous experiment, there is a notable difference between the most
tightly coupled classes as reported by IC CC versus IC CC′.
Although not immediately visible from Table V, this phenomenon is related to the feature-
rich graphical user interface (GUI). Even though there is evidence of an attempt of a model-
view-controller (MVC) pattern implementation [25] (both from source code and from design
documents), there still is a high degree of coupling from the view to the model in the MVC
scheme. Furthermore, a high degree of coupling exists within the GUI layer.
Because certain classes in the GUI layer of JMeter can be catalogued as god classes (many
methods, large methods), the IC CC metric falsely registers these classes as important, due to
the high method count of these classes. IC CC′ however does not suffer from this because its
measure is not dependent on the number of methods defined within the class.

When we apply the HITS webmining algorithm to the previously discussed metrics, we see
that taking into account indirect coupling does help to identify the key classes of a system. The
IC CC′, which already was the best performer without taking into account indirect coupling,
comes out on top, attaining a level of recall of 93% with a level of precision of 46%.

Again, we have experimented with a different retrieval rate. When retrieving the highest
20% classes recall of IC CM, IC CC and IC CC + webmining increased by respectively 14, 14
and 7%. Precision dropped for all metric variations. Lowering the retrieval rate to 10% leads
to significant changes in both recall and precision, with no technique being able to recall more
than 65% of the classes defined in the baseline.

Time-effort analysis

The original scenario that we studied during this experiment takes 82 seconds to run. With
the added overhead of tracing JMeter, it now takes around 45 minutes; the final trace was
roughly 600 MB in size. Notice the difference with the Ant experiment, where we collected
2 GB of trace data (for a time-wise shorter execution). This difference in size can mainly be
attributed to the fact that JMeter heavily relies on library functions, which are excluded from
the trace. This exclusion process however, also comes at an additional cost because for each
call made, an exclusion-filter needs to be consulted before deciding whether to output a call
to the tracefile or not.

Table V shows that calculating the metrics takes slightly under 30 minutes and applying
the HITS webmining algorithm takes around 30 seconds.

Discussion

In terms of retrieval performance, we see a very similar situation to the one we encountered
with Ant. IC CC′ combined with the HITS webmining algorithm performs very strongly and
recall and precision results are similar. Again, the time-effort proves worrisome.

4.3. Discussion

Table VI provides an overview of the results of the first phase of our case studies, the phase
in which we compare the dynamic coupling metrics.
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Table VI. Summary of the first phase of the case studies.

Recall Precision Time-effort
Ant JMeter Ant JMeter Ant JMeter

IC CM 40% 14% 21% 7% 1h45 1h15
IC CC 70% 21% 37% 11% 1h45 1h15
IC CC′ 70% 71% 37% 36% 1h45 1h15
IC CM + webmining 60% 36% 32% 18% 1h45:30 1h15:30
IC CC + webmining 80% 50% 42% 25% 1h45:30 1h15:30
IC CC′ + webmining 90% 93% 47% 46% 1h45:30 1h15:30

For both our case studies, we see that applying the HITS algorithm to the dynamic coupling
metrics improves their ability to retrieve the key classes of a system. In particular, the IC CC′

metric in combination with the HITS webmining algorithm delivers convincing results for
identifying the key classes: respectively 90% and 93% of the key classes as defined in the
baseline are identified. Meanwhile, precision hovers slightly under 50%.

Considering the time-effort we see that for both our case studies the approach takes a long
time. With this in mind, the applicability of the approach for large-scale software projects
becomes questionable, even though the benefit of the approach is clear. Considering that a
lot of this time-effort is spent in collecting the trace information, our subsequent question
becomes: can we reach similar levels of retrieval performance, when considering only static
information? This question is answered in Section 5.

5. Case studies: phase 2

During the first phase of both of our case studies we noticed that using dynamic analysis
brought with it a number of constraints, namely:

• The need for a good execution scenario.
• The availability of a tracing mechanism.
• Scalability issues (the size of the trace file, run-time overhead introduced by the tracing

mechanism, etc.).
Because of these constraints, we initiated a second phase of our case studies in which we

validate that the good results that we have obtained through dynamic analysis, indeed warrant
the time-effort [26]. In this second phase we apply the same webmining technique on a static
topological structure of the application and investigate whether we can get a similar level of
recall and precision as we found for the dynamic approach (see Section 4), with a significantly
diminished time-effort.

In this new step we compare the best-performing dynamic coupling metric from the first
phase, namely the combination of the IC CC′ metric with the HITS webmining technique,
and compare it with a static coupling metric that is modeled after the IC CC′ metric, also
combined with the HITS webmining technique.
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Furthermore, because we want to make the comparison as objective as possible, the next
section defines static coupling metrics that are as close as possible to the IC CC′ metric used
in the first phase of the case studies.

5.1. A static coupling metrics framework

The framework from Arisholm [16] does not have to make a distinction between static and
polymorphic calls due to the dynamic nature of its measurements. We add notational constructs
from the unified framework for (static) object-oriented metrics from Briand et al [19] to the
definitions that we previously used from Arisholm. That way, we can still use the basic notation
from Arisholm we have used in the previous chapters. For that purpose, some helpful definitions
are:

Definition 1 Methods of a Class.
For each class c ∈ C let M(c) be the set of methods of class c.

Definition 2 Declared and Implemented Methods.
For each class c ∈ C, let:

• MD(c) ⊆ M(c) be the set of methods declared in c, i.e., methods that c inherits but does not override
or virtual methods of c.

• MI(c) ⊆ M(c) be the set of methods implemented in c, i.e., methods that c inherits but overrides or
nonvirtual noninherited methods of c.

Definition 3 M(C). The Set of all Methods.

M(C) = ∪c∈CM(c)

Definition 4 SIM(m). The Set of Statically Invoked Methods of m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ SIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d) and the body of

m has a method invocation where m′ is invoked for an object of static type class d.

Definition 5 NSI(m, m′). The Number of Static Invocations of m′ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ SIM(m). NSI(m, m′) is the number of method invocations in m where m′

is invoked for an object of static type class d and m′ ∈ M(d).

Definition 6 PIM(m). The Set of Polymorphically Invoked Methods of m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ PIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d) and the body

of m has a method invocation where m′ may, because of polymorphism and dynamic binding, be invoked for

an object of dynamic type d.

Definition 7 NPI(m, m′). The Number of Polymorphic Invocations of m’ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ PIM(m). NPI(m, m′) is the number of method invocations in m where m′

can be invoked for an object of dynamic type class d and m′ ∈ M(d).

5.2. Expressing IC CC′ statically

With these added notational constructs, we are now able to write down four static coupling
measures that closely resemble the measurements that were defined in Section 2.1.4.
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Figure 5. Piece of Java code to help explain metrics.

1 public void foo() {
2 BaseClass base = new BaseClass();
3 base.doSomething();
4 // some other functionality
5 base.doSomething();
6 }

The fact that one dynamic metric IC CC′ is translated into 4 static metrics can be explained
by the fact that the static environment offers some degrees of choice when calculating the
metrics. Consider the Java code snippet in Figure 5:

• The choice between static calls and polymorphic calls. In other words when considering
Figure 5, do we only count the reference to BaseClass or also to all subclasses of
BaseClass?

• Do we count duplicate calls for the same (origin, target) pairs? When considering Figure 5
do we count the base.doSomething() call once or twice (lines 3 and 5, Figure 5).

For the purpose of our research we have defined 4 metrics that vary over the characteristics
described above.

Definition SM SO Static Metric, Static calls, count every Occurrence of a call only once.

SM SO(c1, c2) = |{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 �= c2 ∧ (m1, c1, m2, c1) ∈ IV

∧ m2 ∈ SIM(m1)}|

Definition SM SW Static Metric, Static calls, count every occurrence of a call (Weighted).

SM SW (c1, c2) = identical to SM SO(c1, c2), but { } should be

interpreted as bag or multiset.

Definition SM PO Static Metric, Polymorphic calls, count every Occurrence of a call only once.

SM PO(c1, c2) = |{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 �= c2 ∧ (m1, c1, m2, c1) ∈ IV

∧ m2 ∈ PIM(m1)}|

Definition SM PW Static Metric, Polymorphic calls, count every occurrence of a call (Weighted).

SM PW (c1, c2) = identical to SM PO(c1, c2), but { } should be

interpreted as bag or multiset.

To calculate these metrics, we used the JDT2MDR Eclipse plugin developed at the University
of Antwerp [26]. JDT2MDR transforms a Java project to a graph representation closely
resembling the metamodel employed by Briand et al. in their unified framework for coupling
measurements in object-oriented software [19], thereby enabling the calculation of the coupling
and cohesion measures formalized in their paper.
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Table VII. Ant metric data overview.
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Project
√ √ √ √ √ √

UnknownElement
√ √ √ √ √ √

Task
√ √

Main
√ √ √ √ √ √

IntrospectionHelper
√ √ √ √

ProjectHelper
√ √

RuntimeConfigurable
√ √ √ √

Target
√ √

ElementHandler
√ √

TaskContainer N/A N/A N/A N/A N/A
√

→ recall (%) 90 50 50 30 30 -
→ precision (%) 47 8 8 5 5 -
Trace collection 1h
Metric calculation 45 min 1h
HITS algorithm 30 sec 1 min
→ total time 1h45:30 1h01

5.3. The continuation of the case studies

This section compares and discusses the statically obtained results with (1) the best-performing
dynamic analysis approach and (2) the program comprehension baseline that we have defined.
Besides comparing recall and precision, we also keep a close eye on time-effort, as this is a
factor where we expect the static approach to be able to significantly outperform the dynamic
approach.

5.3.1. Ant

Based on the results shown in Table VII, two categories are formed, namely the category of
metrics that takes polymorphism into account (SM P*) and the category that does not take
polymorphism into account (SM S*). The former category exhibits a recall level of 50%, while
the latter recalls 30%. Although interesting from the point of view that polymorphism does
indeed play an important role when considering program comprehension, from a practical
perspective, these results are disappointing when compared to the results obtained with the
dynamic approach. The observation regarding polymorphism can be explained by the fact that
(1) sometimes a base class is abstract or (2) the base class is not always the most important
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class in the inheritance hierarchy. The second variation point for the static metrics, namely
whether to only count an occurrence of a particular call once or to count every occurrence of
a call (weighted), does not seem to make any difference with regard to our specific context
(small variations exist, but these do not influence the result set).

The fact that precision for the 4 static metrics in columns 2 through 5 is much lower (8%
or less) than what we experienced with the dynamic approach, can be explained by the size of
the inputsets, as the inputset for the static experiment was 403 classes, while for the dynamic
experiment this was only 127 classes. When using our rule-of-thumb of presenting the 15%
highest ranked classes in the final result set, we end up with 60 and 19 classes respectively.

A further point to be made regarding this rule-of-thumb is that when looking at the ranking
of classes that fall outside the top 15%, lowering the bar to 20% would not have resulted in a
(significant) gain in recall, while precision would drop further. We can also add, that by raising
the bar to 10%, recall would fall significantly.

Considering the round-trip-time, we measured that the prototype (static) metrics engine
took one hour to calculate the metrics for Ant. Applying the HITS algorithm takes less than
one minute.

5.3.2. JMeter

Similar to what we saw with Ant, two groups can be identified within the JMeter result
set presented in Table VIII, namely one group consisting out of SM PO and SM PW, and
one group formed by SM SO and SM SW. Within these two groups, recall and precision are
identical, although minimal differences exist when looking at the ranking of some classes. In
contrast with the results for Ant, these differences are much more pronounced. It is our opinion
that this is probably due to the fact that most method calls happen only once in each unique
method, as opposed to multiple occurrences of a method call in a unique method, where the
weighted approach (of SM PW and SM SW) would make the difference more pronounced.

Also to be noted is the sizeable dissimilarity between the results obtained while only taking
into account static calls versus also taking polymorphic calls into account. As Table VIII shows,
the SM P* metrics have a recall of 43%, while the SM S metrics only recall 7%.

For what the round-trip-time is concerned, the metrics engine took almost 1 1
2 hours to

calculate the metrics for JMeter. This is a considerable increase from what we saw with Ant.
This increase can be attributed to the fact that JMeter has (1) a larger codebase and (2) uses
more libraries, which also need to be parsed. Applying the HITS algorithm takes slightly over
one minute.

5.4. Discussion

We began this section by stating that there are three major drawbacks to the dynamic approach
that we presented. Now that we have performed the second phase of our case study in which
we tried out a static variant of our approach, we come back to each of these drawbacks in
order to verify whether the static variant of our approach was able to solve them:

1. The necessity of a good execution scenario.
When performing static analysis, having an execution scenario is not an issue. However,
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Table VIII. JMeter metric data overview.
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6
:
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AbstractAction
√ √

JMeterEngine
√ √ √ √

JMeterTreeModel
√ √ √ √

JMeterThread
√ √ √ √

JMeterGuiComponent
√ √ √

PreCompiler
√ √

Sampler
√ √

SampleResult
√ √

TestCompiler
√ √ √ √

TestElement
√ √ √ √

TestListener
√ √

TestPlan
√ √

TestPlanGui
√ √ √ √

ThreadGroup
√ √

→ recall (%) 93 43 43 7 7 -
→ precision (%) 46 8 8 1.4 1.4 -
Trace collection 45 min
Metric calculation 30 min 1h30
HITS algorithm 30 sec 1 min
→ total time 1h15:30 1h31

having access to the source code is an important prerequisite for any static analysis based
approach. On the other hand, having access to the source is generally much easier than
having access to a good execution scenario. As such, for this criterion, static analysis is
to be favored.

2. The availability of a tracing mechanism.
Although a tracing mechanism is no longer an issue, having a metrics engine remains a
necessity. To implement such an engine, either open source tools need to be available or a
parser needs to be constructed. Because a similar precondition exists for both processes,
neither of the two approaches has a clear advantage here.

3. Scalability issues.
In terms of scalability the dynamic process is plagued by the possibly huge size of the
trace file, which result in long analysis times. However, when comparing these times
with the static approach, we observe that our prototype metrics engine also takes a long
time to compute the metrics. While the analysis times do not differ that much from
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Table IX. Summary of the case studies.

Recall Precision Time-effort
Ant JMeter Ant JMeter Ant JMeter

Dynamic

IC CM 40% 14% 21% 7% 1h45 1h15
IC CC 70% 21% 37% 11% 1h45 1h15
IC CC′ 70% 71% 37% 36% 1h45 1h15
IC CM + webmining 60% 36% 32% 18% 1h45:30 1h15:30
IC CC + webmining 80% 50% 42% 25% 1h45:30 1h15:30
IC CC′ + webmining 90% 93% 47% 46% 1h45:30 1h15:30

Static

SM PO + webmining 50% 43% 8% 8% 1h01 1h31
SM PW + webmining 50% 43% 8% 8% 1h01 1h31
SM SO + webmining 30% 7% 5% 1.4% 1h01 1h31
SM SW + webmining 30% 7% 5% 1.4% 1h01 1h31

the dynamic process, the dynamic process is still burdened by the time-intensive tracing
step, which makes that the total time for the dynamic process is significantly larger.

6. Discussion

Table IX extends Table VI by also taking into account the results of the static variant of
our approach. Table IX shows that the best-performing dynamic analysis based variant of our
approach, namely the IC CC′ metric combined with the webmining solution provides a level
of recall of at least 90%, while safeguarding a level of precision of slightly under 50%. When
we look at the results of the static coupling metrics that we introduced in this chapter, we
see that we are able to reach a maximum level of recall of 50%, while the level of precision
drops to 8% or less. This observation makes it quite obvious that the dynamic approach is the
solution of choice when only considering the recall and precision results.

When considering the time-effort for these analyses, we see that the static approach (the
SM * metrics) performs better than the dynamic variants, with the important remark that
recall and precision clearly fall behind the best-performing dynamic variant of our approach.

As such, we conclude that for the purpose of detecting the key classes that can be helpful
for early program comprehension, the dynamic variant of our approach is the best choice,
even though the time effort needed for the detection process should be considered as a serious
drawback.

6.1. Threats to validity

Over the course of our case studies we noted a number of factors that could influence the
validity of our conclusions. We will now discuss these threats to validity.

1. The design documents that we use as the basis for the program comprehension baseline
are likely to be subjective, as each developer probably has a preference for the parts
of the application that he has written himself. This problem is inherent to the intrinsic
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evaluation that we perform and would likely also occur when consulting the developers
or maintainers of a project directly (instead of working with documentation).

2. Although the results of our approach are very positive, we must also not forget that the
intrinsic evaluation as we have performed it in this paper might not be representative for
how developers get acquainted with a software system. Therefore, we foresee a controlled
experiment in the future which will probably get a more realistic picture of the actual
usefulness of our technique in practice.

3. For the evaluation of our detection technique, we relied on the concepts of precision and
recall. However, when using a fixed retrieval rate (e.g., 15%) precision is directly tied to
recall and would thus appear to be redundant. Nevertheless, when using the technique
for understanding a software system, it is still beneficial to know how many possible false
positives are returned in the result set. As such, we continue to work with both recall
and precision.

7. Related work

Within the research community, three distinct approaches exist with regard to reverse
engineering software systems, namely (1) static analysis, (2) dynamic analysis and (3) a hybrid
approach combining the previous two. The second category, dynamic analysis, is characterized
by the need to process huge amounts of data, and thus, dynamic analysis solutions are
often tailored around the problem of scalability. Nevertheless, many researchers emphasize
the importance of dynamic analysis in the reverse engineering process; this is especially true
in the context of object-oriented systems [27]. The need for a hybrid approach where static
analysis is reinforced by dynamic information, or vice versa, has also been advocated in the
research community (e.g., [28]).

To overcome scalability issues when using dynamic analysis, two distinct approaches are
currently used, namely (1) the compression and abstraction of dynamic information and (2)
the visualization of dynamic information through condensed views. We provide a brief overview
of both categories in Sections 7.2 and 7.3 respectively. We start with Section 7.1 where we
discuss a static analysis based technique that closely matches our own technique.

7.1. Static analysis based

Robillard presents a technique whereby given a set of classes under investigation, a number of
(related) classes that should be investigated next are provided [29]. The technique described is
based on the (static) topological structure of the dependencies in a software system. Given an
input set, the technique produces a fuzzy set describing other elements of potential interest.
As such, the main difference between our solution and Robillard’s solution is the fact that his
solution needs a pre-established set of points of interest, whereas our solution provides these
automatically based on the execution scenario. Further study of possible interactions between
both solutions seems warranted.

Copyright c© 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 00:1–7
Prepared using smrauth.cls



AUTOMATIC IDENTIFICATION OF KEY CLASSES IN SOFTWARE 29

7.2. Abstraction and compression

Hamou-Lhadj et al. have been working on a number of trace abstraction techniques [30]. The
one that is most relevant in the context of our own technique is the technique that removes
classes from a trace that are solely responsible for low-level functionality [31]. Just as in
our technique, determining coupling lies at the basis of this removal technique. The major
difference then being that Hamou-Lhadj et al.’s technique works from the bottom up, while
our technique is more top-down oriented. Another technique of interest that was developed by
Hamou-Lhadj and Lethbridge is trace summarization, where interesting sections of a trace are
identified, which are then presented to the user. This technique can also be cataloged as being
top-down [32].

Another common approach for abstracting traces is feature analysis, where – parts of –
traces are correlated to the exact feature that the trace is performing. Greevy et al. [33]
and Eisenbarth et al. [34] have been actively working in this field. Other interesting work
is performed by Reis and Renieris [35], who encode program executions, and Richner and
Ducasse [36], who reason over execution traces with logic queries. None of these techniques
however try to provide key classes to the software engineer for further investigation.

7.3. Visualization

Over the years many visualization techniques have been used to visualize the interaction of
runtime objects [37, 38], with the main aim of abstracting the large amounts of dynamic
information. We list a number of recently developed techniques in this context.

Some of the proposed visualizations build upon the idea of UML sequence diagrams, such
as the work of De Pauw et al. in Jinsight [39, 40]. Jerding et al. also use sequence diagrams
in ISVis, but in order to overcome scalability, they also offer a mural view of that sequence
diagram to allow for easy navigation [38, 41].

Other work introduces more novel visualization ideas. These visualizations are often built
around a metaphor, such as the work of Kuhn and Greevy, who interpret traces as signals in
time [42], or Cornelissen et al., who project a software system’s execution on the edge of a
circle [43]. Greevy et al. use growing towers to visualize the number of instances of a certain
class that are active [44].

Finally, some techniques have previously been used for displaying static information, but
have been adapted to work with dynamic information. In this context Ducasse et al. use
polymetric views [45]. These polymetric views were borrowed from Lanza’s CodeCrawler
tool [46]. The AVID visualization tool from Walker et al. [47, 48], has close ties with Murphy
et al.’s Reflexion [49].

8. Conclusion

New programmers are often stuck sorting through hundreds of classes in order to find
the few that offer significant insight into the interworkings of the project. Our Key Class
Identification technique approach can reduce their difficulties, because it allows for the
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automatic identification of those classes in a software system that are prime candidates for
early program comprehension. We demonstrated our approach using two open source software
systems, namely Apache Ant and Jakarta JMeter, which were specifically chosen because of
their rich documentation set. With this documentation we were able to establish a ‘program
comprehension baseline’.

Fundamental to the approach we propose is the concept of coupling and the HITS webmining
technique. Using these two basic principles, we applied our approach both on dynamically and
statically obtained information from the target systems. Our case studies have shown that
when using dynamically gathered information and taking into account indirect coupling, we
are able to recall 90% of the key classes present in a system according to the documentation.
Furthermore, we are able to provide this level of recall while remaining at a level of precision
of slightly under 50%.

As such, we feel that we have presented a valuable technique for a software developer or
maintainer who is aiming to familiarize himself with a previously unknown software system.
By starting from the key classes, the user has a limited number of starting points to further
his quest for gaining a thorough level of knowledge of the system.

8.1. Future work

For future work, we have identified a number of paths that allow to refine the validation of the
key class identification technique. Firstly, we aim to perform a controlled experiment that lets
us assess the usefulness of having key classes to start understanding a complex software system
when the user has no knowledge of the system. Secondly, we want to apply the technique on
a wide variety of applications from diverse problem domains. We have started working in this
direction by applying the technique on industrial software and performing a validation with
the actual developers. An initial report on this experiment can be found in [50].
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