
Scalability Solutions for
Program Comprehension

Through Dynamic Analysis

Andy Zaidman

Promotor: prof. dr. Serge Demeyer

Proefschrift ingediend tot het behalen van de graad van

Doctor in de Wetenschappen

Acknowledgements

First and foremost, the support of my family has been instrumental. I could
not have done it without every one of you. A very special thank you goes to
Wendy, my wife and best friend, for always being there and supporting me.

Over the years prof. Demeyer has given me carte blanche when it comes to
doing my research, yet was always there to provide me with precious advice and
the necessary support at times when there were more questions than answers.
Serge, thank you very much!

Every day, Filip Van Rysselberghe, my office mate, was there to cheer me
up, provide answers to unanswerable questions and... provide music. For all
other questions, Bart Du Bois, Hans Stenten, Niels Van Eetvelde, Pieter Van
Gorp, Hans Schippers, Bart Van Rompaey, Matthias Rieger and Olaf Muliawan
were always ready to provide their opinions and insights. Many other people
from the department were always in for a chat when research was going slow
and helped me keep my spirits high. Thank you all for providing such a pleasant
atmosphere.

I had the opportunity to be able to enjoy a number of collaborations with
amongst others Bram Adams, Toon Calders, Kris De Schutter, Orla Greevy,
Wahab Hamou-Lhadj and Kim Mens. To them I say: keep up the good work!

A sincere word of gratitude goes out to the members of my doctoral jury,
who, through their extensive reviews, have helped this dissertation become sig-
nificantly better. Thank you Chris Blondia, Serge Demeyer, Theo D’Hondt,
Stéphane Ducasse, Dirk Janssens, Jan Paredaens and Tarja Systä.

To all my friends that kept spurring me on: I hope I can one day repay you

i

ii

guys.

And finally to everyone who over the years has played a role — small or big
— in this dissertation and the work leading up to it: I will not forget and you
will not be forgotten...

Abstract

Dynamic analysis has long been a subject of study in the context of (compiler)
optimization, program comprehension, test coverage, etc. Ever-since, the scale
of the event trace has been an important issue. This scalability issue finds
its limits on the computational front, where time and/or space complexity of
algorithms become too large to be handled by a computer, but also on the
cognitive front, where the results presented to the user become too large to be
easily understood.

This research focusses on delivering a number of dynamic analysis based
program comprehension solutions that help software engineers to focus on the
software system during their initial program exploration and comprehension
phases.

The key concepts we use in our techniques are frequency of execution and
runtime coupling. Both techniques deliver a solution which can help the software
engineer bring focus into his or her comprehension process by annotating parts of
the trace that contain similarities or by bringing out the key concepts (classes) of
a system. To validate our techniques we used a number of open-source software
systems, as well as an industrial legacy application.

iii

Contents

I Introduction 1

1 Introduction 3
1.1 Context . 4
1.2 The modalities of change . 5
1.3 Program comprehension . 6
1.4 Lack of documentation . 7
1.5 Dynamic analysis . 7
1.6 Hypothesis . 8
1.7 Solution space . 9

1.7.1 Run-time coupling based heuristic 9
1.7.2 Frequency based heuristic 10
1.7.3 Research contributions . 10

1.8 Academic context . 11
1.9 Organization of this dissertation 12

2 Program comprehension 13
2.1 What is program comprehension? 13
2.2 Program understanding as a prerequisite 14
2.3 Program comprehension models 15

2.3.1 Top-down program comprehension models 16
2.3.2 Bottom-up program comprehension models 16
2.3.3 Integrated model . 17

2.4 On the influence of comprehension tools 18

3 Dynamic Analysis 19
3.1 Definition . 19
3.2 Why dynamic analysis? . 20

v

vi CONTENTS

3.2.1 Goal oriented strategy . 20
3.2.2 Polymorphism . 21

3.3 Modalities of dynamic analysis 21
3.3.1 Example execution trace 22
3.3.2 Trace extraction technologies 22
3.3.3 Implementation . 24

3.4 The observer effect . 25
3.5 Threats to using dynamic analysis 25
3.6 Strengths and weaknesses . 26

II Coupling based solutions for program comprehen-
sion 27

4 How coupling and program comprehension interact 29
4.1 Introduction . 29
4.2 Coupling . 30
4.3 Dynamic coupling . 31

4.3.1 Introduction . 31
4.3.2 Classification of dynamic coupling measures 32
4.3.3 Dynamic coupling for program comprehension 33

4.4 Research question . 35
4.5 Research plan . 35
4.6 Validation and evaluation . 36
4.7 Practical application . 36

5 Webmining 37
5.1 Indirect coupling . 37

5.1.1 Context and definition . 37
5.1.2 Relevance in program comprehension context 38

5.2 The HITS webmining algorithm 39
5.2.1 Introduction . 39
5.2.2 HITS algorithm . 40
5.2.3 Example . 41

5.3 Practical application . 42

CONTENTS vii

6 Experiment 43
6.1 Experimental setup . 43

6.1.1 Case studies . 43
6.1.2 Execution scenarios . 44
6.1.3 Program comprehension baseline 44
6.1.4 Validation . 45
6.1.5 Research plan . 45
6.1.6 Threats to validity . 46

6.2 Apache Ant . 47
6.2.1 Introduction . 47
6.2.2 Architectural overview . 47
6.2.3 Execution scenario . 49
6.2.4 Discussion of results . 49

6.3 Jakarta JMeter . 51
6.3.1 Introduction . 51
6.3.2 Architectural overview . 52
6.3.3 Execution scenario . 52
6.3.4 Discussion of results . 53

6.4 Discussion . 55
6.4.1 Experimental observations 55

6.5 Observations with regard to the research question 56

7 Static coupling 57
7.1 Introduction & motivation . 57
7.2 A static coupling metrics framework 58
7.3 Expressing IC CC′ statically . 59
7.4 Results . 60

7.4.1 Ant . 61
7.4.2 JMeter . 62

7.5 Discussion . 63
7.5.1 Practical implications . 63
7.5.2 Comparing static and dynamic results 65
7.5.3 Conclusion . 65

III Frequency based solutions for program comprehen-
sion 67

8 Frequency Spectrum Analysis 69

viii CONTENTS

8.1 Introduction . 69
8.1.1 Motivation . 69
8.1.2 Research questions . 70
8.1.3 Solution space . 71
8.1.4 Formal background . 72

8.2 Approach . 72
8.3 Experimental setup . 77

8.3.1 Hypothesis . 77
8.3.2 The experiment itself . 78
8.3.3 Case studies . 78

8.4 Results . 79
8.4.1 Jakarta Tomcat 4.1.18 . 79
8.4.2 Fujaba 4.0 . 84

8.5 Discussion . 90
8.5.1 Connection with hypothesis 90
8.5.2 Connection with the research questions 91
8.5.3 Open questions . 92

IV Industrial experiences 93

9 Industrial case studies 95
9.1 Motivation . 95
9.2 Industrial partner . 96
9.3 Experimental setup . 97

9.3.1 Mechanism to collect run-time data 97
9.3.2 Execution scenario . 100
9.3.3 Details of the system under study 100

9.4 Results . 101
9.4.1 Experimental setup of the validation phase 101
9.4.2 Webmining . 101
9.4.3 Frequency analysis . 103

9.5 Pitfalls . 105
9.5.1 Adapting the build process 105
9.5.2 Legacy issues . 107
9.5.3 Scalability issues . 108

9.6 Discussion . 109

V Concluding parts 113

10 Related Work 115
10.1 Dynamic analysis . 115
10.2 Visualization . 118
10.3 Industrial experiences . 120

11 Conclusion 123
11.1 Conclusion . 123

11.1.1 Dynamic coupling . 123
11.1.2 Relative frequency of execution 124

11.2 Opportunities for future research 125

VI Appendices 127

A HITS webmining 129
A.1 Introduction . 129
A.2 Setup and proof . 129

B Frequency analysis results for TDFS 133

x CONTENTS

List of Figures

3.1 Example execution trace . 22

5.1 Indirect coupling example. 38
5.2 Indirect coupling example. 39
5.3 Example graph . 41

6.1 Simplified class diagram of Apache Ant. 48

7.1 Piece of Java code to help explain metrics. 59

8.1 Frequency annotation example. 74
8.2 Example of identical execution frequency. 76
8.3 Frequency pattern. 77
8.4 Tomcat with dissimilarity measure using window size 2 80
8.5 Tomcat with dissimilarity measure using window size 5 81
8.6 Tomcat with dissimilarity measure using window size 10 82
8.7 Tomcat with dissimilarity measure using window size 20 83
8.8 Example of two execution traces with possible polymorphism . . 83
8.9 Blowup of the interval [80000, 100000] of Figure 8.7 to show fre-

quency patterns . 85
8.10 Fujaba with dissimilarity measure using window size 20 86
8.11 Fujaba scenario with a high degree of repetition 87
8.12 Duploc output of part of the trace (event interval 44 000 to 54

000). 89

9.1 Three frequency clusters from the TDFS application 104
9.2 Original makefile. 106
9.3 Adapted makefile. 106

xi

xii LIST OF FIGURES

9.4 Original esql makefile. 106
9.5 Adapted esql makefile. 106

10.1 Simple interaction diagram (a) and its corresponding execution
pattern (b) [De Pauw et al., 1998] 119

List of Tables

2.1 Tasks and activities requiring code understanding. 15

3.1 Strengths and weaknesses of dynamic analysis 26

4.1 Dynamic coupling classification. 32
4.2 Dynamic coupling measures [Arisholm et al., 2004]. 34

5.1 Example of the iterative nature of the HITS algorithm. Tuples
have the form (H,A). 42

6.1 Ant metric data overview. 50
6.2 JMeter metric data overview. 53
6.3 Strengths and weaknesses of the proposed coupling-based tech-

niques. 55

7.1 Ant metric data overview. 61
7.2 JMeter metric data overview. 63
7.3 Comparison of the strengths and weaknesses of the static and the

dynamic webmining approach. 65

8.1 Comparison of total tracing versus filtered tracing. 73

9.1 System passport . 100
9.2 Results of the webmining technique 102
9.3 Overview of the time-effort of the analyses. 109

xiv LIST OF TABLES

Part I

Introduction

1

Chapter 1

Introduction

In the beginning the Universe was created. This has made a lot of people very
angry and has been widely regarded as a bad move.

—Douglas Adams

Greenfield software development is fun! Building software systems from
scratch allows you to be your creative self. You and your team are able to
define a whole range of parameters, whether it be the global architecture of the
system, some fancy design quirks, the choice of technologies, etc. Sometimes
even, the programming language to be used can be your favorite one.

However, in a world were everything changes at a seemingly continually in-
creasing rate, software has to keep up with the changing environment in order to
stay useful and keep fulfilling the expectations one has of it. When software that
is already in place needs to change, the software development team is confronted
with a whole new set of challenges when compared to the greenfield software
development situation.

One of these challenges — and probably the most time-consuming one — is
trying to understand the existing piece of software, a discipline which is termed
“program comprehension”. Typically, this process is aided by the available doc-
umentation, however, often this documentation is either non-existent or out-
dated. This dissertation is about providing solutions to be used in this situation,
specifically to be used during the initial phases of the program comprehension

3

4 CHAPTER 1. INTRODUCTION

process. The solutions we present are based upon dynamic analysis, or the anal-
ysis of data gathered during the execution of a software system.

1.1 Context

Legacy software is software that is still very much useful to an organization –
quite often even indispensable – but the evolution of which becomes too great a
burden [Bennett, 1995,Demeyer et al., 2003]. Legacy software is omni-present:
think of the large software systems that were designed and first put to use in
the 1960’s or 1970’s; these software systems are nowadays often the backbone of
large multinational corporations. For banks, healthcare institutions, etc. these
systems are vital for their daily operations. As such, failure of these software
systems is not an option and that is why these trusted “oldtimers” are still
cared for every day. Furthermore, they are still being evolved to keep up with
the current and future business requirements.

We propose to use this definition of Brodie and Stonebraker [Brodie and
Stonebraker, 1995], which gives an apt description of a legacy system:

“Any information system that significantly resists modification and
evolution to meet new and constantly changing business require-
ments.”

Note that this definition implies that age is no criterion when considering
whether a system is a legacy system [Demeyer et al., 2003].

As an example from the world of banking, we still see data formats in use
today which have been defined decades ago. Access to that data is being pro-
vided through special applications or modules. These have now become legacy
systems, but if any of these were to fail, a downtime of a day or two can mean
bankruptcy for the company in question.

To make things worse, evolving a system can exaggerate the legacy problem.
To paraphrase Lehman, an evolving system increases its complexity, unless work
is done to reduce it [Lehman and Belady, 1985]. This increase in complexity is
further enlarged when the original developers, experienced maintainers or up-
to-date documentation are not available [Sneed, 2005,Brodie and Stonebraker,
1995, Moise and Wong, 2003, de Oca and Carver, 1998, Demeyer et al., 2003].
A number of solutions to cope with evolution have been proposed in the field
of software reengineering [Chikofsky and Cross II, 1990, Bennett, 1995, Sneed,
1996].

1.2. THE MODALITIES OF CHANGE 5

1.2 The modalities of change

When one wants to apply countermeasures to stabilize or reduce complexity, the
software engineer would ideally like to have a deep insight into the application
when starting his/her reengineering (or better still refactoring) operation [Sneed,
2004,de Oca and Carver, 1998,Lehman, 1998]. Yet this understanding is often
found lacking as, over time, legacy applications become something of magical
black boxes. For one, there is the “if it ain’t broke, don’t fix it” attitude which
often gets in the way. Secondly, there is the problem of out-of-sync documenta-
tion, which hinders program comprehension for maintainers and new developers
alike [Chikofsky and Cross II, 1990,Moise and Wong, 2003].

Nevertheless, this insight is certainly necessary to be able to apply these
countermeasures reliably, economically and promptly. Going beyond applying
countermeasures to stabilize or reduce complexity, is the need to integrate soft-
ware systems that were originally not conceived to work together. The 1990s
were characterized by an increase in spending on information technology, partly
due to the so-called “dot com bubble”. During this period, the problem on
integrating standalone applications became known under the flag of Enterprise
Application Integration or EAI [Linthicum, 1999]. During the early 2000s, the
community shifted its focus towards more loosely connected components and
the problem of integrating software systems became known as building up a
Service Oriented Architecture or SOA [Gold et al., 2004].

As such, apart from a status-quo scenario, in which the business has to
adapt to the software that resists change, a number of scenarios are frequently
seen [Bennett, 1995]:

1. Rewrite the application from scratch, from the legacy environment, to the
desired one, using a new set of requirements.

2. Reverse engineer the application and perform a rewrite of the application
from scratch, from the legacy environment, to the desired one.

3. Refactor the application. One can refactor the old application, without
migrating it, so that change requests can be efficiently implemented; or
refactor it to migrate it to a different platform.

4. Often, in an attempt to limit the costs, the old application is “wrapped”
and becomes a component in, or a service for, a new software system. In
this scenario, the software still delivers its useful functionality, with the
flexibility of a new environment. This works fine and the fact that the old
software is still present is slowly forgotten. This leads to a phenomenon
which can be called the black-box syndrome: the old application, now
component or service in the new system, is trusted for what it does, but

6 CHAPTER 1. INTRODUCTION

nobody knows – or wants to know – what goes on internally.
5. A last possibility is a mix of the previous options, in which the old appli-

cation is seriously changed before being set-up as a component or service
in the new environment.

Intuitively, it is clear that for scenarios 2 through 5, a certain level of insight
into the existing application is necessary before reengineering can safely begin.
This is where the discipline of program comprehension comes in.

1.3 Program comprehension

When programming a piece of software, the programmer has to build a men-
tal bridge that connects the code he/she is writing and the program behavior
he/she is trying to accomplish [Renieris and Reiss, 1999]. Conversely, when a
programmer is trying to gain an understanding of a system, he is actually trying
to get the reverse mapping: from the functionality that is present in the system
to the code that is performing that very functionality.

Depending on the source, literature suggests that between 30 and 60% of a
software engineer’s time is spent in the program comprehension phase, where one
has to study existing code, documentation and other design artifacts in order to
get an adequate understanding of a software system [Spinellis, 2003,Wilde, 1994,
Corbi, 1990]. Adequate being the level where the programmer feels comfortable
that his change operation(s) will not harm the system’s architecture, design or
functionality in a bad way.

The manner in which a programmer builds up his understanding of a soft-
ware system varies greatly. It is mostly dependent on the individual, but can
be influenced by the magnitude of the system under study, the level of under-
standing needed for the task at hand, the programming language, the familiarity
with the system under study, previous experiences in the domain, etc. [Lakhotia,
1993,von Mayrhauser and Vans, 1995]. While in theory it is necessary to under-
stand the entire system before making any changes, in practice it is essential to
use a goal oriented or as-needed strategy: you want to get an understanding of
the part of the system that you are specifically interested in with regard to the
task at hand. Furthermore, due to economical constraints this should happen
both quickly and thoroughly [Lukoit et al., 2000].

Realizing that program comprehension is such an important part of every
software engineer’s life, we wonder how we can provide stimuli to make the
comprehension process more efficient.

1.4. LACK OF DOCUMENTATION 7

1.4 Lack of documentation

When focussing on delivering a program comprehension solution, we do make
the assumption that the program comprehension process happens without ade-
quate documentation being available. A number of factors make us believe that
for many software systems this assumption is more often than not a reality:
• A lot of the knowledge of an application is not written down in documen-

tation, but is present in the heads of the developers. The information
technology (IT) business, being a sector with a high degree of personnel
volatility, is certainly at risk of losing a lot of this implicit knowledge about
their software systems when personnel is leaving the project or leaving the
company altogether [Chikofsky and Cross II, 1990].
• As we already mentioned, software systems have to evolve. This evolu-

tion can cause a drift away from the original architecture [Mens, 2000].
Furthermore, keeping the documentation synchronized with those evolu-
tionary changes does not always happen in a structured way [Chikofsky
and Cross II, 1990,Moise and Wong, 2003].
• From our own experiences with industry we also know that the software

system’s documentation is often not up to date. More on this can be found
in Chapter 9.

1.5 Dynamic analysis

Dynamic analysis is the study of running software with the aim of extracting
properties of the software system. Typically, software is run according to an
execution scenario and run-time information is stored in a so-called execution
trace. Opposite to this dynamic approach stands the concept of static analysis,
which extracts software system properties from artifacts such as source code,
documentation, architectural diagrams or design information. Within this re-
search, dynamic analysis is the basic means by which we want to stimulate the
program comprehension process.

Dynamic analysis has long been a subject of study in the context of (com-
piler) optimization, test coverage, etc. It has also been extensively researched for
program comprehension purposes, sometimes in a pure dynamic analysis con-
text, sometimes in a mixed static-dynamic context [Ball, 1999,Eisenbarth et al.,
2001,Richner, 2002,Systä, 2000a,Sayyad-Shirabad et al., 1997,El-Ramly et al.,
2002, Jerding and Rugaber, 1997, Gschwind et al., 2003, Greevy and Ducasse,
2005, Hamou-Lhadj et al., 2005, Hamou-Lhadj et al., 2004]. Although results

8 CHAPTER 1. INTRODUCTION

have been encouraging, the problem of scalability has been recognized as an
important stumbling point [Larus, 1993,Smith and Korel, 2000]. In the context
of using dynamic analysis for program comprehension purposes, this problem of
scalability has three major components, namely:

• A computational component, where the scalability of the underlying algo-
rithm for the program comprehension tool is important in order to make
sure that the results (1) can be computed and (2) can be computed in a
reasonable amount of time [Larus, 1993].
• A visual component, where the resultset has to be scalable to make it easy

for the user to interpret the results [Jerding and Rugaber, 1997, Jerding
and Stasko, 1998,Jerding et al., 1997].
• A cognitive component, where the resultset presented to the end user

should be of an acceptable size so that an information overload of the end
user can be avoided [Zayour and Lethbridge, 2001].

As such, within the research presented in this dissertation, we will put an
emphasis on the scalability of the techniques we propose. This scalability is
mainly concentrated around developing scalable algorithms and providing con-
cise resultsets.

1.6 Hypothesis

Run-time coupling measures and relative frequency of execu-
tion are two axes in the run-time information-space that can
help us build heuristics for program comprehension purposes.
Furthermore, these two axes allow to build in scalability, both
at the level of the algorithm and at the level of the resultset.
• Run-time coupling measures allow us to identify must-

be-understood classes in the software system.
• Frequency of execution allows us to identify regions of

the trace that are highly repetitive.

1.7. SOLUTION SPACE 9

1.7 Solution space

As we have already mentioned, there is a clear emphasis on scalability for the
techniques that we have developed. To be more precise, we have defined two
heuristical techniques that allow a huge event trace to be reduced to a more ab-
stract representation that is presented to the user. We will now briefly introduce
these two heuristics.

1.7.1 Run-time coupling based heuristic

The basic idea behind using coupling is the fact that structural dependencies
between modules of a system can indicate modules that are interesting for initial
program comprehension [Robillard, 2005]. As a measure we use runtime export
coupling, which — provided we have a well-covering execution scenario — gives
us all actual dependencies that happen at runtime. Modules which exhibit a high
level of export coupling request other modules to do work for them (delegation)
and often contain important control structures.

Coupling measures however are typically between two classes or modules,
whereas we want to take into consideration the complete structural topology of
the application. To overcome this strict binary relation between modules, we
add a transitive measurement for reasoning over the topology. We use webmin-
ing techniques for this [Zaidman et al., 2005]. Webmining, a branch of datamin-
ing research, analyzes the topological structure of the web trying to identify
important web pages based solely on their hyperlink structure. By interpreting
call graphs as web graphs, we port this technique so that we are able to retrieve
important classes. An important class being a class that needs to be understood
early on in the program comprehension process in order to understand other
classes and the interactions between these classes.

The resultset obtained from this heuristic is a list of all the classes/modules of
which containing procedures were executed during the scenario. These classes/
modules are ranked from being important to being irrelevant during early pro-
gram comprehension phases. To validate our approach we used two open source
case studies, namely Apache Ant 1.6.1 and Jakarta JMeter 2.0.1. The actual
validation was done by comparing the results obtained to extensive design doc-
umentation that was publicly available.

Furthermore, we applied this heuristic on an industrial legacy C system. In
contrast to the open source case studies where we had to rely on documentation
available on the internet, we were now able to validate the results we obtained
with the original developers and current maintainers of the application. The

10 CHAPTER 1. INTRODUCTION

results of this industrial experiment confirm the value of this technique.
We expand upon the aforementioned techniques in Part II of this disserta-

tion. In Part IV we report on our industrial experiences with this approach.

1.7.2 Frequency based heuristic

Thomas Ball [Ball, 1999] introduced the concept of “Frequency Spectrum Anal-
ysis”, a way to correlate procedures, functions and/or methods through their
relative calling frequency. The idea is based around the observation that a rela-
tively small number of methods/procedures is responsible for a huge event trace.
As such, a lot of repeated calling of procedures happens during the execution of
the program. By trying to correlate these frequencies, we can learn something
about (1) the size of the inputset, (2) the size of the outputset and —most
interesting for us— (3) calling relationships between methods/procedures.

We build further upon this idea, by proposing a visualization of the trace
that allows for visual detection of parts of the event trace that show tightly
collaborating methods. We applied this technique on two open source case
studies, namely Apache Tomcat 4.1.18 and Fujaba 4.0.

The visualization we propose resembles a “heartbeat” as seen on an ECG or
electrocardiogram and should be interpreted in a similar way. For regions in the
trace where tightly collaborating methods are executed, the visualization shows
a very regular pattern, like a ECG of a heart that is “in rest”. Regions in the
trace where the collaboration between methods is less tight are visualized much
more erratically. This distinction can help the software engineer concentrate on
those parts of the trace that he is particularly interested in.

We expand upon this visualization in Part III of this dissertation and show
a variation of this approach that we used in the industrial application that is
discussed in Part IV.

1.7.3 Research contributions

The major research contributions of this thesis are:
• A technique to identify key classes during early program comprehension

phases [Zaidman et al., 2005,Zaidman et al., 2006b].
• A technique to visualize execution traces and identify similar parts in the

execution [Zaidman and Demeyer, 2004].
• A large-scale industrial case studies to evaluate the scalability of the afore-

mentioned techniques [Zaidman et al., 2006a].

1.8. ACADEMIC CONTEXT 11

1.8 Academic context

The research presented in this dissertation has been performed within the Lab
On ReEngineering (LORE) research group, part of the University of Antwerp. In
a broader sense, this research has been carried out in the context of the ARRIBA
project. ARRIBA is short for Architectural Resources for the Restructuring and
Integration of Business Applications and its aim is to provide a methodology and
tools to support the integration of business applications that have not necessarily
been designed to coexist1.

The ARRIBA project team consists out of a team of researchers from the
Free University of Brussels (Vrije Universiteit Brussel — VUB), the Ghent Uni-
versity and the University of Antwerp. Furthermore, a number of companies are
involved in ARRIBA. These industrial partners are (1) responsible for checking
whether the research that is carried out by the academic partners is relevant in
an industrial context and (2) they are able to provide case studies to the aca-
demic partners in order to validate the research prototypes. Although the group
of companies has changed during the duration of the ARRIBA project (2002 –
2006), the following companies form the backbone of the industrial committee:
• Inno.com

An ICT expertise center dedicated to advise and assist its clients and
partners to cope with their most challenging technology and business issues
(www.inno.com).
• Banksys

Manages the Belgian network for debit card transactions
(www.banksys.be).
• Anubex

An expert in application modernisation through software conversion and
application migration (www.anubex.com).
• Christelijke Mutualiteit

A Belgian social security provider (www.cm.be).
• KAVA

A non-profit organization grouping over a thousand Flemish pharmacists
(www.kava.be).
• KBC

A banking and insurance company (www.kbc.be).
• Toyota Motor Europe

European branch of the Toyota Motor company (www.toyota.be).

1For more information about this project, please visit: http://arriba.vub.ac.be

12 CHAPTER 1. INTRODUCTION

The ARRIBA project is sponsored by the IWT Flanders2 within the 2002
call of the GBOU program.

1.9 Organization of this dissertation

The organization of this dissertation is as follows.
Chapter 2 gives a view on program understanding and introduces a number

of theories and models pertaining to program comprehension. We also position
our research within the existing program comprehension frameworks. Chapter 3
talks about advantages and disadvantages of dynamic analysis. We provide an
overview of techniques that enable dynamic analysis and discuss the ones that
we have used during our research in some more detail.

Part II of this dissertation deals with a program comprehension solution that
is based on coupling. In Chapter 4 we introduce some of the concepts concerning
coupling and we relate coupling to program comprehension. Chapter 4 also
introduces the dynamic coupling framework we use for our research, while in
Chapter 5 we explain why it is important to also take into account indirect
coupling for the purpose of program comprehension. Here we also explain how
webmining can help us take into account this indirect coupling. Chapter 6
introduces the experimental setup we use to validate our hypothesis and presents
the results we have obtained from applying our techniques on a set of open
source case studies. Chapter 7 then describes a control experiment in which
we compare the results we have obtained through dynamic analysis with results
from a similar experiment carried out with static analysis.

Part III deals with frequency analysis. Chapter 8 describes our experiences
of retrieving clues that can speed up the program comprehension process when
taking into account the relative frequency of execution of methods or procedures.

Part IV deals with our industrial experiences regarding the techniques we
have developed. As such, Chapter 9 showcases our experiences with applying
both the coupling based and frequency based program comprehension solutions
in an industrial legacy C context. We present the results we have obtained
and also discuss a number of typical pitfalls that occur when applying dynamic
analysis in a legacy context.

Chapter 10 then gives an overview of related work and Chapter 11 concludes
this dissertation with a discussion about our contributions and some pointers
to future work.

2Institute for the Promotion of Innovation by Science and Technology in Flanders. For
more information, see: http://www.iwt.be

Chapter 2

Program comprehension

All truths are easy to understand once they are discovered; the point is to
discover them.

— Galileo Galilei

This chapter tries to capture what program comprehension is. We provide
a definition and determine in which circumstances a software engineer needs to
understand a program. Furthermore, we discuss a number of program compre-
hension models and we discuss which factors can influence the choice of program
comprehension model.

2.1 What is program comprehension?

When a person starts to build up an understanding of a previously unknown
software system or a portion thereof, he/she must create an informal, human
oriented expression of computational intent. The creation of this expression
happens through a process of analysis, experimentation, guessing and puzzle-
like assembly [Biggerstaff et al., 1993].

When it comes to a definition of what program comprehension means, we
adhere to the definition introduced by Biggerstaff et Al [Biggerstaff et al., 1993]:

13

14 CHAPTER 2. PROGRAM COMPREHENSION

“A person understands a program when able to explain the program,
its structure, its behavior, its effects on its operation context, and its
relationships to its application domain in terms that are qualitatively
different from the tokens used to construct the source code of the
program.”

As such, from this definition we learn that the program comprehension pro-
cess is closely related to the concept assignment problem. This is the problem
of discovering individual human oriented concepts and assigning them to their
implementation oriented counterparts for a given program [Biggerstaff et al.,
1993]. From this point of view, it becomes clear that the comprehension process
is a highly individual process, where results can vary from person to person,
while still understanding the software system in the same way.

In this chapter we will first try to explain why program understanding is
necessary in the field of reengineering as a whole (Section 2.2), after which we
will discuss a number of program comprehension theories in Section 2.3.

2.2 Program understanding as a prerequisite

Program understanding is a necessary prerequisite to many software engineering
activities. Von Mayrhauser and Vans have made a compilation of software
maintenance specific scenarios in which program comprehension is a necessary
prerequisite [von Mayrhauser and Vans, 1995]. Table 2.1 provides an overview
of these maintenance activities.

From Table 2.1 it becomes clear that most day-to-day software maintenance
activities require a certain level of insight into the application to be maintained.
Being aware of the fact that almost all software evolution activities require
understanding of the software system, makes the link between software evolution
and program understanding become very clear.

Furthermore, knowing that most reengineering operations require a program
comprehension phase and knowing that up to 60% of the software engineer’s
time can be spent in this phase (see Section 1.3) [Spinellis, 2003,Wilde, 1994,
Corbi, 1990], improving the efficiency of this phase can mean a significant overall
efficiency gain.

2.3. PROGRAM COMPREHENSION MODELS 15

Maintenance tasks Activities
Adaptive Understand system

Define adaptation requirements
Develop preliminary and detailed adaptation design
Code changes
Debug
Regression tests

Perfective Understand system
Diagnosis and requirements definition for improvements
Develop preliminary and detailed perfective design
Code changes/additions
Debug
Regression tests

Corrective Understand system
Generate/evaluate hypotheses concerning problem
Repair code
Regression tests

Reuse Understand problem, find solution based on close fit
with reusable components

Locate components
Integrate components

Code leverage Understand problem, find solution based on
predefined components

Reconfigure solution to increase likelihood of
using predefined components

Obtain and modify predefined components
Integrate modified components

Table 2.1: Tasks and activities requiring code understanding.

2.3 Program comprehension models

In the introduction we have already mentioned that program understanding is a
highly individual activity. A number of factors influence how a software engineer
goes about his/her program understanding process, i.e. which strategy he/she
will follow. Some of these — sometimes very subjective — factors are [von
Mayrhauser and Vans, 1995]:

• the level of experience of the software engineer
• the level of familiarity with the problem domain
• the level of familiarity with the solution space
• the complexity of the software system’s structure
• the amount of time available

16 CHAPTER 2. PROGRAM COMPREHENSION

Studies that lie on the border between psychology and computer science have
shown that many strategies exist for the program comprehension process. These
strategies can roughly be divided into three models of program comprehension,
namely: the top-down model, the bottom-up model or a mix of the previous
two, the so-called integrated model [von Mayrhauser and Vans, 1995]. The next
few sections will discuss each of these models.

2.3.1 Top-down program comprehension models

Top-down understanding typically applies when the code, problem domain and/
or solution space are familiar to the software engineer [von Mayrhauser and
Vans, 1995]. This stems from the idea that when a software engineer has al-
ready mastered code that performed the same or similar tasks, the structure of
the code will have parallels. These similarities in code structure are easier to
recognize in a top-down understanding process.

When a software engineer goes about his program understanding in a top-
down strategy, he/she usually already has a hypothesis or a number of hypothe-
ses about the structure of the system. These hypotheses can come from previous
experiences relating to software in the same domain, using similar technologies,
etc. or from beacons in the software’s code, documentation or other artifacts. In
program comprehension terminology a beacon is a cue that indexes into knowl-
edge, e.g. triggering a memory from a previously seen construct and associating
it with the current solution. In software engineering terminology a good exam-
ple of such a beacon can be a design pattern [Gamma et al., 1995], e.g. an MVC
(Model View Controller) pattern, that would give an indication as to how the
GUI layer is structured.

When using this top-down program comprehension strategy, a mental model
is built throughout the process that successively refines hypotheses and auxil-
iary hypotheses about the software system. Hypotheses are iteratively refined,
passing several levels until they can be matched to specific code in the program
(or a related document, e.g. a configuration file) [von Mayrhauser and Vans,
1995].

2.3.2 Bottom-up program comprehension models

When the code and/or problem domain are not familiar to the software engi-
neer, bottom-up understanding is frequently chosen. This section describes the
models that are used in this situation.

2.3. PROGRAM COMPREHENSION MODELS 17

Program model Pennington [Pennington, 1987] found that when code is
completely new to programmers, the first mental representation they build is
a control-flow program abstraction called the program model. This represen-
tation, built from the bottom up via beacons, identifies elementary blocks of
code in the program. The program model is created via the chunking of mi-
crostructures into macrostructures and via cross-referencing. Chunking is about
creating larger entities from small blocks to reason with, while cross-referencing
relates these larger entities to a higher level of abstraction. As an example we
could say that all the classes that work together to create a linked list can be
chunked together, while then actually designating it as a “linked list” and un-
derstanding its purpose (i.e. being a container structure) is cross-referencing it
to a higher level of abstraction.

Situation model A second model that Pennington identified is the situation
model [Pennington, 1987]. This model also operates in a bottom-up fashion and
creates a dataflow/functional abstraction. The application of this model requires
knowledge of the real-world domains that are present in the software system. An
example of this type of bottom-up comprehension is relating clothesInventory
= clothesInventory - itemsSold to “reducing the inventory of clothes by the
number of items sold”. Again, lower order situation knowledge can be chunked
into higher order situation knowledge. The situation model is complete once
the program goal is reached.

2.3.3 Integrated model

An integrated model for code comprehension involves the top-down strategy,
bottom-up strategy (both the program and the situation model) and a knowl-
edge base. The knowledge base, which typically is the human mind, stores (1)
any new information that is obtained directly from the application of either of
the two program comprehension strategies or (2) information that is inferred.

Intuitively, one would think that in practice the integrated model is most
commonly used when trying to understand large scale systems. The reasoning
behind this is that certain parts of the code may be familiar to the software
engineer because of previous experiences and other parts of the code may be
completely new. Experiments by Von Mayrhauser confirm this intuition [von
Mayrhauser and Vans, 1994].

18 CHAPTER 2. PROGRAM COMPREHENSION

2.4 On the influence of comprehension tools

Storey et al describe an experiment in which they study the behavior of 30 par-
ticipants when using program comprehension tools [Storey et al., 2000]. More
precisely, they observe the factors that influence the participant’s choice of pro-
gram comprehension strategy.

Their conclusion was that, ideally, the tools supporting the program un-
derstanding process should facilitate the programmer’s preferred strategy or
strategies, rather then enforce the use of a fixed strategy [Storey et al., 2000].
Approaches missing features to optimally use a strategy often meant switch-
ing to another strategy, hindering the comprehension process. Being able to
seamlessly switch between strategies was seen as a bonus.

Based on these observations, we will keep a serious eye on whether the
techniques that we propose do not force the user to use a specific program
comprehension strategy.

Chapter 3

Dynamic Analysis

It requires a very unusual mind to undertake the analysis of the obvious.

— Alfred North Whitehead

Choosing a basic means to reach a goal usually implies that the means adds
some interesting properties to reach your goal. The means we propose is dynamic
analysis. As such, we advocate the use of our means in the light of object-
oriented software, where polymorphism and late-binding make a program hard
to understand statically. Another benefit of using dynamic analysis is that you
are able to follow an as-needed strategy during program comprehension. We also
provide an overview of a number of dynamic analysis enabling technologies.

3.1 Definition

In software engineering, dynamic analysis is the investigation of the
properties of a software system using information gathered from the
system as it runs.

We propose to use the above definition of dynamic analysis. It purposely remains
quite vague as to not put a bias on the type of dynamic information that is
collected or the kind of dynamic analysis that is executed. In other words, it

19

20 CHAPTER 3. DYNAMIC ANALYSIS

remains sufficiently broad so that it can be used for program comprehension
purposes, to collect design or performance metrics, etc.

Opposite to dynamic analysis stands the concept of static analysis, which
collects its information from artifacts such as the source code, design documents,
configuration files, etc. in order to investigate the system’s properties.

Again, we remain quite vague on what kind of properties we want to in-
vestigate, as in the most general sense, these properties can for example be
structural, behavioral, quality or performance oriented.

Enabling dynamic analysis in a software (re)engineering context requires the
generation of an execution trace of the software system under study; the execu-
tion trace being the structure in which the gathered information is stored. To
obtain this execution trace, one needs to execute the software system according
to a well-defined execution scenario. An execution scenario being an instance
of one or several use cases [Jacobson, 1995].

3.2 Why dynamic analysis?

The choice of dynamic analysis with regard to this research is inspired by two
factors, firstly because dynamic analysis allows a very goal-oriented approach,
meaning that we only have to analyze those parts of the application that we
are really interested in and, secondly, because dynamic analysis is much more
succinct at handling polymorphism, which is abundantly present in modern
object-oriented software systems.

Within this section, we will briefly touch both factors.

3.2.1 Goal oriented strategy

Dynamic analysis allows to follow a very goal oriented (or as-needed) strategy
when it comes to dealing with unknown software systems. When one only has
end-user knowledge of the system available, it becomes relatively easy to only
exercise those scenarios from the use cases that pertain directly to the knowledge
that one wants to gather. This results in a smaller, more to-the-point execution
trace and as a consequence it can also lead to better analysis-results.

Example. One wants to build up knowledge of how a word-processor like Mi-
crosoft Word functions internally when changing the properties of some piece
of text that is selected. When one uses dynamic analysis for this, one could
execute only those use cases that directly involve the selection of text and the

3.3. MODALITIES OF DYNAMIC ANALYSIS 21

subsequent property-change of that text, e.g. put the text in bold. If one were
to use a less goal-oriented strategy, e.g. by a very broadly defined execution sce-
nario or through static analysis, one would need to understand a lot more of the
application before knowing which parts exactly are related to the functionality
one is trying to understand.

3.2.2 Polymorphism

Polymorphism is the ability of objects belonging to different classes of the same
class-hierarchy to respond to method calls of methods with the same name, in
a type-specific way, i.e. with different behavior. Furthermore, the programmer
does not have to know the exact class of the object in advance, so the class
and its resulting behavior can be decided at run time. This gives rise to the
notion of late binding, deciding at runtime which behavior will be executed for
a certain object.

The mechanism of polymorphism allows to write programs more efficiently.
Furthermore, it also should allow software to be more easily evolvable. However,
for program comprehension purposes, polymorphism can complicate matters as
it becomes difficult to grasp the precise behavior of the application, without wit-
nessing the software system in action. This is because one possibly polymorphic
call is a variation point that can give rise to a great number of different behaviors
(the number of possible behaviors is equal to the number of classes present in the
class-hierarchy below the statically defined class type plus one). To illustrate
this, we know of a class hierarchy in Ant, a Java build tool, where the class
Task has more than 100 child-classes, each portraying specific command-line
tasks that can possibly be executed.

In contrast, when looking at a software system with the help of dynamic
analysis however, the view obtained from the software is precise with regard
to the execution scenario. The behavior that is called upon is specific to the
functionality exercised and as such, the number of possible variations is dimin-
ished up to the point that all variations are actually executed (and not only
theoretically possible).

3.3 Modalities of dynamic analysis

In this section we will give you an example of an execution trace and we will
briefly touch a number of technologies that enable the extraction of an execution

22 CHAPTER 3. DYNAMIC ANALYSIS

trace from a running software system. Furthermore, we will discuss some details
of the implementations we used during our experiments.

3.3.1 Example execution trace

Figure 3.1 shows an example of a small piece of trace obtained from running
JHotDraw1, a small paint-like application written in Java.

CALL org.jhotdraw.application.DrawApplication::<clinit> (()V)

EXIT org.jhotdraw.application.DrawApplication::<clinit> (()V)

CALL org.jhotdraw.samples.javadraw.JavaDrawApp::<clinit> (()V)

EXIT org.jhotdraw.samples.javadraw.JavaDrawApp::<clinit> (()V)

CALL org.jhotdraw.samples.javadraw.JavaDrawApp::main (([String;)V)

CALL org.jhotdraw.samples.javadraw.JavaDrawApp::<init> (()V)

CALL org.jhotdraw.contrib.MDI_DrawApplication::<init> ((String;)V)

CALL org.jhotdraw.application.DrawApplication::<init> ((String;)V)

...

This fragment of an execution trace contains all non-library methods that happen
during a typical run of JHotDraw. To be more precise, each call to and return
from a method is recorded, which allows us to retrieve all calling relations and
nesting depth of calls. Consider for example the last entry in the execution trace
above: we record the originating package (e.g. org.jhotdraw.application), the
classname (e.g. DrawApplication), the methodname (e.g. <init>, which stands
for the constructor) and its parameters and return type (e.g. parameter String

and return type void).

Figure 3.1: Example execution trace

3.3.2 Trace extraction technologies

Profiler or debugger based tracing. A profiler is typically used to investi-
gate the performance or memory requirements of a software system. A debugger
on the other hand is frequently used to step through a software system at a very
fine grained level in order to uncover the reasons for unanticipated behavior.

Typically, profiler and debugger infrastructures of virtual machines or other
environments (sometimes even the operating system itself) send out events at
certain stages of the execution. One can then write a plugin to the virtual
machine or the environment in order to capture these events and act upon

1For more information, see: http://www.jhotdraw.org/

3.3. MODALITIES OF DYNAMIC ANALYSIS 23

them, e.g. store them in an execution trace. Typical events that can be caught
with a profiler or debugger are the invocation of a method/procedure, the return
from a method/procedure, access to variables, fields, etc.

Aspect-oriented based tracing. Aspect-oriented programming (AOP) in-
troduces a new program entity, called an aspect [Kiczales et al., 1997]. This
aspect can be used to isolate a so-called cross-cutting concern, or a concern that
is present in many classes or modules and does not strictly belong to any of the
classes or modules concerned. The code that is responsible for such a concern
can be captured in the advice part of the aspect, while the pointcut part of the
aspect specifies where to insert the particular piece of code.

As such, AOP allows to insert a piece of code at the beginning or at the
end of a method/procedure. This makes it possible to write a so-called tracing
aspect, an aspect that generates an entry in the execution trace every time a
method call or a method return takes place.

AST rewriting based tracing. When parsing the source code of a software
system, alterations can be made to the abstract syntax tree (AST) before out-
putting the AST again as normal source code. To our knowledge, no standard
approach exists for this AST rewriting. An example of such an approach is the
work of Akers [Akers, 2005]. Please also note that some AOP implementations
work in a very similar way, where the aspect weaver is built on top of an AST
rewriting mechanism [Zaidman et al., 2006a].

Method wrapper based tracing. Method wrappers allow to intercept and
augment the behavior of existing methods in order to wrap new behavior around
them [Brant et al., 1998, Greevy and Ducasse, 2005]. In the present context,
this new behavior can be tracing functionality.

Ad-hoc based tracing. The previous mechanisms we have mentioned all
have a structured way at going about the tracing operation. However, some-
times, when only a very limited amount of points of interest exist within a
software system, manual or script-based instrumentation can be a (short-term)
solution.

24 CHAPTER 3. DYNAMIC ANALYSIS

3.3.3 Implementation

For the experiments that we will describe in subsequent chapters we used two
different trace extraction technologies, namely a profiler-based solution for the
Java experiments we carried out and an aspect-based solution for the industrial
experiment we carried out in a legacy C context. We will now give a brief
overview of the technologies we used for extracting the execution traces from
these Java and C systems.

Java For our Java experiments we chose to use the Java Virtual Machine
Profiler Interface or short JVMPI2. This interface allows you to write a plugin in
C/C++ that connects with the Java Virtual Machine (JVM). The JVMPI sends
out events at such moments as a method entry, a method exit, an activation
of the garbage collector, etc. The plugin that you can write yourself then,
can be programmed to capture these events and handle them. In our case, we
programmed a plugin that captured each method entry and exit and outputted
this information to a trace file, similar to the one that can be seen in Figure 3.1.

The JVMPI was introduced with the release of Java 1.1 and has always been
labeled as an experimental technology, which in a sense, it has always remained,
up until its successor, the JVMTI3 interface was presented with the release of
Java 1.5.

A definite drawback to the JVMPI interface is the fact that it becomes unsta-
ble when used in combination with the HotSpot technology that was introduced
in Java 1.3. HotSpot JVM’s use the principle of just-in-time compilation to im-
prove performance. This instability manifested itself through events that were
never thrown by the JVMPI interface and as such are missing in the resulting
trace. To overcome this problem we explicitly switched off the HotSpot technol-
ogy when performing tracing operations. This resulted in lower performance,
but in a more stable virtual machine and thus in better quality traces.

C When it comes to our experiments with software written in C, we made use
of an aspect-oriented solution. We used Aspicere, a tool built by members from
the ARRIBA team of the Ghent University, to instrument the application under
study and generate an execution trace. Chapter 9 gives more details about our
choice for Aspicere.

2More information on this technology can be found at:
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition/

3Java Virtual Machine Tool Interface

3.4. THE OBSERVER EFFECT 25

3.4 The observer effect

In many disciplines of exact science, the observer effect refers to changes that the
effect of observing has on the phenomenon being observed. A classical example
of this comes from the discipline of quantum physics, where the observation of an
electron will change its path because the observing light or radiation contains
enough energy to disturb the electron under study. In social sciences also, a
similar effect has been reported, where people will start to behave differently
when being observed. In social sciences this effect is called the Hawthorn effect.

In the field of software engineering, a similar effect has been observed, namely
the probe effect [Andrews, 1998]. In the context of using dynamic analysis, this
effect can manifest itself in different ways:
• Because the software system being traced is less responsive when execut-

ing the software system according to the pre-defined execution scenario,
the user is likely to respond to this unresponsiveness by clicking on a but-
ton multiple times. As such, the actually executed scenario can possibly
diverge from the pre-defined execution scenario.
• A second, possibly more serious threat can be the influence of the tracing

operation on thread interactions that happen within the program being
traced.

As such, it is advisable to generate as little as possible overhead when ex-
tracting the trace from a running software system in order to minimize the
observer effect. A first step towards minimizing the overhead can be the post-
mortem analysis of the trace, i.e. analyzing the trace after the program (and
its accompanied tracing operation) has finished. This solution stands opposite
to an online analysis.

3.5 Threats to using dynamic analysis

When performing dynamic analysis, one wants to generate a high-quality ex-
ecution trace of the executed scenario. High-quality, meaning that the trace
we obtain is an actual reflection of what happened during the execution of the
software. A number of situations however are typically problematic when per-
forming dynamic analysis. In this section we will briefly discuss these and we
will indicate which precautions we have taken to minimize their effects.
• In many software systems, lots of threads interact with each other to

make the functionality of the system happen. These threads can interact
in parallel (when more than one processor is available) or in sequence

26 CHAPTER 3. DYNAMIC ANALYSIS

(when only one processor is available). Just storing all the actions of
each of the threads in one execution trace can lead to a confusing image,
because the execution trace would make one believe that two methods
were executed sequentially, whereas actually they were executed by two
completely different threads. To overcome this situation, an execution
trace should be made for each thread that is active during the execution
of the scenario.
• More and more systems make use of classloading functionality or reflection

mechanisms to load classes dynamically. When using a profiler or debugger
based dynamic analysis solution, this often leads to a situation where the
resulting execution trace contains entries from the classloader of reflection
mechanism whenever calls to methods from the loaded class are made.
Currently, we have not taken any countermeasures to prevent this from
happening. A possible consequence of this is that some method calls are
not correctly recorded, meaning that the execution trace contains an entry
of a call to the reflection mechanism or the classloader, but not of the
actual method that is executed through these mechanisms. To the best of
our knowledge, the execution scenarios we used for our experiments did
not contain any of these situations.

3.6 Strengths and weaknesses

Table 3.1 gives an overview of the strengths and weaknesses of using dynamic
analysis for program comprehension purposes.

Strength Weakness
Polymorphism

√

Goal-oriented
√

Overhead
√

Observer effect
√

Table 3.1: Strengths and weaknesses of dynamic analysis

Part II

Coupling based solutions
for program comprehension

27

Chapter 4

How coupling and program
comprehension interact

To manage a system effectively, you might focus on the interactions of the
parts rather than their behavior taken separately.

—Russell L. Ackoff

It has been observed that software engineers who are trying to become familiar
with a software system follow structural dependencies that are present in the
system to navigate through the system. Coupling is a direct consequence of these
structural relationships. This chapter describes how runtime coupling measures
provide an indication for classes that need to be understood early on in the
program comprehension process.

4.1 Introduction

Program comprehension is an inherently human activity, as such intuition and
a dose of luck are essential ingredients to complete this mission successfully.
Recent empirical studies have shown that when effective developers have to
identify high-level concepts associated with the task at hand in the source code,
they have a tendency to follow structural dependencies [Robillard et al., 2004].

29

30 CHAPTER 4. COUPLING & PROGRAM COMPREHENSION

Novice developers however, working on an unfamiliar system may easily get
stuck in irrelevant code and fail to notice important program functionality, lead-
ing to low-quality software modifications [Robillard et al., 2004] or non-optimal
time-management.

Within this research track it is our goal to provide the end-user with a
number of starting points, from which they can start following structural de-
pendencies in order to familiarize themselves with the system under study. The
basic means by which we want to identify these starting points is coupling.

4.2 Coupling

Coupling was introduced by Constantine et al in the 1960s as a heuristic for
designing modules [Yourdon and Constantine, 1979]. Constantine’s original def-
inition of coupling is “a measure of the strength of interconnection between mod-
ules”. Constantine’s first definition is rather informal and we will use Wand’s
definition to describe the basic concept of coupling [Wand and Weber, 1990,Chi-
damber and Kemerer, 1994].

Two things are coupled if and only if at least one of them “acts upon”
the other. X is said to act upon Y if the history of Y is affected by
X, where history is defined as the chronologically ordered states that
a thing traverses in time.

Software systems are typically composed from several software entities —
be it modules, classes, components, aspects,... These entities work together to
reach their goal(s) and the collaborations that exist between these entities give
rise to the notion of coupling. From this observation comes the definition of
coupling from Stevens: “the measure of strength of association established by a
connection from one module to another” [Stevens et al., 1974].

In the light of this definition, a higher level of coupling means that the mod-
ules concerned are more inter-related and as such these modules are more diffi-
cult to understand, change, reuse and correct. From this empirical observation
stems the basic principle of the pursuit of low coupling levels within a software
system [Selby and Basili, 1991]. Intuitively however, coupling will always exist
within software systems, as modules or classes need to work together to reach
their goals and ultimately deliver the desired end-user functionality [Lethbridge
and Anquetil, 1998]. This observation, together with the definition postulated
by Wand [Wand and Weber, 1990], makes that we can categorize classes that
have a relatively high degree of coupling as influential. Influential, because they

4.3. DYNAMIC COUPLING 31

have a certain amount of control over what the application is doing and how it
is doing it.

In her research about design flaws, Tahvildari uses a similar concept, called
key classes [Tahvildari, 2003]:

“These key classes are described as the classes that implement the
key concepts of a system. Usually, these most important concepts
of a system are implemented by very few key classes, which can be
characterized by a number of properties. These classes which we
called key classes manage a large amount of other classes or use
them in order to implement their functionality. The key classes are
tightly coupled with other parts of the system. Additionally, they
tend to be rather complex, since they implement much of the legacy
system’s functionality.”

4.3 Dynamic coupling

4.3.1 Introduction

Coupling measures have for some time now been subject of research, e.g. in the
context of quality measurements. These measures have mostly been determined
statically, i.e. based upon structural properties of the source code (or models
thereof). However, with the wide-spread use of object oriented programming
languages, these static coupling measures lose precision as more intensive use of
inheritance and dynamic binding occurs. Another factor that possibly perturbs
the measurements is the presence of dead code, which can be difficult to detect
statically in the presence of polymorphism.

This has led us to start looking at dynamic coupling measures, a branch of
software engineering research that has only recently been developing [Arisholm
et al., 2004]. We propose the following working definition for dynamic coupling
measures:

Dynamic coupling measures are defined based upon an analysis of
interactions of runtime objects. We say that two objects are dynam-
ically coupled when one object acts upon the other. Object x is said
to act upon object y, when there is evidence in the execution trace
that there is a calling relationship between objects x and y, origi-
nating from x. Furthermore, two classes are dynamically coupled if
there is at least one instance of each class for which holds that they
are dynamically coupled.

32 CHAPTER 4. COUPLING & PROGRAM COMPREHENSION

The basic framework we use when considering dynamic coupling measures
was first introduced by Arisholm et al. [Arisholm et al., 2004].

4.3.2 Classification of dynamic coupling measures

Dynamic coupling can be measured in different ways. Each of the measures
can be justified, depending on the application context where such measures are
to be used [Arisholm et al., 2004]. Table 4.1 is based on the variations that
Arisholm et al have defined. Each of the variations will also be discussed in this
section.

Entity Granularity Scope Direction
(Aggregation Level) (Include/Exclude)

Object Object Library objects Import/Export
Class Framework objects

(set of) Scenario(s) Exceptional use cases
(set of) Use case(s) ...

System
Class Class Library classes Import/Export

Inheritance Hierarchy Framework classes
(set of) Subsystem(s) ...

System

Table 4.1: Dynamic coupling classification.

1. Entity of measurement. Since dynamic coupling is calculated from
dynamic data stored in the event trace, we can calculate coupling at the
object-level or at the class-level.

2. Granularity. Orthogonal to the entity of measurement, dynamic cou-
pling measures can be aggregated at different levels of granularity. With
respect to dynamic object coupling, measurement can be performed at the
object level, but can also be aggregated at the class level, i.e. the dy-
namic coupling of all instances of a class is aggregated. Different kinds
of aggregations can be made depending on the entity of measurement.
Aggregations that can be made include: at the (sub)system, inheritance
hierarchy, use case or scenario level.

3. Scope. Another variation can be the classes we want to consider when
calculating the metric(s). For example, instances of library or framework
classes can sometimes be of no special interest and as such they can be
excluded.

4.3. DYNAMIC COUPLING 33

4. Direction (import or export). Consider two classes c and d being
coupled by the invocation of a method m2 of d in a method m1 in class c.
This relationship can be described as a client-server relationship between
the classes: the client class c uses (imports services), the server class d is
being used (exports services). This situation gives rise to the concepts of
import and export coupling.

4.3.3 Dynamic coupling for program comprehension

Based on the classification schema presented in Section 4.3.2 we will now discuss
which properties we expect from a coupling metric in order to be useful for
program comprehension purposes. Based on these properties, we will find those
dynamic coupling metrics that suit our intentions best.

1. At a cognitive level, the software engineer trying to get a first impression
of a piece of software, will probably try to comprehend the software at the
class-level, as these are the concepts he/she can recognize in the source
code, the documentation and the application domain.

2. As such we advocate either the use of classes as level of granularity or
a further aggregation up to the the (sub)component (or in other terms
package) level.

3. With regard to the scope, we discard all classes foreign to the actual
project (e.g. libraries), as these have no direct influence on the program
comprehension process. Furthermore, choosing an execution scenario of
the software that involves the features that you are interested in from a
program comprehension point of view, is essential.

4. In Section 4.2 we already stated that we are looking for classes that have a
prominent role within the system’s architecture. We expect these classes
to give orders to other classes, i.e. tell them what to do and what to give in
return. As such, we expect these classes to request the services of (many)
other classes, which in terms of the direction of coupling, is translated as
import coupling. On the other hand, we expect classes with strong export
coupling to be classes that provide services to other classes.

Arisholm et al. defined twelve dynamic coupling metrics; two of these adhere to
the criteria we set out, namely: working at the class-level and measuring import
coupling [Arisholm et al., 2004]. We will now discuss these two metrics.

1. Distinct method invocations. This measure counts the number of distinct
methods invoked by each method in each object. This information is then
aggregated for all the objects of each class. Arisholm et al. call this
metric IC CM (Import Coupling, Class level, Distinct Methods). Calls to

34 CHAPTER 4. COUPLING & PROGRAM COMPREHENSION

methods from the same object or class (cohesion) are excluded.
2. Distinct classes. This measure counts the number of distinct server classes

that a method in a given object uses. That information is than aggregated
for all the objects of each class. Arisholm et al. call this metric IC CC
(Import Coupling, Class level, Distinct Classes). Calls to methods from
the same object or class (cohesion) are excluded.

Consider the formal definitions of IC CC and IC CM in Table 4.2.

C Set of classes in the system.
M Set of methods in the system.
RMC RMC ⊆ M × C

Refers to methods being defined in classes.
IV IV ⊆ M × C × M × C

The set of possible method invocations.
IC CM(c1) = # {(m1, c1, m2, c2) | (∃ (m1, c1), (m2, c2)

∈ RMC) ∧ c1 6= c2 ∧ (m1, c1, m2, c2) ∈ IV }
IC CC(c1) = # {(m1, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC)

∧ c1 6= c2 ∧ (m1, c1, m2, c2) ∈ IV }
IC CC′(c1) = # {(m2, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC)

∧ c1 6= c2 ∧ (m1, c1, m2, c2) ∈ IV }

Table 4.2: Dynamic coupling measures [Arisholm et al., 2004].

Now reconsider the IC CC metric. When we are looking for a metric that
points to classes that import a lot of services from other classes, we see that
IC CC has a limited range. IC CC counts the number of (m1, c1, c2) triples.
Because the first component in this triple is m1, the maximum metric value is
the product of the number of methods in the definition of c1 and the number
of classes c1 interacts with. Because the number of methods defined in c1 plays
a vital role in the calculation of this metric, this can become a limiting factor.
Furthermore, it does not give a true reflection as to how many other classes and
in particular methods in other classes are used.

Therefore, we made a variation on the IC CC metric, called IC CC′. This
variation does not count the number of calling methods, but the number of
called methods. In other words, triples of the form (m2, c1, c2) are counted.

A formal definition of IC CC′ can be found in Table 4.2.

Example A class c1 which only has 1 method, calls 4 distinct methods m1,...
,m4 in a class c2 and calls 2 methods m5 and m6 in a class c3. Calculating IC CC
and IC CC′ for c1 would yield 2, respectively 6. This indicates that IC CC is

4.4. RESEARCH QUESTION 35

targeted more towards finding the number of class-collaborations, while IC CC′

retrieves the number of method-collaborations.

In our experiment (see Chapter 6) we will make a thorough comparison of
the effectiveness of the three aforementioned metrics.

4.4 Research question

The central research question of this research track is whether there is a clear
link between influential classes and the classes that need to be understood during
initial programming understanding. These need-to-be-understood classes will be
designated important, as their comprehension is needed in order to understand
other classes and interactions within the software system.

A more abstract description of the research question we are trying to solve
is whether it is possible to identify these important classes based solely on
the topological structure of the application. In this context, the topological
structure is instantiated by coupling relationships between classes.

A number of subsidiary questions for this research goal are:
1. Which type of coupling measurements are best at mapping influential

modules or classes on the important modules or classes?
2. Is the simple measurement of a binary coupling relation sufficient to re-

trieve important classes or do we need to add a measure to take into
account indirect coupling?

4.5 Research plan

Over the course of this research track we have developed three heuristical tech-
niques to identify important classes (or modules) in a system.

1. Dynamic coupling measures as indicators of classes requesting a significant
amount of actions to be performed for them (see previous sections).

2. Webmining algorithms that allow to take into consideration indirect cou-
pling (Chapter 5).

3. Static coupling measures as an alternative to their dynamic counterparts
(Chapter 7).

36 CHAPTER 4. COUPLING & PROGRAM COMPREHENSION

4.6 Validation and evaluation

Each of the three techniques will be evaluated intrinsically against two case
studies. The evaluation is done according to three evaluation criteria, namely:

1. The recall of the resultset, or in other words, the technique’s retrieval
power.

2. The precision of the resultset, or in other words, the technique’s retrieval
quality.

3. The effort it takes to perform the complete analysis, from start to finish.
Validation of each of the techniques is done the same way, with recall and

precision being the deciding factors. For each type of analysis, we will also
perform an effort analysis, which, although secondary to the primary criteria of
recall and precision, can be a deciding factor when it comes to determining the
return on time-investment.

4.7 Practical application

In general, we can describe the process to be followed by a software (re)engineer
using our heuristics as follows:

1. Definition of the execution scenario.
2. Trace the application according to the chosen execution scenario.
3. Determine the most important classes using one of the heuristics proposed.
4. Interpret the results.

Chapter 5

Webmining

Keep on the lookout for novel ideas that others have used successfully. Your
idea has to be original only in its adaptation to the problem you’re working on.

—Thomas Edison

Webmining, which is a form of datamining, is a mining technique which
solely uses the topological structure of a graph to determine which nodes are
important within a graph. We rely on these webmining techniques to add the
notion of indirect coupling to our previously built-up theory on dynamic coupling
and program comprehension.

5.1 Indirect coupling

5.1.1 Context and definition

Up until now we have talked about direct coupling. Direct coupling is a rela-
tionship between two entities. However, when considering large-scale software
systems it is far from inconceivable that more than 2 entities influence each
other. Reconsider the coupling definition from Wand (see Section 4.2) and let
X, Y and Z be 3 entities where, respectively (X, Y) and (Y, Z) are directly
coupled, i.e. X acts upon Y and Y acts upon Z. Intuitively, it is easy to un-
derstand that it is possible that X also (indirectly) acts upon Z. Consider the

37

38 CHAPTER 5. WEBMINING

example code in Figure 5.1. In this example, where (X, Y) and (Y, Z) are di-
rectly coupled, it is clear to see that it is possible that X acts upon Z through
the parameter that is passed. In terms of object orientation and polymorphism,
it is furthermore possible that not only parameter values, but also a parameter’s
dynamic type can be of influence.

class X

{
Y y = new Y();

void doitX(int param)

{
...

y.doitY(param);

...

}
}

class Y

{
Z z = new Z();

void doitY(int param)

{
...

z.doitZ(param);

...

}
}

class Z

{
void doitZ(int param)

{
...

}
}

Figure 5.1: Indirect coupling example.

Based upon this observation, we investigate the notion of indirect coupling
[Yang et al., 2005]. Briand et al. use the following definition [Briand et al.,
1999]:

Direct coupling describes a relation on a set of elements (e.g. a
relation “invokes” on the set of all methods of the system, or a
relation “uses” on the set of all classes of the system). To account
for indirect coupling, we need only use the transitive closure of that
relation.

5.1.2 Relevance in program comprehension context

Consider Figure 5.2, where part of a system is visualized. The nodes in this
graph represent classes, the edges indicate calling relationships. Furthermore,
each edge is annotated with a weight, indicating the strength of the (coupling)

5.2. THE HITS WEBMINING ALGORITHM 39

relationship. It becomes immediately clear that the class Task is (strongly
import-) coupled to three other classes. By that same observation, the class
Main is weakly coupled (to Task).

From a program comprehension point of view, the class Main can still be of
interest, because it can be influential to what Task does (e.g. the parameters
passed or the dynamic type of the parameters can have an influence). As such,
by adding the concept of indirect coupling, Main will now benefit from the strong
level of coupling exhibited by Task.

Main

Task

Element

Dependency

Thread

1

5 7 3

Figure 5.2: Indirect coupling example.

We will employ the iterative-recursive nature of the HITS1 webmining algo-
rithm to express the concept of indirect coupling towards our goal of program
comprehension.

5.2 The HITS webmining algorithm

5.2.1 Introduction

Webmining, a branch of datamining research, deals with analyzing the structure
of the internet (or to be more specific: the web) [Brin and Page, 1998,Gibson
et al., 1998,Kleinberg, 1999]. Typically, webmining algorithms see the internet
as a large graph, where each node represents a webpage and each edge repre-
sents a hyperlink between two webpages. Using this graph as an input, the

1Hypertext-Induced Topic Search

40 CHAPTER 5. WEBMINING

algorithm allows us to identify so-called hubs and authorities [Kleinberg, 1999].
Intuitively, on the one hand, hubs are pages that refer to other pages contain-
ing information rather than being informative themselves. Standard examples
include web directories, lists of personal pages, ... On the other hand, a page is
called an authority if it contains useful information and is referenced by others
(e.g. web pages containing definitions, personal information, ...).

Software systems can also be represented by graphs, where classes are nodes
and calling relationships between classes are edges (e.g. see Figure 5.2). Fur-
thermore, there is a “natural” extension to the concepts of hubs and authorities
in the context of object-oriented software systems. Classes that exhibit a large
level of import coupling call upon a number of other classes that do the ground-
work for them. In order for them to control these assisting classes, they often
contain important control structures. As such, they have a considerable amount
of influence on the data and control flow within the application. Conceptually,
the classes that have a high level of import coupling are similar to the hubs in
web-graphs.

Export coupling on the other hand is often a sign of very specific functional-
ity, often frequently reused throughout the system. Because of their specificity,
they are conceptually bonded to authorities in web-graphs.

Because of this conceptual similarity, we found it worthwhile to try and
reach our goal of identifying important classes in a system through the HITS
webmining algorithm [Kleinberg, 1999].

In the context of this experiment, the calling relationships between the
classes are determined dynamically.

5.2.2 HITS algorithm

The HITS algorithm works as follows. Every node i gets assigned to it two
numbers; ai denotes the authority of the node, while hi denotes the hubiness.
Let i → j denote that there is a link from node i to node j. The recursive
relation between authority and hubiness is captured by the following formulas.

hi =
∑
i→j

aj (5.1)

aj =
∑
i→j

hi (5.2)

The HITS algorithm starts with initializing all h’s and a’s to 1. In a number
of iterations, the values are updated for all nodes, using the previous iteration’s

5.2. THE HITS WEBMINING ALGORITHM 41

values as input for the current iteration. Within each iteration, the h and a
values for each node are updated according to the formulas (5.1) and (5.2). If
after each update the values are normalized, this process converges to stable
sets of authority and hub weights. Proof of the convergence criterion can be
found in Appendix A or in [Kleinberg, 1999].

It is also possible to add weights to the edges in the graph. Adding weights
to the graph can be interesting to capture the fact that some edges are more
important than others. This extension only requires a small modification to the
update rules. Let w[i, j] be the weight of the edge from node i to node j. The
update rules become:

hi =
∑
i→j

w[i, j] · aj (5.3)

aj =
∑
i→j

w[i, j] · hi (5.4)

5.2.3 Example

1 2

4

3

5

Figure 5.3: Example graph

Consider the example graph of Figure 5.3. Table 5.1 shows three iteration
steps of the hub and authority scores (represented by tuples (H, A)) for each
of the five nodes in the example graph. Even after only 3 iterations steps, it
becomes clear that 2 and 3 will be good authorities, as can be seen from their
high A scores in Table 5.1. Looking at the H values, 4 and 5 will be good hubs,
while 1 will be a less good one.

42 CHAPTER 5. WEBMINING

Nodes
1 2 3 4 5

It
e
r
a
ti

o
n
s 1 (1,1) (1,1) (1,1) (1,1) (1,1)

2 (2,0) (1,3) (0,3) (2,1) (2,0)
3 (4,0) (3,6) (0,5) (6,2) (6,0)
4

Table 5.1: Example of the iterative nature of the HITS algorithm. Tuples have
the form (H,A).

5.3 Practical application

In order to apply the HITS webmining algorithm, we need the conceptual model
of a graph. This graph, which we call the compacted call graph [Zaidman et al.,
2005], is built up as follows:
• The classes in a system form the nodes, while the calling relationships

between classes are indicated by edges.
• The strength of each calling relationship from class A to class B is deter-

mined by the number of elements in the set2:

{(mB , A, B)|(∃(mA, A), (mB , B) ∈ RMC ∧A 6= B∧(mA, A, mB , B) ∈ IV }

Each edge is annotated with the calling relationship strength (see Figure
5.3).
• The HITS webmining algorithm can now be applied on the graph.
On a side note, there is a clear equivalence relationship between building up

the compacted call graph and calculating the IC CC′ metric.

IC CC ′(A) =
∑
i→j

w[i, j] (5.5)

where i is the node that represents class A in the compacted call graph and j
ranges over the classes to which instances from A send messages to.

2For information about the symbols used, please consult Table 4.2 in the previous chapter.

Chapter 6

Experiment

A thinker sees his own actions as experiments and questions — as attempts to
find out something. Success and failure are for him answers above all.

—Friedrich Nietzsche

In the previous chapter we set out the theory behind our analysis that re-
trieves the key classes that need to be understood early on in the program com-
prehension process. In this chapter we use two open source software projects as
case studies to compare the solutions that we have proposed and to determine
how good the technique actually performs.

6.1 Experimental setup

6.1.1 Case studies

We selected two open-source software projects as case studies for the full dura-
tion of this research track. When selecting these case studies, we were specifi-
cally looking for two properties that would make the software projects particu-
larly well-suited for our program comprehension experiments:
• Their public nature ensures the repeatability of these or similar experi-

ments within the research community.

43

44 CHAPTER 6. EXPERIMENT

• The presence of extensive design documentation is very useful for validat-
ing program comprehension experiments. Furthermore, the fact that this
extensive design documentation is freely available, is a further bonus with
respect to the guarantee of repeatability.

Ultimately, we chose Apache Ant 1.6.1 and Jakarta JMeter 2.0.1 because
they adhere best to the criteria we set out. Although a number of open-source
projects would adhere to the above properties, the specific choice for these two
projects is also given by the fact that both software systems are completely
different kinds of applications, e.g. Ant is a command-line batch application,
while JMeter features a highly interactive graphical user interface.

6.1.2 Execution scenarios

The choice of execution scenario is very important and can influence the re-
sultset. On the other hand, a well-chosen execution scenario can also be an
advantage when reverse engineering large software systems: a strict execution
scenario that only executes use cases that the reverse engineer is interested in,
can help in reducing the resultset. As such, it enables a goal oriented approach.
Within the context of this experiment, the execution scenario is a two-sided
sword that can help bring precision, but can also make the results less reliable.

The precise execution scenarios which we used for each of the case studies
will be discussed in Sections 6.2.3 and 6.3.3.

6.1.3 Program comprehension baseline

The presence of extensive design documentation made it possible to define a
baseline for our program comprehension research. This baseline is the set of
classes that are marked by the original developers and/or current maintainers
as need-to-be-understood before any (re)engineering operation can take place on
the project. This baseline however remains an approximation, because it is
based on the experienced developer’s point of view, and not on the experience
of a novice maintainer who is trying to understand the software system.

As such, this baseline enables us to do an intrinsic evaluation of the heuris-
tics. Intrinsic, meaning that we use the developers’ and maintainers’ opinion
to compare with the results we have obtained. Opposed to this intrinsic eval-
uation stands an extrinsic evaluation, where we would empirically evaluate the
effectiveness of the proposed program comprehension techniques [Hamou-Lhadj,
2005a]. At this moment, we regard this extrinsic evaluation as future work.

6.1. EXPERIMENTAL SETUP 45

Applying one of the heuristics we have presented in the previous chapters
results in a list of classes ranked according to their relative importance according
to the heuristic. By default, we only present the 15% most highly ranked classes,
the reasoning behind this is as follows:
• From the documentation of both Apache Ant and Jakarta JMeter we have

learned that about 10% of the classes of the systems need to be understood
before any meaningful change operation can take place. As we are working
with a heuristical technique we took a 5% margin.
• For cognitive reasons, the size of the data presented to the users should

be kept to a minimum, as to not overload the user with information. As
such, the resultset should be kept as minimal as possible.
• Empirically, we found that lowering the threshold to the top 20% classes,

did not result in an increase in recall. To be more precise, we did not
notice any classes mentioned in the documentation showing up in the
interval [15%, 20%] [Zaidman et al., 2005].

6.1.4 Validation

As a validation we propose to use the concepts of recall and precision. Each re-
sultset we obtain from applying one of the proposed heuristics will be compared
to the baseline that we defined.

Recall is the technique’s ability to retrieve all items that are contained in
the baseline, while precision is the quality of the retrieved items contained in
the resultset. Recall and precision are defined as follows:

Recall (%) :
A

A + B
× 100 (6.1)

Precision (%) :
A

A + C
× 100 (6.2)

A: relevant, retrieved items
B: relevant, non-retrieved items
C: irrelevant, retrieved items

6.1.5 Research plan

In Sections 6.2 and 6.3 we will compare and discuss the results we have obtained
from the 4 dynamic approaches to identifying important classes we have intro-
duced in the previous chapters. To be more precise, we will compare IC CM,
IC CC, IC CC′ and IC CC′ combined with the webmining approach to the pro-
gram comprehension baseline we have obtained. In this comparison, recall and

46 CHAPTER 6. EXPERIMENT

precision play a major role and are the deciding factors as to which of the
approaches delivers the best results.

Chapter 7 then describes a control experiment in which we compare the dy-
namic approach that delivered the best results with a number of static variants
of our dynamic approach. For this control experiment, we will not only focus on
the two primary criteria of recall and precision, but we add a third — although
secondary — criterion, namely round-trip-time, i.e. the time needed to perform
a complete analysis.

6.1.6 Threats to validity

We identified a number of potential threats to validity:

• In the case of Apache Ant, the design documentation we used1 dates from
2003. Although since then, no major overhauls of the architecture were
reported, the fact that the source code and the technical documentation
are not perfectly synchronized can be a threat to the validation principle
we propose. Other than the fact that one class that was mentioned in the
documentation is no longer part of the Ant distribution, there have been
no consequences with regard to our experimental setup.
• Comparing static and dynamic analysis poses some threats to the validity

of our experimental setup. When considering the 15% most highly ranked
classes, the size of this 15% resultset varies according to the size of the
inputset, namely the number of classes. In the case of the static process,
the size of the inputset equals the total number of defined classes, while in
the dynamic process, this equals the number of classes that participate in
the execution scenario(s). In most cases, the number of classes participat-
ing in an execution scenario will be lower than the total number of classes
present in a system. As such, the primary criterion on which to compare
the resultsets should be recall, because the precision will drop automati-
cally when considering the often larger resultsets of static analysis.

1http://codefeed.com/tutorial/ant config.html

6.2. APACHE ANT 47

6.2 Apache Ant

6.2.1 Introduction

Apache Ant 1.6.12 is a well-known build tool, mainly used in Java environments.
It is a command-line tool, has no GUI and is single-threaded. It has a relatively
small footprint, but it does however use a lot of external libraries (e.g. the
Xerces XML library) and is user-extensible. Ant relies heavily on XML, as the
propriety build files are written entirely in XML.

Even though Ant is open-source, it is used both in open-source and industrial
settings. Furthermore, it has been integrated in numerous (Java) Integrated De-
velopment Environments (IDE’s) (e.g. Eclipse, IntelliJ IDEA, . . .). A number
of extensions to the basic Ant distribution have been written (e.g. GUI’s) and
there has even been a complete port to the .NET environment (called nANT).

The source-file distribution of Apache Ant 1.6.1 contains 1216 Java classes.
Only 403 of these classes (around 83 KLOC) are Ant-specific, as most of the
classes in the distribution belong to general purpose libraries or frameworks,
such as Apache ORO (for regular expressions) or Apache Xerces (XML parser).

6.2.2 Architectural overview

With the help of the freely available design documentation3, we will discuss the
role the five classes that are considered important by the architects, play in the
execution of a build.xml file:

1. Project: Ant starts in the Main class and immediately creates a Project
instance. With the help of subsidiary objects, the Project instance parses
the build.xml file. The xml file contains targets and elements.

2. Target: this class acts as a placeholder for the targets specified in the
build.xml file. Once parsing finishes, the build model consists of a project,
containing multiple targets – at least one, which is the implicit target for
top-level events.

3. UnknownElement: all the elements that get parsed are temporarily stored
in instances of UnknownElement. During parsing the Unknown- Element
objects are stored in a tree-like datastructure in the Target to which they
belong. When the parsing phase is over and all dependencies have been
determined, the makeObject() method of Unknown- Element gets called,

2For more information, see: http://ant.apache.org
3The design documentation of Ant can be found at:

http://codefeed.com/tutorial/ant config.html

48 CHAPTER 6. EXPERIMENT

which instantiates the right kind of object for the data that was kept in
the placeholder UnknownElement object.

4. RuntimeConfigurable: each UnknownElement has a corresponding Run-
timeConfigurable, that contains the element’s configuration information.
The RuntimeConfigurable objects are also stored in trees in the Target
object they belong to.

5. Task is the superclass of UnknownElement and is also the baseclass for all
types of tasks that are created by calling the makeObject() method of
UnknownElement.

We tried to record the relationship between those 5 classes in Figure 6.1. Besides

Project

Target

Task RuntimeConfigurable

UnknownElement

Figure 6.1: Simplified class diagram of Apache Ant.

these 5 key classes, the design documentation also mentions five other important
(helper)classes:
• IntrospectionHelper
• ProjectHelper2
• ProjectHelperImpl
• ElementHandler

6.2. APACHE ANT 49

• Main

6.2.3 Execution scenario

We chose to let Ant build itself as the execution scenario of choice for our
experiment. This scenario involved 127 classes. At first sight this may seem
rather low, considering that Ant is built from 403 classes in total. This can
be explained from the fact that the Ant architecture contains some very broad
(and sometimes deep) inheritance hierarchies. For example the number of direct
subclasses from the class Task is 104. Each of these 104 classes stands for a
typical command line task, such as mkdir, cvs, . . . As typical execution scenarios
do not contain all of these commands (some are even conflicting, e.g. different
versioning system or different platform), the execution scenario containing 127
classes covers all basic functionality of the Ant system.

The two main reasons why we chose this particular execution scenario are:
• It offers a good balance of features that get exercised, furthermore it con-

tains all typical build commands, including those for copying files into
different directories, generating jar (archive) files, etc.
• Every source file distribution of Ant contains this specific execution sce-

nario, through the build.xml file that is included in the distribution.

6.2.4 Discussion of results

We will now discuss the results we have obtained from applying each of the
techniques to the Apache Ant case study. Table 6.1 gives an overview of the
aforementioned results.

The IC CM metric for a class c1, which counts quadruples of the form
(m1, c1,m2, c2), exhibits the lowest recall of all dynamic analysis solutions: 40%.
The IC CM metric counts distinct method invocations originating from the same
source (m1, c1) combination. As such, a class c1 using low-level functionality
from c2 in each of its methods mi, will get a high metric value. This causes
noise in the resultset, because we are actually looking for classes that use other
(high-level) classes. This explains its relatively low recall when compared to the
baseline.

The IC CC and IC CC′ metrics, which count (m1, c1, c2) and (m2, c1, c2)
respectively, exhibit a similar recall of 70%. Although at this point, we would
have expected IC CC′ to perform considerably better, there is no noticeable
difference with regard to the recall. Our expectation for a better performance
from IC CC′ stems from the fact that, just as is the case for IC CM, IC CC

50 CHAPTER 6. EXPERIMENT

Class 1
:

IC
C

M

2
:

IC
C

C

3
:

IC
C

C
′

4
:

IC
C

C
′
+

w
eb

m
in

in
g

5
:

A
n
t

d
o
cs

Project
√ √ √

UnknownElement
√ √ √ √ √

Task
√ √ √ √ √

Main
√ √

IntrospectionHelper
√ √ √ √

ProjectHelper
√ √ √ √

RuntimeConfigurable
√ √ √ √ √

Target
√ √ √ √ √

ElementHandler
√ √ √

TaskContainer N/A
√

→ recall (%) 40 70 70 90 -
→ precision (%) 27 47 47 60 -

Table 6.1: Ant metric data overview.

focusses on counting the originating class/method pair, while IC CC′ shifts focus
towards the target class/method pair.

When applying the HITS webmining algorithm on the IC CC′ metric results,
we see that we get a recall of 90%. This increase in recall happens because
indirect coupling is taken into account when applying the HITS webmining
algorithm on the coupling data.

With regard to precision, it is clear that the webmining algorithm allows to
greatly improve precision and bring it to a level of 60%, which, to our opinion,
is satisfactory for a heuristic. Satisfactory, but nothing more than that, because
it still means that 40% of the program comprehension “pointers” returned to
the user are potentially of lesser value.

Trade-off analysis

Based on the results we have obtained from the Apache Ant case study, this is
our analysis:
• Running Ant according to the execution scenario takes 23 seconds without

6.3. JAKARTA JMETER 51

collecting trace-information. When we collect a trace from running Ant
according to the same execution scenario, this now takes slightly under 1
hour4. The execution generates a trace of roughly 2 GB of data.
• Processing this amount of data and calculating the IC CM, IC CC and

IC CC′ metrics took 45 minutes (the three metrics were calculated in
parallel, only calculating one of these at a time lowers the time needed by
only a fraction).
• Applying the HITS webmining algorithm on the metric data takes less

than 30 seconds.
When considering the return on time-investment, we are mainly looking at the
round-trip-time, i.e. the time needed to perform the full analysis, from loading
the project into the environment till having the results presented. From starting
the reverse engineering process till having the results at one’s disposal takes
roughly 105 minutes, which is partly due to the very slow trace-collection-phase.
Although we expect to be able to improve these round-trip-times, because of
the prototype state of our tools, we firmly believe that the order of magnitude
of the round-trip-time is set.

Rounding up, we can say that we are very much satisfied with the level of
recall that the dynamic analysis approach gives us. Furthermore, precision is
also good at a level of 60%, however, the round-trip-time should be seen as a
major detractor.

6.3 Jakarta JMeter

6.3.1 Introduction

Jakarta JMeter 2.0.15 is a Java application designed to test webapplications.
It allows to verify the application (functionally), but it also allows to perform
load-testing (e.g. to measure performance or stability of the software system).
It is frequently used to test webapplications, but it can also handle SQL queries
through JBDC. Furthermore, due to its architecture, plugins can be written for
other (network) protocols. Results of performance measuring can be presented
in a variety of graphs, while results of the functional testing are simple text files
with output similar to output from regression tests.

JMeter is a tool which relies on a feature-rich GUI, uses threads abundantly

4Experiment conducted on an AMD Athlon 800 with 512MB memory running Fedora Core
3 Linux.

5For more information, see: http://jakarta.apache.org/jmeter/

52 CHAPTER 6. EXPERIMENT

and relies mostly on the functionality provided by the Java standard API (e.g.
for network-related functionality)6.

The source-file distribution of Jakarta JMeter 2.0.1 consists of around 700
classes, while the core JMeter application is built up from 490 classes (23
KLOC).

6.3.2 Architectural overview

What follows is a brief description of the innerworkings of JMeter.
The TestPlanGUI is the component of the user-interface that lets the end

user add and customize tests. Each added test resides in a JMeterGUIComponent
class. When the user has finished creating his or her TestPlan, the information
from the JMeterGUIComponents is extracted and put into TestElement classes.

These TestElement classes are stored in a tree-like datastructure: JMeter-
TreeModel. This datastructure is then passed onto the JMeterEngine which,
with the help of the TestCompiler, creates JMeterThread(s) for each individual
test. These JMeterThreads are grouped into logical ThreadGroups. Further-
more, for each test a TestListener is created: these catch the results of the
threads carrying out the actual tests.

As such, we have identified nine key classes from the JMeter documentation.
The design documentation also mentions a number of important helper-classes,
being:
• AbstractAction
• PreCompiler
• Sampler
• SampleResult
• TestPlanGui

6.3.3 Execution scenario

The execution scenario for this case study consists of testing a HTTP (Hyper-
Text Transfer Protocol) connection to Amazon.com, a well-known online shop.
More precisely, we configured JMeter to test the aforementioned connection
100 times and visualize the results in a simple graph. Running this scenario
took 82 seconds. The scenario is representative for JMeter, because many of
the possible variation points in the execution scenario lie in (1) the usage of
a different protocol (e.g. FTP) or (2) in the output format of the data (e.g.

6The design documentation can be found on the Wiki pages of the Jakarta JMeter project:
http://wiki.apache.org/jakarta-jmeter

6.3. JAKARTA JMETER 53

different type of graph or plain-text). Also of importance to note here is that
these 100 connections are initiated by a number of different threads, in order
to simulate concurrent access to the Amazon web application. This entails that
this particular case study is an example of a multi-threaded application.

6.3.4 Discussion of results

This section presents a discussion about the results from the Jakarta JMeter
case study. Table 6.2 provides an overview of these results.

Class 1
:

IC
C

M

2
:

IC
C

C

3
:

IC
C

C
′

4
:

IC
C

C
′
+

w
eb

m
in

in
g

5
:

J
M

et
er

d
o
cs

AbstractAction
√ √ √ √

JMeterEngine
√ √ √

JMeterTreeModel
√ √

JMeterThread
√ √ √

JMeterGuiComponent
√ √ √ √

PreCompiler
√ √

Sampler
√ √ √ √

SampleResult
√ √ √

TestCompiler
√ √ √

TestElement
√ √ √

TestListener
√ √ √

TestPlan
√ √ √

TestPlanGui
√ √ √

ThreadGroup
√ √

→ recall (%) 14 21 71 93 -
→ precision (%) 10 14 48 62 -

Table 6.2: JMeter metric data overview.

The IC CM metric clearly lags behind the other dynamic metrics proposed
with a recall of 14% and a precision of 10%. The explanation for this relatively
bad result is identical to the reasoning given for the Ant case study.

In contrast with our previous case study, there is a notable difference between
the most tightly coupled classes as reported by IC CC versus IC CC′.

54 CHAPTER 6. EXPERIMENT

Although not immediately visible from Table 6.2, this phenomenon is related
to the feature-rich graphical user interface (GUI). Although there is evidence of
an attempt of a model-view-controller (MVC) pattern implementation [Gamma
et al., 1995] (both from source code and from design documents), there still
is a high degree of coupling from the view to the model in the MVC scheme.
Furthermore, a high degree of coupling exists within the GUI layer.
Because certain classes in the GUI layer of JMeter can be catalogued as god
classes (many methods, large methods), the IC CC metric falsely registers these
classes as important, due to the high method count of these classes. IC CC′

however does not suffer from this because its measure is not dependent on the
number of methods defined within the class.

With regard to the heuristic where we applied webmining on top of the
IC CC′ metric, the results are fairly convincing with a recall attaining 93%,
while still offering a level of precision of 62%. So again, taking indirect coupling
into account makes sure that the important classes can be retrieved.

Trade-off analysis

Based on the results and the effort it took to generate the resultset, we made
the following analysis:
• Running JMeter without collecting trace information takes 82 seconds.

The overhead introduced when recording all necessary run-time data makes
the same execution scenario last around 45 minutes. The execution gener-
ates traces of roughly 600 MB of data. Notice the difference with the Ant
case study, where we collected 2 GB during a similar 45 minute execution
period (when tracing). This difference can mainly be attributed to the fact
that JMeter relies heavily on library functions, which are excluded from
the trace. This exclusion process however, also comes at an additional
cost because for each call made, an exclusion-filter needs to be consulted
before deciding whether to output a call to the tracefile or not.
• Processing this amount of data and calculating the IC CM, IC CC and

IC CC′ metrics took slightly under 30 minutes.
• Applying the HITS webmining algorithm on the metric data takes around

30 seconds.
Here we see a very similar situation to the one we encountered during the
Ant case study. Results are very much satisfactory, but the round-trip-time is
worrisome when one wants to gain a quick overview of the subject application.

6.4. DISCUSSION 55

6.4 Discussion

6.4.1 Experimental observations

Table 6.3 gives an overview of the experimental setup we performed. The
columns show the two criteria according to which we weigh the quality and
the effectiveness of the 4 variations of the heuristic we proposed. The observa-
tions we have made during the two case studies are synthesized with the help
of a scale ranging from −− (for bad conformance to a certain criterion) to ++
(for good conformance). A dot (·) means neither positive nor negative.

Recall Precision
IC CM − −
IC CC − −
IC CC′ + ·
IC CC′ + webmining ++ +

Table 6.3: Strengths and weaknesses of the proposed coupling-based techniques.

Recall. From Table 6.3 it becomes immediately clear that applying the HITS
webmining technique on the dynamic IC CC′ measure delivers the best recall
results. Looking back at Tables 6.1 and 6.2, we see that this technique is able to
recall 90 and 93 percent of the classes defined in the baseline. The plain IC CC′

metric, which does not take into account indirect coupling, comes in as second
best with recall percentages of around 70% in both case studies. IC CM has a
lower level of recall (50% or lower), while IC CC slots in somewhere between
IC CC′ and IC CM (for the Ant case study, IC CC performs level with IC CC′).

Precision. When it comes to precision, IC CC′ combined with the HITS web-
mining approach comes out best with a precision of 60%. No other technique is
able to reach a level of precision above 50%.

Overall. Looking at the two primary criteria, recall and precision, the ap-
proach consisting out of the combination of the IC CC′ metric and the HITS
webmining algorithm delivers the best results. However, the round-trip-time
needed to perform a complete analysis remains a serious detractor.

56 CHAPTER 6. EXPERIMENT

6.5 Observations with regard to the research ques-
tion

To sum up, we were trying to answer the following question: “is there a clear link
between influential classes and the classes that need to be understood during ini-
tial programming understanding?”. We can answer this question affirmatively.
We have based ourselves on two open source case studies for which we had
a program understanding baseline available. Singling out the combination of
IC CC′ and the HITS webmining algorithm, we have observed that this heuris-
tic is able to retrieve around 90% (lower bound) of the important classes, while
maintaining a level of precision of around 60% (lower bound).

With regard to the subsidiary questions, “which metric to use” and “whether
or not to take into account indirect coupling” we can add that the dynamic
IC CC′ metric performs best when taking into account indirect coupling (through
the HITS webmining algorithm).

As such, we are able to provide the end-user with a tool that can help him/her
gain a overview of the application and, foremost, a number of starting points
from where to start his/her further program understanding reconnaissance.

Chapter 7

Static coupling

That which is static and repetitive is boring. That which is dynamic and
random is confusing. In between lies art.

—John A. Locke

In this dissertation we have mainly talked about dynamic or runtime coupling
up until now. Now that we have also obtained the results of our case studies, we
are wondering whether a similar approach, albeit performed statically, can match
or even surpass the results we have obtained from performing the webmining
analysis with dynamically obtained coupling data. In this chapter we first define
static coupling measures that are close to the one that we used for our dynamic-
analysis-based experiment and then make a comparison of the results we have
obtained.

7.1 Introduction & motivation

Calculating dynamic coupling metrics and the consequent application of the
webmining technique is characterized by a number of constraints:
• The need for a good execution scenario.
• The availability of a tracing mechanism.

57

58 CHAPTER 7. STATIC COUPLING

• Scalability issues (resulting trace file, overhead from tracing mechanism,
...).

These constraints apply on the techniques that we discussed in Chapters 4
& 5. In order to verify whether we could overcome some of these constraints by
working with static analysis instead of dynamic analysis, we have undertaken
a control experiment. In this experiment we apply webmining techniques on a
static topological structure of the application and verify whether we can get a
similar level of recall and precision as we found for the dynamic approach (see
Chapter 6), all the while obtaining a significantly better round-trip-time.

The setup of this experiment is to compare the candidate of choice from our
previous experiments, namely the combination of the IC CC′ metric with the
HITS webmining technique, with a similar technique that uses static informa-
tion. Furthermore, because we wanted to make the comparison as objective as
possible, we defined static coupling metrics that are as close as possible to the
IC CC′ metric we used in Chapters 4 & 5.

7.2 A static coupling metrics framework

The framework from Arisholm [Arisholm et al., 2004] does not have to make
a distinction between static and polymorphic calls due to the dynamic nature
of its measurements. We add notational constructs from the unified framework
for (static) object-oriented metrics from Briand et al [Briand et al., 1999] to the
definitions that we previously used from Arisholm. That way, we can still use
the basic notation from Arisholm we have used in the previous chapters. For
that purpose, some helpful definitions are:

Definition 1 Methods of a Class.
For each class c ∈ C let M(c) be the set of methods of class c.

Definition 2 Declared and Implemented Methods.
For each class c ∈ C, let:

• MD(c) ⊆ M(c) be the set of methods declared in c, i.e., methods that c inherits but
does not override or virtual methods of c.

• MI ⊆ M(c) be the set of methods implemented in c, i.e., methods that c inherits but
overrides or nonvirtual noninherited methods of c.

Definition 3 M(C). The Set of all Methods.
M(C) = ∪c∈CM(c)

7.3. EXPRESSING IC CC′ STATICALLY 59

1 public void foo() {
2 BaseClass base = new BaseClass();

3 base.doSomething();

4 // some other functionality

5 base.doSomething();

6 }

Figure 7.1: Piece of Java code to help explain metrics.

Definition 4 SIM(m). The Set of Statically Invoked Methods of m.
Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ SIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d)
and the body of m has a method invocation where m′ is invoked for an object of static type
class d.

Definition 5 NSI(m, m′). The Number of Static Invocations of m′ by m.
Let c ∈ C, m ∈ MI(c), and m′ ∈ SIM(m). NSI(m, m′) is the number of method invocations
in m where m′ is invoked for an object of static type class d and m′ ∈ M(d).

Definition 6 PIM(m). The Set of Polymorphically Invoked Methods of m.
Let c ∈ C, m ∈ MI(c), and m′ ∈ M(C). Then m′ ∈ PIM(m) ⇔ ∃d ∈ C such that m′ ∈ M(d)
and the body of m has a method invocation where m′ may, because of polymorphism and
dynamic binding, be invoked for an object of dynamic type d.

Definition 7 NPI(m, m′). The Number of Polymorphic Invocations of m’ by m.

Let c ∈ C, m ∈ MI(c), and m′ ∈ PIM(m). NPI(m, m′) is the number of method invocations

in m where m′ can be invoked for an object of dynamic type class d and m′ ∈ M(d).

7.3 Expressing IC CC′ statically

With these added notational constructs, we are now able to write down four
static coupling measures that closely resemble the measurements that were de-
fined in Section 4.3.3.

The fact that one dynamic metric IC CC′ is translated into 4 static metrics
can be explained by the fact that the static environment offers some degrees
of choice when calculating the metrics. Consider the Java code snippet in Fig-
ure 7.1:
• The choice between static calls and polymorphic calls. In other words when

considering Figure 7.1, do we only count the reference to Base- Class or
also to all subclasses of BaseClass?
• Do we count duplicate calls for the same (origin, target) pairs? When

considering Figure 7.1 do we count the base.doSomething() call once or

60 CHAPTER 7. STATIC COUPLING

twice (lines 3 and 5).
For the purpose of our research we have defined 4 metrics that vary over the

characteristics described above.

Definition SM SO Static Metric, Static calls, count every Occurrence of a call only

once.

SM SO(c1, c2) = #{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 6= c2 ∧ (m1, c1, m2, c1) ∈ IV

∧ m2 ∈ SIM(m1)}

Definition SM SW Static Metric, Static calls, count every occurrence of a call (Weighted).

SM SW (c1, c2) = identical to SM SO(c1, c2), but { } should be

interpreted as bag or multiset.

Definition SM PO Static Metric, Polymorphic calls, count every Occurrence of a call

only once.

SM PO(c1, c2) = #{(m2, c2, c1)|∃ (m1, c1), (m2, c2) ∈ RMC

∧ c1 6= c2 ∧ (m1, c1, m2, c1) ∈ IV

∧ m2 ∈ PIM(m1)}

Definition SM PW Static Metric, Polymorphic calls, count every occurrence of a call

(Weighted).

SM PW (c1, c2) = identical to SM PO(c1, c2), but { } should be

interpreted as bag or multiset.

To calculate these metrics, we used the JDT2MDR Eclipse plugin devel-
oped by Bart Du Bois, a fellow member of the LORE research group [Zaidman
et al., 2006b]. JDT2MDR transforms a Java project to a graph representa-
tion closely resembling the metamodel employed by Briand et al. [Briand et al.,
1999], thereby enabling the calculation of the coupling and cohesion measures
formalized in their paper.

7.4 Results

This section will give an overview of the results we have obtained from applying
the static approach to finding the most important classes in our two case studies,
Apache Ant and Jakarta JMeter. We compare the results we have obtained with

7.4. RESULTS 61

(1) the best result obtained from the dynamic approach, namely the combination
of IC CC′ and webmining and (2) the baseline obtained from the documentation
from these open source projects.

Besides recall and precision, the criteria we used for determining the best
dynamic approach, we will also keep a close eye on the round-trip-time of the
static approach, as this is a factor where we expect the static approach to be
able to significantly outperform the dynamic approach.

7.4.1 Ant

Class 1
:

IC
C

C
′
+

w
eb

m
in

in
g

2
:

S
M

P
O

+
w

eb
m

in
in

g

3
:

S
M

P
W

+
w

eb
m

in
in

g

4
:

S
M

S
O

+
w

eb
m

in
in

g

5
:

S
M

S
W

+
w

eb
m

in
in

g

6
:

A
n
t

d
o
cs

Project
√ √ √ √ √ √

UnknownElement
√ √ √ √ √ √

Task
√

79 81 119 120
√

Main
√ √ √ √ √ √

IntrospectionHelper
√ √ √

116 105
√

ProjectHelper
√

97 99 90 190
√

RuntimeConfigurable
√ √ √

63 63
√

Target
√

89 93 100 100
√

ElementHandler
√

192 198 125 125
√

TaskContainer N/A 398 403 381 383
√

→ recall (%) 90 50 50 30 30 -
→ precision (%) 60 8 8 5 5 -

Table 7.1: Ant metric data overview.

Based on the results shown in Table 7.1, two categories are formed, namely
the category of metrics that takes polymorphism into account (SM P*) and the
category that does not take polymorphism into account (SM S*). The former
category exhibits a recall level of 50%, while the latter recalls 30%. Although
interesting from the point of view that polymorphism does indeed play an im-
portant role when considering program comprehension, from a practical per-
spective, these results are disappointing when compared to the results obtained

62 CHAPTER 7. STATIC COUPLING

with the dynamic approach. The observation regarding polymorphism can be
explained by the fact that (1) sometimes a base class is abstract or (2) the base
class is not always (or should we say mostly not) the most important class in the
hierarchy. The second variation point for the static metrics, namely whether to
only count an occurrence of a particular call once or to count every occurrence
of a call (weighted), does not seem to make any difference with regard to our
specific context (small variations exist, but these do not influence the resultset).

The fact that precision for the 4 static metrics in columns 2, ..., 5 is much
lower (8% or less) than what we experienced with the dynamic approach, can be
explained by the size of the inputsets, as the inputset for the static experiment
was 403 classes, while for the dynamic experiment this was only 127 classes.
When using our rule-of-thumb of presenting the 15% highest ranked classes in
the final resultset, we end up with 60 and 15 classes respectively.

A further point to be made regarding this rule-of-thumb is that when looking
at the ranking of classes that fall outside the top 15%, lowering the bar to 20%
would not have resulted in a (significant) gain in recall, while precision would
drop further. We can also add, that by raising the bar to 10%, recall would fall
with 10%.

Considering the round-trip-time, we measured that the prototype (static)
metrics engine took one hour to calculate the metrics for Ant. Applying the
HITS algorithm takes less than one minute.

7.4.2 JMeter

Similar to what we saw in the Ant case study, two groups can be identified
within the JMeter resultset presented in Table 7.2, namely one group consisting
out of SM PO and SM PW, and one group formed by SM SO and SM SW.
Within these two groups, recall and precision are identical, although minimal
differences exist when looking at the ranking of some classes. In contrast with
the previous case study, Ant, these differences are much more pronounced. It
is our opinion that this is probably due to the fact that most method calls
happen only once in each unique method, as opposed to multiple occurrences
of a method call in a unique method, where the weighted approach (of SM PW
and SM SW) would make the difference more pronounced.

Also to be noted is the sizeable dissimilarity between the results obtained
while only taking into account static calls versus also taking polymorphic calls
into account. As Table 7.2 shows, the SM P* metrics have a recall of 43%, while
the SM S metrics only recall 7%.

Of interest to note is the fact that when looking at the ranking of the classes

7.5. DISCUSSION 63

Class 1
:

IC
C

C
′
+

w
eb

m
in

in
g

2
:

S
M

P
O

+
w

eb
m

in
in

g

3
:

S
M

P
W

+
w

eb
m

in
in

g

4
:

S
M

S
O

+
w

eb
m

in
in

g

5
:

S
M

S
W

+
w

eb
m

in
in

g

6
:

J
M

et
er

d
o
cs

AbstractAction
√

275 275 336 336
√

JMeterEngine
√ √ √

484 484
√

JMeterTreeModel
√ √ √

150 150
√

JMeterThread
√ √ √

147 147
√

JMeterGuiComponent
√ √

475 475
√

PreCompiler
√

362 362 293 293
√

Sampler
√

457 478 454 454
√

SampleResult
√

119 119 209 209
√

TestCompiler
√ √ √

145 145
√

TestElement
√ √ √

451 451
√

TestListener
√

450 443 449 449
√

TestPlan
√

113 113 234 234
√

TestPlanGui
√

93 93
√ √ √

ThreadGroup
√

140 140 157 157
√

→ recall (%) 93 43 43 7 7 -
→ precision (%) 62 8 8 1.4 1.4 -

Table 7.2: JMeter metric data overview.

outside the top 15%, it is clear that lowering the bar to the 20% highest ranked
classes would not improve recall.

For what the round-trip-time is concerned, the metrics engine took almost
1 1

2 hours to calculate the metrics for JMeter. This is a considerable increase
from what we saw with Ant. This increase can be attributed to the fact that
JMeter has (1) a larger codebase and (2) uses more libraries, which also need
to be parsed. Applying the HITS algorithm takes slightly over one minute.

7.5 Discussion

7.5.1 Practical implications

In Section 7.1 we talked about three drawbacks of the dynamic webmining
approach. Now, after having performed a similar experiment in a static way, we

64 CHAPTER 7. STATIC COUPLING

will discuss each of these drawbacks and see whether these are strictly inherent
to the dynamic approach we introduced:

1. The necessity of a good execution scenario.
When performing static analysis, having an execution scenario is no issue.
However, access to the source code remains a prerequisite. For complete-
ness sake, we do add that reverse engineering (and the subsequent extrac-
tion of coupling metrics) from binaries is sometimes possible. However,
having access to the source code is a criterion which often has a much
more limited impact than having a good execution scenario. As such,
static analysis is to be favored here.

2. The availability of a tracing mechanism.
Although a tracing mechanism is no longer an issue, having a metrics
engine remains a necessity. To implement such an engine, either open
source tools need to be available or a parser needs to be constructed.
Because a similar precondition exists for both processes, neither of the
two approaches has a clear advantage here.

3. Scalability issues.
In terms of scalability the dynamic process is plagued by the possibly huge
size of the tracefile. This has consequences on multiple levels:
• The I/O overhead on the traced application (e.g. for Ant: execu-

tion of 23 seconds without tracing versus just under one hour with
tracing).
• The size of the trace (2 GB in the case of Ant).
• The time it takes to calculate the IC CC′ metric and perform the

HITS webmining algorithm on this 2 GB of data. In the case of Ant
this takes around 45 minutes.

We were already aware of the below par round-trip-times from the dynamic
approach. However, when comparing these times with the static approach,
we observe that our prototype metrics engine took one hour to calculate
the metrics for Ant and slightly over one hour for JMeter. Applying the
HITS algorithm takes less than one minute, so the total round trip time is
around one hour for both projects. While these times are not so different
from the dynamic process, the dynamic process still needs the tracing
step, which makes that the round trip time for the dynamic process is
significantly larger and in the case of Ant takes around two hours.

7.5. DISCUSSION 65

7.5.2 Comparing static and dynamic results

In Chapter 6 we saw that the IC CC′ metric combined with the webmining
solution provides a level of recall of at least 90%, while safeguarding a level of
precision of around 60%. When we look at the results of the static coupling
metrics that we introduced in this chapter, we see that we are able to reach
a maximum level of recall of 50%, while the level of precision drops to 8% or
less. This observation makes it quite obvious that the dynamic approach is the
solution of choice when only considering the recall and precision results.

7.5.3 Conclusion

Table 7.3 provides an overview of the strengths and weaknesses of both the static
and the dynamic approach. Although we see that the static approach (the SM *
metrics) are better at the round-trip-time performance, they fall through when
considering their recall and precision characteristics. As such, when considering
early program comprehension purposes, the dynamic approach is the best choice,
even though its round-trip-time performance is a severe drawback.

Recall Precision Time
IC CC′ + webmining ++ + −−
SM PO + webmining · −− +/−
SM PW + webmining · −− +/−
SM SO + webmining −− −− +/−
SM SW + webmining −− −− +/−

Synthesis of observations from the results obtained during the experiments. We
use a scale ranging from −− (for bad conformance to a certain criterion) to
++ (for good conformance). A dot (·) means neither positive nor negative and
+/− signifies that the results are too much case-related to draw any significant
conclusion.

Table 7.3: Comparison of the strengths and weaknesses of the static and the
dynamic webmining approach.

66 CHAPTER 7. STATIC COUPLING

Part III

Frequency based solutions
for program comprehension

67

Chapter 8

Frequency Spectrum
Analysis

Machines take me by surprise with great frequency.

—Alan Turing

In this chapter we look at a technique to ease the navigation of large event
traces or a visualization of such an event trace, e.g. an UML sequence diagram.
The technique uses the relative frequency of execution of methods or procedures
within the execution of a software system to generate a visualization that we call
a “heartbeat” visualization because is resembles the visualization that is typical of
an electrocardiogram or ECG. With the help of the visualization it then becomes
possible to navigate through the trace and identify regions in the trace where
similar or identical functionality is performed.

8.1 Introduction

8.1.1 Motivation

When it comes to dynamic analysis, one of the most accessible types of infor-
mation is the execution frequency of entities within a software system. This

69

70 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

particular axis within the run-time information-space of software systems is
commonly used in several software engineering disciplines:
• For optimization purposes the software engineer can detect frequently

called (and perhaps time-intensive) entities within a software system.
These particular entities can then be subjected to a closer look in or-
der to bring about optimizations within the code of that particular entity,
because the biggest gain in performance can be obtained from optimizing
these frequently called entities.
• Several virtual machine platforms employ similar schemes to detect which

classes or which methods to optimize. This optimization happens mainly
through the (1) inlining1 of frequently called virtual methods or the just-
in-time compilation of methods or complete classes. An example of this
is the “Hot Spot” technology found in Sun’s recent Java Virtual Machine
implementations2.

Even though frequency analysis has been in use within the software engineering
community for some time, it was never directly used for program comprehen-
sion purposes. This changed when Thomas Ball introduced the concept of “Fre-
quency Spectrum Analysis” (FSA) [Ball, 1999], a way to correlate procedures,
functions and/or methods through their relative calling frequency. This corre-
lation can e.g. happen on the basis of input data, where observations are made
as to how many input-values a program receives and how many times certain
procedures or methods are called internally. The same can be done for output,
or one can look at relative frequencies of execution of methods or procedures
that are shielded from everything that has to do with input/output.

8.1.2 Research questions

In this research track, we are looking for ways to exploit the relative execu-
tion frequency specifically for program comprehension purposes. The central
research questions we have with regard to this research track are:

1. Can we use the relative execution frequency to distinguish tightly collab-
orating methods or procedures in a trace?

1Inlining is a compiler optimization which “expands” a function call site into the actual
implementation of the function which is called, rather than each call transferring control to
a common piece of code. This reduces overhead associated with the function call, which is
especially important for small and frequently called functions.

2For more information about this technology, see:
http://java.sun.com/products/hotspot/

8.1. INTRODUCTION 71

2. Can we make a visual representation of the execution trace that is at a
time scalable and allows to identify these tightly collaborating entities?

3. Is it possible to use this visualization to help the end user navigate through
the trace and let him/her skip parts of the trace that are similar or identi-
cal? This question can be subdivided into whether the visualization allows
to discern:
• the repetitive calling of end-user functionality (e.g. the repetition of

a use case), i.e. on the macro-level.
• the repetitive calling of lower-level building blocks that are present

in the application, i.e. on the micro-level.

8.1.3 Solution space

Conceptually, in object-oriented software systems, classes (or their instantia-
tions — objects) work together to reach a certain goal, i.e. perform a certain
function as specified by e.g. a use-case scenario. This collaboration is expressed
through the exchange of messages between classes. This message-interaction
typically occurs according to a certain interaction protocol. As such, this inter-
action protocol gives rise to a relationship between the two messages and the
classes to which the methods belong. This relationship is also expressed through
the relative execution frequency of the messages involved. It is based on this
execution frequency that we will try to uncover the interaction protocol induced
relationships. Furthermore, we have seen that even though the number of classes
involved in an execution scenario is finite and often very limited as well, these
interactions nevertheless give rise to sizeable execution traces. Intuitively, this
huge size can be explained by repetitive interactions between multiple instances
of classes, which furthermore strengthens the idea that execution frequency can
be used to uncover interaction protocols.

Visualizations of traces, e.g. through UML Interaction Diagrams, make
the trace readable, but therefore not (cognitively) scalable. A typical example
of a visualization tool is IBM’s Jinsight [De Pauw et al., 2001]. To ensure
cognitive scalability, we ideally want to guide the end-user quickly and easily
through the possibly huge execution trace (or its visualization) with the help of a
heuristic [Jahnke and Walenstein, 2000]. The end-user being a software engineer
trying to familiarize himself/herself with a previously unknown software system.
This heuristic, based on the relative frequency of execution of methods, can help
provide a program comprehension solution that helps the end-user navigate
through the execution trace, by marking highly repetitive regions in the trace.
These regions can be inspected and the identical or similar regions can then be

72 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

quickly discarded.
We explicitly mention that we are working towards building a heuristic,

because in the face of huge execution traces, thoroughness comes at a cost
and the question of scalability inevitably arises [Larus, 1993, Smith and Korel,
2000]. Furthermore, when considering traditional dynamic analysis purposes
such as program optimization, soundness plays a crucial role in developing a
technique to guarantee behavior preservation [Mock, 2003]. Dynamic analysis
for program understanding relaxes the problem considerably, because we can
afford non-optimal precision.

The actual solution we propose is evolutionary with regard to the concepts
presented by Ball in [Ball, 1999]. Building upon his concept of “Frequency Spec-
trum Analysis”, we propose a scalable visualization of an execution trace. This
visualization can best be described as a heartbeat visualization of the system,
similar to the visual result of an ECG3.

In order to try to answer the research questions within this research track,
we use two open source case studies, namely Fujaba and Apache Tomcat.

8.1.4 Formal background

In a more formal way, we can say that we are actually looking for evidence of
the concepts of dominance and post-dominance, borrowed from the slicing
community [Tilley et al., 2005]:

We say that an instruction x dominates an instruction y if the trace
prefix which ends with y also contains an instruction x. In other
words an instruction x dominates an instruction y if and only if
the only way to make sure that y gets executed means that x has
already been executed. x post-dominates y if every trace postfix
which begins with y also contains x. Or one can say that x post-
dominates y if every execution of y indicates that x will also be
executed in a relatively short period of time.

8.2 Approach

The approach we follow when applying the heuristic and analyzing its results is
defined as a seven-step process. This section expands on each of these steps.

3Electrocardiogram, the tracing made by an electrocardiograph, an instrument for record-
ing the changes of electrical potential occurring during the heartbeat used especially in diag-
nosing abnormalities of heart action (source: Merriam-Webster dictionary).

8.2. APPROACH 73

Step 1: Define an execution scenario Being aware that even small soft-
ware systems that are run for only a few seconds can be responsible for generat-
ing sizeable execution traces, limiting the events recorded in the execution trace
is a first step towards scalability. Defining a strict execution scenario, that only
exercises those use case scenarios that are of interest to the program comprehen-
sion assignment or reverse engineering context is certainly advisable. Moreover,
defining a strict execution scenario helps to adhere to the goal oriented strategy
we mentioned in Section 3.2.1.

Step 2: Define a filter A second possibility to limit the size of the execution
trace is the up-front exclusion of events that lie outside our zone of interest.
Good examples of such a situation are method calls to part of the system that
we are not interested in, e.g. library calls. Table 8.1 shows the results of a
normal tracing operation and of a tracing operation which filters out all method
calls belonging to classes from the Java API4 (Java 2 Standard Edition, release
1.4.1). This filtering operation leads to a significant reduction of the trace data,
as we are able to reduce the total number of events to between 7 and 15% of
the original trace.

Jakarta Tomcat Fujaba 4
4.1.18

Execution time 48s 70s
(without tracing)
Classes (total) 13 258 15 630
Events 6 582 356 12 522 380
Unique events 4 925 858 505
Classes (filtered) 3 482 4 253
Events 1 076 173 772 872
Unique events 2 359 95 073

Table 8.1: Comparison of total tracing versus filtered tracing.

Step 3: Trace according to the scenario using the filter This step
consists of running the program with an online tracing mechanism according to
the previously defined execution scenario and with the tracing filter in place.
The result of this step is a file which contains a chronological list of all method
calls which were executed during the scenario.

4The Java API is a standard library that contains functionality for dealing with strings,
inter process communication, containers, ...

74 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

Step 4: Frequency Analysis In this step, we run over the trace and we
create a map which contains for every unique method found in the trace the
number of times it has been called. We decided to perform this step post-
mortem, i.e. after the tracing operation itself (Step 3), instead of online. The
reason behind this is that by doing so, we take another measure to minimize
the impact of the tracing operation on the running program, which, indeed, is
already impacted by generating the trace (e.g. through the I/O cost).

Step 5: Frequency Annotation We walk over the original trace once more
and annotate each event with the frequency we retrieve from the map that we
have created in Step 4. The result is a chronological list of executed methods,
with an added first column which respresents the frequency of execution of the
method listed in column two. Remark that the values found in the first column
represent the total number of times a method is executed during the scenario.
It is important to use the total frequency of execution because we want to
distinguish methods working together based on their relative frequencies. An
example can be found in Figure 8.1.

...
543 XMLParser.init()
978 XMLParser.parseString(String)
1243 XMLParser.closingTagFound()
1243 XMLParser.validXMLElement()
543 XMLParser.close()
...
543 XMLParser.init()
978 XMLParser.parseString(String)
1243 XMLParser.closingTagFound()
1243 XMLParser.validXMLElement()
543 XMLParser.close()
...

Figure 8.1: Frequency annotation example.

Please also remark from the example trace that we explicitly omit object
identifiers (OID’s) and parameter values, because we are looking to make an
abstraction and as such, we are not interested in specific instances of interaction
protocols.

8.2. APPROACH 75

Step 6: Dissimilarity Measure Using the annotated trace we sample the
frequencies of a sequence of method calls, resulting in a characteristic dissim-
ilarity measure for that sequence of events. Conceptually this characteristic
dissimilarity measure can be compared with a fingerprint, hence its name: fre-
quency fingerprint.

The sampling mechanism uses a sliding window mechanism to walk over the
annotated trace. When going over the trace, we let the window fill up; once the
window size is reached, we apply the dissimilarity measure on the frequencies
of the events in the window and then discard the contents of the window. We
repeat the process until the end of the trace is reached.

... ...
fi−1 eventi−1

fi eventi
fi+1 eventi+1

fi+2 eventi+2

fi+3 eventi+3

fi+4 eventi+4

9>>>=>>>; apply dissimilarity measure

fi+5 eventi+5

... ...

We illustrate the process with a window size 5. The dissimilarity measure is
applied on the frequencies of the events that lie in the interval [fi, fi+4], after
that i is incremented by 5, the window size, and the process is repeated. The
implementation thus uses simple consecutive blocks for the windows.

In our experiment, we have taken the most commonly used distance met-
ric, namely the Euclidian distance [Fraley and Raftery, 1998, Kaufman and
Rousseeuw, 1990] as a dissimilarity measure to characterize how “related” the
method calls within one window are.

d =
∑w−1

j=1

√
(fj−1 − fj)2

Euclidian distance: with ’w’ the window size and fj as the frequency of the j-th

event in the current window on the trace.

Step 7: Analysis When the previous steps have been executed, we are in
a position to analyze the dissimilarity measure and the trace looking for clues
that point to interesting regions in the trace. To make this analysis step easier,
we use a very simple visualization that plots the dissimilarity measure on the

76 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

Y-axis for consecutive windows (X-axis). As such, the X-axis can be interpreted
as being “time”.
• On the one hand we are looking for regions in the trace where the fre-

quency of execution is (almost) identical. Inspections of the traces from
our case studies have learned us that these regions are often relatively
small, mostly in the neighborhood of ten to thirty method calls. After
which, the frequency of execution changes, before changing again to an al-
most identical level. Evidence of regions in the trace where the frequency
of execution is identical and the resulting dissimilarity is low to near-zero,
is where a frequently applied interaction protocol is used. The case studies
have shown us a typical example of this, namely a wrapper construction,
where an old component was wrapped. All communication from the ap-
plication to that one (older) component happened through the methods
available in the wrapper. We show another example in Figure 8.2.

...

312 CommunicationChannel.init(String channelType)
312 CommunicationChannel.setOptions(ChannelOptions options)
312 CommunicationChannel.send(String message)
312 CommunicationChannel.receive()
312 CommunicationChannel.close()

9>>>=>>>; 0

...

This annotated trace fragment shows a frequently occuring interaction protocol
used for inter process communication purposes. All methods participating in the
interaction protocol are executed the same number of times. When using a window
size of 5, this results in a dissimilarity of 0.

Figure 8.2: Example of identical execution frequency.

• On the other hand we look for recurring patterns in the dissimilarity index.
Sometimes, methods that work tightly together do not have a similar
execution frequency. A typical situation of this can best be described
as variation points that exist within the code. These variation points
can be introduced through typical conditional constructs or through the
use of polymorphism. Nevertheless, because these methods are frequently
executed together, a regular pattern appears, a so-called frequency pattern.
We have extended the example of Figure 8.1 in Figure 8.3 to show such a
frequency pattern.

8.3. EXPERIMENTAL SETUP 77

...

543 XMLParser.init()
978 XMLParser.parseString(String)
1243 XMLParser.closingTagFound()
1243 XMLParser.validXMLElement()
543 XMLParser.close()

9>>>=>>>; 1243

...

543 XMLParser.init()
978 XMLParser.parseString(String)
1243 XMLParser.closingTagFound()
1243 XMLParser.validXMLElement()
543 XMLParser.close()

9>>>=>>>; 1243

...

Here we illustrate the concept of a frequency pattern, where a number of methods
are frequently executed in the same order, without them being related through an
identical frequency of execution. In this example we use a window size of 5 and
calculate the dissimilarity value for each window.

Figure 8.3: Frequency pattern.

These two types of regions in the trace that carry our interest are called clusters.

8.3 Experimental setup

8.3.1 Hypothesis

Having explained the inner workings of the heuristic, we are now ready to for-
mulate our four-part hypothesis.

1. The majority of the found clusters will in fact be frequency patterns. Fre-
quency patterns are mostly the result of using polymorphism and because
polymorphism is abundantly present in object-oriented software, we ex-
pect this type of clusters to be numerous.

2. Enlarging the window size introduces noise in the frequency signatures
because sequences of methods which logically form a whole are perhaps
smaller than the window size. This can lead to false negatives.

3. Shrinking the window size introduces noise on the results because when
frequency signatures become so small, everything becomes a frequency
pattern. This can lead to false positives.

78 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

4. Regions in which a certain action is repeated become easily discernible:
if at a point in time x a certain functionality is activated and at another
point in time y the same functionality is activated, this will be visible in
the dissimilarity values.

8.3.2 The experiment itself

We provide empirical data on and anecdotal evidence about the clusters found
in the event traces in the two case-studies we used. We consider these results to
be preliminary, because (1) the results have only been compared manually with
the traces, (2) the validation of the results has only been done for two cases. We
want to verify the results more thoroughly in another experiment which would
allow us to visualize the clusters in parallel to browsing the traces in order to
do a more thorough validation.

8.3.3 Case studies

We use two well-known open-source Java programs in our experiments:
1. For the representative of a non-graphical, server-like program we chose

Jakarta Tomcat of the Apache Software Foundation5. Tomcat’s origins
lie with Sun Microsystems, but it was donated to the Apache open source
community in 1999. Since then, the application has seen some major new
releases and has been widely accepted as the reference implementation for
the Java Servlet and Java Server Pages (JSP) technologies. Furthermore,
it is commonly used in industrial settings in tandem with the Apache
HTTP server.

2. On the other hand we have chosen Fujaba6, an open-source UML tool with
Java reverse engineering capabilities. Due to its intensive use of the Java
Swing API it is an excellent representative for applications with a heavy
GUI. This project originates from the University of Paderborn and has
been developed by multiple students. It is frequently used as a research
vehicle in the domain of UML modeling and Model Driven Engineering.

We performed three experiments. We will present them in a brief overview to
give a clearer view on why we performed each of them.

5More information can be found at: http://tomcat.apache.org/
In 2005 Tomcat became a project on its own and left the Jakarta umbrella. It now belongs
directly to the Apache set of tools and applications.

6Fujaba stands for “From UML to Java and Back Again”, more information on this
project can be found at: http://www.uni-paderborn.de/cs/fujaba/

8.4. RESULTS 79

1. The first experiment, performed on Jakarta Tomcat, was executed in order
to validate our hypothesis about window sizes. Starting from the same
event trace we used different window sizes when applying our algorithm.

2. The second experiment recreates the first one, but this time for our other
case-study, namely Fujaba.

3. The third experiment on the other hand, focusses on a slightly different
aspect. We wanted to know how a very specific usage scenario would
be projected onto the dissimilarity graph. Therefore, we defined a usage
scenario with a small number of repetitive actions in it and looked at the
results of our heuristic. This experiment specifically zooms in on our third
research question (see Section 8.1.2) to see whether it is possible to spot
repetition at the macro-level.

As a final note we wish to add that for all three experiments we made use of the
filtering technique that eliminates method calls to classes from the Java API,
see also Table 8.1.

8.4 Results

8.4.1 Jakarta Tomcat 4.1.18

Experiment 1

As we pointed out in the previous subsection, this experiment was set up to
show the results of differing the window size in our heuristic. We discuss the
results of the experiment by looking at Figures 8.4 through 8.7. These figures
represent the dissimilarity value of a group of methods, the current window, at
a certain point in time during the execution of the program. As such, the X-axis
can be interpreted as being time. The Y-axis then is the dissimilarity value.

For the purpose of detecting the frequency patterns we talked about earlier,
we zoomed in on an interval of the chart in Figure 8.7. The result of this is
shown in Figure 8.9.

When comparing the results of our first experiment with the hypotheses we
introduced in the previous section, where does this leave us?

1. From figures 8.4 through 8.7 it is clear that regions where the dissimilarity
is near-zero are rather limited. In this trace we can only detect a handful
of them. Frequency patterns however are much more frequent, just look
at Figure 8.9: between index 86000 and 99000 on the X-axis there is a
clear repetition in the dissimilarity measure.

80 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

0 1115650
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y
va

lu
e

As the chart shows, until the 150.000th x-value the dissimilarity measure (Y-
axis) remains low. After that there is a small period where the dissimilarity
is near-zero. The interval where the dissimilarity is low, points to a high rep-
etition of method invocations (either identical method invocations or method
invocations related through their frequency of invocation). The most common
instances of this kind of repetition are for example the traversal of a linked list.

Figure 8.4: Tomcat with dissimilarity measure using window size 2

2. Increasing the window size does not seem to have an influence on the re-
gions with near-zero dissimilarity. This is mainly due to the fact that the
execution sequences in these regions remain constant for some time, i.e.,
the execution pattern is longer than the (large) window size. Experiment-
ing with window sizes in the neighborhood of 100, however, does show
that noise is introduced. This is true for both the regions with near-zero
dissimilarity and the frequency patterns. On the other hand, frequency
patterns are more easily discernible with slightly larger window sizes: in

8.4. RESULTS 81

0 1115650
0

1

2

3

4

5

6

7

8
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y
va

lu
e

Low or almost zero values for the dissimilarity measure are still clearly visible
when using a window size of 5 events. No extra places where there is a low
dissimilarity value have been added, so there is no report on false positives. The
false negatives did not come through either: no regions where the dissimilarity
value is near-zero have disappeared with regard to Figure 8.4

Figure 8.5: Tomcat with dissimilarity measure using window size 5

figures 8.6 and 8.7 for example, they are much easier to spot than in figures
8.4 and 8.5.

Before going over to our second experiment, we first turn our attention to
the specifics of the already mentioned frequency patterns. Some intervals show
a recurring pattern in the dissimilarity measure. We took Figure 8.7 and blew
up the interval [80000, 100000] for the X-axis. The result is shown in Figure
8.9.

Frequency patterns are even more interesting than the regions that have
a near-zero dissimilarity value. Why? Because (1) these frequency patterns

82 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

0 1115650
0

2

4

6

8

10

12
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y
va

lu
e

When doubling the window size to 10, there is still no indication of false nega-
tives. Intervals with low dissimilarity are still easily discernible.

Figure 8.6: Tomcat with dissimilarity measure using window size 10

are much more common and (2) because of the polymorphic nature of object-
oriented software, it is much more realistic to find clusters in which not every
event is executed the same number of times over and over again. This can be
explained by the late binding mechanism in which the exact method invocation
depends on the type of data to be processed. We illustrate this with an example.
Consider Figure 8.8.

In the example from Figure 8.8, after eventa and eventb have been executed,
due to polymorphism there is a choice between for example events c, d or events
x, y.

Suppose fa = fb = fe and fa 6= fc, fa 6= fd. Neither for execution sequence 1
nor execution sequence 2 would this yield a zero dissimilarity value. The chance

8.4. RESULTS 83

0 80000 1115650
0

2

4

6

8

10

12

14

16

18
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y
va

lu
e

We again doubled the window size and have no indication of false negatives.

Figure 8.7: Tomcat with dissimilarity measure using window size 20

execution sequence 1 execution sequence 2
eventa eventa

eventb eventb

eventc eventx

eventd eventy

evente evente

Figure 8.8: Example of two execution traces with possible polymorphism

that fc = fx and fd = fy is pretty slim. That is why both execution sequences
give rise to a unique frequency signature. Unique, because when fc 6= fx or
fd 6= fy they will certainly generate different values for the dissimilarity measure.

Recording these frequency patterns as clusters when they tend to be present

84 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

multiple times in the event trace is a good idea, because they have some inter-
esting properties:
• They often tend to repeat themselves in the same locality.
• Manual inspection of the trace learned us that frequency patterns are

much more realistic: they are not concentrated around a small number of
methods and are constituted out of a variety of method invocations, often
originating from many different classes. As such, these clusters are much
more realistic in large-scale object-oriented systems.

8.4.2 Fujaba 4.0

For this case-study we have opted to perform two separate experiments. One
experiment is a repeat of the Tomcat experiment, but this time on Fujaba.
The second is an experiment whereby a scenario with some repetitive actions is
observed.

Fujaba experiment 1

For this experiment, we will not show the results for all window sizes as we
did for the Tomcat case-study, but we will go straight to the largest window
size, namely window size 20. In short we can say that the conclusions from
the Tomcat case remain valid: medium to large window sizes remain the most
interesting to distinguish the frequency patterns.

When looking at Figure 8.10, what immediately stands out is the oscillation
of the dissimilarity measure in the interval [1, 35000]. From manual inspection,
we learn that this behavior stems from the animated “splash screen”7 from
Fujaba. From index 35 000 onwards, we begin executing the scenario. This
scenario consists of the drawing of a simple class hierarchy. Intuitively it is
logical to assume that drawing a number of classes also invokes a sequence of
methods the same number of times. This is exactly what Figure 8.10 shows
when you look at the interval [35000, 45000].

Although this experiment is not a good example for the near-zero dissimi-
larity measure, it supports the frequency patterns theory. The regular pattern
that is visible after X-index 35000 is a good example of this.

7A splash screen is an introduction screen for a program that is starting up. In the case of
Fujaba it is animated and has text scrolling over it. Graphically it is quite heavy, so this can
explain the heavy oscillating behavior of the dissimilarity measure.

8.4. RESULTS 85

80000 90000 100000
0

0.5

1

1.5

2

2.5
x 10

5

Time (expressed in # events)

D
is

si
m

ila
rit

y
va

lu
e

Between time-index 87000 and 98000 there is a clear pattern of repetition, which
in the middle of that interval is slightly altered. Considering the fact that this
pattern ranges over around 10000 events, further investigation is warranted.
Close inspection learned us that this frequency pattern is the traversal of a linked
list. The slight alteration in the middle can be explained by polymorphism: not
all elements in the linked list have the same dynamic type and as such, there is
a slight distortation at this point.

Figure 8.9: Blowup of the interval [80000, 100000] of Figure 8.7 to show fre-
quency patterns

Fujaba experiment 2

Remaining with Fujaba, we conducted a second experiment. We defined a
specific usage-scenario with a highly repetitive nature. This scenario can be
described as follows: after starting the program, we defined a class-hierarchy.
The hierarchy consisted of one abstract base class, several child-classes, who
themselves also had a number of child-classes. The total hierarchy consisted of

86 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

0 1 2 3 4 5 6

x 10
4

0

5

10

15
x 10

4

Samples

D
is

si
m

ila
rit

y
va

lu
e

The most interesting interval is [35000, 45000]. Here we clearly see a four-time
repetition pattern: first there a two repetitions, then there is a sudden drop in
the dissimilarity, characterized by the thin white line in the visualization, before
there is again a two-time repetition, which is identical to the first two-time
repetition.

Figure 8.10: Fujaba with dissimilarity measure using window size 20

8 classes with a maximum nesting depth of 3.
Intuitively we expect that the visualization of the dissimilarity metric would

show an 8-time repetition. Figure 8.11 shows that this is indeed the case. The
graph shows 9 peaks in the dissimilarity value. Although these are interesting,
we are more interested in the 8 interlying “valleys” (or depressions). The reason
that these 8 regions are valleys and not peaks can be explained by the fact that
the methods who are working together to draw such a class are closely related
through their frequencies, which generates lower dissimilarity values.

These 8 valleys point to the functonality that is activated for drawing the

8.4. RESULTS 87

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

1.5

2

2.5
x 10

5

Samples

D
is

si
m

ila
rit

y
va

lu
e

8 "valleys"

This graph shows the dissimilarity evolution of Fujaba scenario with a high
degree of repetition. The executed scenario consisted of drawing a class hierarchy
consisting of 8 classes. The 8 corresponding “valleys” are annotated on the
graph. Note that the valleys become somewhat larger towards the end, this can
be attributed to the fact that the layout algorithm has to be called more times as
more objects are placed on the drawingcanvas.

Figure 8.11: Fujaba scenario with a high degree of repetition

class that is added to the hierarchy. Note however, how the valleys become
more stretched as we add more classes to the hierarchy. Inspection of the trace
showed that this is due to the layout algorithm which needs more actions to
perform the (re)layout operation due to the higher number of objects that have
to be placed.

Instead of showing listings from the actual trace to show you the repetitive
nature of the actions that can be seen around the X-axis interval [44 000, 54
000], we decided to use techniques for the detection of duplicate code. This

88 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

allows us to show you that the valleys in Figure 8.11 contain a lot of repetition
in the executed methods. This evidences only the repetitive nature of method
invocations when performing a specific functionality. The second aspect, namely
that methods working together to achieve a common goal have the same (or
related) method invocation frequency became clear after manual inspection of
the annotated trace (see also Section 8.2, step 4).

The duplicate code detection tool we used is called Duploc [Ducasse et al.,
1999]. This tool visualizes code duplication as a dotplot. The visualization
should be seen as a matrix, where both the X-axis and the Y-axis are lines in
the file. Every time that an identical line is found, a black dot is placed. So,
when comparing a file which contains absolutely no duplication with itself, all
the dots on the main diagonal will be marked. However, when duplication is
present in the file, other dots will also be marked. For example, when the i-th
line is identical to the j-th line, the dot with coordinates (i, j) will be marked
black. Duploc extends this basic principle with what is called a mural view,
which allows to scale the dotplot principle so that a small matrix of dots (e.g.
4) is replaced by one dot in the mural view. The color-intensity of the dot in the
mural view is determined by the number of dots in the matrix that are marked.
As such, the intensity can range from white (no duplication), over shades of
grey, to black, when all 4 dots in the matrix indicate duplication.

The result of applying Duploc is shown in the mural view of Figure 8.12.
Two interesting properties of this figure are:

1. (short) lines that run parallel to the main diagonal. This points to (quite
lengthy) duplication.

2. recurring patterns in the lower right quadrant of the figure. The very
similar shapes that can be spotted in the lower right quadrant also points
to a lot of repetition in the execution trace.

Moreover, when we compare this with the findings from Figure 8.11 we find
that the regions which are white in Figure 8.12 are the regions which come out as
“peaks” in Figure 8.11. White regions point to no duplication. This evidences
the fact that the methods which are performed during the peaks can in fact
be seen as glue code. This is in accordance with our earlier findings from the
dissimilarity value: regions with a high degree of repetition (and/or methods
that work together) show a relatively low dissimilarity value.

8.4. RESULTS 89

Figure 8.12 shows a mural view of the trace in the interval 44 000 till 54 000.
This mural view is produced by Duploc [Ducasse et al., 1999], a tool for detecting
duplicated code. In short, this technique plots a point every time a duplicate line
in the event trace is found. Logically, the diagonal (from top left to bottom right)
always contains such a dot. However, it becomes more interesting when you can
see other lines and/or patterns in it: this points to actual duplication.

Figure 8.12: Duploc output of part of the trace (event interval 44 000 to 54
000).

90 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

8.5 Discussion

By analyzing the charts we have presented in this chapter, combined with the
evidence we found in the execution traces and our knowledge from the internals
from the case studies themselves, we have made the following observations:

1. Regions with near-zero dissimilarity value are easy to spot, even with a
window size that is quite large. This means that we can easily use a big
window size, thus reducing the amount of data and still find sequences of
events that logically form a whole.

2. Frequency patterns are much more common than the first type of clus-
ters. How common they are exactly is difficult to state at the moment. We
presume that the size of the program, i.e. the number of classes and meth-
ods, plays a crucial role. Programs in which certain actions are performed
frequently also form better candidates for detecting frequency patterns.
Both Tomcat and Fujaba fall into this category. From our experiences
with the two case studies presented here, our predictions are that of the
full event trace, some 70% of the events can be catalogued as belonging
to a detected cluster. This number sounds reasonable, but is nevertheless
perhaps not optimal. A full 100%, however, can in our opinion never be
reached because of the necessary “glue code” between components of a
large software system.

3. The experiment in which we used a scenario with a highly repetitive na-
ture learned us that it is quite easy to spot functionality when using our
heuristic. A groups of methods working together for reaching a common
goal leave behind a very characteristic frequency pattern.

8.5.1 Connection with hypothesis

Now that we have the results from our experiment, we want to see how the
results we have obtained relate to the hypothesis we set out in Section 8.3.1.
We reprise our 4-part hypothesis and discuss how the hypothesis matches and
diverges from the results we have obtained.

1. The majority of the found clusters will in fact be frequency patterns.
The evidence from our two case studies does indeed point towards the
fact that the frequency patterns are more numerous than then regions
with near zero dissimilarity value.

2. Enlarging the window size introduces noise in the frequency signatures.
A large window size makes the analysis-step more efficient, because there
is less data for the end-user to go through. In general, frequency patterns

8.5. DISCUSSION 91

are also easier to distinguish, but when going for a window size that is too
large, frequency patterns can sometimes disappear in the visualization.

3. Shrinking the window size introduces noise on the results.
When the windows size is set too small, patterns appear in the visualiza-
tion that are not really there when browsing the actual trace. As such,
very small windows sizes (e.g. window size 2) should be avoided.

4. Regions in which a certain action is repeated become easily discernible.
As evidenced by Figures 8.9 and 8.11 this is true for the repetition of
respectively use case scenarios and internal functions.

8.5.2 Connection with the research questions

In Section 8.1.2 we set out three research questions that we hoped to be able
to answer within this research-track. We will recapitulate on these research
questions, before going over to the actual discussion of them:

1. Can we use the relative execution frequency to distinguish tightly collab-
orating methods or procedures in a trace?

2. Can we make a visual representation of the execution trace that is at a
time scalable and allows to identify these tightly collaborating entities?

3. Is it possible to use this visualization to help the end user navigate through
the trace and let him/her skip parts of the trace that are similar or iden-
tical?

We believe that the visualization we have presented makes it possible to
distinguish tightly collaborating entities. The best evidence that we have for
this claim is Figure 8.9, which visualizes an operation being performed on a
self-implemented linked list. The highly repetitive nature of the heartbeat vi-
sualization typically points to tightly collaborating entities of execution. Fig-
ure 8.11 on the other hand is interesting, because the heartbeat visualization is
characterized by 8 “valleys”. These 8 valleys correspond to the 8-time repeti-
tion of a specific use-case. The fact that the repetition of a use-case scenario is
visible as a valley in the heartbeat visualization, points in the direction that the
frequency of execution of the entities participating in that use-case have a very
similar frequency of execution. Similar frequencies lead to low(er) dissimilarity
measures, which in turn are visualized as valleys.

Furthermore, the example of the linked list indicates that it is possible to
identify repetition within a trace at the micro-level, while the 8 valley example
shows that the repetition of end-user functionality can be distinguished in the
visualization at the macro-level.

92 CHAPTER 8. FREQUENCY SPECTRUM ANALYSIS

8.5.3 Open questions

After performing our case studies, some open questions remain.
We have not established an ideal window size, as it proved to be related to

the size and structure of the program. More research however can be spent in
determining a window size that is acceptable for a wide range of programs.

A second open question is the dissimilarity measure used. Although the
Euclidian distance is the most commonly used distance metric, it is not perhaps
the best one for our type of experiment [Fraley and Raftery, 1998,Kaufman and
Rousseeuw, 1990]. Future experiments with different distance metrics should
bring clarity here.

Part IV

Industrial experiences

93

Chapter 9

Industrial case studies

The outcome of any serious research can only be to make two questions grow
where only one grew before.

—Thorstein Veblen

Talking about how important scalability is when performing dynamic analysis-
based techniques for program comprehension does not mean too much without
actually performing it on a large-scale case study. In this chapter we report on
such a large scale case study. Both the coupling-based and the frequency-based
approach that we have introduced earlier on will now be tried upon a large-scale
industrial application. Besides presenting the results of the techniques that we
have introduced earlier on, we are also reporting on some common pitfalls that
occur when working in a legacy environment and more specifically on some dif-
ficulties to enable dynamic analysis in such an environment.

9.1 Motivation

As we already mentioned in Chapter 1 this research was carried out within the
ARRIBA research project. This generic research project has a user-committee
that is populated by industrial partners to ensure the industrial applicability of

95

96 CHAPTER 9. INDUSTRIAL CASE STUDIES

the research done by the academic partners. As such, we had the opportunity
to validate our research within an industrial legacy environment.

In particular, the webmining heuristic and frequency spectrum analysis that
we introduced in Chapter 5 and 8 respectively, could now be validated in an
industrial context. Both techniques were initially fine-tuned and validated using
open-source case studies. Using open-source case studies for our initial experi-
ments allowed us to (1) ensure repeatability of the experiments for the scientific
community and (2) prepare this industrial experiment without burdening the
industrial partners in our research project too much during the development of
the heuristics. Now however, we could validate our techniques in an industrial
setting.

When considering this opportunity we established 4 goals for this research
track, namely:

1. We want to show the industrial relevance of the research conducted.
2. We can validate whether the techniques that were developed in the context

of object-oriented software would still function correctly in a procedural
context.

3. Due to the sheer size of industrial applications, we want to ensure the
scalability of the proposed techniques.

4. Perform a validation with real-life developers, instead of with documen-
tation left behind by the developers. This allows for a more interactive
approach and also for feedback loops that lead back into the research and
development of these techniques.

This chapter will report on our findings with regard to the 4 goals we set
out.

This work has been carried out in collaboration with Bram Adams and Kris
De Schutter from the University of Ghent, Belgium. Both Bram and Kris are
also active in the ARRIBA research project.

9.2 Industrial partner

The industrial partner that we cooperated with in the context of this research
experiment is Koninklijke Apothekersvereniging Van Antwerpen (KAVA)1. Kava
is a non-profit organization that groups over a thousand Flemish pharmacists.
While originally set up to safeguard the interests of the pharmaceutical pro-
fession, Kava has evolved into a service-oriented provider offering a variety of
services to their pharmacist members. Amongst these services is a tarification

1http://www.kava.be/ (In English: The Royal Pharmacists Association of Antwerp)

9.3. EXPERIMENTAL SETUP 97

service; tarification is determining the price a patient pays for his/her medica-
tion based on his/her medical insurance situation. Once the price to be paid
has been established through tarification, the patient pays the pharmacist the
share of the price that is not covered by the insurance, after which the pharma-
cist makes a claim for the other share from the insurance institution through
Kava. As such they act as a financial and administrative go-between between
the pharmacists and the national healthcare insurance institutions.

Kava was among the first in its industry to realize the need to automate this
complex (tarification) process, and they have taken it on themselves to deliver
this service to their members. Some 10 years ago, they developed a suite of
applications written in non-ANSI C for this purpose. This suite carries the
name ICA, an acronym for the Dutch Informatica Centrum Apotheek, which
can be translated into “pharmacy information processing center”.

Due to successive changes in the healthcare regulation, but also due to tech-
nology changes, the IT department at Kava is very much aware that refactoring
and reengineering applications is an almost constant necessity.

Furthermore, during their recent migration from UnixWare for Linux they
needed to make their application-suite ANSI-C compliant. Over the course
of this migration effort, it was noted that documentation of the applications
was outdated. This provided us with the perfect opportunity to undertake our
experiments.

9.3 Experimental setup

Applying dynamic analysis entails the collection of run-time data. When col-
lecting this data in a new environment, a number of technical or process related
choices need to be made. This section explains some of the choices we had to
make during the experiment.

9.3.1 Mechanism to collect run-time data

Introduction to aspect orientated programming

Aspect-orientation (AO) is a relatively new paradigm, grown from the limita-
tions of Object Orientation (OO) [Kiczales et al., 1997], and a fortiori those of
older paradigms. It tries to alleviate the problem of the “tyranny of the domi-
nant decomposition” by proposing a solution to deal with crosscutting concerns,
i.e. concerns which cannot be cleanly modularized by adhering to traditional

98 CHAPTER 9. INDUSTRIAL CASE STUDIES

object-oriented design principles. The proposed solution consists of the intro-
duction of a dedicated module, called an aspect. More formally, aspects allow us
to select by quantification (through pointcuts) which events in the flow of a pro-
gram (join points) interest us, and what we would have happen at those points
(advice). Hence we can ‘describe’ what some concern means to an application
and have the aspect-weaver match the pointcuts to the join points and insert
the advice at the appropriate place(s).

Thusfar, we only mentioned OO environments and that is also the direction
AOP research was heading until recently. Nevertheless, it is important to recog-
nize that crosscutting concerns have been in existence for many years without
adequate solutions. This situation precedes the advent of object orientation and
as such, deploying AOP solutions in legacy environments, seems a good idea.
This was the basic premiss of the work carried out by Kris De Schutter and
Bram Adams from the University of Ghent, who, in the frame of the ARRIBA
project, developed Cobble [Lämmel and De Schutter, 2005] and Aspicere2 [Zaid-
man et al., 2006a], AOP frameworks for Cobol and C respectively.

Why AOP?

Generating a trace in an industrial legacy environment is far from trivial. For
our experiments, several constraints were in place:

C1 The semantics of the original applications should remain intact.
C2 We do not want to go into the original source code before applying our

tools. I.e. the tools should be applicable to the source code “as is”.
Otherwise, we would require knowledge of what is in the sources, and this
is exactly what we are trying to recover.

C3 The tools should be deployable in other environments (operating systems,
platforms, compilers, . . .), so that performing other case studies or making
the tools readily available to a wider audience should be no problem.

C4 The existing build hierarchy should remain in place, with only minimal
alterations. To refactor the build system, considerable knowledge of its
current internals is needed, but again this is lacking.

AOP offers some interesting solutions to these constraints. Furthermore,
because Aspicere, the AOP solution we used, was built to work in legacy envi-
ronments, it offers additional solutions that help overcome the constraints we
previously set out.

1. Constraint C1 can be overcome by carefully writing the advice body of the

2Aspicere is freely available from http://users.ugent.be/ ˜badams/aspicere/

9.3. EXPERIMENTAL SETUP 99

tracing aspect, so that one can be assured that the original semantics of
the target application remain unaltered. In our particular case a tracing
aspect, which outputs information when entering and exiting a procedure,
was needed. This advice preserves the original semantics.

2. The base program on which the aspect-oriented solution is applied, is
unaware of any changes. The AOP pointcut construct allows to quantify
where to insert blocks of advice code. This obliviousness guarantees the
satisfaction of constraint C2.

3. Aspicere is built as a preprocessor. Because the aspect-weaver acts before
the actual C compiler, the result of applying Aspicere on a source file is a
new source file, ready to be compiled by the platform-specific C compiler.
This approach ensures constraint C3.

4. Considering the choice of a preprocessor architecture, constraint C4 can
be dealt with in two ways:
• Build an ad-hoc tool that scans the makefiles for calls to the compiler

and adds a call to Aspicere, just before the call to the compiler. This
can be seen as a precursor to an aspect weaver “avant-la-lettre” for
makefiles.

• Redirect all calls to the compiler, e.g. gcc, to a custom-built script
that first calls Aspicere and then does the actual call to gcc. This
solution is presented in [Akers, 2005].

As we will see later on, the makefiles are characterized by a very hetero-
geneous structure, with calls to a variety of different compilers and tools.
That is why we opted for the solution of building a simple ad-hoc tool
that parses the makefiles and adds calls to Aspicere.

Tracing aspect

To collect the trace for this case study, we used two aspects: the one depicted
below and a variant in which ReturnType is void.

ReturnType around tracing (ReturnType,FileStr) on (Jp):

call(Jp,"^(?!.*printf$|.*scanf$).*$")

&& type(Jp,ReturnType) && !str_matches("void",ReturnType)

&& logfile(FileName) && stringify(FileName,FileStr)

{
FILE* fp=fopen(FileStr,"a");

ReturnType i;

fprintf (fp,"before (%s in %s) \n",

Jp->functionName,Jp->fileName); /* call sequence */

100 CHAPTER 9. INDUSTRIAL CASE STUDIES

fflush(fp);

i = proceed (); /* continue normal control flow */

fprintf (fp,"after (%s in %s) \n",

Jp->functionName,Jp->fileName); /* return sequence */

fclose(fp);

return i;

}

9.3.2 Execution scenario

Finding an appropriate execution scenario to perform a dynamic analysis solu-
tion is quite often not straightforward. Having a number of developers readily
available to help with this choice is of course of great benefit. Therefore, we
went along with the proposal of the developers to trace the so-called TDFS3

application. The developers often use this application as a final check to see
whether adaptations in the system do not have any unforeseen consequences.
As such, it should be considered as a functional application, with a real-world
purpose delivering the results intended, but also as a form of regression test.

The TDFS-application produces a digital and detailed invoice of all pre-
scriptions for the healthcare insurance institutions. This is the end-stage of a
monthly control- and tariffing process and acts also as a control-procedure as
the results are matched against the aggregate data that is collected earlier in
the process.

9.3.3 Details of the system under study

Table 9.3.3 provides some facts about the application.

Name “ICA”
Number of C modules 407
LOC 453 000 (non-comment, non-blank)
Build process GNU make, hierarchy consisting of 269 individual makefiles
Current build platform Linux: vanilla Slackware 10.0
Status in use for > 10 years

Table 9.1: System passport

3TDFS is an acronym for the Dutch Tariferings Dienst Factuur (en) Statistiek(spoor).
Freely translated this would be “Tarification Service for Invoices and Statistics” in English.

9.4. RESULTS 101

9.4 Results

This section will cover the results we have obtained from applying frequency
spectrum analysis and webmining on the trace we have obtained from running
the TDFS application according to the execution scenario that was provided to
us by the developers.

9.4.1 Experimental setup of the validation phase

For the particular application we considered, TDFS, two developers were avail-
able at Kava. From now on we will call them D1 and D2. Both have a thorough
knowledge of the structure and the inner workings of this particular application.

Before we discussed our findings of their application with the developers, we
interviewed the developers separately. During this interview we used a schema
were we asked three questions about the 15 modules belonging to the TDFS
application:

1. Which module is the most essential?
2. Which module tends to contain most bugs?
3. Which module is the hardest to debug?
We noted their answers and also asked if there were any particular reasons

why they believed a certain module to be important, hard to debug or to contain
bugs. This questionnaire was particularly useful to validate the results we had
obtained from the webmining approach.

We then presented the results we had obtained, technique by technique, to
each of the two developers separately and wrote down their reactions, questions
and/or suggestions. Afterwards, during a short session we discussed the results
with both developers and highlighted similarities and differences in their answers
and/or reactions.

During the final stage of our experiment there was a feedback loop back to
the Kava development team in which we discussed a number of constructs that
could be removed from the code in order to make future maintenance easier.

9.4.2 Webmining

Resultset

Table 9.2 lists the results of applying the webmining heuristic to the Kava case
study. The classes (1st column) are ranked according to their hubiness value
(2nd column). Due to the normalization, all hubiness values lie in the range
[0, 1].

102 CHAPTER 9. INDUSTRIAL CASE STUDIES

Module Value
e tdfs mut1.c 0.814941
tdfs mut1 form.c 0.45397
tdfs bord.c 0.397726
tdfs mut2.c 0.164278
tools.c 0.164278
io.c 0.12548
csrout.c 0.0321257
tarpargeg.c 0
csroutines.c 0
UW strncpy.c 0
td.ec 0
cache.c 0
decfties.c 0
weglf.c 0
get request.c 0

Table 9.2: Results of the webmining technique

Some important facts that can be derived from Table 9.2 are:
• the heuristic clearly makes module e tdfs mut1.c stand out.
• only 7 out of the 15 modules have a value greater than zero. Modules

with a hubiness value of zero, do not call other modules. As such, import
coupling for these modules is non-existant4, while export coupling levels
are moderate to high.
• the 4 modules that are specific to the TDFS application show up in the 4

highest ranked places.

Discussion with developers

D1 mentioned e tdfs mut1.c and tdfs mut2.c as being the most essential mod-
ules for the TDFS application. io.c and cache.c are also important from a
technical point of view, but are certainly not specific to the TDFS application,
as they are used by many other applications of the system. D1 was actually
surprised at the fact that cache.c was not catalogued as being more important.
csrout.c and csroutines.c are difficult to debug, but they have only once had
to change some details in these file in a time period of 10 years.

D2 clearly ranks the e tdfs mut1.c module as being the most important and
most complicated module: it contains most of the business logic. tdfs mut2.c

4Import coupling measured within the full ICA project. Import coupling could exist with
regard to external libraries.

9.4. RESULTS 103

makes a summary of the operations carried out by e tdfs mut1.c and checks
the results generated by e tdfs mut1.c. tdfs mut1 form.c is mainly responsi-
ble for building up an interface for the end-user, while tdfs bord.c is concerned
with formatting the output.

Discussion

As such, the opinions of D1 and D2 are indeed very similar. D1 ranks e tdfs mut1.c
and tdfs mut2.c as being most important, D2 points to e tdfs mut1.c as being
the most important module.

The resultset of our own technique (see Table 9.2) clearly ranks e tdfs
mut1.c as being the most important module in the system. Furthermore, all
modules that are specific to this application appear at the top of the ranking.

Drawbacks – threats to validity

From the resultset of this case study, we noted two drawbacks:
• Classes or modules that are containers, i.e. data-structures with a number

of operations defined on them, are often ranked very low by our heuris-
tic. This can be explained by the fact that these modules are often self-
contained, i.e. they do not rely on other classes or modules to do their
work. As a consequence, these classes often have a high level of export
coupling and a low level of import coupling. The webmining algorithm
reacts to this by attributing these classes with a low hubiness value and
as such, a low ranking amongst other (non-container type) classes.
These properties explain why cache.c – a caching data-structure – which
was expected to rank higher according to D1, is ranked quite low.
• This particular case actually also serves as a counterexample. Our heuris-

tic places e tdfs mut1.c, tdfs mut1 form.c, tdfs bord.c and tdfs mut2.c
at the top of the ranking. It are exactly those four modules that are spe-
cific to the TDFS application, so a simple analysis of naming conventions
would have sufficed in this particular case.

9.4.3 Frequency analysis

Due to the huge size of the event trace (90GB ≈ 4.86×108 procedure calls), the
visualization we presented in Chapter 8, did not scale up to this huge amount
of data. Therefore, we opted for a slightly different solution. We still use fre-
quency of execution as the underlying model, but summarize the results before

104 CHAPTER 9. INDUSTRIAL CASE STUDIES

visualizing.

28580
e_tdfs_mut1::ReadCache

cache::Init_Periode
cache::memcpy

29986
io::InitMyData

io::isopen

6093357
tdfs_mut2::UW_atoi

UW_strncpy::atoi

(a) 100% cohesion (b) > 50% cohesion (c) ≤ 50% cohesion

Figure 9.1: Three frequency clusters from the TDFS application

A fragment of the result is shown in Figure 9.1, the full resultset can be found
in Appendix B. Figure 9.1 depicts three “frequency clusters”. Each cluster shows
the total execution frequency, and the procedures that fall into this frequency
interval. Different kinds of boxes can be perceived, to indicate the level of
cohesion within a frequency cluster: a box with a full line (Figure 9.1.c) indicates
that ≤ 50% of the methods in the cluster come from the same module, a dashed
line (Figure 9.1.b) indicates total cohesion as all procedures belong to the same
module. A dotted line (Figure 9.1.a) meanwhile indicates a level of cohesion
within the frequency-cluster of between 50 and 100%.

In total, 237 unique procedures were executed during the scenario. Of these,
160 could be clustered into 25 frequency-clusters (these can be found in Ap-
pendix B. In other words, 67.5% of the procedures could be catalogued in clus-
ters. When considering the cohesion of each of these frequency-clusters, we have
the following distribution: two of these clusters had a full line, i.e. they did not
show cohesion. 12 had a dashed line, meaning that all procedures within a
frequency-cluster originated from a single module, while the 11 others had a
dotted line, also indicating a strong level of cohesion.

This technique provides an easy way to find procedures that share common
goals, because they are related through their frequency of execution. Further-
more, it allows to easily audit the system when it comes to cohesion.

Discussion with the developers.

D1 immediately remarked that one of the two frequency clusters with a full
line, i.e. a cluster with a limited degree of cohesion, was actually a wrapper
construction they had hastily constructed when performing the migration from

9.5. PITFALLS 105

UnixWare to Linux.
The clusters found did not surprise the developers either.

Discussion

For our particular case study, 48% of the clusters were found to be fully cohe-
sive. These fully cohesive clusters are accountable for 20% of the procedures.
44% were found to be strongly cohesive; these clusters contain 49% of the to-
tal number of procedures. The largest non-cohesive cluster had a frequency of
execution of 1, consisting mainly out of procedures with initialization function-
ality. The other non-cohesive cluster was the one that caught D1’s attention for
containing wrapper functionality.

As such, we can conclude that the system is actually well-structured, as most
clusters were cohesive and these account for 70% of all procedures.

9.5 Pitfalls

This section describes some unexpected experiences we had while performing
our dynamic analyses in the legacy context we described in Section 9.2. Some
of these experiences seem to be closely related with the usage of AOP for col-
lecting our traces, but we have strong indications that other trace-collection
mechanisms, e.g. AST rewriting techniques as presented by Akers [Akers, 2005],
suffer from similar problems when applied in similar conditions.

This section describes some of our experiences and how we coped with them.

9.5.1 Adapting the build process

The Kava application uses make to automate the build process. Historically,
all 269 makefiles were hand-written by several developers, not always using the
same coding-conventions. During a recent migration operation from UnixWare
to Linux, a significant number of makefiles has been automatically generated
with the help of automake5. Although a sizeable portion of the 269 makefiles are
now generated by automake and thus have a standardized structure, a number
of makefiles still have a very heterogeneous structure, a typical situation in
(legacy) systems.

5Automake is a tool that automatically generates makefiles starting from configuration
files. Each generated makefile complies to the GNU Makefile standards and coding style. See
http://sources.redhat.com/automake/.

106 CHAPTER 9. INDUSTRIAL CASE STUDIES

We built a primitive tool, which parses the makefiles and makes the necessary
adaptations so that our AOP solution Aspicere is applied on each source-code
file, before this file is compiled. A typical before and after example of the
necessary makefile modifications is shown in Figures 9.2 and 9.3. However, due
to the heterogeneous structure of a portion of the makefiles, we were not able
to completely automate the process, so a number of makefile-constructions had
to be manually adapted.

$(CC) -c -o file.o file.c

Figure 9.2: Original makefile.

$(CC) -E -o tempfile.c file.c

cp tempfile.c file.c

aspicere -i file.c -o file.c \

-aspects aspects.lst

$(CC) -c -o file.o file.c

Figure 9.3: Adapted makefile.

The adaptations to be made become more difficult, when e.g. Informix esql
preprocessing needs to be done (see Figures 9.4 and 9.5).

.ec.o:

$(ESQL) -c $*.ec

rm -f $*.c

Figure 9.4: Original esql makefile.

.ec.o:

$(ESQL) -e $*.ec

chmod 777 *

cp ‘ectoc.sh $*.ec‘ $*.ec

$(ESQL) -nup $*.ec $(C_INCLUDE)

chmod 777 *

cp ‘ectoicp.sh $*.ec‘ $*.ec

aspicere -verbose -i $*.ec -o \

‘ectoc.sh $*.ec‘ \

-aspects aspects.lst

$(CC) -c ‘ectoc.sh $*.ec‘

rm -f $*.c

Figure 9.5: Adapted esql makefile.

Our tool takes only a few seconds to go over the 269 makefiles and make the
necessary alterations. Detecting where exactly our tool failed through makefile
code inspections took several hours and even some build cycles were lost because
of remaining errors in the makefiles.

This tool, however primitive, can be seen as an AOP solution for makefiles
“avant-la-lettre”. We used simple string-matching to detect places where the

9.5. PITFALLS 107

compiler was called and inserted an extra call to Aspicere before the actual call
to the compiler.

9.5.2 Legacy issues

... impacting quality

Even though Kava recently migrated from UnixWare to Linux, some remains of
the non-ANSI implementation are still visible in the system. In non-ANSI C,
method declarations with empty argument list are allowed. Actual declaration
of their arguments is postponed to the corresponding method definitions. As is
the case with ellipsis-carrying methods, discovery of the proper argument types
must happen from their calling context. Because this type-inferencing is rather
complex, it is not fully integrated yet in Aspicere. Instead of ignoring the whole
base program, we chose to“skip” (as yet) unsupported join points, introducing
some errors in our measurements. To be more precise, we advised 367 files, of
which 125 contained skipped join points (one third). Of the 57015 discovered
join points, there were only 2362 filtered out, or a minor 4 percent. This is likely
due to the fact that in a particular file lots of invocations of the same method
have been skipped during weaving, because it was called multiple times with
the same or similar variables. This was confirmed by several random screenings
of the code. These screenings also showed that there is no immediate threat
to the validity of this particular experiment (as the skipped join points were
not located in files that belonged to the TDFS package). Nevertheless, similar
situations in other cases could impact the validity of the resultset.

... impacting performance

Another fact to note is that we constantly opened, flushed and closed the trace-
file, certainly a non-optimal solution from a performance point of view. Nor-
mally, Aspicere’s weaver transforms aspects into plain compilation modules and
advice into ordinary methods of those modules. So, we could get hold of a static
file pointer and use this throughout the whole program. However, this would
have meant that we had to revise the whole make-hierarchy to link these uniques
modules in. Instead, we added a “legacy” mode to our weaver in which advice
is transformed to methods of the modules part of the advised base program.
This way, the make-architecture remains untouched, but we lose the power of
static variables and methods.

108 CHAPTER 9. INDUSTRIAL CASE STUDIES

9.5.3 Scalability issues

Compilation

A typical compile cycle of the original application consisting of 407 C modules
(453 KLOC in total) takes around 15 minutes6. With the introduction of the
AOP solution into the build process, the compile cycle now looks like:

1. Preprocess
2. Weave with Aspicere
3. Compile
4. Link

While the original compile cycle for the whole system took 15 minutes, the
new cycle lasts around 17 hours. The reason for this substantial increase in
time can be attributed to several factors, one of which may be the time needed
by the inference engine for matching up advice and join points. There is also
evidence that a lot of backtracking takes place, but the currently used Prolog
engine [Denti et al., 2001] does not process this in an optimal way.

Running the program

Not only the compilation was influenced by our aspect weaving process. Also
the running of the application itself. The scenario we used (see Section 9.3.2),
normally runs in about 1.5 hours. When adding our tracing advice, it took 7
hours due to the frequent file I/O.

Tracefile volume

The size of the logfile also proved problematic. The total size is around 90GB,
however, the linux 2.4 kernel Kava is using was not compiled with large file
support. We also hesitated from doing this afterwards because of the numerous
libraries used throughout the various applications and fear for nasty pointer
arithmetic waiting to grab us. As a consequence, only files up to 2GB could be
produced. So, we had to make sure that we split up the logfiles in smaller files.
Furthermore, we compressed these smaller logfiles, to conserve some diskspace.

Once compressed with gzip, the 90GB of data was reduced to approximately
620MB. 90GB of trace data stands for approximately 9.72 × 108 events (calls
and exits), which means that there are approximately 4.86×108 procedure calls.

6Timed on a Pentium IV, 2.8GHz running Slackware 10.0

9.6. DISCUSSION 109

Effort analysis

Table 9.3 gives an overview of the time-effort of performing each of the analyses.
As you can see, even a trouble-free run (i.e. no manual adaptation of makefiles
necessary) would at least take 29 hours, when performing one analysis, and
would take slightly under 40 hours when performing all analyses consecutively.
Of course, some speed-ups can be obtained from running the two analyses in
parallel.

Task Time Previously
Makefile adaptations 10 s –
Compilation 17h 38min 15min
Running 7h 1h 30min
Frequency analysis 5h –
Webmining 10h –
Total 39h 38min 10s 1h 45min

Table 9.3: Overview of the time-effort of the analyses.

9.6 Discussion

This chapter reports on a research track where we applied our recently developed
techniques in an industrial legacy C context. This section presents a discussion
on the goals of this research track and highlights strengths and weaknesses of
the approach we have taken.

Goals

In Section 9.1 we set out 4 goals for this research track. During this discussion,
we will again focus on each of these goals and see whether we achieved what we
set out to do.
• Industrial relevance of the research conducted.

Our experiments do not give conclusive evidence on whether there is strong
industrial relevance for knowing which classes or modules are essential
during early stages of program comprehension. The developers at Kava
did point out however, that such information is probably useful when
instructing a new co-worker, who is unfamiliar with the project.

110 CHAPTER 9. INDUSTRIAL CASE STUDIES

• Validation of techniques in procedural programming context.
As a third case study for both the frequency analysis and the webmining
technique, the general tendencies that we had found with the previous
case studies is confirmed, even though this is the first case study in a
procedural programming language context.
• Scalability of proposed techniques.

Scalability is often seen as the major stumbling block when performing
dynamic analysis [Larus, 1993]. We have taken special care during the
design and development of our techniques to make them scalable. With
regard to this aspect, we discuss the frequency analysis and the webmining
techniques separately:

– During the case study the webmining technique scaled more than
adequately to the challenge of providing a resultset for an industrial
medium-scale legacy application. In absolute terms, the 10 hour wait
before the results are available is long, but we also have to consider
that just reading the 90 GB of data from file takes a long time,
even without performing any computation. Furthermore, we are also
aware of a number of possible optimizations that we could perform
on the algorithm, but at this point these remain untested.

– With regard to the frequency analysis technique, we were disap-
pointed to see that even though the basic frequency analysis tech-
nique works finely, generating the visualization proved unsuccessful
due to the immense size of the trace. The scalability problem we
encountered has two distinct facets to it: on the one hand, the visu-
alization could not be visualized in its entirety, due to memory prob-
lems, while on the other hand, even if we could have visualized it,
the resulting visualization would have become overwhelmingly large,
which would have negatively impacted the cognitive scalability.

• Validation of resultset with real-life developers.
Having several developers (two in our case) cooperate, implies that several
opinions exist regarding the importance of certain classes or modules in
a system. However, in this case study, the general direction was clear
and there were no major discrepancies in the views of both developers.
Furthermore, the modules they pointed out as being most important, were
the same modules that our webmining technique ranked at the top.

9.6. DISCUSSION 111

Results

From the resultsets we obtained from our dynamic analysis experiments, we can
conclude that:
• The webmining approach results in a ranking of modules according to their

importance from a program comprehension point of view. Interviews with
the developers fully confirm the results that our heuristic delivered. The
only false negative we could note, was a container class that the developers
deemed important, but was judged as being unimportant by our technique.
This is due to the low to non-existent level of import coupling for this
particular module.
• The frequency analysis approach allowed to easily audit the system’s inter-

nal structure. We found that most of the modules are (strongly) cohesive,
which indicates that the structure is well balanced and reuse is a definite
possibility. The developers agreed with our views and told us that many
modules are frequently reused.

Technical limitations

As a vehicle to perform our dynamic analysis, we used Aspicere, which allowed
us to use the clean and non-intrusive, yet powerful mechanism of Aspect Orien-
tation to trace the entire application.

As a clear downside of our approach, we should note the effort it takes to
perform the entire analysis. If no problems are encountered, the entire analysis
we described takes around 39 hours, for a system that should be considered as
medium-scale. As such, we acknowledge that we should improve the efficiency
of our tools.

112 CHAPTER 9. INDUSTRIAL CASE STUDIES

Part V

Concluding parts

113

Chapter 10

Related Work

Programmers have become part historian, part detective, and part clairvoyant.

— Thomas A. Corbi

“Program understanding: Challenge for the 90s” is the title of a paper pub-
lished in 1990 by Thomas Corbi in the IBM Systems Journal [Corbi, 1990]. In
this paper he reminds us that a significant gain in efficiency can be attained
when the program comprehension process can be stimulated. No wonder then,
that over the last few years, program comprehension has gained much attention
and has been — and still is — an active area of research. In this chapter, we
will discuss some of these past and current research efforts.

10.1 Dynamic analysis

Dynamic analysis techniques come in many forms and usually they also all have
slightly different goals. Some of the techniques focus on retrieving features from
execution traces, others aim at performing a clustering of a static representation
of a software system with the help of dynamic information. In this section we
discuss a variety of dynamic analysis based techniques, which almost all share
a common theme: helping the user to better understand the software system,
by presenting the user with an acceptable amount of information.

115

116 CHAPTER 10. RELATED WORK

Greevy Greevy is working on a solution whereby the features of a software
system can be correlated to classes and vice versa. To do this, she uses feature-
traces, which are execution traces that are the result of executing a very specific
feature (or a very small set of features). When a number of these features trace
are available, she is able to classify classes as being responsible for only one
feature, a set of features or all features available in the system. Vice versa, she
also catalogs features that are demanding services from one method or class, a
number of methods or classes or all methods or classes in the system [Greevy
and Ducasse, 2005].

Hamou-Lhadj Hamou-Lhadj has proposed several solutions to overcome the
scalability issues surrounding dynamic analysis. One of the solutions he has
been working on is to automate the selection process of which classes (or other
entities) to include in the execution trace and the subsequent analysis. Where
in our experiments we explicitly did not trace any classes that are part of the
standard library, the solution provided by Hamou-Lhadj would automate this
up to a certain point. The basic idea is to detect those classes and entities in the
software system that can be classified as utility components and subsequently
remove them from the analysis process. The basic means by which these utility
components are detected is a fan-in analysis [Hamou-Lhadj et al., 2005].

Another solution Hamou-Lhadj has presented is trace summarization. He
describes how a number of concepts that are also used when summarizing nat-
ural text can be helpful when trying to summarize execution traces, e.g. by
extracting important methods based on naming conventions [Hamou-Lhadj and
Lethbridge, 2006].

Furthermore, Hamou-Lhadj also advocates the use of a meta-model to store
dynamic runtime information from object-oriented systems, which is termed
the Common Trace Format or CTF [Hamou-Lhadj, 2005b, Hamou-Lhadj and
Lethbridge, 2004].

Mancoridis et al Based on the clustering tool Bunch, which was developed
by Mancoridis et al [Mancoridis et al., 1999], Gargiulo and Mancoridis developed
Gadget, a tool to cluster the entities of a software system based on dynamically
obtained data [Gargiulo and Mancoridis, 2001]. The goal of using Gadget is to
make the often complex structure of software systems more explicit and easier
to understand.

Gadget builds up a dynamic dependency graph, a graph in which classes are
represented as nodes and calling relationships as edges. These calling relation-

10.1. DYNAMIC ANALYSIS 117

ships are extracted from the obtained execution trace. On this graph then, they
apply Bunch, which delivers a clustering of the original graph. This approach
is very similar to what our webmining approach does with the compacted call
graph (see Chapter 5).

Because of the similarities between our own approach and the approach
from Gadget, we did an initial experiment to see whether the clusters that were
identified by Bunch had their counterparts in the resultset of our webmining
approach. To our surprise, there was no clear match between these two resultsets
and as such, we see the further analysis of these two techniques as an important
direction for future research.

Richner et al Richner’s and Ducasse’s approach is based on storing both
statically and dynamically obtained information from a software system in a
logic database [Richner, 2002]. First, static and dynamic facts of an object-
oriented application are modeled in terms of logic facts, after which queries can
be formulated to obtain information about the system. As a case study they
use HotDraw implemented in Smalltalk [Richner and Ducasse, 1999].

In order to overcome scalability problems, they advocate an iterative use of
the technique. This means that when having obtained a (high-level) view of the
software through queries, the results of this view are used to restrict the tracing
operation to the parts of the software that you are trying to focus on. This
allows for a refinement of the views obtained from using the tool.

The Collaboration Browser tool that they describe is explicitly targeted at
recovering collaborations between classes, without having to rely on visualiza-
tion techniques [Richner and Ducasse, 2002]. Its focus is on understanding the
system in the small, rather than understanding the system as a whole. The
underlying model that is built around dynamically gathered information, is
queried using pattern matching criteria in order to find classes and interactions
of interest.

Systä To overcome the scalability issues of analyzing large execution traces
through variations of Jacobson interaction diagrams [Jacobson, 1995], Systä uses
the SCED environment to synthesize state diagrams from interaction diagrams
[Systä, 2000b, Systä, 2000a]. State diagrams, which are a variation on UML
statechart diagrams, allow to observe the total behavior of an object, while
interaction diagrams focus more on sequential interactions between several ob-
jects.

Another research path Systä follows is the combination of static and dy-

118 CHAPTER 10. RELATED WORK

namic information [Systä, 1999]. One of the observations made is that when
combining static and dynamic information, one has to choose very early on
which of these two sources of information will be the base layer and which ap-
proach will be used to augment this base layer. The experiment described deals
with Fujaba, which is reverse engineered with the help of the Rigi static reverse
engineering environment [Wong et al., 1995] and is augmented with dynamic
information [Systä, 1999].

10.2 Visualization

Using dynamic analysis for program comprehension purposes means that you
have to work your way around the often sizeable sets of dynamic information
that get collected during a program run. A possible solution to overcome the
size of these sets of information is through a well thought-out visualization.
This section describes some of the most common visualization-oriented research
ideas.

De Pauw et al De Pauw et al are known for their work on IBM’s Jinsight,
a tool for exploring a program’s run-time behavior visually [De Pauw et al.,
2001]. Jinsight is a research prototype that first emerged from IBM’s T.J.
Watson Research Center in 1998. Since then a number of its features have been
adopted in the Hyades plugin for the Eclipse Java IDE. In 2005 this plugin was
absorbed into the Eclipse Test & Performance Tools Platform (TPTP).

One of the main program comprehension applications of Jinsight (and its
derivatives) is the generation of Jacobson interaction diagrams [Jacobson, 1995],
similar to UML’s sequence diagrams. Even though this visualization is much
more scalable then previous solutions to visualize execution traces, there is still
room for improvement. A more scalable visualization is proposed by De Pauw
with the concept of the execution pattern notation [De Pauw et al., 1998]. See
Figure 10.1 for an example.

Other possible uses of Jinsight and its derivatives are: following the behavior
of multi-threaded object oriented programs, detecting memory leaks, detecting
hotspots, etc.

Jerding et al Jerding et al have developed a tool called ISVis (Interactive
Scenario Visualizer) [Jerding et al., 1997]. One of its possible usages is to help
alleviate the architecture localization problem, or the problem of finding the

10.2. VISUALIZATION 119

C DA B

D

A B C

A

(a) (b)

Figure1:Sim pleinteraction diagram (a)and itscorresponding execution pattern (b)

Figure2:Sim pleexecution pattern

update m essage. Then he can brow se through
view s,like Figure 3,depicting the w aysdifferent
Bus-Observer objectshandled theupdate m es-
sage.
In this exam ple, an initial m essage update

is sent to the black Bus-Observer object
(ID=762). Itrespondsby sending a m essageno-
tify pending to the purple EClassModel ob-
ject(ID=761). N ext,the Bus-Observer objects
sendsa Phrase m essageto theorange Annobus
object(ID=758).Finally,itsendsanotherm essage
to thepurpleEClassModel object(ID=761).

3.1 CollapsingandExpandingSubtrees

N ow suppose the program m erw ants to explore
theresponseofthisupdate m essageto theBus-
Observer object(ID=762)in m oredetailthanFig-

ure3provides.Youcanseethatthedepictionofthe
Annobus object(ID=758)and thelow er(i.e.,later)
depiction of the EClassModel object (ID=761)
have a beveled border,m aking them look raised
as opposed to flat. A raised rectangle indicates
thattheobjectreacted to thestim ulusby sending
oneorm orem essages.
Clickingonaraisedobjectrevealsthem essage(s)

thatthisobjectsentalong w ith the object(s)that
received them essage(s).Afterclicking on subse-
quentraised objects,w egetaview liketheonein
Figure4.(N otetheself-invocationoftheEClass-
Model object.)Allobjectsappearflatnow,m ean-
ing thatno hidden m essagesrem ain. Ifw e don’t
w anttoseeapartoftheexecution,w ecan collapse
partoftheview byclickingonaflatobject,thereby
hiding itsresponses. The objectw illnow appear
beveled asbefore.
Thissim pletechniqueofexpandingand collaps-

ing isa helpfulnavigation tool.The program m er
can selectively drilldow n to any levelofdetail
w ithoutbeing flooded w ith inform ation. M ore-
over,them etaphorisrem iniscentofhow encapsu-
lation w orksin object-oriented program s:details
ofhow an objectperform sagiven taskarehidden
unlesssoughtexplicitly.

3.2 Changing Context

A program m erislikelytoasktw oquestionsatthis
point: “W ho sentthe initialm essage update to
Bus-Observer 762?” and “W hatw asthecontext
ofthatm essage?” The system can take us up a
levelto view thesenderofthisupdate m essage.

Figure 10.1: Simple interaction diagram (a) and its corresponding execution
pattern (b) [De Pauw et al., 1998]

exact location in a system’s architecture where a specific enhancement can be
inserted into the system [Jerding and Rugaber, 1997].

ISVis generates views of execution traces that are similar to Jacobson inter-
action diagrams [Jacobson, 1995]. The tool environment however allows to make
a more compact visualization by e.g. grouping together classes in package-like
structures, by removing utility classes, etc. Furthermore, it allows to visually
identify similar (sub)scenarios in execution traces and has limited capabilities
to recognize these similar scenarios automatically through pattern matching.
Another feature that helps improve scalability is a mural view that portrays
global overviews of scenarios [Jerding and Stasko, 1998]. For completeness sake,
we mention that the approach of ISVis is actually a hybrid approach, wherein
static and dynamic analysis are combined.

Ducasse et al Ducasse, Lanza and Bertuli describe how they use polymetric
views, as used in the CodeCrawler tool [Lanza, 2003], to visualize a condensed
set of run-time information [Ducasse et al., 2004]. Using a condensed set of
information means that there is no need to keep and analyze the complete trace,
rather their approach is based on collecting measurements during the execution,
such as the number of invocations, the number of object creations, the number
of used classes/methods, etc.

With these run-time measurements, they are able to provide insight into a

120 CHAPTER 10. RELATED WORK

system in a relatively lightweight manner. They present their results in three
different polymetric views, namely:
• Instance usage view: shows which classes are instantiated and used during

the system’s execution.
• Communication interaction view: shows the (strength of) communication

between classes of a system during its execution.
• Creation interaction view: shows the number of instances a class creates

and the number of instances each class has.

Reiss and Renieris Reiss and Renieris describe several techniques to encode
program executions [Reiss and Renieris, 2001]. Their main concern is to offer
a way to compact the trace. They use basis mechanism such as run-length
encoding and grammar-based encoding to shorten the trace.

Another approach they discuss is interval compactation. For this approach,
they break the execution trace into a small set of intervals (for example 1024
events) and then do a simple analysis within each of the intervals to highlight
what the system is doing at that point. Although they remain quite vague about
the inner-workings of their algorithm, the resulting visualization and the ideas
behind it have a ressemblance to our own heartbeat visualization that we use
in combination with our frequency spectrum analysis.

Walker et al Walker et Al describe a visualization that has a temporal com-
ponent to it [Walker et al., 2000] [Walker et al., 1998]. The visualization consists
of a temporally-ordered series of pictures, so-called cells, each detailing informa-
tion about a corresponding point in time in the execution of the system being
analyzed.

10.3 Industrial experiences

Wong et al Wong et al describe their experiences with re-documenting in-
dustrial legacy applications with the help of their Rigi static reverse engineering
environment [Wong et al., 1995]. They have applied Rigi on COBOL, C and
PL/AS1 systems. The PL/AS experiment described in [Wong et al., 1995] ex-
hibits a close resemblance with our own experiments, as the goals and setting
were very similar: a large scale industrial legacy application with 2M LOC and
1300 compilation units (here written in a proprietary language, not ANSI-C).

1Programming Language/Advanced Systems (IBM).

10.3. INDUSTRIAL EXPERIENCES 121

Because of the large scale of the application, they also focussed on delivering
scalable reverse-engineering techniques. One of the most significant lessons they
learned from their experiments is that in-the-large design documents describing
the architecture of the software system’s current state can be very beneficial
for building up understanding of a software system and maintaining it. Fur-
thermore, they have followed a path similar to ours when it comes to validating
their approach, namely by involving the developers and maintainers and check-
ing whether the mental models from the developers and maintainers concur with
the information they retrieved. Another similarity with our own experiences is
the effort it takes to perform their analysis, although we must remark here that
the available computing power in 1995 is likely to be different from that available
10 years later.

122 CHAPTER 10. RELATED WORK

Chapter 11

Conclusion

I hope you become comfortable with the use of logic without being deceived into
concluding that logic will inevitably lead you to the correct conclusion.

—Neil Armstrong

This chapter presents our conclusions with regard to the heuristics we have
developed and the experiments we have undertaken. Furthermore, it provides a
number of possible directions for future research.

11.1 Conclusion

In our hypothesis (see Chapter 1) we state that within the run-time information
space two axes, namely dynamic coupling and relative frequency of execution,
are good candidates to develop heuristics for program comprehension purposes.
We now discuss our experiences for each of these two axes separately.

11.1.1 Dynamic coupling

The heuristic that uses dynamic coupling measures, allows to identify the most
need-to-be-understood classes in a system. Detecting these classes very early
on in the program comprehension process allows the end user to direct his/her

123

124 CHAPTER 11. CONCLUSION

attention towards these classes and start exploring the software system from
there.

We experimented with a number of different dynamic coupling metrics and
also compared direct and indirect coupling solutions. To simulate this indirect
coupling, we used the HITS webmining algorithm. Our experiments have shown
that taking indirect coupling into account delivers the best results.

Using publicly available extensive documentation of two open source case
studies, we have performed an intrinsic evaluation of this approach. The val-
idation has learned us that we are able to recall 90% of the classes marked
as need-to-be-understood by the developers, while maintaining a precision of
60%. These results are completely satisfactory, although in an ideal situation,
we would have liked to have an even higher level of precision.

We have also applied this technique on an industrial legacy C environment,
where the approach again delivered good results in the sense that the modules
that the developers designated as being important were ranked very high in the
resultset of our approach.

With regard to scalability, our main point of focus, we have a somewhat
mixed image. Our approach allows to process huge (e.g. 90 GB) event traces,
but of course, this takes time to process (in our industrial case study 10 hours).
We believe that our approach can still be optimized, but we have to be realistic
in the fact that processing gigabytes of event traces will always take time, as
will the collection of the execution trace. On the cognitive scalability front, we
are very much pleased that our resultset is concise, while still being relatively
precise.

As a control experiment to see whether the effort of using dynamic informa-
tion is indeed beneficial, we have experimented with applying the same basic
technique on statically collected coupling data. While a slight improvement in
round-trip-time could be noted, we were also confronted with a drop in recall
from 90% dynamically to 50% statically. Precision fell similarly from 60% to
8%. This clearly indicates that using dynamic analysis, with its goal oriented
strategy, pays dividends when used for program comprehension purposes.

11.1.2 Relative frequency of execution

Through the heartbeat visualization that we have obtained with building a
heuristic around the concept of relative frequency of execution we have been
able to make an abstract visualization of the execution of a software system.

On a macro-level scale our visualization allows to identify parts in a trace
where the same — or similar — functionality is executed. As an example we

11.2. OPPORTUNITIES FOR FUTURE RESEARCH 125

have drawn a simple class hierarchy in Fujaba — one of our case studies — that
consists out of 8 classes. The resulting heartbeat visualization clearly contains
8 valleys at the points in time were these 8 classes are drawn. Through the
knowledge that one of these valleys in the visualization is conceptually linked
with the execution of the particular functionality, the end-user can focus on
studying the execution trace of only one of the applications of that functionality
(instead of focussing on all 8).

On a micro-level scale on the other hand, we have been able to distin-
guish the traversal of a self-implemented linked list in the heartbeat visualiza-
tion. The complete traversal of the linked list in our example requires around
10000 method exchanges, which, thanks to the visualization, can now be quickly
skipped because of the high degree of similarity.

As such, both on a macro and on a micro scale, the visualization allows to
discern the repetitive calling of specific functionality, thereby allowing the user
to quickly go over these similar regions in the execution trace (or the resulting
interaction diagram visualization).

With regard to scalability, the open source case studies we performed have
shown that the technique is fairly scalable. In the case of the industrial case
study however, where we needed to visualize 90 GB of trace data, we were
unable to visualize the trace in its entirety. We did however recover the basic
underlying mechanism to produce the frequency clusters visualization. This has
allowed us to make a quick assessment of the industrial application’s structure.

11.2 Opportunities for future research

Aspect based slicing We see a clear opportunity for future research in a
concept that we call “aspect based slicing”. Based on our research for identifying
the important classes in a system, we want go one step further by also identifying
the key collaborations among these important classes and the collaborations that
these important classes have with other tightly-related classes.

To accomplish this, we are thinking of using aspect-orientation and more
specifically the cflow pointcut, which would allow to obtain a very selective
trace of all methods that belong to the important classes and their immediate
collaborators.

Static analysis and hybrid approaches Another path that we want to
pursue in the future is to try and improve the effectiveness of our current ap-
proaches, by also taking into account static information. This would lead to a

126 CHAPTER 11. CONCLUSION

hybrid approach, where the dynamic analysis results are augmented by static
information.

Bunch As we have already indicated in Chapter 10, a thorough comparison
of our approach and that of the Bunch clustering tool is also a viable research
direction.

Part VI

Appendices

127

Appendix A

HITS webmining

A.1 Introduction

The HITS webmining algorithm we introduced in Chapter 5 is said to be conver-
gent [Kleinberg, 1999]. This property of convergence implies that the algorithm
will find a stable set of hub and authority nodes in a graph in a limited number
of iterations. This appendix shows the proof of this convergence criterion, taken
from Kleinberg [Kleinberg, 1999].

A.2 Setup and proof

Consider the following setting, taken directly from the domain of webmining.
Consider a collection V of hyperlinked pages as a directed graph G = (V,E):

the nodes correspond to the pages and a directed edge (p, q) ∈ E indicates the
presence of a link from p to q. Each page p is associated with a nonnegative
authority weight x<p> and a nonnegative hub weight y<p>. We view pages with
larger x-values and y-values as being “better” authorities and hubs respectively.

We add an invariant that the weights of each type are normalized so their
squares sum to 1: ∑

p∈S

(x<p>)2 = 1 ;
∑
p∈S

(y<p>)2 = 1

The mutually reinforcing relationship between hubs and authorities is defined
with the help of two operations on the weights, these operations are denoted by

129

130 APPENDIX A. HITS WEBMINING

J and O. Given weights { x<p>}, {y<p>}, the J operation updates the x-weights
as follows:

x<p> ←
∑

q:(q,p)∈E

y<q> (A.1)

The O operation then, which updates the y-values, is defined as follows:

y<p> ←
∑

q:(p,q)∈E

x<q> (A.2)

Now, to find the desired equilibrium values for the weights, one can apply
the J and O operations in an alternating fashion, and see whether a fixed point
is reached. Indeed, we can now state a version of our basic algorithm. We
represent the set of weights {x<p>} as a vector x with a coordinate for each
node in the graph G; analogously, we represent the set of weights {y<p>} as a
vector y.

Iterate(G,k)

G: a collection of n linked pages

k: a natural number

Let z denote the vector (1, 1, 1, ..., 1) ∈ Rn.

Set x0 := z.
Set y0 := z.
For i = 1, 2, ..., k

Apply the J operation to (xi−1, yi−1),

obtaining new x-weights x´i.

Apply the O operation to (x´i, yi−1),

obtaining new y-weights y´i.

Normalize x´i, obtaining xi.

Normalize y´i, obtaining yi.

End

Return (xk, yk).

To address the issue of how best to choose k, the number of iterations, we
first show that as one applies Iterate with arbitrarily large values of k, the
sequences of vectors {xk} and {yk} converge to fixed points x∗ and y∗.

Let M be a symmetric n × n matrix. An eigenvalue of M is a number λ
with the property that, for some vector ω, we have Mω = λω. The set of all
such ω is a subspace of Rn, which we refer to as the eigenspace associated with
λ; the dimension of this space will be referred to as the multiplicity of λ. It
is a standard fact that M has at most n distinct eigenvalues, each of them a
real number, and the sum of their multiplicities is exactly n. We will denote

A.2. SETUP AND PROOF 131

these eigenvalues by λ1(M), λ2(M), . . . , λn(M), indexed in order of decreasing
absolute values, and with each eigenvalue listed a number of times equal to
its multiplicity. For each distinct eigenvalue, we choose an ortonormal basis
of its eigenspace; considering the vectors in all these bases, we obtain a set of
eigenvectors ω1(M), ω2(M), . . . , ωn(M) that we can index in such a way that
ωi(M) belongs to the eigenspace of λi(M).

For the sake of simplicity, we will make the following technical assumption
about all the matrices we deal with:

|λ1(M)| > |λ2(M)| (A.3)

When this assumption holds, we refer to ω1(M) as the principal eigenvector,
and all other ωi(M) as nonprincipal eigenvectors. When the assumption does
not hold, the analysis becomes less clean, but it is not affected in any substantial
way.

We now prove that the Iterate procedure converges as k increases arbitrar-
ily.

Theorem A.2.1. The sequences x1, x2, x3,. . . and y1, y2, y3,. . . converge (to
limits x∗ and y∗, respectively).

Proof. Let G = (V,E), with V = {p1, p2, . . . , pn}, and let A denote the adje-
cency matrix of the graph G; the (i, j)th entry of A is equal to 1 if (pi, pj) is
an edge of G, and is equal to 0, otherwise. One easily verifies that the J and O
operations can be written x← AT y and y ← Ax, respectively. Thus, xk is the
unit vector in the direction of AT (AAT)k−1z, and yk is the unit vector in the
direction of (AAT)kz.

Now, a standard result of linear algebra (see Kleinberg [Kleinberg, 1999])
states that if M is a symmetric n× n matrix, and v is a vector not orthogonal
to the principal eigenvector ω1(M), then the unit vector in the direction of
MKv converges to ω1(M) as k increases without bound. Also (as a corollary),
if M has only nonnegative entries, then the principal eigenvector of M has only
nonnegative entries.

Consequently, z is not orthogonal to ω1(AAT), and hence the sequence {yk}
converges to a limit y∗. Similarly, one can show that if λ1(AT A) 6= 0 (as dictated
by the assumption A.3), then AT z is not orthogonal to ω1(AT A). It follows that
the sequence {xk} converges to a limit x∗.

The proof of Theorem A.2.1 yields the following additional result (in the
above notation).

132 APPENDIX A. HITS WEBMINING

Theorem A.2.2. (SUBJECT TO ASSUMPTION A.3). x∗ is the principal
eigenvector of AT A, and y∗ is the principal eigenvector of AAT .

In our experiments, we find that the convergence of Iterate is quite rapid;
one essentially always finds that k = 20 is sufficient for the c largest coordinates
in each vector to become stable, for values of c in the range that we use. Of
course, Theorem A.2.2 shows that one can use any eigenvector algorithm to
compute the fixed points x∗ and y∗; we have stuck to the above exposition
in terms of the Iterate procedure for two reasons. First, it emphasizes the
underlying motivation for our approach in terms of the reinforcing J and O
operations. Second, one does not have to run the above process of iterated
J/O operations to convergence; one can compute weights {x<p>} and {y<p>}
by starting from any initial vectors x0 and y0, and performing a fixed bounded
number of J and O operations.

Appendix B

Frequency analysis results
for TDFS

133

134 APPENDIX B. FREQUENCY ANALYSIS RESULTS FOR TDFS

20544829
UW_strncpy::strlen

UW_strncpy::strncpy

6093357
tdfs_mut2::UW_atoi

UW_strncpy::atoi

903149
tdfs_mut2::strncmp

tdfs_mut2::bereken_modulus
tdfs_mut2::fmod

28580
e_tdfs_mut1::ReadCa

che
cache::Init_Periode

cache::memcpy

29986
io::InitMyData

io::isopen

13961
e_tdfs_mut1::E_Berek_Remgeld_Specialiteit

cache::ConverteerMutualiteitscode
cache::ConverteerPatientencategorie

13259
cache::fd_MyData

cache::isread

135

11952
e_tdfs_mut1::CreateFak

e_tdfs_mut1::ReadDemut1
e_tdfs_mut1::CatApoMut

1272
e_tdfs_mut1::ReadFirstFakRec
e_tdfs_mut1::RewindTempFak

650
tdfs_mut1_form::sqli_curs_locate

tdfs_mut1_form::sqli_slct

642
csrout::field_count
csrout::form_fields

640
tdfs_mut1_form::system

tdfs_mut1_form::write_form
tdfs_mut1_form::sqli_curs_fetch

csrout::newwin
csrout::keypad

639
tdfs_mut1_form::start_curses

csrout::initscrnonl
csrout::raw

csrout::noecho
csrout::wclear

tdfs_mut1_form::wrefresh
tdfs_mut1_form::write_msg

csrout::qiflush
csrout::wborder
csrout::wmove

csrout::waddnstr
csrout::wrefresh
csrout::delwin

637
e_tdfs_mut1::isclose
e_tdfs_mut1::Close

io::isrewcurr

2881
weglf::fgets
weglf::feof
weglf::fputs

136 APPENDIX B. FREQUENCY ANALYSIS RESULTS FOR TDFS

87
tdfs_mut2::System
tdfs_mut2::system

80
tdfs_mut2::NegativeCodedStrToInt

tdfs_mut2::strlen
tdfs_mut2::CloseRemoveMut

13
csrout.c::new_field

csrout.c::set_field_back
csrout.c::set_field_fore
csrout.c::set_field_pad
csrout.c::set_field_just

8
tdfs_mut2::Write90Rec
tdfs_mut2::CreateDestin
tdfs_mut2::Write10Rec
tdfs_mut2::GetDate
tdfs_mut2::time

tdfs_mut2::localtime_r
tdfs_mut2::malloc
tdfs_mut2::strftime
csrout::field_opts

csrout::set_field_opts
tdfs_mut1_form::get_request

get_request::nodelay
get_request::wgetch

get_request::TranslateKey
get_request::FormMacros

6
csrout::set_fieldtype_arg.
csrout::set_field_type
csroutines::waddnstr

csrout::atoi
csrout::strcpy

5
tdfs_mut2::isopen
tdfs_mut2::isstart
tdfs_mut2::isread

137

4
tdfs_mut2 ::ReadIndcijfers

tdfs_mut2::cisam_maak_indcijfers_key_1
tdfs_mut2::ldlong

csroutines::cntrwaddstr
csroutines::strlen

2
tdfs_mut1_form::sqli_curs_close

tdfs_mut1_form::sqli_prep
tdfs_mut1_form::sqli_curs_decl_dynm

tdfs_mut1_form::sqli_curs_open
csroutines::wborder
csroutines::cs_hline
csroutines::wattr_on
csroutines::wattr_off

csroutines::read_form

1
to big

138 APPENDIX B. FREQUENCY ANALYSIS RESULTS FOR TDFS

Bibliography

[Akers, 2005] Akers, R. L. (2005). Using build process intervention to accommo-
date dynamic instrumentation of complex systems. In Proceedings of the 1st
International Workshop on Program Comprehension through Dynamic Anal-
ysis (PCODA’05). Technical Report 2005-12, Department of Mathematics &
Computer Science, University of Antwerp.

[Andrews, 1998] Andrews, J. (1998). Testing using log file analysis: tools, meth-
ods, and issues. In Proceedings of the 13th International Conference on Au-
tomated Software Engineering (ASE’98), page 157. IEEE Computer Society.

[Arisholm et al., 2004] Arisholm, E., Briand, L., and Foyen, A. (2004). Dynamic
coupling measurement for object-oriented software. IEEE Transactions on
Software Engineering, 30(8):491–506.

[Ball, 1999] Ball, T. (1999). The concept of dynamic analysis. In ESEC/FSE-7:
Proceedings of the 7th European software engineering conference held jointly
with the 7th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering, pages 216–234. Springer-Verlag.

[Bennett, 1995] Bennett, K. (1995). Legacy systems: Coping with success.
IEEE Software, 12(1):19–23.

[Biggerstaff et al., 1993] Biggerstaff, T. J., Mitbander, B. G., and Webster, D.
(1993). The concept assignment problem in program understanding. In Pro-
ceedings of the 15th international conference on Software Engineering (ICSE
’93), pages 482–498. IEEE Computer Society.

[Brant et al., 1998] Brant, J., Foote, B., Johnson, R. E., and Roberts, D. (1998).
Wrappers to the rescue. In Proceedings ECOOP ’98, volume 1445 of LNCS,
pages 396–417. Springer-Verlag.

139

140 BIBLIOGRAPHY

[Briand et al., 1999] Briand, L. C., Daly, J. W., and Wüst, J. K. (1999). A
unified framework for coupling measurement in object-oriented systems. IEEE
Transactions on Software Engineering, 25(1):91–121.

[Brin and Page, 1998] Brin, S. and Page, L. (1998). The anatomy of a large-
scale hypertextual web search engine. Computer Networks, 30(1-7):107–117.

[Brodie and Stonebraker, 1995] Brodie, M. and Stonebraker, M. (1995). Mi-
grating Legacy Systems: Gateways, Interfaces & The Incremental Approach.
Morgan Kaufmann.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. (1994).
A metrics suite for object oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493.

[Chikofsky and Cross II, 1990] Chikofsky, E. J. and Cross II, J. H. (1990). Re-
verse engineering and design recovery: A taxonomy. IEEE Software, 7(1):13–
17.

[Corbi, 1990] Corbi, T. A. (1990). Program understanding: Challenge for the
90s. IBM Systems Journal, 28(2):294–306.

[de Oca and Carver, 1998] de Oca, C. M. and Carver, D. L. (1998). Identifica-
tion of data cohesive subsystems using data mining techniques. In Proceedings
of the 14th International Conference on Software Maintenance (ICSM’98),
pages 16–23. IEEE Computer Society.

[De Pauw et al., 2001] De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G.,
Vlissides, J., and Yang, J. (2001). Visualizing the execution of java programs.
In Diehl, S., editor, Software Visualization: International Seminar, Dagstuhl
Castle, Germany, May 20-25, 2001, volume 2269 / 2002 of Lecture Notes in
Computer Science, page 151. Springer.

[De Pauw et al., 1998] De Pauw, W., Lorenz, D., Vlissides, J., and Wegman, M.
(1998). Execution patterns in object-oriented visualization. In Proceedings
of the 4th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS).

[Demeyer et al., 2003] Demeyer, S., Ducasse, S., and Nierstrasz, O. (2003).
Object-Oriented Reengineering Patterns. Morgan Kaufmann.

BIBLIOGRAPHY 141

[Denti et al., 2001] Denti, E., Omicini, A., and Ricci, A. (2001). tuProlog: A
light-weight Prolog for Internet applications and infrastructures. In Practi-
cal Aspects of Declarative Languages, volume 1990 of LNCS, pages 184–198.
Springer-Verlag.

[Ducasse et al., 2004] Ducasse, S., Lanza, M., and Bertuli, R. (2004). High-
level polymetric views of condensed run-time information. In Proceedings
of the 8th European Conference on Software Maintenance and Reengineering
(CSMR2004), pages 309–318. IEEE Computer Society.

[Ducasse et al., 1999] Ducasse, S., Rieger, M., and Demeyer, S. (1999). A lan-
guage independent approach for detecting duplicated code. In Yang, H. and
White, L., editors, Proceedings of the 15th International Conference on Soft-
ware Maintenance (ICSM’99), pages 109–118. IEEE Computer Society.

[Eisenbarth et al., 2001] Eisenbarth, T., Koschke, R., and Simon, D. (2001).
Aiding program comprehension by static and dynamic feature analysis. In
17th International Conference on Software Maintenance (ICSM’01), pages
602–611. IEEE Computer Society.

[El-Ramly et al., 2002] El-Ramly, M., Stroulia, E., and Sorenson, P. (2002).
From run-time behavior to usage scenarios: an interaction-pattern mining
approach. In Proceedings of the eighth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 315–324. ACM Press.

[Fraley and Raftery, 1998] Fraley, C. and Raftery, A. E. (1998). How many
clusters? which clustering method? answers via model-based cluster analysis.
The Computer Journal, 41(8):578–588.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison–Wesley.

[Gargiulo and Mancoridis, 2001] Gargiulo, J. and Mancoridis, S. (2001). Gad-
get: A tool for extracting the dynamic structure of java programs. In Pro-
ceedings of the Thirteenth International Conference on Software Engineering
& Knowledge Engineering (SEKE’01), pages 244–251.

[Gibson et al., 1998] Gibson, D., Kleinberg, J. M., and Raghavan, P. (1998). In-
ferring web communities from link topology. In UK Conference on Hypertext,
pages 225–234.

142 BIBLIOGRAPHY

[Gold et al., 2004] Gold, N., Knight, C., Mohan, A., and Munro, M. (2004).
Understanding service-oriented software. IEEE Software, 21(2):71–77.

[Greevy and Ducasse, 2005] Greevy, O. and Ducasse, S. (2005). Correlating
features and code using a compact two-sided trace analysis approach. In
Proceedings of the 9th European Conference on Software Maintenance and
Reengineering (CSMR 2005), pages 314–323. IEEE Computer Society.

[Gschwind et al., 2003] Gschwind, T., Oberleitner, J., and Pinzger, M. (2003).
Using run-time data for program comprehension. In Proceedings of the 11th
IEEE International Workshop on Program Comprehension (IWPC’03), pages
245–250. IEEE Computer Society.

[Hamou-Lhadj, 2005a] Hamou-Lhadj, A. (2005a). The concept of trace summa-
rization. In Proceedings of the 1st International Workshop on Program Com-
prehension through Dynamic Analysis, pages 43–47. Technical Report 2005-
12, Department of Mathematics & Computer Science, University of Antwerp.

[Hamou-Lhadj, 2005b] Hamou-Lhadj, A. (2005b). Techniques to Simplify the
Analysis of Execution Traces for Program Comprehension. PhD thesis, Uni-
versity of Ottawa, Canada.

[Hamou-Lhadj et al., 2005] Hamou-Lhadj, A., Braun, E., Amyot, D., and Leth-
bridge, T. (2005). Recovering behavioral design models from execution traces.
In Proceedings of the 9th European Conference on Software Maintenance and
Reengineering (CSMR’05), pages 112–121. IEEE Computer Society.

[Hamou-Lhadj and Lethbridge, 2004] Hamou-Lhadj, A. and Lethbridge, T.
(2004). A metamodel for dynamic information generated from object-oriented
systems. Electr. Notes Theor. Comput. Sci., 94:59–69.

[Hamou-Lhadj and Lethbridge, 2006] Hamou-Lhadj, A. and Lethbridge, T.
(2006). Summarizing the content of large traces to facilitate the understand-
ing of the behaviour of a software system. In Proceedings of the 14th Inter-
national Conference on Program Comprehension (ICPC’06), pages 181–190.
IEEE Computer Society.

[Hamou-Lhadj et al., 2004] Hamou-Lhadj, A., Lethbridge, T. C., and Fu, L.
(2004). Challenges and requirements for an effective trace exploration tool. In
Proceedings of the 12th International Workshop on Program Comprehension
(IWPC’04), pages 70–78. IEEE Computer Society.

BIBLIOGRAPHY 143

[Jacobson, 1995] Jacobson, I. (1995). Object-Oriented Software Engineering: a
Use Case driven Approach. Addison–Wesley.

[Jahnke and Walenstein, 2000] Jahnke, J. H. and Walenstein, A. (2000). Re-
verse engineering tools as media for imperfect knowledge. In Proceedings of
the Seventh Working Conference on Reverse Engineering (WCRE’00), pages
22–31. IEEE Computer Society.

[Jerding and Rugaber, 1997] Jerding, D. and Rugaber, S. (1997). Using visu-
alization for architectural localization and extraction. In Proceedings of the
Fourth Working Conference on Reverse Engineering (WCRE’04), page 56.
IEEE Computer Society.

[Jerding and Stasko, 1998] Jerding, D. and Stasko, J. T. (1998). The infor-
mation mural: A technique for displaying and navigating large informa-
tion spaces. IEEE Transactions on Visualization and Computer Graphics,
4(3):257–271.

[Jerding et al., 1997] Jerding, D. F., Stasko, J. T., and Ball, T. (1997). Visu-
alizing interactions in program executions. In Proceedings of the 19th inter-
national conference on Software Engineering (ICSE’97), pages 360–370, New
York, NY, USA. ACM Press.

[Kaufman and Rousseeuw, 1990] Kaufman, L. and Rousseeuw, P. (1990). Find-
ing groups in data. Wiley-Interscience.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented program-
ming. In Proceedings European Conference on Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer-Verlag.

[Kleinberg, 1999] Kleinberg, J. M. (1999). Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5):604–632.

[Lakhotia, 1993] Lakhotia, A. (1993). Understanding someone else’s code:
Analysis of experiences. Journal of Systems and Software, 23(3):269–275.

[Lämmel and De Schutter, 2005] Lämmel, R. and De Schutter, K. (2005). What
does Aspect-Oriented Programming mean to Cobol? In AOSD ’05: Proceed-
ings of the 4th international conference on Aspect-oriented software develop-
ment, pages 99–110, New York, NY, USA. ACM Press.

144 BIBLIOGRAPHY

[Lanza, 2003] Lanza, M. (2003). Object-Oriented Reverse Engineering —
Coarse-grained, Fine-Grained, and Evolutionary Software Visualization. PhD
thesis, University of Berne.

[Larus, 1993] Larus, J. R. (1993). Efficient program tracing. IEEE Computer,
26(5):52–61.

[Lehman, 1998] Lehman, M. (1998). Software’s future: Managing evolution.
IEEE Software, 15(1):40–44.

[Lehman and Belady, 1985] Lehman, M. and Belady, L. (1985). Program evo-
lution: processes of software change. Academic Press Professional, Inc., San
Diego, CA, USA.

[Lethbridge and Anquetil, 1998] Lethbridge, T. C. and Anquetil, N.
(1998). Experiments with coupling and cohesion metrics in a large
system. Working paper, School of Information Technology and
Engineering, also see http://www.site.uottawa.ca/ tcl/papers/ met-
rics/ExpWithCouplingCohesion.html.

[Linthicum, 1999] Linthicum, D. S. (1999). Enterprise Application Integration.
Addison-Wesley.

[Lukoit et al., 2000] Lukoit, K., Wilde, N., Stoweel, S., and Hennessey, T.
(2000). Tracegraph: Immediate visual location of software features. In
Proceedings of the 16th International Conference on Software Maintenance
(ICSM’00), pages 33–39. IEEE Computer Society.

[Mancoridis et al., 1999] Mancoridis, S., Mitchell, B. S., Chen, Y.-F., and
Gansner, E. R. (1999). Bunch: A clustering tool for the recovery and mainte-
nance of software system structures. In Proceedings of the 15th International
Conference on Software Maintenance (ICSM’99), page 50. IEEE Computer
Society.

[Mens, 2000] Mens, K. (2000). Automating architectural conformance checking
by means of logic meta programming. PhD thesis, Vrije Universiteit Brussel.

[Mock, 2003] Mock, M. (2003). Dynamic analysis from the bottom up. In ICSE
2003 Workshop on Dynamic Analysis (WODA’03).

[Moise and Wong, 2003] Moise, D. L. and Wong, K. (2003). An industrial expe-
rience in reverse engineering. In Proceedings of the 10th Working Conference
on Reverse Engineering (WCRE’03), pages 275–284. IEEE Computer Society.

BIBLIOGRAPHY 145

[Pennington, 1987] Pennington, N. (1987). Stimulus structures and mental
prepresentations in expert comprehension of computer programs. Cognitive
Psychology, 19:295–341.

[Reiss and Renieris, 2001] Reiss, S. P. and Renieris, M. (2001). Encoding pro-
gram executions. In Proceedings of the 23rd International Conference on
Software Engineering (ICSE01), pages 221–230. IEEE Computer Society.

[Renieris and Reiss, 1999] Renieris, M. and Reiss, S. P. (1999). AL-
MOST: Exploring program traces. In Proc. 1999 Workshop on New
Paradigms in Information Visualization and Manipulation, pages 70–77.
http://citeseer.nj.nec.com/renieris99almost.html.

[Richner, 2002] Richner, T. (2002). Recovering Behavioral Design Views: a
Query-Based Approach. PhD thesis, University of Berne.

[Richner and Ducasse, 1999] Richner, T. and Ducasse, S. (1999). Recovering
high-level views of object-oriented applications from static and dynamic in-
formation. In Proceedings of the 15th International Conference on Software
Maintenance (ICSM’99), pages 13–22. IEEE Computer Society.

[Richner and Ducasse, 2002] Richner, T. and Ducasse, S. (2002). Using dy-
namic information for the iterative recovery of collaborations and roles. In
Proceedings of the 18th International Conference on Software Maintenance
(ICSM’02), pages 34–43. IEEE Computer Society.

[Robillard, 2005] Robillard, M. P. (2005). Automatic generation of suggestions
for program investigation. SIGSOFT Software Engineering Notes, 30(5):11–
20.

[Robillard et al., 2004] Robillard, M. P., Coelho, W., and Murphy, G. C. (2004).
How effective developers investigate source code: an exploratory study. IEEE
Transactions on Software Engineering, 30(12):889–903.

[Sayyad-Shirabad et al., 1997] Sayyad-Shirabad, J., Lethbridge, T. C., and
Lyon, S. (1997). A little knowledge can go a long way towards program un-
derstanding. In Proceedings of the 5th International Workshop on Program
Comprehension (IWPC’97), pages 111–117. IEEE Computer Society.

[Selby and Basili, 1991] Selby, R. W. and Basili, V. R. (1991). Analyzing
error-prone system structure. IEEE Transactions on Software Engineering,
17(2):141–152.

146 BIBLIOGRAPHY

[Smith and Korel, 2000] Smith, R. and Korel, B. (2000). Slicing event traces of
large software systems. In Automated and Algorithmic Debugging.

[Sneed, 1996] Sneed, H. (1996). Encapsulating legacy software for use in
client/server systems. In Proceedings of the 3rd Working Conference on Re-
verse Engineering (WCRE ’96), pages 104–119. IEEE Computer Society.

[Sneed, 2004] Sneed, H. (2004). Program comprehension for the purpose of
testing. In Proceedings of the 12th International Workshop on Program Com-
prehension (IWPC’04), pages 162–171. IEEE Computer Society.

[Sneed, 2005] Sneed, H. (2005). An incremental approach to system replacement
and integration. In Proceedings of the Ninth European Conference on Software
Maintenance and Reengineering (CSMR’05), pages 196–206. IEEE Computer
Society.

[Spinellis, 2003] Spinellis, D. (2003). Code Reading: The Open Source Perspec-
tive. Addison-Wesley.

[Stevens et al., 1974] Stevens, W., Meyers, G., and Constantine, L. (1974).
Structured design. IBM Systems Journal, 13(2):115–139.

[Storey et al., 2000] Storey, M.-A. D., Wong, K., and Müller, H. A. (2000).
How do program understanding tools affect how programmers understand
programs? Science of Computer Programming, 36(2–3):183–207.

[Systä, 1999] Systä, T. (1999). On the relationships between static and dynamic
models in reverse engineering java software. In Proceedings of the Sixth Work-
ing Conference on Reverse Engineering (WCRE’99), pages 304–313. IEEE
Computer Society.

[Systä, 2000a] Systä, T. (2000a). Static and Dynamic Reverse Engineering
Techniques for Java Software Systemds. PhD thesis, University of Tampere.

[Systä, 2000b] Systä, T. (2000b). Understanding the behavior of java programs.
In Proceedings of the Seventh Working Conference on Reverse Engineering
(WCRE’00), pages 214–223. IEEE Computer Society.

[Tahvildari, 2003] Tahvildari, L. (2003). Quality-Drive Object-Oriented Re-
engineering Framework. PhD thesis, Department of Electrical and Computer
Engineering, University of Waterloo, Ontario, Canada.

BIBLIOGRAPHY 147

[Tilley et al., 2005] Tilley, T., Cole, R., Becker, P., and Eklund, P. W. (2005). A
survey of formal concept analysis support for software engineering activities.
In Stumme, G., editor, Formal Concept Analysis, volume 3626 of LNCS, pages
250–271. Springer.

[von Mayrhauser and Vans, 1994] von Mayrhauser, A. and Vans, A. M. (1994).
Comprehension processes during large scale maintenance. In Proceedings of
the 16th International Conference on Software Engineering (ICSE’94), pages
39–48, Los Alamitos, CA, USA. IEEE Computer Society.

[von Mayrhauser and Vans, 1995] von Mayrhauser, A. and Vans, A. M. (1995).
Program comprehension during software maintenance and evolution. IEEE
Computer, 28(8):44–55.

[Walker et al., 1998] Walker, R. J., Murphy, G. C., Freeman-Benson, B.,
Wright, D., Swanson, D., and Isaak, J. (1998). Visualizing dynamic software
system information through high-level models. In Proceedings of the Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’98), volume 33 of ACM SIGPLAN Notices, pages 271–238. ACM.

[Walker et al., 2000] Walker, R. J., Murphy, G. C., Steinbok, J., and Robil-
lard, M. P. (2000). Efficient mapping of software system traces to architec-
tural views. In Proceedings of CASCON, number TR-2000-09, pages 31–40.
http://citeseer.nj.nec.com/walker00efficient.html.

[Wand and Weber, 1990] Wand, Y. and Weber, R. (1990). An ontological model
of an information system. IEEE Transactions on Software Engineering,
16(11):1282–1292.

[Wilde, 1994] Wilde, N. (1994). Faster reuse and maintenance using software
reconnaissance. Technical report, Technical Report SERC-TR-75F, Software
Engineering Research Center, CSE-301, University of Florida, CIS Depart-
ment, Gainesville, FL.

[Wong et al., 1995] Wong, K., Tilley, S. R., Müller, H. A., and Storey, M.-A. D.
(1995). Structural redocumentation: A case study. IEEE Software, 12(1):46–
54.

[Yang et al., 2005] Yang, H. Y., Tempero, E., and Berrigan, R. (2005). Detect-
ing indirect coupling. In Proceedings of the Australian Software Engineering
Conference (ASWEC’05), pages 212–221. IEEE Computer Society.

148 BIBLIOGRAPHY

[Yourdon and Constantine, 1979] Yourdon, E. and Constantine, L. L. (1979).
Structured Design: Fundamentals of a Discipline of Computer Program and
System Design. Prentice Hall.

[Zaidman et al., 2006a] Zaidman, A., Adams, B., De Schutter, K., Demeyer, S.,
Hoffman, G., and De Ruyck, B. (2006a). Regaining lost knowledge through
dynamic analysis and Aspect Orientation - an industrial experience report.
In Proceedings of the 10th Conference on Software Maintenance and Reengi-
neering (CSMR’06), pages 89–98. IEEE Computer Society.

[Zaidman et al., 2005] Zaidman, A., Calders, T., Demeyer, S., and Paredaens,
J. (2005). Applying webmining techniques to execution traces to support the
program comprehension process. In Proceedings of the 9th European Confer-
ence on Software Maintenance and Reengineering (CSMR’05), pages 134–142.
IEEE Computer Society.

[Zaidman and Demeyer, 2004] Zaidman, A. and Demeyer, S. (2004). Managing
trace data volume through a heuristical clustering process based on event ex-
ecution frequency. In Proceedings of the 8th European Conference on Software
Maintenance and Reengineering (CSMR’04), pages 329–338. IEEE Computer
Society.

[Zaidman et al., 2006b] Zaidman, A., Du Bois, B., and Demeyer, S. (2006b).
How webmining and coupling metrics can improve early program compe-
hension. In Proceedings of the 14th International Conference on Program
Comprehension (ICPC’06), pages 74–78. IEEE Computer Society.

[Zayour and Lethbridge, 2001] Zayour, I. and Lethbridge, T. C. (2001). Adop-
tion of reverse engineering tools: a cognitive perspective and methodology. In
Proceedings of the 9th International Workshop on Program Comprehension,
pages 245–255. IEEE Computer Society.

Publications

Conference publications (listed chronologically)
• Andy Zaidman and Serge Demeyer.

Managing trace data volume through a heuristical clustering process based
on event execution frequency
Proceedings of the 8th European Conference on Software Maintenance and

Reengineering (CSMR2004), pages 329-338, IEEE Computer Society, 2004

• Andy Zaidman, Toon Calders, Serge Demeyer and Jan Paredaens.
Applying Webmining Techniques to Execution Traces to Support the Pro-
gram Comprehension Process
Proceedings of the 9th European Conference on Software Maintenance and

Reengineering (CSMR2005), pages 134-142, IEEE Computer Society, 2005

• Orla Greevy, Abdelwahab Hamou-Lhadj and Andy Zaidman.
Workshop on Program Comprehension through Dynamic Analysis
Proceedings of the 12th Working Conference on Reverse Engineering (WCRE

2005), pages 232-232, IEEE Computer Society, 2005

• Andy Zaidman.
Scalability Solutions for Program Comprehension through Dynamic Anal-
ysis
Proceedings of the 10th European Conference on Software Maintenance and

Reengineering (CSMR2006), pages 327-330, IEEE Computer Society, 2006

• Andy Zaidman, Bram Adams, Kris De Schutter, Serge Demeyer, Ghislain
Hoffman and Bernard De Ruyck. Regaining Lost Knowledge through Dy-
namic Analysis and Aspect Orientation - An Industrial Experience Report
Proceedings of the 10th European Conference on Software Maintenance and

Reengineering (CSMR2006), pages 91-102, IEEE Computer Society, 2006

• Andy Zaidman, Bart Du Bois and Serge Demeyer. How Webmining and
Coupling Metrics Can Improve Early Program Compehension
Proceedings of the 14th International Conference on Program Comprehension

149

150 BIBLIOGRAPHY

(ICPC2006), pages 74-78, IEEE Computer Society, 2006

• Andy Zaidman, Orla Greevy and Abdelwahab Hamou-Lhadj.
Workshop on Program Comprehension through Dynamic Analysis
Accepted for publication in the proceedings of the 13th Working Conference on

Reverse Engineering (WCRE 2006), IEEE Computer Society, 2006

Currently submitted work
• Bram Adams, Kris De Schutter, Andy Zaidman, Serge Demeyer and Her-

man Tromp.
Aspect-Enabled Dynamic Analyses for Reverse Engineering Legacy Envi-
ronments – An Industrial Experience Report
Submitted to a special CSMR issue of the Journal of Systems and Software

(JSS) by Elsevier, as an extension to the CSMR 2006 paper.

	I Introduction
	1 Introduction
	1.1 Context
	1.2 The modalities of change
	1.3 Program comprehension
	1.4 Lack of documentation
	1.5 Dynamic analysis
	1.6 Hypothesis
	1.7 Solution space
	1.7.1 Run-time coupling based heuristic
	1.7.2 Frequency based heuristic
	1.7.3 Research contributions

	1.8 Academic context
	1.9 Organization of this dissertation

	2 Program comprehension
	2.1 What is program comprehension?
	2.2 Program understanding as a prerequisite
	2.3 Program comprehension models
	2.3.1 Top-down program comprehension models
	2.3.2 Bottom-up program comprehension models
	2.3.3 Integrated model

	2.4 On the influence of comprehension tools

	3 Dynamic Analysis
	3.1 Definition
	3.2 Why dynamic analysis?
	3.2.1 Goal oriented strategy
	3.2.2 Polymorphism

	3.3 Modalities of dynamic analysis
	3.3.1 Example execution trace
	3.3.2 Trace extraction technologies
	3.3.3 Implementation

	3.4 The observer effect
	3.5 Threats to using dynamic analysis
	3.6 Strengths and weaknesses

	II Coupling based solutions for program comprehension
	4 Coupling & program comprehension
	4.1 Introduction
	4.2 Coupling
	4.3 Dynamic coupling
	4.3.1 Introduction
	4.3.2 Classification of dynamic coupling measures
	4.3.3 Dynamic coupling for program comprehension

	4.4 Research question
	4.5 Research plan
	4.6 Validation and evaluation
	4.7 Practical application

	5 Webmining
	5.1 Indirect coupling
	5.1.1 Context and definition
	5.1.2 Relevance in program comprehension context

	5.2 The HITS webmining algorithm
	5.2.1 Introduction
	5.2.2 HITS algorithm
	5.2.3 Example

	5.3 Practical application

	6 Experiment
	6.1 Experimental setup
	6.1.1 Case studies
	6.1.2 Execution scenarios
	6.1.3 Program comprehension baseline
	6.1.4 Validation
	6.1.5 Research plan
	6.1.6 Threats to validity

	6.2 Apache Ant
	6.2.1 Introduction
	6.2.2 Architectural overview
	6.2.3 Execution scenario
	6.2.4 Discussion of results

	6.3 Jakarta JMeter
	6.3.1 Introduction
	6.3.2 Architectural overview
	6.3.3 Execution scenario
	6.3.4 Discussion of results

	6.4 Discussion
	6.4.1 Experimental observations

	6.5 Observations with regard to the research question

	7 Static coupling
	7.1 Introduction & motivation
	7.2 A static coupling metrics framework
	7.3 Expressing IC_CC' statically
	7.4 Results
	7.4.1 Ant
	7.4.2 JMeter

	7.5 Discussion
	7.5.1 Practical implications
	7.5.2 Comparing static and dynamic results
	7.5.3 Conclusion

	III Frequency based solutions for program comprehension
	8 Frequency Spectrum Analysis
	8.1 Introduction
	8.1.1 Motivation
	8.1.2 Research questions
	8.1.3 Solution space
	8.1.4 Formal background

	8.2 Approach
	8.3 Experimental setup
	8.3.1 Hypothesis
	8.3.2 The experiment itself
	8.3.3 Case studies

	8.4 Results
	8.4.1 Jakarta Tomcat 4.1.18
	8.4.2 Fujaba 4.0

	8.5 Discussion
	8.5.1 Connection with hypothesis
	8.5.2 Connection with the research questions
	8.5.3 Open questions

	IV Industrial experiences
	9 Industrial case studies
	9.1 Motivation
	9.2 Industrial partner
	9.3 Experimental setup
	9.3.1 Mechanism to collect run-time data
	9.3.2 Execution scenario
	9.3.3 Details of the system under study

	9.4 Results
	9.4.1 Experimental setup of the validation phase
	9.4.2 Webmining
	9.4.3 Frequency analysis

	9.5 Pitfalls
	9.5.1 Adapting the build process
	9.5.2 Legacy issues
	9.5.3 Scalability issues

	9.6 Discussion

	V Concluding parts
	10 Related Work
	10.1 Dynamic analysis
	10.2 Visualization
	10.3 Industrial experiences

	11 Conclusion
	11.1 Conclusion
	11.1.1 Dynamic coupling
	11.1.2 Relative frequency of execution

	11.2 Opportunities for future research

	VI Appendices
	A HITS webmining
	A.1 Introduction
	A.2 Setup and proof

	B Frequency analysis results for TDFS

