
Empirical Software Engineering (EMSE) manuscript No.
(will be inserted by the editor)

The Last Line Effect Explained

Moritz Beller · Andy Zaidman · Andrey
Karpov · Rolf A. Zwaan

Received: date / Accepted: date

Abstract Micro-clones are tiny duplicated pieces of code; they typically com-
prise only a few statements or lines. In this paper, we study the “Last Line
Effect,” the phenomenon that the last line or statement in a micro-clone is
much more likely to contain an error than the previous lines or statements.
We do this by analyzing 219 open source projects and reporting on 263 faulty
micro-clones and interviewing six authors of real-world faulty micro-clones.
In an interdisciplinary collaboration, we examine the underlying psychological
mechanisms for the presence of these relatively trivial errors. Based on the in-
terviews and further technical analyses, we suggest that so-called “action slips”
play a pivotal role for the existence of the last line effect, in which developers’
attention shifts away at the end of a micro-clone creation task due to noise
and the routine nature of the task. Moreover, all micro-clones whose origin
we could determine were introduced in unusually large commits. Practitioners
benefit from this knowledge in two ways: 1) They can spot situations in which
they are likely to introduce a faulty micro-clone and 2) our automated micro-
clone detector PVS-Studio can help them find already-introduced erroneous
micro-clones.

Moritz Beller, Andy Zaidman
Delft University of Technology,
The Netherlands
E-mail: {m.m.beller,a.e.zaidman}@tudelft.nl

Andrey Karpov
OOO “Program Verification Systems,”
Tula, Russian Federation
E-mail: karpov@viva64.com

Rolf A. Zwaan
Department of Psychology,
Erasmus University Rotterdam
The Netherlands
E-mail: zwaan@fsw.eur.nl

2 Moritz Beller et al.

Keywords Micro-Clones · Code Clones · Clone Detection · Last Line Effect ·
Psychology · Interdisciplinary Work

1 Introduction

Software developers oft need to repeat one particular line of code several times
in succession with only small alterations, like in this example from TrinityCore:1

Example 1 TrinityCore

1 x += other . x ;
2 y += other . y ;
3 z += other . y ;

The 3D-coordinates of the other object are added onto the member vari-
ables representing the coordinates x, y, z. However, the last line in this block
of three similar lines contains an error, as it adds the y coordinate onto the z

coordinate. Instead, the last line should be

3 z += other . z ;

Another example from the popular web browser Chromium2 shows that
this effect also occurs in similar statements within one single line:

Example 2 Chromium

1 std : : s t r i n g host = . . . ;
2 std : : s t r i n g p o r t s t r = . . . ;
3 i f (host != buzz : : STR EMPTY && host != buzz : : STR EMPTY)

Instead of comparing twice that host does not equate the empty string, in
the last position, port str should have been compared:

3 i f (host != buzz : : STR EMPTY && p o r t s t r != buzz : : STR EMPTY)

Lines 1–3 from Example 1 are similar to each other, as are the statements
in the if clause in line 3 from Example 2. We call such an extremely short
block of almost identically looking repeated lines or statements a micro-clone.
Through our experience as software engineers and software quality consultants,
we had the intuition that the last line or statement in a micro-clone is much
more likely to contain an error than the previous lines or statements. The aim
of this paper is to verify whether our intuition is indeed true, leading to two
research questions:

RQ 1 Is the last line in a multi-line micro-clone more likely to contain an
error?

RQ 2 Is the last statement in a single-line micro-clone more likely to contain
an error?

1 TrinityCore is a popular open-source framework for the creation of Massively Multiplayer
Online Games (MMOGs), www.trinitycore.org.

2 Chromium is the open-source part of Google Chrome, www.chromium.org

http://www.trinitycore.org
http://www.chromium.org/

The Last Line Effect Explained 3

As recurring micro-clones are common to most programming languages,
the presence of a last line effect can impact almost every programmer. If we
can prove that the last of a series of similar statements is more likely to be
faulty, code authors and reviewers alike will know which code segments to give
extra attention to. This can increase software quality by reducing the amount
of errors in a program.

One natural way to come up with code like in Examples 1 and 2 is to copy-
and-paste it. By closely examining the origin of micro-clone instances, we come
to the conclusion that developers employ a variety of different mechanical
patterns to create micro-clones, most important among which is copy-and-
pasting on a line-per-line basis. Copy-and-paste and cloning are some of the
most widely used idioms in the development of software [26]. They are easy
and fast to do, hence cheap, and the copied code is already known to work.
Though often considered harmful [25], sometimes (micro-)cloning is in fact the
only way to achieve a certain program behavior, like in the examples above.
A number of clone detection tools have been developed to find and possibly
remove code clones [12,32]. While these automated clone detection tools have
produced very strong results down to the method level, they are ill-suited for
recognizing micro-clones in practice because of an abundance of false-positives.

When we posted a popular science blog entry3 about the last line effect,
it was picked up quickly and excitedly in Internet fora.4 Many programmers
agreed to our observation, often assuming a psychological reason to cause the
effect. This leads to our last research question:

RQ 3 What are the reasons for the existence of faulty micro-clones and the
last line effect in particular?

Through interviews, deeper technical analyses and interdisciplinary work
with a psychologist, we research whether and which psychological aspects could
play a role in the last line effect. We first collect phenomena from the well-
established area of cognitive psychology and then research if they explain the
last line effect in micro-clones.

By building upon our initial investigation of the last line effect [11], we
make the following contributions:

– We define and introduce the term micro-clone.
– We introduce techniques for the detection of micro-clones implemented in

the automated static analysis tool (ASAT, [7]) PVS-Studio, which cannot
be found with traditional clone detection.

– We manually investigate the error proneness of 263 micro-clones in 219
well-known open-source systems (OSS), based on a total of 1,891 warn-
ings.

– We provide an initial analysis of the underlying psychological mechanisms
behind the existence of the last line effect.

– We lead six interviews with authors of micro-clones in real-world systems.

3 www.viva64.com/en/b/0260
4 www.reddit.com/r/programming/comments/270orx/the last line effect

http://www.viva64.com/en/b/0260
http://www.reddit.com/r/programming/comments/270orx/the_last_line_effect/

4 Moritz Beller et al.

– We conduct a repository analysis on four well-known OSS projects based
on the results of the interviews, investigating abnormally large commit
sizes.

Our findings show that in micro-clones similar to Examples 1 and 2, the
last line or statement is significantly more likely to contain an error than
any other preceding line or statement. Rather than technical complexity of
the micro-clone, psychological reasons seem to be the dominant factor for
the existence of these faulty micro-clones, mostly related to working memory
overload of programmers. An initial investigation with five projects reveals
that all micro-clones were introduced in abnormally large commits at often
unusual work hours. This knowledge and our ASAT PVS-Studio can support
human programmers in reducing the amount of simple last line-type of errors
they commit by automating the detection of such faulty pieces of code.

2 Study Setup

Our study consists of two empirical studies C1 and C2. In this section, we
describe how we set-up the two empirical studies on micro-clones and which
study objects we selected.

2.1 Study Design C1: Spread and Prevalence of the Last Line Effect within
Micro-Clones

Study C1 examines how wide-spread the last line effect is within micro-clones.
We statistically examine the existence of the last line effect within micro-
clones in five easily replicable steps. Moreover, in an effort to shed light on
how developers create them, we added an analysis on the origin and destination
of micro-clone instances.

1. Run the static analysis checker PVS-Studio on our study objects, with all
checks enabled. PVS-Studio is a commercial static analysis tool developed
by the Russia-based company “OOO Program Verification Systems” and
incorporates dozens of static analyses from detecting clones to recogniz-
ing anti-patterns of using specific library functions in C. For replication
purposes, a free trial of PVS-Studio is publicly available.5

2. Inspect the corpus of warnings from PVS-Studio and remove false-positives
and warnings not related to micro-cloning.

3. For each faulty micro-clone, count the total number of lines (RQ1) or
statements (RQ2) and denote which lines or statements are faulty. If pos-
sible, infer the likely origin and destination of the micro-clone (for ex-
ample, in Example 6, the origin would be line 2 and the destination line
3).

5 www.viva64.com/en/pvs-studio-download

http://www.viva64.com/en/pvs-studio-download/

The Last Line Effect Explained 5

4. Naively, we assume each line has the same likelihood 1/n of containing an
error (H0), independent of its position in an n-line long faulty micro-clone.
For example, lines 1 and 2 in a 2-liner clone each have a 0.5 probability of
containing an error. However, if we can show that the error distribution
per line from step (3) significantly differs from such a uniform distribution
on a σ = 0.05 significance level, we reject H0 and assume a non-uniform
error distribution. For each micro-clone length n, we use Pearson’s χ2

test with n−1 degrees of freedom to compare our empirical distribution’s
goodness-of-fit to a 1/n-equipartition.

5. If the test in step 4 finds a significant difference between the two distribu-
tions, we calculate the odds ratio between them as an intuitive measure
of how strong the effect size of the last line effect is [13].

2.2 Study Design C2: Analyzing Reasons Behind the Existence of the Last
Line Effect

not in
current head

in
 c

u
rr

e
n
t

h
e
a
d

Sample issues
1

Locate project
Checkout source

Locate micro-clone

Determine version
still containing it

Get introducing
commit

Contact original
author

2

3

4

Fig. 1 Study Design of C2.

Having established the existence of the last
line effect in C1, we want to gain insight
into the reasons why it exists (RQ3). To
this aim, we build an initial theory based
on related work in the domain of cogni-
tive psychology together with Rolf Zwaan,
professor of cognitive psychology. To ob-
tain anecdotal evidence on micro-clones
through interviewing developers and to
further corroborate these cognitive expla-
nations, in study C2, we interview develop-
ers that authored last line effect instances.
We specifically interviewed developers who
authored micro-clones we found in C1. The
emerging observations will aid us in cre-
ating an initial psychological explanation.
By only contacting developers we knew
had created a micro-clone, we make our
interviews (1) more focused on a concrete
instance of the phenomenon that our inter-
viewees could personally relate to and (2)
more relevant by approaching an audience
that we could prove had authored a faulty
micro-clone in the past.

Figure 1 depicts our general study design. It centers around finding and
contacting the original author of a micro-clone which in many cases is not
present in the project’s latest checkout anymore. The design comprises four
primary steps:

6 Moritz Beller et al.

1. We randomly sample projects and micro-clones to investigate from these
projects, since carrying out C2 is a tedious manual process that involves
contacting and interviewing developers. Assuming a standard response
rate for cold calling surveys of 30%, the resulting three interviews would
likely give us sufficient information to guide the creation of our initial
psycho-cognitive explanation. For each micro-clone, we have to familiarize
us with the project’s development guidelines and check out their reposi-
tory.

2. Next, we locate the micro-clone in the source tree of the project. Since
many projects fixed our observations in the meantime and the clone is
then not present in the current head, this step requires different search
strategies: we start by checking out the repository at the date of our
inspection for C1. If this fails, for example because the code around the
micro-clone was refactored (or the history force-overwritten), we try to
track down the commit that removed the micro-clone by searching the
project’s issue tracker. If all else fails, we resort to a full text search (via
ag) in every commit of the project’s history.

3. Once we tracked down the original micro-clone, we follow its history, using
git blame, to ensure we receive both refactorings that were applied to it
as well as its true original author.

4. In the last step, we use git blame -e to obtain the developers’ email
addresses to contact them. In an attempt to maximize the response rate,
we also perform a web search to acquire additional personal information
about the developers and verify the timeliness of the contact email ad-
dresses. We also noted we will protect their identity to incentivize honest
answers. We then send short personalized emails containing the original
micro-clone they authored, how it was later modified or fixed, the context
of the bug, why we do the investigation, and a set of four questions on
the micro-clone.

2.3 Study Objects

To ensure the replicability and feasibility of our study, we focused on well-
known open-source systems. Among the 219 OSS we studied in C1, we found
instances of defective micro-clones in such renowned projects as the music
editing software Audacity (1 finding), the web browsers Chromium (9) and
Firefox (9), the XML library libxml (1), the databases MySQL (1) and MongoDB
(1), the C compiler clang (14), the ego-shooters Quake III (3) and Unreal 4 (25),
the rendering software Blender (4), the 3D visualization toolkit VTK (8), the
network protocols Samba (4) and OpenSSL (2), the video editor VirtualDub (3),
and the programming language PHP (1). For C2, we sampled 10 micro-clones
from the projects Chromium, libjingle, libmesa, and LibreOffice.

The Last Line Effect Explained 7

2.4 How to Replicate This Study

To foster replication of this study, we have made the complete data set and
all analyses available as a replication package.6 The package includes all un-
filtered warnings from PVS-Studio, separated into the older data used for
our ICPC paper [11] (findings old/) and the newer data added for this
paper (findings new/). Moreover, it contains the analyzed and categorized
micro-clones (analyzed data.csv) together with an evaluation spreadsheet
(evaluation.ods) and an R script (stats.R).

3 Methods

In this section, we outline traditional clone detection, why it is ill-suited for
the recognition of micro-clones, and how we circumvented this problem with
our tail-made static checks, our origin inference of micro-clone instances and
commit size analysis.

As Examples 1 and 2 demonstrate, the code blocks that we study in this
paper are either textually identical or contain “syntactically identical cop[ies];
only variable, type, or function identifiers have [...] changed.” [27] This makes
them extremely short type-1 or type-2 clones (usually shorter than 5 lines or
statements), which we refer to as micro-clones.

3.1 Why Current Clone Detectors Are Not Suitable

Traditional code clone detection works with a token-, line-, abstract syntax
tree (AST), or graph-based comparison [27]. However, to reduce the number
of false-positives, all approaches are in need of specifying a minimal code clone
length for their unit of measurement (be it tokens, statements, lines or AST
nodes) when applied in practice. This minimal clone length is usually in the
range of 5-10 units [12,22], which makes it too long to detect our micro-clones
of length 2 to 5 units.

3.2 How We Found Faulty Micro-Clones Instead

As clone detection is not able to reliably detect micro-clones in practice, we
devised a different strategy to find them. Our RQs aim not at finding all
possible micro-clones, but only the ones which are faulty. With this additional
constraint, we could design and implement a handful of powerful analyses
based on simple textual identity. These are able to find faulty code that is
very likely the result of a micro-clone. Table 1 lists and describes the twelve
analyses that found micro-clones in our study.7 For example, the analysis V501

6 The replication package can be obtained from: http://dx.doi.org/10.6084/m9.figshare.1313697.
7 For a more detailed description of the analyses, refer to http://viva64.com/en/d/0368/.

http://dx.doi.org/10.6084/m9.figshare.1313697
http://www.viva64.com/en/d/0368/

8 Moritz Beller et al.

Table 1 Error Types from PVS-Studio and Their Distribution.

PVS #within #multi
Error Description line line Σ#
Code warnings warnings

V501 There are identical sub-expressions to the left and to
the right of the foo operator.

104 108 212

V517 The use of if (A) {...} else if (A) {...} pattern
was detected. There is a probability of logical error
presence.

0 8 8

V519 The x variable is assigned values twice successively.
Perhaps this is a mistake.

0 23 23

V523 The then statement is equivalent to the else state-
ment.

0 5 5

V524 It is odd that the body of Foo_1 function is fully equiv-
alent to the body of Foo_2.

0 3 3

V525 The code containing the collection of similar blocks.
Check items X, Y, Z, ... in lines N1, N2, N3, ...

1 1 2

V537 Consider reviewing the correctness of X item’s usage. 0 8 8
V570 The variable is assigned to itself. 1 1 2
V571 Recurring check. This condition was already verified

in previous line.
0 2 2

V581 The conditional expressions of the if operators situ-
ated alongside each other are identical.

0 2 2

V583 The ?: operator, regardless of its conditional expres-
sion, always returns one and the same value.

0 1 1

V656 Variables are initialized through the call to the same
function. It’s probably an error or un-optimized code.

0 4 4

Σ 106 166 272

simply evaluates whether there are identical expressions next to certain logical
operators. If so, these are at best redundant and therefore cause a maintenance
problem, or at worst, represent an actual bug in the system.

3.3 How We Inferred the Origin of an Erroneous Micro-Clone Instance

To be able to make qualified statements about why a last line effect might
exist in RQ3, we additionally identify, for each micro-clone class, the copied
erroneous clone instance and the instance it likely originated from. While this
a-posteriori analysis cannot provide us with absolute certainty that the clones
were created in this way, we have convincing evidence that at least some
developers mechanically create micro-clones this way (see RQ3). Like in Ex-
ample 1, in the majority of cases, it is most often immediately clear which is
the influencing and which the influenced unit in a micro-clone: The erroneous
line 3 contains left-over fragments from line 2, implying an influence from 2
(origin) to 3 (destination). Most micro-clones exhibit a similar natural order
that determines origin and destination, either lexicographically like x, y, z in
Example 1 or cardinally:

Example 3 cmake

1 p [0] = 0 x f c | ((wc >> 30) & 0x01) ;
2 p [1] = 0x80 | ((wc >> 24) & 0 x3f) ;
3 p [1] = 0x80 | ((wc >> 18) & 0 x3f) ;
4 p [2] = 0x80 | ((wc >> 12) & 0 x3f) ;

The Last Line Effect Explained 9

Even in cases where there is no explicit natural order as in Examples 1
and 3, the code context often motivates an implicit order, like in Example 2:
It would be against the order of their previous definitions to put port str

in the first place and host in the second place in line 3. Hence, we assume
that the first instance of the micro-clone host != buzz::STR EMPTY is the
influencing origin and the second instance is the destination.

The general problem when reasoning about the origin and destination of
micro-clones in our data set is 1) the possible variable clone length and 2) the
expected relatively fewer micro-clones of length greater than 4. In order to be
able to generalize over different micro-clone lengths nonetheless, we calculate,
for each micro-clone i, δi = linei(Destination) − linei(Origin), resulting in
the proximity distribution ∆Dest−Orig.

A value of 1 indicates an inference from the immediately preceding unit,
as in Example 3. A value of 0 denotes that the error occurred within the same
micro-clone instance. A value of -1 denotes a swapped pair of clones, in which
the second influenced the first:

Example 4 UnrealEngine4

1 return cy () . i s R e l a t i v e ()
2 | | cy () . i s R e l a t i v e ()
3 | | r () . i s R e l a t i v e ()
4 | | fx () . i s R e l a t i v e ()
5 | | fy () . i s R e l a t i v e () ;

Here, we would have expected cx().isRelative in line 1, instead of
cy().isRelative, which seems to be influenced by the second line. Natu-
ral order, as well as lines 3 and 4 suggest that the micro-clone starts with
return cx().isRelative() in line 1 instead.

Hence, adding up the number of values where∆Dest−Orig = 1 or∆Dest−Orig =
−1 gives us the number of clones that are direct neighbors to each other, either
on the same line or the next line, irrespective of the total length of the clone.

3.4 How We Put Commit Sizes in Perspective

To calculate and visualize how each micro-clone inducing commit relates to
the remaining distribution of commit sizes, we first calculate the churn for each
commit in the repository. We do this by instrumenting git log to build a se-
quenced graph of all commits (excluding merges) in the repository, extracting
the number of added and deleted lines in each commit, summing them up as
the modified lines and outputting this churn integer for each commit. We then
compare the churn of the micro-clone inducing commits to the overall distri-
bution, and specifically to its median. Although our sample size of ten is too
small for statistical testing, this way, we can make substantiated statements
about a possible size difference between commits. We use the median (and not
the average mean, for example) as our distributions are non-normal, it is a
single real value and we compare other, singular observations to it.

10 Moritz Beller et al.

Table 2 Descriptive Statistics of Study Results.

... with all ... with faulty ... with last line/stmt. bug
findings micro-clones (rel. to all, rel. to faulty)

Analysis time June 2011 to July 2015
Analysis software PVS-Studio versions 4.00 to 5.27

of analyses 162 12 (7%) 12 (7%, 100%)
of projects 219 106 (49%) 97 (45%, 92%)
of warnings 1,891 272 (14%) 228 (12%, 84%)
of unique clones – 263 (–) 228 (–, 87%)

Table 3 Summarized results.

multi-line micro-clone one-line micro-clone

#errors in last line/stmt. 117 (74%) 95 (90%)
#errors not in last line/stmt. 41 (26%) 10 (10%)

effect size (odds ratio) 2.9 9.5

Σ 158 (100%) 105 (100%)
ΣΣ 263

4 Results

In this section, we deepen our understanding of faulty micro-clones by example
and statistical evaluation.

4.1 General Description of Results

Table 2 presents basic descriptive statistics of our results for C2. We ran the
complete suite of all PVS-Studio analyses on our 219 OSS from mid-2011 to
July 2015. Andrey Karpov, a software consultant by profession, gradually an-
alyzed the different systems throughout this period, using the latest then-
available version of PVS-Studio. He sorted-out false positives, so that 1,891
potentially interesting warnings with 162 different error codes remained. We
then manually investigated all 1,891 warnings and found that 272 warnings
with twelve distinct error codes were related to micro-cloning. Nine micro-
clones contained two such warnings, so that we ended up with 263 unique
micro-clones. The statistics at the project level reveal that our analyses could
identify faulty micro-clones in half of the investigated projects. Almost all of
these (92%) contained at least one instance of the last line or statement effect.

Table 3 presents a high-level result summary of locating errors in 263 micro-
clones. In total, we see that 74% of multi-line micro-clones have a last line error
and 90% of one-liner micro-clones in the last statement.

4.2 In-Depth Investigation of Findings

In order to convey a better intuitive understanding of the analyses with which
we identify faulty micro-clones, in the following, we select some of the 263 PVS-

The Last Line Effect Explained 11

Studio-generated micro-clone warnings as representative examples for the most
frequently occurring error codes from Table 1.

4.2.1 V501

As Table 1 shows, the majority of micro-clone warnings are of type V501. A
prime example for a V501-type warning comes from Chromium:

Example 5 Chromium

1 return ! p r o f i l e . GetFieldText (Auto f i l lType (NAME FIRST)) . empty () | |
! p r o f i l e . GetFieldText (Auto f i l lType (NAME MIDDLE)) . empty () | |
! p r o f i l e . GetFieldText (Auto f i l lType (NAME MIDDLE)) . empty () ;

In this one-liner micro-clone the second and third cloned statement are lexi-
cographically identical but connected with the logical OR-operator (||), thus
representing a tautology. Instead, the Boolean expression misses to take into
account the surname (NAME LAST), an example of the last statement effect in
this tricolon.

4.2.2 V517

Error code V517 pertains to having identical entry-conditions for two branches
of if-statements.

Example 6 linux-3.18.1

1 i f (s l o t == 0)
2 {
3 . . .
4 }
5 else i f (s l o t == 1)
6 {
7 . . .
8 }
9 else i f (s l o t == 0)

10 {
11 . . .
12 }

The body of the else if condition following the third micro-clone on line
9 is dead code, as it can never be reached. If slot was indeed zero, it would
already enter the first if condition’s body.

4.2.3 V519

Setting the value of a variable twice in succession is typically either unneces-
sary (and therefore a maintenance problem because it makes the code harder
to understand as the first assignment is not effective), or outright erroneous
because the right-hand side of the assignment should have been different. In
the following V519 example from MTASA, m ucRed is assigned twice, but the
developers forgot to set m ucBlue.

12 Moritz Beller et al.

Example 7 MTASA

1 m ucRed = ucRed ; m ucGreen = ucGreen ; m ucRed = ucRed ;

The detection of V519-style warnings works well for most “regular” soft-
ware, but is to be taken with caution when analyzing firmware or other
hardware-near code, as Example 8 demonstrates:

Example 8 linux-3.18.10

1 f−>fmt . vbi . s a m p l e s p e r l i n e = 1600 ;
2 f−>fmt . vbi . s a m p l e s p e r l i n e = 1440 ;

The second line sets the value of the variable f->fmt.vbi.samples per line

again, even though it has just been set in line 1. Since no other method calls
have been made in the further control flow of this method, the assignment in
line 1 seems to have no effect. However, as the assignment is active for at least
one CPU cycle, there might be threads that read its value in the meantime
(for example, watchdogs on the buffer state) or there might be other intended
side-effects. To be on the conservative side, we compiled the code with release
settings and if the compiler optimized the first assignment away, we were sure
it was indeed an error.

4.2.4 V523

When we find a micro-clone for different branches of if-conditions, these could
be simplified by collapsing them into one block, for example in Haiku:

Example 9 Haiku

1 i f (f l a g s & ATTR COMPRESSION MASK) {
2 h d r s i z e = 72 ;
3 /∗ FIXME: This compression s t u f f i s a l l wrong ∗/
4 /∗ now . (AIA) ∗/
5 i f (v a l l e n)
6 mpa size = 0 ; /∗ g e t s i z e f o r c ompr e s s e d ; ∗/
7 else
8 mpa size = 0 ;
9 . . .

10 }

It is, however, more likely that mpa size should have been set to a different
value in the else-branch. The code context of this micro-clone seems highly
suspicious, as it mentions in line 3 that “[t]his compression stuff is all wrong,”
and the detected erroneous micro-clone fits to this comment.

4.2.5 V524

Two cloned functions with the same content are highly suspicious. In our
Example 10, line 5 should call PerPtrBottomUp.clear(). This also serves as
one rare example of a two-instance micro-clone where the origin succeeds the
target (δE10

= −1).

The Last Line Effect Explained 13

Example 10 clang

1 MapTy PerPtrTopDown ;
2 MapTy PerPtrBottomUp ;
3

4 void clearBottomUpPointers () {
5 PerPtrTopDown . c l e a r () ;
6 }
7

8 void clearTopDownPointers () {
9 PerPtrTopDown . c l e a r () ;

10 }

4.2.6 V537

An illustrative example for a V537 finding comes from Quake III, where PVS-
Studio alerts us to review the use of rectf.X:

Example 11 Quake III

1 rect−>X = roundr (r e c t f .X) ;
2 rect−>Y = roundr (r e c t f .X) ;

The rectangle’s y-coordinate is falsely assigned the rounded value of rectf.X
in the second (i.e., last) line of this micro-clone.

4.2.7 V656

V656 checks for different variables that have the same initializing function.
As a result, we need to check warnings of type V656 carefully, as they bear a
high potential for false-positives. One example for a false-positive is that the
two variables are supposed to start with the same value, and are then treated
differently in the downstream control-flow. All V656-related micro-clones in
our sample stem from LibreOffice.

Example 12 LibreOffice

1 maSelect ion . Min () = a S e l e c t i o n . Min () ;
2 maSelect ion .Max() = a S e l e c t i o n . Min () ;

Here, maSelection.Max() is assigned not the maximum value of aSelection,
but its minimum, clearly representing an error.

4.2.8 Counterexample

As we have already seen in Example 12, not for all instances of an erroneous
micro-clone does the problem lie in the last line or statement. Take this rare
counterexample from Chromium, which we counted towards the 12 instances
of an error in line 2 of a three-liner micro-clone (see Table 4):

Example 13 Chromium

1 i f (std : : abs (data [M01] − data [M10]) > e p s i l o n | |
2 std : : abs (data [M02] − data [M02]) > e p s i l o n | |
3 std : : abs (data [M12] − data [M21]) > e p s i l o n)

14 Moritz Beller et al.

In line 2, the engineers deducted data [M02] from itself. However, they
meant to write:

2 std : : abs (data [M02] − data [M20]) > e p s i l o n | |

4.3 Statistical Evaluation

Table 4 shows the error-per-line distribution of our 158 micro-clones consisting
of several lines, and Table 5 that of our 105 micro-clones within one single line.
Cells with gray background are non-sensible. For example, in a micro-clone of
2 lines length, no error can occur in line 3. The yellow diagonal highlights
errors in the last line or statement.

For each column in Tables 4 and 5, we performed a Pearson’s χ2 test on a
p = 0.05 significance level to see whether the individual distributions are non-
uniform. The resulting p-values, reported in the last row, are only meaningful
for micro-clone lengths with enough empirical observations, which are columns
2-6 in Table 4 and columns 2-4 in Table 5.

Table 4 Error distribution for micro-clones with > 2 lines.

#total lines
1 2 3 4 5 6 7 8 9 >9

1 8 0 0 1 0 0 0 0 0
2 66 12 3 1 0 0 0 0 0
3 22 4 0 1 1 0 0 0
4 15 0 0 0 0 0 0
5 6 1 0 1 0 1
6 3 0 0 0 1
7 1 0 0 1
8 0 1 0
9 2 4

>9 2

Σ 0 74 34 22 8 5 2 1 3 9
ΣΣ 158

#
e
r
r
o
r
s

in
li

n
e

p 10−106 10−27 10−15 10−5 0.0487 0.534 0.437 0.135

For RQ1 and RQ2, we got significant p-values for micro-clones consisting
of 2, 3, 4, 5 or 6 lines and for micro-clones consisting of 2, 3, or 4 statements
(p < 0.05). This means that we can reject the null hypothesis that errors
are uniformly distributed across statements or lines. Instead, the distribution
is significantly skewed towards the last line or statement. We would expect
similar findings for longer micro-clones, but these were too rare to derive sta-
tistically valid information, shown by gray areas of the last row in Tables 4
and 5.

We can summarize the results across micro-clone lengths into the two
events “error not in last line or statement” and “error in last line or state-
ment”, shown in Table 3. Our absolute counts show that in micro-clones sim-
ilar to Example 1, the last line is almost thrice as likely to contain a fault

The Last Line Effect Explained 15

Table 5 Error Distribution for Micro-Clones within One Line.

#total statements
1 2 3 4 5 > 5

1 1 0 0 0 0
2 71 4 2 0 0
3 18 1 0 0
4 7 0 0
5 0 0

>5 1

Σ 0 72 22 10 0 1
ΣΣ 105

#
e
r
r
o
r
s

in

s
t
a
t
e
m

e
n
t

p 10−73 10−13 10−4

than all previous lines taken together. When looking at the individual line
lengths in Table 4, the last line effect is even as high as a nine-fold increased
error-proneness for the oft-appearing clone lengths 2, 4 and 5. The results for
cloned statements in micro-clones within one line, like Example 2, are stronger
still: We found the last statement to be 9.5 times more faulty than all other
statements taken together. In fact, for the 72 micro-clones consisting of two
statements, the last statement was the faulty one in all but one case.

In total, our findings confirm the presence of a pronounced last line and
last statement effect, accepting both RQ1 and RQ2.

4.4 Origin of Micro-Clones

Having found a large number of seemingly trivial micro-clone-related bugs in
OSS projects, we were curious about the reasons for its presence. In RQ3, we
therefore ask:

RQ 3 What are the reasons for the existence of faulty micro-clones and the
last line effect in particular?

Table 6 Clone Length (Horizontal) and Likely Clone Origin (Vertical).

````````origin
clone length

1 2 3 4 5 6 7 8 9 >9

1 0 132 22 7 2 1 0 0 1 0
2 3 28 3 4 1 1 1 0 0
3 1 20 0 0 0 0 1 1
4 0 2 1 1 0 0 3
5 0 2 0 0 0 0
6 0 0 0 0 2
7 0 0 1 3
8 0 0 1
9 0 0
>9 0

Σ 0 135 51 30 8 5 2 1 3 10
ΣΣ 245



16 Moritz Beller et al.

In this section, we first analyze the origin of micro-clone instances, and
examine which technical and psychological reasons might play a role for the
existence of micro-clones.

Table 6 shows the results of the copy origin analysis broken down per clone
length. For it, we disregarded micro-clones for which we could not agree on
the order of their clones, leaving us with 245 out of 263 clone pairs.

In Figure 2, we plot the distribution of the copy origin. The figure shows
that for 165 out of 245 micro-clones (67%), the first clone instance of a micro-
clone is the influential one, with a large drop toward the second (18%) and
subsequent gradual drops from the second to the third (9%) and fourth (3%).
Only in the remaining 4% of cases does the influencing clone instance lie
beyond the fourth line or statement in a micro-clone. This seems to indicate
that the first line is most influential for the outcome of a clone. However, our
distribution of micro-clones itself is highly skewed toward 2-liner micro-clones.
It follows naturally that in most instances of a two-liner micro-clone, the origin
lies in the first line. When considering the 117 micro-clones which are longer
than two clone instances in Table 6, we find that the copy origin is the first
line only for 33 micro-clones (28%). As the average length for these 117 micro-
clones is 4.9, we would expect 20% of copy origins to be in the first line, even
for a uniform distribution. Our 28% indicate that the first line only exhibits
a mild influence when correcting for the influence of 2-liner micro-clones. In
2-liner micro-clones, the first line is almost always the origin.

Figure 2 plots the distribution ∆Dest−Orig (see Section 3.3). It shows that
over 84% of clone instances appear in the immediate mutual neighborhood
(220 out of 245), i.e. ∆Dest−Orig 6 1. In 89% of these cases (195 out of 220),
∆Dest−Orig = 1 or ∆Dest−Orig = −1, which means that the erroneous instance

0

50

100

150

200

1 2 3 4 5 6 7 8 NA

Micro−Clone Origin

# 
of

 M
ic

ro
−

C
lo

ne
s

0

50

100

150

200

−1 0 1 2 3 4 5 6 8 NA

Proximity Value ∆Dest−Orig

Fig. 2 Copy Origin Distribution (left) and Proximity Distribution of Copy Origin and
Destination within Micro-Clones (right).



The Last Line Effect Explained 17

Project Sampled Commit Local Commit
Date

Commit
Churn

Median
Churn

#Commits Replies

Chromium

2db531074
6b7fcb4
(7b37fbb72)
47fcb0e

2010-09-30 20:53
2011-02-23 05:57
(2011-03-07 16:16)
2012-10-24 3:52

123
1220
(1,635)
1,627

43 639,564 4/4

LibreOffice
b90bc103
44cfc7cb (rebase)

2008-08-19 22:06
2012-10-09 12:22

103,083
470

18 438,994 0/2

Samba 781ed1f5 2005-12-09 05:21 45 16 241,276 1/1

Mesa 3D 0ff3b2b3
45124e043

2010-07-26 23:56
2010-12-07 21:37

108
251

21 99,115 1/2

libjingle 562554db 2010-09-30 20:53 110,184 212 341 1/1∑
10 7/10 (6 authors)

Table 7 Descriptive Statistics of Developer Interviews and Commit Size Analysis of sam-
pled repositories before 6.10.2016.

succeeds the correct instance in either the next line or statement. Preceding it,
i.e. ∆Dest−Orig = −1, is much rarer (3 out of 220). When we disregard 2-liner
or 2-statement clones, which naturally appear next to each other, we obtain
that 81% of clone pairs appear in mutual neighborhood (66 out of 81). We can
therefore summarize these findings with two general observations:

1. For 2-liner micro-clones, the first line is almost always the influencing
origin. When correcting for the effects of short 2-liner code clones, in gen-
eral, the first line of a micro-clone seems to only exhibit a mild additional
influence as a source.

2. Instead, the influencing and the erroneous clone instance appear in direct
textual and visual neighborhood in the source code in four out of five
micro-clones. Moreover, in nine out of ten of these cases, the erroneous
clone instance appears after its influencing origin.

4.5 Developer Interviews

In C2, we approached ten authors of real-world committed micro-clones with
excerpts of the micro-clone they authored and additional contextual informa-
tion. We then asked them whether they remembered

1. how they mechanically created the micro-clone (e.g., by copy and pasting).
2. how the particular error referenced occurred or slipped-through.
3. which situation they were in when they created the commit, supplied with

the local time and date of the commit.
4. in which stages of development and how often similar micro-clones are

generally created in their experience.

Table 7 gives an overview of the ten interviews I1-10 we lead asynchronously
via email and Skype. It denotes the sampled projects and commits, the cre-
ation date of the commits, their median and individual sizes in terms of churn,
and the total number of commits in the project. To protect the identity of in-
terviewees, we do not connect the IDs with commits in the table and also



18 Moritz Beller et al.

anonymize all code fragments. If we received no reply after one week, we sent
a reminder. In the following, we summarize the insights we obtained from the
interviews.

One interviewee replied that he has “no interest.” Another interview ended
because the participant replied that the commit was too long ago and he does
not remember it. In one instance, 7b37fbb72, the interviewee told us that he
merely refactored and did not author this piece of code originally. He forwarded
us to the real author of the code, whom we also interviewed (6b7fcb4).

We asked I1 on the micro-clone:

Example 14 Anonymized I1

1 i f ( ! has mic && ! has mic ) {

He told us that the mistake was not a copy-and-paste mistake. Rather,
he typed !has mic when he should have typed !has audio instead. In his
experience, this happens a lot when working with code in which one types the
same words repetitively. He observed that “I was not under any major stress
at the time”, but that “I will note that when working with very large changes
it is much easier for something like this to be missed.” He added that the real
error was not having a unit test that covers this line and that the reviewer
missed the absurdity of the pattern !a && !a, too.

I4 answered that, while he did not remember this case specifically, he
reconstructed what likely happened for the micro-clone of the form:

Example 15 Anonymized I4

1 return
2 f i e l d . type == trans ( ” s t r i n g ” ) | |
3 f i e l d . type == trans ( ” t w i t t e r ” ) | |
4 f i e l d . type == trans ( ” mail ” ) | |
5 f i e l d . type == trans ( ” http ” ) | |
6 f i e l d . type == trans ( ” emai l ” ) | |
7 f i e l d . type == trans ( ” s t r i n g ” ) ;

When creating such micro-clones, he usually comes up with the first clone
instance field.type == trans("string") || and copy-and-pastes it several
times, ending up in a sequence like:

Example 16 Anonymized I4

1 f i e l d . type == trans ( ” text ” ) | |
2 f i e l d . type == trans ( ” text ” ) | |
3 . . .

He reported that he does “not carefully count how many repetitions there are
– I just guesstimate.” As a last step, he would also remember to delete any
extraneous lines, but he assumes that he did not remember in this case or got
distracted. During the origin analysis (see Section 3.3), we also found that two
refactorings on this micro-clone were performed, but the original error stayed.
This happened because developers relied on a tool to do the transformation
for them and did not read the code carefully. I4 concluded that he often uses
these mechanics for creating micro-clones, “but I usually remember to pare



The Last Line Effect Explained 19

0

10,000

20,000

30,000

40,000

50,000

0 5 10 15

Log−Churn of commit

# 
of

 C
om

m
its

Chromium

0

10

20

30

40

3 6 9 12

Log−Churn of commit

libjingle

0

10,000

20,000

30,000

0 5 10

Log−Churn of commit

LibreOffice

0

2,000

4,000

6,000

0 5 10

Log−Churn of commit

# 
of

 C
om

m
its

Mesa 3D

0

3,000

6,000

9,000

0 5 10

Log−Churn of commit

Samba

Fig. 3 Median commit size over whole repository history (dashed blue) and commit size
(as logarithmic churn) of individual micro-clone introducing commits (dotted orange).

down any extraneous lines.” Similar to I1, he also stated that it should be
caught by either code review or testing.

I6 answered that “it has been a while, but [...] this seems like [a] copy/paste
bug to me. Not uncommon.” He also said “I see (and do) this kind of thing all
the time.” To move fast and save typing, I6 created the micro-clone by copy-
and-pasting, then modifying each line by varying it. “The last line got missed.”
His explanation is that he forgot to modify the last micro-clone instance, since
“usually, my mind has moved on to less mechanical thought. But then the
mechanical actions gets botched.” While I6 did not recall the day particularly,
they are “always trying to move fast to get improvements out.” He also said
that he sees micro-clones “all the time,” at least 10 times per day. “Of those
10, perhaps 9 get caught in self review or by the compiler. The last one gets
caught by other reviewers or unit tests mostly. But on occasion, say once a
month [...], this kind of [bug] makes it into shipping code that affects end
users.”

I7 authored a micro-clone of the format

Example 17 Anonymized I7

1 else i f ( depth > 0 && width > 0 && width > 0)

He remembered that he “just typed it out, no copy/paste” and missed it
because “I was probably in a hurry and was not focused.” While he could
not remember the specific date, he noted that he is “always pretty busy in
general.”



20 Moritz Beller et al.

From the interviews, it seemed that one factor that might affect the like-
lihood of faulty micro-clones to pass through the various measures of defense
the interviewees mentioned, might be the size of the commit. If this is the
case, then micro-clone inducing commits should be abnormally large. The
term “abnormally large” only makes sense in the context of each project’s rel-
ative commit sizes. In Figure 3, we therefore compare the size of the sampled
micro-clone inducing commits to the median commit size in each project. The
figures show that all micro-clone inducing commits were orders of magnitude
larger than the median commit sizes in each project.

4.6 Usefulness of Results

Having unveiled a large number of potential bugs in OSS, we wanted to help
the OSS community and see if our findings represented bugs that would be
worth fixing in reality. We approached the OSS projects by creating issues
with our findings in their bug trackers. Many of our bug reports lead to quality
improvements in the projects, like fixing the validation bug from Example 2
in Chromium.8 The search query pvs-studio bug | issue9 shows numerous
bug fixes in Firefox, libxml, MySQL, Clang, samba and many other projects
based on our findings.

5 Discussion

In this section, we discuss our results by merging the observed bug patterns
with our psycho-cognitive analysis. We end with an explanation of possible
threats to the validity of our conclusions.

5.1 Technical Reasons

Technical reasons that could play a role for the existence of the last line effect
would assume that the last line in a micro-clone is technically more complex
in comparison to the other lines, and thus more likely to contain an error. This
would include that the last line is for example not checked by the compiler, or
that, when an IDE is used and the last line indeed written as the last action
in this editor window, perhaps the compiler would not react fast enough to
check it. This is not true for two reasons:

1. Modern IDEs typically do not lag behind in syntax checking.
2. The last line or statement micro-clone instances are grammatical, i.e. a

compiler error that would draw attention to them does not occur.

8 https://codereview.chromium.org/7031055
9 www.google.com/search?q=pvs-studio+bug+|+issue

https://codereview.chromium.org/7031055
http://www.google.com/search?q=pvs-studio+bug+|+issue


The Last Line Effect Explained 21

Another technical reason might be that coming up with the last statement in
a series of statements might be harder than the ones before. However, when
observing any of the Examples 1, 2, 5, 7 and 11, it becomes clear that the
opposite is the case: Because all clone instances in a micro-clone follow the
same pattern, the hardest to come up with, if any, is the first instance. The
succeeding instances simply replicate its pattern.

5.2 Psychological Mechanisms & Reasons

As technical reasons are not a likely cause for the last line effect, we consider
here psychological mechanisms that might underlie this effect. We turned to
a professor in cognitive psychology (the fourth author of this paper) and pre-
sented our findings to him. In the following, we give an initial overview of
possible psychological effects. These psychological reasons are preliminary at
this point, because a more detailed analysis would require psychological exper-
imentation in which the actual process of producing these errors is observed,
rather than reconstructed by an origin analysis (see Section 3.3) and remem-
bered in interviews (see Section 4.5).

In cognitive psychology, action slips are errors that occur during routine
tasks and have been widely studied [2]. A typical example would be to put
milk in a coffee twice instead of milk and sugar. Our analysis on the origin
of micro-clones concluded that developers follow a wide variety of different
mechanical patterns to create micro-clones. One of these patterns is “[write
first clone instance], [copy], [copy], ..., [modify], [modify], ...”, see I4, I6. Our
interviews and origin-analysis also show that developers equally follow the
pattern “[write first clone instance], [copy, modify], [copy, modify], ...” In some
extreme cases micro-cloning in our data set, this action sequence must have
been repeated 34 times. While they use different mechanical methods, the task
software developers are performing in producing micro-clones can always be
seen as a sequential action task with different levels of automation and manual
effort. From a psycho-cognitive viewpoint, errors developers introduce while
producing micro-clones are thus characterized as typical action slips.

While differing on the details, models for sequential action control assume
that noise is the main explanation for action slips [14,17,38]. By noise, we refer
to any task-irrelevant mental representations, which includes external stress
such as deadlines and internal factors such as large commits, that might draw
the developer’s attention. Sequential action control models provide a useful
theoretical framework for speculating about the psychological mechanisms be-
hind the last line effect. At this point, we only know the faulty micro-clones
instances, and their location, but we have no detailed process information on
how they came to be. However, as Section 4.4 showed, the anecdotal evidence
from interviews as well as our technical origin analysis does allow us to make
informed inferences about the creating of an erroneous micro-clone instance.
The basic operations that the programmer performs are: copying and edit-



22 Moritz Beller et al.

ing. Consider Example 1 again. The editing step here involves two sub-steps,
updating the variable and updating the value.

Example 1 TrinityCore

1 x += other . x ;
2 y += other . y ;
3 z += other . y ;

Here, line 3 contains an error. It appears that line 2 was copied to pro-
duce line 3. The first update was performed correctly (change y into z) but
the second editing sub-step was not performed, thus producing the error. In
principle, line 1 could have been copied twice with the editing steps having
been performed on the two lines. However, the presence of a y rather than
x in line 3 suggests that line 2 was copied. Section 4.4 shows that in most
cases of micro-clones with more than two lines, the previous line was copied.
This suggests that in such micro-clones, the sequence of actions was as follows:
“[copy, modify, modify], [copy, modify, modify], ...”

Models of action control assume that action slips occur because of noise.
Such noise is more likely to occur near the end of a sequence because the
programmer’s focus might prematurely shift to the next task, for example
subsequent lines of code that need to be produced (see evidence from I6 ).
As noted earlier, there are subtly different psychological explanations for why
such noise might occur. To take just one account [17], the last line effect might
occur because the wrong action schema is selected (e.g., the engineer is already
mentally working on the next lines rather than completing the current one).

While none of the engineers noted to have experienced extraordinary stress
levels at the time of the creation of the clone, the statements from I6 and I7
stand out, who indicated a general sense of business and desire to move fast.
When considering the local commit dates of when erroneous micro-clones in
Table 7, it stands out that only two were created during core office hours, even
though many interviewees did this as part of their job. Tiredness is known to
reduce brain efficiency and affect the working memory [23]. This could indicate
that tiredness and a general time pressure might play a critical role in the
creation of erroneous micro-clones.

More than time pressure, however, we found that all micro-clone inducing
commits (and even refactorings) were exceptionally large – orders of magnitude
larger than a normal commit in the repositories. We therefore purport that
commit size is an important, perhaps the dominant noise factor, that makes
these errors go unnoticed. This finding corroborates well with the explanations
of a working memory overload and I1’s observation that the resulting amount
of code is very hard to oversee.

Our interviews with developers indicated that creating short-lived micro-
clones might be common in software development, but that the developers
usually catch them early, or at least during their own or someone else’s review
of the code [6]. The cognitive error in the remaining micro-clones we observed
in this study is thus not only a production error, but also a proofreading
error [20]: During revision of the code, the engineer fails to notice the error



The Last Line Effect Explained 23

in the last and other lines. In fact, our interviews suggest that this seemed
to happen twice for the micro-clones that made to production: once, during
self-review and then at least one second time during code review by a peer.
One plausible reason why this proofreading error is more likely to occur in the
last line than in earlier ones could be because it is an action slip. The mind is
already focused on the next task (e.g., implementing a new feature) before the
current one (proofreading), has been completed. Yet another account could be
that the error is less detectable because several very similar statements in a
row have to be proofread. This could cause the reading of the final statement
to be faster and therefore more superficial. Moreover, the visual closeness
of origin and target in micro-clones might simply make it more difficult to
differentiate between the individual lines. Research on proofreading suggests
that familiarity (operationalized as word frequency) leads to shorter processing
times and has a negative impact on the ability to detect spelling errors in
text [29].

All potential causes suggest that developers are more likely to conduct last-
line-type errors in situations when their attention span is reduced through
noise. Possible causes for noise with a negative impact on micro-cloning in
particular seem to be large commit sizes, and possibly high workload, stress,
being distracted, and tiredness [30]. Conversely, our results also suggest that
developers’ ability to control irrelevant noise from the environment [18], i.e.
their ability to focus attention, plays an important role in how likely a micro-
clone is going to be created with an action slip related error.

5.3 Threats to Validity

In this section, we show internal and external threats to the validity of our
results, and how we mitigated them.

5.3.1 Internal Threats

One internal threat concerns how to determine in which line the error lies.
Given Example 2, any of the two statements could be counted as the one
containing the duplication. However, reading and writing source code typi-
cally happens from top to bottom and from left to right [35]. Therefore, the
only natural assessment is to flag lines and statements as problematic accord-
ing to this strict left-right and top-down visual reading order: In Example 2,
only when we have read the second statement do we know it is a duplicate
of the first. We hence flag the second statement as the one containing the
error. Moreover, in many cases, as in Example 2, the program context around
the micro-clone (here the definition order of the variables host first and then
port str) imposes a natural logical order for the remainder of the program
(first check host, then port str in line 3). In order to reduce personal bias,
we also separated the list of findings to triage across the first two authors, and
then discussed unclear cases. If we could not reach agreement, we discarded



24 Moritz Beller et al.

said finding. In this process, we also re-classified all original previous 202 find-
ings [11] and found almost total agreement with our previous assessment. Since
flagging erroneous lines is a well-defined task under these circumstances, we
are sure there is a high inter-rater reliability, ensuring the repeatability of our
study.

While we are confident about the results of our origin-destination analysis,
we do not know how the clones were created and modified by the software de-
veloper. Our a-posteriori repository mining approach assumes a top-to-bottom
reading order of blocks and a left-to-right reading order for individual lines.
We know that developers “jump” in the code when reading a file, only focusing
on what seems important to solve the task at hand [15,35]. However, in order
to understand small coherent logical units, such as micro-clones, developers
must necessarily read in the control-flow-direction of the software – which is
top-to-bottom, left-to-right. In particular, it would be interesting to see 1) how
many times the copy-paste-pattern “ctrl+c, ctrl+v” was used, 2) in which
order micro-clones are created, and 3) in which order micro-clones are read
and changed, if developers need to modify them during maintenance. In order
to get to know such information, we would require to study how developers
work in-vivo, similar to the WatchDog plugin [8–10]. To that end, we could
reuse parts of CloneBoard, which captures all cut, copy and paste actions in
Eclipse [39].

Given these limitations, our psychological analysis is partly speculative at
this point. A more detailed analysis requires psychological experimentation
in which the process of producing these errors is examined in-vivo. With our
choice of research methods, we might potentially miss subtle steps in the cre-
ation of micro-clones. However, we believe that it is very difficult to expose
faulty micro-cloning in a laboratory setting, as our interviews indicate that
it requires a long time to expose a relatively small number of micro-clones.
Moreover, due to the artificial nature of the experiment, a possible time limit
and the fact that participants typically over-perform in experiments [1], they
might not create faulty micro-clones at all. Since the results of our mixed-
methods case studies corroborate each other, we believe to have acquired an
accurate set of initial reasons for the existence of faulty micro-clones and the
last line effect in particular.

5.3.2 External Threats

An external factor that threatens the generalizability is that PVS-Studio is
specific to C and C++. C is one of the most commonly used languages [28].
Therefore, even if our results were not generalizable, they would at least be
valuable to the large C and C++ communities. However, our findings typically
contain language features common to most programming languages, like the
variable assignments, if clauses, Boolean expressions and array uses in Exam-
ples 1, 2, 5, 7 and 11. Almost all programming languages have these constructs.
Thus, we expect to see analogous results in at least C-inspired languages such
as Java, JavaScript, C#, PHP, Ruby, or Python. While our overall corpus of



The Last Line Effect Explained 25

findings is large, the average number of ∼1.2 micro-clones per project is rather
small (see Table 2). This could be because PVS-Studio’s analyses for defective
micro-clones are not exhaustive, and that the projects we studied are stable,
production systems with a mature code base containing relatively little trivial
errors. Our interviews gave another explanation: extensive testing and code-
reviewing significantly decreases the number of faulty micro-clones that make
it into production.

6 Related work

Duplicated or similar code fragments are famously known as “code clones,”
yet their definition has remained somewhat vague over the last decade [34].
This vagueness is reflected in the definitions “[c]lones are segments of code
that are similar according to some definition of similarity” by Baxter et al. [5]
and “code clones [...] are code fragments of considerable length and significant
similarity” by Basit and Jarzabek [4]. The latter definition identifies clones as
long enough pieces of code that share sufficiently many traits, while the first
has no such requirements. A widely-used definition categorizes clones into
three classes [27]: Type 1 clones are textually and type 2 clones syntactically
(modulo identifier renamings) identical. Type 3 clones have further-reaching
syntactic modifications and type 4 clones are only functionally identical [34].
However, this general classification is agnostic about, for example, code clone
length. Subsequently, researchers developed a plethora of more specific clone
definitions [3,24,27]. In this study, we add to these taxonomies the concept of
very short, but closely related code clones that are located below the lower limit
of “considerable length,” with often no more than two duplicated statements
within one clone instance. We call such extremely short duplicated pieces of
code, micro-clones.

In the following, we compare traditional code clone detection mechanisms
to how we detect micro-clones. In a 2007 comparison and evaluation of clone
detection tools, Bellon et al. evaluated six clone detectors for C and Java [12].
Depending on the clone detector, clones had to be at least six lines or 25 tokens
long in their experiment. In 2014, Svajlenko and Roy performed a similar
study and compared the recall performance of eleven modern clone detection
tools [36]. In their configuration of the clone detectors, they used minimal
clone lengths of 50 tokens, 15 statements, or 15 lines [36]. These thresholds
are too large to be able to detect micro-clones. However, traditional clone
detectors need them to avoid a large number of false positives. Our approach
circumvents this problem by only detecting faulty micro-clones.

In direct follow-up research on our initial investigation [11], van Tonder
and Le Goues performed a large-scale search for micro-clones in 380,125 Java
repositories [37]. They found 24,304 faulty micro-clones, demonstrating and
solidifying our assumption that micro-clones are a wide-spread phenomenon
across software projects. By providing 43 patches to fix faulty micro-clones



26 Moritz Beller et al.

of which 43 were promptly integrated, they show that developers value the
removal of micro-clones and that it can be automated at scale.

Empirical investigations with traditional clone detectors suggest that ∼9%
to 17% is a typical portion of clones in the code base of software systems [41],
considering all type 1, 2, and 3 clones [27]. Outliers in the so-called “clone
coverage” may be lower than 5% [33] and higher than 50% [31, 34]. These
ratios do not include micro-clones, which we have shown to be a frequent
source of bugs in numerous OSS in this study. In the larger perspective of how
prevalent code clones are in systems, micro-clones might lead to an increased
perception of clones in the code, and to a much higher clone coverage, at least
when considering a “micro-clone coverage” measure. A high clone coverage is
generally thought to be problematic, since numerous studies have shown that
it is positively correlated with bugs and inconsistencies in the system [16, 19,
21,40].

7 Future Work & Conclusion

In this section, we describe possible extensions of our study and draw conclu-
sion.

Because our study focuses on faulty micro-clones, we cannot make predic-
tions about how many of all micro-clones are erroneous. A promising future
research direction is to develop a clone detector that can reliably detect all
micro-clones, and then to see how many are actually defective. This gives
an indication of the scale of the problem at hand. Anecdotal evidence from
interviews suggests that micro-cloning seems to happen quite often and catch-
ing it consumes precious code review and testing iterations. To catch faulty
micro-clones early, including our checkers for micro-clones into the integrated
development environments (IDEs) of developers seems to be fruitful direction
for future work.

Our initial psychological examination of the effect warrants a larger psy-
chological controlled experiment, that, we believe, might be associated with a
high risk of not exposing enough faulty micro-clone creations. Already existing
tooling could help enable this study on a technical level.

In 219 open source projects, we found 263 faulty micro-clones. Our analysis
shows that there is a strong tendency for the last line, and an even stronger
tendency for the last statement to be faulty, called the last line effect. In fact,
the last line in a micro-clone is three times as likely to contain a fault than
any of the previous lines combined, and the last statement almost ten times
as likely as any of the previous statements combined.

Psychological reasons for the existence of the last line effect seem to be
largely the result of action slips, where developers fail to carry out a repetitive
and easy process correctly, caused by working memory overload by noise. We
have evidence suggesting that the effect is largely caused by the way developers
copy-and-paste code. Developers seem to have a psychological tendency to
think changes of similar code blocks are finished earlier than they really are.



The Last Line Effect Explained 27

This way, they miss one critical last modification. Important reasons for noise
seem to be abnormally large commit sizes, and possibly tiredness and stress.

Because of this observation, we advise programmers to be extra-careful
when reading, modifying, code-reviewing, or creating the last line and state-
ment of a micro-clone, especially when they copy-and-paste it. This knowledge
can help developers alleviate bugs due to faulty micro-clones, both while writ-
ing and reviewing code. Developers can spot mental situations in which they
are likely to commit errors due to an overload of their working memory, and
pay attention to avoid them. With PVS-Studio, we have developed an auto-
mated tool that supports developers to spot when such errors have “slipped
through” pre-release, for example during code review.

Acknowledgements We thank Diomidis Spinellis for an inspiring conversation during
ICSE’15 in the “Mercato Centrale.”

References

1. Adair, J.G.: The Hawthorne effect: A reconsideration of the methodological artifact.
Journal of applied psychology 69(2), 334–345 (1984)

2. Anderson, J.R.: Cognitive psychology and its implications . WH Freeman/Times Book-
s/Henry Holt & Co (1990)

3. Balazinska, M., Merlo, E., Dagenais, M., Lagüe, B., Kontogiannis, K.: Measuring clone
based reengineering opportunities. In: Proceedings of the International Software Metrics
Symposium (METRICS), pp. 292–303. IEEE (1999)

4. Basit, H.A., Jarzabek, S.: Efficient token based clone detection with flexible tokeniza-
tion. In: Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE), pp. 513–516. ACM (2007)

5. Baxter, I.D., Yahin, A., de Moura, L.M., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: Proceedings of the International Conference on Software
Maintenance (ICSM), pp. 368–377. IEEE (1998)

6. Beller, M., Bacchelli, A., Zaidman, A., Juergens, E.: Modern code reviews in open-source
projects: Which problems do they fix? In: Proceedings of the 11th Working Conference
on Mining Software Repositories, pp. 202–211. ACM (2014)

7. Beller, M., Bholanath, R., McIntosh, S., Zaidman, A.: Analyzing the state of static
analysis: A large-scale evaluation in open source software. In: Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and Reengineering, pp.
470–481. IEEE (2016)

8. Beller, M., Gousios, G., Panichella, A., Zaidman, A.: When, how, and why developers
(do not) test in their IDEs. In: Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE). ACM (2015)

9. Beller, M., Gousios, G., Zaidman, A.: How (much) do developers test? In: 37th Inter-
national Conference on Software Engineering (ICSE), pp. 559–562. ACM (2015)

10. Beller, M., Levaja, I., Panichella, A., Gousios, G., Zaidman, A.: How to catch ’em all:
Watchdog, a family of ide plug-ins to assess testing. In: 3rd International Workshop
on Software Engineering Research and Industrial Practice (SER&IP 2016), pp. 53–56.
IEEE (2016)

11. Beller, M., Zaidman, A., Karpov, A.: The last line effect. In: 23rd International Con-
ference on Program Comprehension (ICPC), pp. 240–243. ACM (2015)

12. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evaluation
of clone detection tools. IEEE Transactions on Software Engineering 33(9), 577–591
(2007)



28 Moritz Beller et al.

13. Bland, J.M., Altman, D.G.: The odds ratio. Bmj 320(7247), 1468 (2000)
14. Botvinick, M., Plaut, D.C.: Doing without schema hierarchies: A recurrent connectionist

approach to routine sequential action and its pathologies 111, 395–429 (2004)
15. Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J.H., Schulte, C., Sharif, B.,

Tamm, S.: Eye movements in code reading: Relaxing the linear order. In: Proceedings of
the International Conference on Program Comprehension (ICPC), pp. 255–265. ACM
(2015)

16. Chatterji, D., Carver, J.C., Massengil, B., Oslin, J., Kraft, N., et al.: Measuring the
efficacy of code clone information in a bug localization task: An empirical study. In:
Proceedings of the International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 20–29. IEEE (2011)

17. Cooper, R., Shallice, T.: Hierarchical schemas and goals in the control of sequential
behaviour. Psychological Review 113, 887–916 (2006)

18. Fukuda, K., Vogel, E.K.: Human variation in overriding attentional capture. The Journal
of Neuroscience 29(27), 8726–8733 (2009)

19. Göde, N., Koschke, R.: Frequency and risks of changes to clones. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp. 311–320. ACM (2011)

20. Healy, A.F.: Proofreading errors on the word the: New evidence on reading units. Journal
of Experimental Psychology: Human Perception and Performance 6(1), 45 (1980)

21. Inoue, K., Higo, Y., Yoshida, N., Choi, E., Kusumoto, S., Kim, K., Park, W., Lee, E.:
Experience of finding inconsistently-changed bugs in code clones of mobile software.
In: Proceedings of the International Workshop on Software Clones (IWSC), pp. 94–95.
IEEE (2012)

22. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter? In:
Proceedings of the International Conference on Software Engineering (ICSE), pp. 485–
495. IEEE (2009)

23. Kane, M.J., Brown, L.H., McVay, J.C., Silvia, P.J., Myin-Germeys, I., Kwapil, T.R.: For
whom the mind wanders, and when an experience-sampling study of working memory
and executive control in daily life. Psychological science 18(7), 614–621 (2007)

24. Kapser, C., Godfrey, M.: A taxonomy of clones in source code: The re-engineers most
wanted list. In: 2nd International Workshop on Detection of Software Clones (IWDSC-
03), vol. 13 (2003)

25. Kapser, C.J., Godfrey, M.W.: cloning considered harmful considered harmful: patterns
of cloning in software. Empirical Software Engineering 13(6), 645–692 (2008)

26. Kim, M., Bergman, L., Lau, T., Notkin, D.: An ethnographic study of copy and paste
programming practices in oopl. In: Proc. International Symposium on Empirical Soft-
ware Engineering (ISESE), pp. 83–92. IEEE (2004)

27. Koschke, R.: Survey of research on software clones. In: R. Koschke, E. Merlo,
A. Walenstein (eds.) Duplication, Redundancy, and Similarity in Software, no. 06301
in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany (2007). URL
http://drops.dagstuhl.de/opus/volltexte/2007/962

28. Meyerovich, L., Rabkin, A.: Empirical analysis of programming language adoption. In:
ACM SIGPLAN Notices, vol. 48, pp. 1–18. ACM (2013)

29. Moravcsik, J.E., Healy, A.F.: Effect of meaning on letter detection. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition 21(1), 82 (1995)

30. O’MALLEY, J.J., Gallas, J.: Noise and attention span. Perceptual and motor skills
44(3), 919–922 (1977)

31. Rieger, M., Ducasse, S., Lanza, M.: Insights into system-wide code duplication. In:
Proceedings of the Working Conference on Reverse Engineering (WCRE), pp. 100–109.
IEEE (2004)

32. Roy, C., Cordy, J., Koschke, R.: Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Science of Computer Programming 74(7),
470–495 (2009)

33. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Tech. Rep. TR
2007-541, Queens University (2007)

34. Roy, C.K., Zibran, M.F., Koschke, R.: The vision of software clone management: Past,
present, and future (keynote paper). In: 2014 Software Evolution Week - IEEE Con-
ference on Software Maintenance, Reengineering, and Reverse Engineering, (CSMR-
WCRE), pp. 18–33. IEEE (2014)

http://drops.dagstuhl.de/opus/volltexte/2007/962


The Last Line Effect Explained 29

35. Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., Saake, G.,
Brechmann, A.: Understanding understanding source code with functional magnetic
resonance imaging. In: Proceedings of the International Conference on Software Engi-
neering (ICSE), pp. 378–389. ACM (2014)

36. Svajlenko, J., Roy, C.K.: Evaluating modern clone detection tools. In: 30th IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME), pp. 321–330.
IEEE (2014)

37. van Tonder, R., Le Goues, C.: Defending against the attack of the micro-clones. In:
Program Comprehension (ICPC), 2016 IEEE 24th International Conference on, pp.
1–4. IEEE (2016)

38. Trafton, J.G., Altmann E. M. andRatwani, R.M.: A memory for goals model of sequence
errors. Cognitive Systems Research 12, 134–143 (2011)

39. de Wit, M., Zaidman, A., van Deursen, A.: Managing code clones using dynamic change
tracking and resolution. In: Proceedings of the International Conference on Software
Maintenance (ICSM), pp. 169–178. IEEE (2009)

40. Xie, S., Khomh, F., Zou, Y.: An empirical study of the fault-proneness of clone muta-
tion and clone migration. In: Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR). IEEE (2013)

41. Zibran, M.F., Saha, R.K., Asaduzzaman, M., Roy, C.K.: Analyzing and forecasting near-
miss clones in evolving software: An empirical study. In: Proceedings of the International
Conference on Engineering of Complex Computer Systems (ICECCS), pp. 295–304.
IEEE (2011)


