
TravisTorrent: Synthesizing Travis CI and GitHub for
Full-Stack Research on Continuous Integration

Moritz Beller, Georgios Gousios, Andy Zaidman
Delft University of Technology, The Netherlands

{m.m.beller,g.gousios,a.e.zaidman}@tudelft.nl

ABSTRACT
Continuous Integration (CI) has become a best practice of mod-
ern software development. Thanks in part to its tight integration
with GitHub, Travis CI has emerged as arguably the most widely
used CI platform for Open-Source Software (OSS) development.
However, despite its prominent role in Software Engineering in
practice, the benefits, costs, and implications of doing CI are all
but clear from an academic standpoint. Little research has been
done, and even less was of quantitative nature. In order to lay the
groundwork for data-driven research on CI, we built TravisTorrent,
travistorrent.testroots.org, a freely available data set based
on Travis CI and GitHub that provides easy access to hundreds
of thousands of analyzed builds from more than 1,000 projects.
Unique to TravisTorrent is that each of its 2,640,825 Travis builds
is synthesized with meta data from Travis CI’s API, the results of
analyzing its textual build log, a link to the GitHub commit which
triggered the build, and dynamically aggregated project data from
the time of commit extracted through GHTorrent.

1. INTRODUCTION
Since its conception in 1991 and wide-spread distribution as part

of Microsoft’s and Extreme Programming’s development practices [1–
3], CI has become a global Software Engineering phenomenon.
Over the past five years, TRAVIS CI has emerged as a popular CI
environment for OSS projects, having performed hundreds of mil-
lions of free builds.

The unbroken trend toward CI in practice came with little backup
from the academic side, however. From an academic standpoint,
we still lack quantifiable evidence on the implications of introduc-
ing and continuing to use CI. While we have used TRAVISTOR-
RENT to drive a first investigation into CI testing practices [4], the
questions that can be answered with it reach far beyond:
• Does the use of CI lead to higher-quality products, for example

by catching bugs and test failures earlier?
• Does CI lead to fewer test regressions?
• What are CI best practices that successful projects employ (build

more often, fail more often, have more test on the CI?
• Do CI-enabled projects switch to a Continuous Delivery?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’17
Copyright 2016 ACM 0-12345-67-8/90/01 ...$15.00.

• How long may a CI build run to still be considered helpful?
• Does a broken build really negatively affect other developers’

productivity, as is often claimed?
• Two development models compete over how to use CI: Should

developers consider a successful build their “holy grail”, or rather
embrace breaking (and fixing) it often?

• Does a broken build lead to fewer outside contributions, in accor-
dance with the “broken window” theory?

• Do multiple integration environments lead to fewer defects?
Only recently have researchers begun to discover TRAVIS CI as a
data source [4–7]. They have, however, not yet taken advantage of
the endless possibilities that the combination of a streamlined, pop-
ular and tightly coupled CI environment (TRAVIS CI), version con-
trol system (GIT) and collaboration platform (GITHUB) provide, as
collecting and aggregating this data in a single data set is logisti-
cally and algorithmically complex. By synthesizing all three data
sources in one readily accessible data set of more than 1,000 proj-
ects, we hope to facilitate more holistic research on CI with TRAV-
ISTORRENT, by giving researchers the opportunity to do “full-stack
research” from an analysis of build logs to repositories.

2. THE TRAVISTORRENT DATA SET
In this section, we give an overview of the TRAVISTORRENT

data set and ways to access it (more details in Appendix A).
The TRAVISTORRENT Data set. From the 17,313,330 active

OSS repositories on GITHUB in August, 2015, our data set con-
tains a deep analysis of the project source code, process and de-
pendency status of 1,359 projects. To be able to do this, we re-
stricted our project space using established filtering criteria to all
non-fork, non-toy, somewhat popular (> 10 watchers on GITHUB)
projects with a history of TRAVIS CI use (> 50 builds) in Ruby
(936) or Java (423). Both languages are very popular on GITHUB
(2nd and 3rd, respectively) [4]. Then, we extracted and analyzed
build information from TRAVIS CI build logs and the GHTOR-
RENT database for each TRAVIS CI build in its history, detailed
in Appendix A. Well-known projects in the TRAVISTORRENT data
set include all 691,184 builds from RUBY ON RAILS, GOOGLE
GUAVA and GUICE, CHEF, RSPEC, CHECKSTYLE, ASCIIDOC-
TOR, RUBY and TRAVIS.

Data-set-as-a-service. TRAVISTORRENT1 provides convenient
access to its archived data sets and free analytic resources: Re-
searchers can directly access an in-browser SQL shell to run their
queries on our infrastructure, and download SQL dumps or the
compressed data set as a CSV file (1.8 GB unpacked). It also pro-
vides documentation and a getting started tutorial. We share all
tools we wrote to crave the data on TRAVISTORRENT as OSS, al-
lowing for future extensions and bug fixes by the community.

1http://travistorrent.testroots.org

https://web.archive.org/web/20170323145500/https://travistorrent.testroots.org
https://web.archive.org/web/20170323145500/https://travistorrent.testroots.org

APPENDIX
In the appendix, in addition to a list of references, we detail the
technical challenges we had to overcome when linking Travis builds
to GitHub commits and when analyzing the build logs.

A. DATA SAMPLE
In this section, we outline all fields available and describe an

abbreviated data sample from TRAVISTORRENT.
General Data Structure. In the TRAVISTORRENT data set,

each data point (row) represents a build job executed on Travis.
Every such data point synthesizes information from three differ-
ent sources: The project’s git repository (prefixed git_), data ex-
tracted from GitHub through GHTorrent (prefixed gh_), and data
from Travis’s API and an analysis of the build log (prefixed tr_).
In total, we provide 55 data fields for each build. These are de-
scribed in detail in Table 1.

Sample. The last column of Table 1 features an exemplary data
point from the famous rails/rails project (note that there cur-
rently are 2,640,824 data points more like this in TRAVISTOR-
RENT). Here, we are shortly highlighting some key observations.

The data sample we picked is a pretty interesting, as it is quite
unusual for Rails. Not surprisingly, Rails’s project_name is
rails/rails. When the commit was made, 168 people had
made contributions to it (it is important to realize that all metrics are
calculated for the point in time in which the commit was made, so
gh_team_size for example will grow over time). The build we
are looking at (1543966) comprises two commits (the latest commit
built, c1d9c11, and a predecessor 87a2f021), most likely because
both commits were pushed in one go and Travis naturally builds
the latest available commit. This commit is not a Pull Request
(gh_is_pr is false), but made directly onto the stable develop-
ment branch (4-1-stable). We could resolve a predecessor build,
39557888. By search in TRAVISTORRENT for the predecessor, we
could for example see whether this unusual commit directly onto
the stable branch was made in order to fix an urgent problem. We
can see that our BUILDLOGANALYZER picked up a Ruby build
with the testunit framework. 310 tests were executed successfully,
until one test (SerializedAttributeTest) failed, which took 28.2 sec-
onds (tr_testduration). Very unusual for Rails is that de-
spite the failing test (tr_tests_fail), the overall build status
was still considered passed (tr_status). A deeper investigation
could now look into how many times this happens, and if only per-
haps on specific tests, which might be ignored.

B. TECHNICAL CHALLENGES
In this section, we describe the technical challenges we faced

when extracting and synthesizing the data set for TRAVISTORRENT
in order to give miners a better understanding of how we came up
with (1) the collection and (2) the analysis of build logs and (2) the
mapping between Travis builds and GitHub commits.

We structure this by referring to the tools we used to extract and
create the TRAVISTORRENT data set [4]. Our data collection and
analysis pipeline is written in Ruby and R. For replication purposes
and to stimulate further research, our tools are in the public domain.

B.1 Data Collection
TravisPoker. To find out which and how many projects on GitHub

use TRAVIS CI, we implemented TRAVISPOKER. This fast and
lightweight application takes a GITHUB project name as input (for
example, RAILS/RAILS), and finds out if and how many TRAVIS
CI builds were executed for this project.

Figure 1: TRAVISTORRENT (http://
travistorrent.testroots.org) on July, 20th, 2016.

TravisHarvester. We implemented TRAVISHARVESTER to ag-
gregate detailed information about a project’s TRAVIS CI build his-
tory. It takes as input a GITHUB project name and gathers general
statistics on each build in the project’s history in a CSV file. Asso-
ciated with each build entry in the CSV are the SHA1 hash of the
GIT commit, the branch and (if applicable) pull request on which
the build was executed, the overall build status, the duration and
starting time and the sub jobs that TRAVIS CI executed for the
different specified environments (at least one job, possibly many
for each build). TRAVISHARVESTER downloads the build logs for
each build for all jobs and stores them alongside the CSV file.

To speed up the process of retrieving thousands of log files for
each project, we parallelize our starter scripts for TRAVIS HAR-
VESTER with GNU PARALLEL.

B.2 Analysis of Build Logs.
BUILDLOG ANALYZER is a framework that supports the general-

purpose analysis of TRAVIS CI build logs and provides dedicated
Java and Ruby build analyzers that parse build logs in both lan-
guages and search for output traces of common testing frameworks.

The language-agnostic BUILDLOG ANALYZER reads-in a build
log, splits it into the different build phases, and analyzes the build
status and run time of each phase. The fold for the SCRIPT phase
contains the actual build and continuous testing results. The BUILD-
LOG ANALYZER dispatches the automatically determined sub-
BUILDLOG ANALYZER for further examination of the build phase.

For Java, we support the three popular build tools MAVEN, GRA-
DLE, and ANT. In Java, it is standard procedure to use JUNIT as the
test runner, even if the tests themselves employ other testing frame-
works, such as POWERMOCK or MOCKITO. Moreover, we also
support TESTNG, the second most popular testing framework for
Java. Running the tests of an otherwise unchanged project through
MAVEN, GRADLE and ANT leads to different, incompatible build
logs, with MAVEN being the most verbose and GRADLE the least.
Hence, we need three different parsers to support the large ecosys-
tem of popular Java build tools. As a consequence, the amount of
information we can extract from a build log varies per build tech-
nology used. Moreover, some build tools give users the option to
modify their console output, albeit rarely used in practice.

https://web.archive.org/web/20170323145500/https://travistorrent.testroots.org
https://web.archive.org/web/20170323145500/https://travistorrent.testroots.org

Table 1: Description of TRAVISTORRENT’s data fields and one sample data point from RAILS/RAILS
Column Name Description Unit Example

row Unique identifier for a build job in TravisTorrent Integer 1543966
git_commit SHA1 Hash of the commit which triggered this build (should be unique world-wide) String c1d9c11cbe3d20f2...
git_merged_with If this commit sits on a Pull Request (gh_is_pr true), the SHA1 of the commit that merged said pull request String
git_branch Branch git_commit was committed on String 4-1-stable
git_commits Preceding commits that were not built (e.g., transferred in one push, ...) this build comprises List of Strings 87a2f02199d21a2aa...
git_num_commits The number of commits in git_commits, to ease efficient splitting String 1
git_num_committers Number of people who committed to this project Integer 1
gh_project_name Project name on GitHub (in format user/repository) String rails/rails
gh_is_pr Whether this build was triggered as part of a pull request on GitHub Boolean false
gh_lang Dominant repository language, according to GitHub String ruby
gh_first_commit_created_at Push date of first commit in git_commits to GitHub ISO Date (UTC+1) 2014-04-18 20:12:32
gh_team_size Size of the team contributing to this project Integer 168
gh_num_issue_comments If git_commit is linked to an issue on GitHub, the number of comments on that issue Integer 0
gh_num_commit_comments The number of comments on git_commit on GitHub Integer 0
gh_num_pr_comments If gh_is_pr is true, the number of comments on this pull request on GitHub Integer 0
gh_src_churn The churn of git_commit, i.e. how much production code changed in the commit, based on lines Integer 4
gh_test_churn The churn of git_commit, i.e. how much test code changed in the commit, based on lines Integer 8
gh_files_added Number of files added in git_commit (this is generally correlated with the churn) Integer 0
gh_files_deleted Number of files deleted in git_commit (this is generally correlated with the churn) Integer 0
gh_files_modified Number of files modified in git_commit (this is generally correlated with the churn) Integer 3
gh_tests_added How many test cases were added in git_commit (e.g., for Java, this is the number of @Test annotations) Integer 0
gh_tests_deleted How many tests were deleted in git_commit (e.g., for Java, this is the number of @Test annotations) Integer 0
gh_src_files Number of production files in the repository Integer
gh_doc_files Number of documentation files in the repository Integer
gh_other_files Number of remaining files which are neither production code nor documentation Integer
gh_commits_on_files_touched Number of commits that touched (added/deleted/modified) the files in git_commit previously Integer 93
gh_sloc Number of executable production source lines of code, in the entire repository Integer 53421
gh_test_lines_per_kloc Test density. Number of lines in test cases per 1,000 gh_sloc Double 2191.011
gh_test_cases_per_kloc Test density. Number of test cases per 1,000 gh_sloc Double 188.3342
gh_asserts_cases_per_kloc Assert density. Number of assertions per 1,000 gh_sloc Double 535.0143
gh_by_core_team_member Whether this commit was authored by a core team member Boolean true
gh_description_complexity If gh_is_pr is true, the Pull Request’s textual description complexity Integer
gh_pull_req_num Pull request number on GitHub Integer
tr_build_id Unique build ID on Travis String 23298954
tr_status Build status (pass, fail, errored, cancelled) String passed
tr_duration Overall duration of the build Integer (in seconds) 23389
tr_started_at Start of the build process ISO Date (UTC) 2014-04-18 19:12:32
tr_jobs Which Travis jobs executed this build (number of integration environments) List of Strings [23298955, ...]
tr_build_number Build number in the project Integer 15459
tr_job_id This build job’s id, one of tr_jobs String 23298981
tr_lan Language of the build, as recognized by BUILDLOGANALYZER String ruby
tr_setup_time Setup time for the Travis build to start Integer (in seconds) 0
tr_analyzer Build log analyzer that took over (ruby, java-ant, java-maven,java-gradle) String ruby
tr_frameworks Test frameworks that tr_analyzer recognizes and invokes (junit, rspec, cucumber, ...) List of Strings testunit
tr_tests_ok If available (depends on tr_frameworks and tr_analyzer): Number of tests passed Integer 310
tr_tests_fail If available (depends on tr_frameworks and tr_analyzer): Number of tests failed Integer 1
tr_tests_run If available (depends on tr_frameworks and tr_analyzer): Number of tests were run as part of this build Integer 311
tr_tests_skipped If available (depends on tr_frameworks and tr_analyzer): Number of tests were skipped or ignored in the build Integer
tr_failed_tests All tests that failed in this build List of strings SerializedAttributeTest
tr_testduration Time it took to run the tests Double (in seconds) 28.2
tr_purebuildduration Time it took to run the build (without Travis scheduling and provisioning the build) Double (in seconds)
tr_tests_ran Whether tests ran in this build Boolean true
tr_tests_failed Whether tests failed in this build Boolean true
tr_num_jobs How many jobs does this build have (length of tr_jobs) Integer 30
tr_prev_build Serialized link to the previous build, by giving its tr_build_id String 39557888
tr_ci_latency Latency induced by Travis (scheduling, build pick-up, ...) Integer (in seconds) 1408

Example 1: Standard output from MAVEN regarding tests
1 −−−
2 T E S T S
3 −−−
4 Running n l . t u d e l f t . watchdog . C l i e n t V e r s i o n C h e c k e r T e s t
5 T e s t s run : 1 , F a i l u r e s : 0 , E r r o r s : 0 , Sk ipped : 0 , Time

e l a p s e d : 0 . 0 4 s e c
6

7 R e s u l t s :
8

9 T e s t s run : 1 , F a i l u r e s : 0 , E r r o r s : 0 , Sk ipped : 0
10

11 [INFO] A l l t e s t s p a s s e d !

Example 1 shows an excerpt of one test execution from the TE-
STROOTS/WATCHDOG project. In the output, we can see the ex-
ecuted test classes (line 4), and how many tests passed, failed, er-
rored and were skipped. We also get the test execution time (line
5). Moreover, MAVEN prints an overall result summary (line 9) that
the BUILDLOG ANALYZER uses to triage its prior findings. Line
11 shows the overall test execution result. Our BUILDLOG AN-
ALYZER gathers all this information and creates, for each invoked
project, a CSV table with all build and test results for each job built.
We then aggregate this information with information from the build
status analyzer step by joining their output. TRAVISTORRENT pro-
vides convenient access to this data. GRADLE is much less verbose
than MAVEN, providing us with fewer information.

By contrast, in Ruby, the test framework is responsible for the
console output: it is no different to invoke RSPEC through RAKE
than through BUNDLER, the two predominant Ruby build tools.
For Ruby, we support the prevalent TEST::UNIT and all its off
springs, like MINITEST. Moreover, we capture behavior driven
tests via RSPEC and CUCUMBER support.

B.3 Data Linearization And Synthesization
If we want to answer questions such as “Does the use of CI

lead to higher-quality products?”, we need to make a connection
between the builds performed on TRAVIS CI and the repository
which contains the commits that triggered the build. We call this
build linearization and commit mapping, as we need to interpret
the builds on TRAVIS CI as a directed graph and establish a child-
parent relationship based on the GIT commits that triggered their
execution. Although this sounds trivial, since there should be a
1:1 relationship between builds and commit, there are six differ-
ent scenarios (a–f) arising from GIT’s non-linear nature that make
this a hard task, as we discuss in the following. During this step,
we also assessed the status of the project at the moment each build
was triggered by extracting and synthesizing information from two
sources: the project’s GIT repository and its corresponding entry in
the GHTORRENT database.

Figure 2 exemplifies a typical GITHUB project that uses TRAVIS

Figure 2: Exemplary of how to match commits from a GITHUB repository to their corresponding TRAVIS CI builds (source: [4]).

CI for its CI. In the upper part 1©, we see the TRAVIS CI builds (§1-
§9), which are either passed (§1-§6, §9), canceled (§7), or broken
(§8). In the lower part 2©, we see the corresponding GIT repository
hosted on GITHUB with its individual commits (#A-#H). Commits
#D1-#D3 live in a pull request, and not on the master branch, tra-
ditionally the main development line in GIT.

a) Build §1 showcases a standard situation, in which the build
passed and the commit id stored with the build leads to the correct
commit #A that triggered build §1. However, there are a number of
more complex situations.

b) If multiple commits are transferred in one git push 3©,
only the latest of those commits is built (§2). In order to get a
precise representation of the changes that lead to this build result,
we have to aggregate commits #B and #C.

c) It is a central function of TRAVIS CI to support branches or
pull requests 4©, such as commit #D1. When resolving builds to
commits, we know from the API that §3 is a pull request build. Its
associated commit points us to a virtual integration commit #V1
that is not part of the normal repository, but automatically created
as a remote on GITHUB 5©. This commit #V1 has two parents: 1)
the latest commit in the pull request (#D1), and 2) the current head
of the branch the pull request is filed against, the latest commit on
the master branch, #C. Similarly, when resolving the parent of §4,
we encounter a #V2, resolve it to #D2 and the already known #C.
We also know that its direct parent, #D1, is branched-off from #C.
Hence, we know that any changes from build result §4 to §3 were
induced by commit #D2.

d) In the case of build §6 on the same pull request 6©, its direct
predecessor is unclear: we traverse from #V3 to both 1) commit
#D2 in the pull request, which is known, and to 2) #E on the master
branch, which is unknown and cannot be reached from any of our
previous commits #D2, #D1, or #C. This is because there was an
intermediate commit #E on the master branch in-between, and pull
requests are always to be integrated onto the head commit of the
branch they are filed against. In such a case, one build can have
multiple parents, and it is undecidable whether the changes in #D3,
#E or a combination of both lead to the build result §6.

e) Build §5 shows why a simple linearization of the build graph
by its build number would fail: It would return §4 as its prede-
cessor, when in reality, it is §2 7©. However, even on a single
branch, there are limits to how far GIT’S complex commit relation-
ship graph can be linearized and mapped to TRAVIS CI builds. For
example, if a build is canceled (§7), we do not know about its real
build status – it might have passed or broken. As such, for build
§8, we cannot say whether the build failure resulted from changes
in commit #F or #G.

f) When merging branches or pull requests 8©, a similar situation
to c) occurs, in which one merge commit #H has two predecessors.

C. WHY USE TRAVISTORRENT?
In this section, we describe why TRAVISTORRENT lends itself

to the MSR’2017 mining challenge.
• TRAVISTORRENT features a novel data set in an emerging re-

search field that is highly relevant in practice but still lacks quan-
tifiable evidence and that has not yet been explored multiple times
before.

• TRAVISTORRENT eases work with a huge set of data (download-
ing and processing of terabytes of build logs) some groups might
not otherwise have the opportunity to work with, especially stu-
dents.

• Our analytics service and tutorial make running custom queries
against the data set easy, without any local setup requirements.

• Researchers can easily connect their existing expertise, tools and
results from previous research on GITHUB.

• With more than 1,000 projects, TRAVISTORRENT is sufficiently
large for multiple researchers to work on sub-aspects, yet still
manageable on standard computers.

D. REFERENCES
[1] G. Booch, “Object oriented design with applications. redwood

city,” 1991.
[2] M. A. Cusumano and R. W. Selby, “Microsoft secrets,” 1997.
[3] M. Fowler and M. Foemmel, “Continuous integration,” 2006.

http:

//www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-

14/lecturas/10_Fowler_Continuous_Integration.pdf.
[4] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests

broke the build: An explorative analysis of Travis CI with
GitHub,” in Proceedings of the 14th International Conference
on Mining Software Repositories (MSR), 2017.

[5] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik,
and M. G. van den Brand, “Continuous integration in a
social-coding world: Empirical evidence from GitHub,” in
Proc. Int’l Conf. on Software Maintenance and Evolution
(ICSME), pp. 401–405, IEEE, 2014.

[6] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to continuous
integration in GitHub,” in Joint Meeting European Softw.
Engineering Conf. & Symp. Foundations of Softw.
Engineering (ESEC/FSE), pp. 805–816, ACM, 2015.

[7] M. Hilton, T. Tunnell, D. Marinov, D. Dig, K. Huang, et al.,
“Usage, costs, and benefits of continuous integration in
open-source projects,” tech. rep., Oregon State University.
School of Electrical Engineering & Computer Science, 2016.

http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf
http://www.dccia.ua.es/dccia/inf/asignaturas/MADS/2013-14/lecturas/10_Fowler_Continuous_Integration.pdf

