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1. INTRODUCTION
One of the key factors in customer satisfaction is the ap-

plication performance. In traditional settings, it is usually
not very difficult to manually detect a performance prob-
lem, however, with the advent of ultra-large-scale (ULS)
systems [4], manual performance monitoring and prediction
becomes tedious and would thus ideally require automation.
A typical situation in such a system is depicted by Figure 1,
in which a server overload occurs when approximately 500
requests are handled per second by the system. In order to
prevent the overloaded state, we should be able to predict
this state when the system is handling approximately 400
requests per second, so that it can be scaled up. Automat-
ing this prediction is typically hard, because many factors
influence performance, and it is typically the human mind
that excels at making the right (subjective) decisions based
on multiple factors. It is our aim to automate performance
prediction, for which we have two distinct goals in mind: (1)
warn the system administrator for the need of an impending
hardware upscaling and (2) provide an automatic overload
prevention mechanism.

An application in which such an automated prediction
mechanism is very useful is in self-adaptive systems, which
are capable of adapting their own behavior according to
changes in the environment and the system itself [5]. Having
such a mechanism will improve the quality of service as it
helps these systems decide when to scale up.

In this paper, we propose an approach for server overload
prediction. An important aspect of our overload prediction
mechanism is the performance monitoring method. Our
performance monitoring is based on measuring a wide va-
riety of so-called performance counters [1], such as the Mem-

ory\Available Mbytes and Processor\%Processor Time coun-
ters. Rather than defining exact threshold values for the
monitored performance counters, we propose to use pattern
classification, which can assist with recognizing complex per-
formance counter patterns.
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Figure 1: Average response time in an ULS

Problem statement. In the context of ULSs, the ap-
plication is typically deployed over a number of servers, in
order to cope with the performance demand. An interesting
problem is then, when the underlying hardware should be
scaled up to keep up with increasing demand. Intuitively,
we want to scale up the application before the user notices
a decrease in performance. Furthermore, because scaling an
application takes time, due to factors like hardware reloca-
tion, we must be able to predict an overload with a margin
in the order of several days to weeks ahead.

Our research will focus on predicting such overload using
performance metrics. As customer satisfaction is strongly
related to the average response time of an application, we
will use this metric as the most important indication of over-
load. This raises three important challenges: firstly, estab-
lishing which response times are deemed acceptable by the
users of an application. Secondly, the selection of the right
set of performance metrics, that can serve as indicators for
overload situations. Thirdly, the definition of thresholds for
these metrics, which we consider as non-trivial because over-
load is likely to be indicated by complex patterns of perfor-
mance metric values, e.g., a memory overload will exhibit
different performance metric values than a CPU overload.

2. APPROACH AND CHALLENGES
To be able to predict overload and to evaluate our ap-

proach, it is important that we can detect this state. In
this section we will first explain the challenges of overload
detection and after this we will propose our approach for
predicting overload.

Challenge 1: Defining a response time threshold. The
response time threshold describes how long the customers are
willing to wait for the application to respond. This thresh-
old will be defined by conducting an experiment in which



we will introduce delays in an application and ask users how
they valued the perceived performance. It is necessary to
have multiple thresholds as, e.g., users are willing to wait
longer for the generation of a report than for a GUI action.

Challenge 2: Selecting the metrics. To monitor the
state of the server we will monitor a set of performance coun-
ters using PerfMon on our Windows-based servers. Initially
we will monitor a large set of performance counters, but as
we collect more data, we will use statistics to select the most
significant counters to monitor.

Challenge 3: Defining performance counter thresh-
olds. Defining performance counter thresholds is more diffi-
cult because these are hardware-specific and can interrelate
in a complex way. Therefore, we need a more intelligent way
of describing performance counter thresholds rather than
just using extreme values. In the next paragraph we de-
scribe how we will use pattern classification for this.

Overload Detection Using Classification. Classifica-
tion is an example of pattern recognition, in which a set
of input values are assigned to a given set of classes, for
example, determine whether a server is or is not in over-
loaded state. To design a classifier, a training set containing
patterns and their known output classes is required. After
designing the classifier, it can be used to classify unknown
patterns. Our training data will contain triples of the form
(filename, performance counter pattern, response time). A
performance counter pattern consists of the concatenated
values of the monitored performance counters. Note that
the response time is used to decide whether the pattern rep-
resents and overloaded state.

Generating the Training Data. To correctly train
our classifier, we need patterns for normal and overloaded
states. An observation is that it may be difficult to get data
for overloaded states as we are trying to avoid such states in
production environments. Therefore, we have to reproduce
the data in a test or isolated environment.

To get this data for a server, which is not in production
yet, we will use JMeter1 to perform a stress test. During this
stress test, the load will vary from normal to overload. By
monitoring the response time during the stress test, patterns
can be gathered for normal and overloaded states.

Because performance counter thresholds are hardware-
specific, different servers may have different performance
counter patterns in an overloaded state. To avoid running
a stress test on a production server, we propose the use of
an Application Experience Index, or AppExI. This catalog
contains classifiers designed for servers in the past for a cer-
tain application. By selecting the classifier for the server in
the AppExI which resembles the internal hardware of the
production server the closest, we can get an initial version
of the classifier of that production server.

Designing the classifier. As we do not know the distri-
bution of our training data yet, we will run various classifier
generation algorithms (using the Matlab toolbox PRTools2)
and select the best working classifier afterwards.

Validation. To validate our classifiers, we will use cross-
validation. In addition, we will randomly send a short ques-
tionnaire to application users to ask how they valued the

1http://jakarta.apache.org/jmeter/
2http://www.prtools.org/

performance of the application during that session. If the
performance was considered bad, we can use the logged per-
formance patterns to redesign and optimize the classifier.

2.1 Overload prediction
Rather than detecting overload, we want to be able to

predict it. To do this, we will automate an approach that
is intuitively used by system administrators when moni-
toring a system. When administrators inspect the perfor-
mance of a system, they search log files for upward (or
downward) trends in performance counter values. A clear
example of this is free harddrive space. The longer the
Logical Disk\%Free Space performance counter exhibits a
downward trend, the more likely it is that a performance
problem is about to occur, in this case a full harddrive. As
we have explained for monitoring, detecting simple trends is
relatively easy but detecting complex patterns is difficult.

Therefore, we will use pattern classification for overload
prediction as well. Our goal is to train our classifier in such
a way that it is able to detect series of patterns which lead
to server overload, in other words, consecutive performance
states which eventually evolve to a known threshold perfor-
mance counter pattern.

3. RELATED WORK
Existing research on using pattern classification for over-

load detection and prediction is mostly focused on preventive
mechanisms, such as admission control and load balancing
[2, 3]. The main concern we have with using only a pre-
vention mechanism, is that it does not advise us on when
to scale a system up. In addition, admission control nega-
tively affects the performance of some customers, which our
approach tries to avoid.

4. FUTURE WORK
Future work will consist of the implementation and evalu-

ation of our approach, including an evaluation on an indus-
trial application.
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