
Performance Optimization of Deployed
Software-as-a-Service Applications

Cor-Paul Bezemer1, Andy Zaidman1

aDelft University of Technology, Faculty EEMCS, Mekelweg 4, 2628 CD Delft, The
Netherlands

Abstract

The goal of performance maintenance is to improve the performance of a soft-

ware system after delivery. As the performance of a system is often characterized

by unexpected combinations of metric values, manual analysis of performance

is hard in complex systems. In this paper, we propose an approach that helps

performance experts locate and analyze spots – so called performance improve-

ment opportunities (PIOs) –, for possible performance improvements. PIOs

give performance experts a starting point for performance improvements, e.g.,

by pinpointing the bottleneck component. The technique uses a combination of

association rules and performance counters to generate the rule coverage matrix,

a matrix which assists with the bottleneck detection.

In this paper, we evaluate our technique in two cases studies. In the first,

we show that our technique is accurate in detecting the timeframe during which

a PIO occurs. In the second, we show that the starting point given by our

approach is indeed useful and assists a performance expert in diagnosing the

bottleneck component in a system with high precision.

Keywords: performance maintenance, performance analysis

Preprint submitted to Elsevier December 23, 2013

1. Introduction

In the ISO standard for software maintenance1, four categories of mainte-

nance are defined: corrective, adaptive, perfective and preventive maintenance.

Perfective maintenance is done with the goal of improving and therefore per-

fecting a software system after delivery. An interesting application of perfective

maintenance is performance maintenance, which is done to enhance the per-

formance of running software by investigating and optimizing the performance

after deployment [?]. A reason to do this after deployment is that it may

be too expensive to create a performance testing environment that is equal to

the production environment, especially for large systems. As an example, many

Software-as-a-Service (SaaS) providers spend a fair portion of their budget each

month on hosting infrastructure as infrastructure forms the most important

factor in the total data center cost [?]. Copying the production system to pro-

vide an environment for performance testing will further increase these costs.

Therefore, it is sometimes necessary to analyze and adapt the deployed system

directly.

While a large amount of research has been done on software performance en-

gineering in general [?], only few papers deal with software performance main-

tenance. Performance maintenance poses different challenges, as we are deal-

ing with live environments in which computing resources may be limited when

we are performing maintenance. In addition, experience from industry shows

that performance maintenance engineers mainly use combinations of simple and

rather inadequate tools and techniques rather than integrated approaches [?],

making performance maintenance a tedious task.

Perfecting software performance is typically done by investigating the values

of two types of metrics [?]. On one hand, high-level metrics such as response

time and throughput [?] are important for getting a general idea of the

performance state of a system. On the other hand, information retrieved from

1http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=39064

2

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39064

lower-level metrics, e.g., metrics for memory and processor usage — so called

performance counters [?] —, is important for pinpointing the right place to

perform a performance improvement. However, determining a starting point for

analysis of these lower-level metrics is difficult, as the performance of a system is

often characterized by unexpected combinations of performance counter values,

rather than following simple rules of thumb [?]. This makes manual analysis

of performance in large, complex and possibly distributed systems hard.

In this paper, we present a technique which provides assistance during semi-

automated performance analysis. This technique automates locating so-called

performance improvement opportunities (PIOs), which form a starting point for

analysis of performance counters. Interpreting the results of automated perfor-

mance analysis approaches is difficult for human experts [?]. Our approach

aims to assist experts by analyzing these starting points to give a diagnosis of

bottleneck component(s). In short, we focus on the following research questions:

• RQ 1 How can performance counter values provide assistance during the

performance optimization process?

• RQ 2 How can we interpret these values so that they can lead to the

identification of the bottleneck component(s) of a system?

In previous work, we have done a preliminary evaluation of this technique

by performing a user study on an industrial SaaS application [?]. During this

preliminary evaluation, we demonstrated the feasibility of our approach and

its applicability in industry for assisting during semi-automated performance

analysis. In this work, we first show that our technique is accurate in detecting

the timeframe during which a PIO occurs. In a second case study, we show

that the starting point given by our approach is indeed useful and assists a

performance expert in diagnosing the bottleneck component in a system with

high precision.

This paper is organized as follows. In Section ??, we introduce the concept

of PIOs and we present our approach for detecting such PIOs. In Section ??,

3

we explain our approach for automatically analyzing these PIOs. Section ??

discusses the implementation of our approach. Our case studies are presented in

Sections ??, ?? and ??. We discuss the results of these case studies and threats

to the validity of these results in Sections ?? and ??. We present related work

in Section ?? and we conclude our work in Section ??.

2. Detecting Performance Improvement Opportunities

Performance optimization can be done during the software design phase and

after deployment. Techniques such as profiling [?] can be used by the developer

to find and fix application bottlenecks during the design phase. However, these

techniques cannot always be used after deployment, as they are usually very

expensive and not capable of dealing with complex systems which are deployed

on multiple servers [?]. Therefore, it is necessary to use more light-weight

techniques after deployment to optimize system performance.

In order to start our investigation on how we can improve the performance

of a system that is deployed, we must be able to do the following:

• Requirement 1 Detect the timeframes during which the system performed

relatively slow, i.e., find situations in which performance optimization is

possible.

• Requirement 2 Detect the component(s) that is/are the bottleneck com-

ponent(s).

By knowing at least this, we have a starting point for our investigation of op-

timizing the performance of a deployed system. In the remainder of this paper,

we present our approach for detecting these requirements automatically from

performance data. In the next section, we introduce so-called performance im-

provement opportunities to assist performance experts in their investigation on

performance optimization. In Section ??, we will present our approach for de-

tecting these PIOs (Requirement 1). We will explain our approach for analyzing

PIOs (Requirement 2) in Section ??.

4

2.1. Performance Improvement Opportunities (PIOs)

A performance improvement opportunity (PIO) is a collection of performance

data collected during a period of time at which the performance of the system

could possibly be improved. It is a description of a situation in a system in

which performance optimization may be possible. A PIO contains info needed

to analyze the situation during which it was detected:

• Date and time of start of the PIO

• SARatio metric (Section ??)

• Intensity transformation (Section ??)

• Rule coverage matrix (Section ??)

A PIO description can assist engineers in performing perfective maintenance

by pinpointing the bottleneck component during the PIO. The next step could

be investigation of that component using a profiler (see Section ??). When we

improve the performance of a system using the information in a PIO, we say

we exploit the PIO. Throughout this paper we will use the term PIO and PIO

description interchangeably.

2.2. SARatio Metric

Application performance can be expressed in many different metrics, such

as response time, throughput and latency [?]. One of the most important is

average response time [?], as it strongly influences the user-perceived perfor-

mance of a system. While a generic performance metric like average response

time can give an overall impression of system performance, it does not make a

distinction between different actions2 and/or users. Therefore, it may exclude

details about the performance state of a system, details that can be important

for detecting a performance improvement opportunity.

2An action is the activation of a feature by the user. A feature is a product function as
described in a user manual or requirement specification [?].

5

An example of this is a bookkeeping system: report generation will take

longer for a company with 1000 employees than for a company with 2 employ-

ees. When using average response time as threshold setting for this action, the

threshold will either be too high for the smaller company or too low for the

larger company.

A metric such as average response time works over a longer period only, as it

is relatively heavily influenced by batch actions with high response times (such

as report generation) when using short intervals. Therefore, we are looking for

a metric which is (1) resilient to differences between users and actions and (2)

independent of time interval length.

To define a metric which fits into this description, we propose to refine the

classical response time metric so that we take into account the difference between

actions and users. In order to do so, we classify all actions as slow or normal.

To decide whether an action was slow, we calculate the mean µau and standard

deviation σau of the response time of an action a for each user u over a period

of time. Whenever the response time rti of action a of user u is larger than

µau + σau, it is marked as slow, or:

For every action ai and user u,

ai ∈
{

SLOW if rti > µau + σau
NORMAL otherwise

Because µau and σau are calculated per action and user, the metric that

we are constructing becomes resilient to differences between actions and users.

Note that by doing this, we assume that the system has been running relatively

stable, by which we mean that no significant long-lasting performance anomalies

have occurred over that period of time. Another assumption we make is that an

action has approximately the same response time when executed by the same

user at different times (see Table ??).

From this classification, we construct a metric for performance characteri-

zation which fits into our description, namely the ratio SARatiot (Slow-to-All-

actions-ratio) of the number of slow actions SLOWt to the total number of

actions in time interval t:

6

SARatiot =
|SLOWt|

|SLOWt|+ |NORMALt|

Because it is a ratio, isolated extreme values have a smaller influence on the

metric, which makes it more independent of time interval3.

We distinguish three groups of values for SARatio:

• HIGH - the 5% highest values, indicating the times at which the system is

relatively the slowest and therefore the most interesting for performance

optimization

• MED - the 10% medium values

• LOW - the 85% lowest values

As a threshold for the MED and HIGH classes we use the 85th and 95th

percentile of the distribution of SARatio. By using the 85th and 95th percentile

we use approximately the same confidence intervals as commonly used for the

normal distribution [?]. For an industrial system, i.e., a system from which we

expect it to have relatively few performance problems, our expectation is that

the SARatio is distributed around the mean, following a normal or gamma-like

distribution.

Throughout the rest of this paper, we will refer to the HIGH, MED and

LOW values for SARatio as classifications. All time periods containing HIGH

values for SARatio constitute possible PIOs and therefore require deeper investi-

gation. In order to focus on the greatest performance improvements possible, we

would like to investigate longer lasting PIOs first. Figure ?? shows an example

graph of 1000 minutes of SARatio values. This graph has several disadvantages:

• It becomes unclear when large (e.g. t > 1000) periods of time are displayed

• It is difficult to distinguish longer lasting PIOs from shorter lasting ones

3Unless the total number of actions is very low, but we assume this is not the case in
modern systems.

7

We transform Figure ?? into Figure ?? by using the intensity transformation

discussed in the next section. The goal of this transformation is to show a clear

graph in which it is easy to detect longer lasting PIOs.

0 200 400 600 800 1000
LOW

MED

HIGH

t (min)

S
A

R
at

io

(a) Before

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

In
te

ns
ity

t (min)

(b) After

Figure 1: SARatio graph before and after intensity transformation

2.3. Intensity Transformation

Intuitively, we expect that we can achieve greater performance improvements

by investigating longer lasting PIOs. The rationale behind this intuition can be

explained by the following example. In a system, a PIO of 60 minutes and a

PIO of 10 minutes are detected. As it is likely that more customers will be

affected by the relatively slow performance of the system during the PIO of 60

minutes, we would like to investigate this PIO first.

Therefore, we would like to emphasize the occurence of high SARatio val-

ues which are close to each other in time, i.e., longer lasting PIOs. To make

8

such occurences easier to spot, we perform the transformation described in Al-

gorithm ?? on the SARatio data. This transformation uses a sliding window

approach to emphasize longer lasting PIOs.

A window of size n contains the SARatio classifications of the last n time

frames. We count the occurrences of LOW , MED and HIGH classifications

and keep a counter intensity. Every time the majority (≥ 33%) of the classifi-

cations in the window are HIGH, i.e., the system is relatively slow, intensity

is increased by 2. When the system returns to normal performance, i.e., the

majority of the classifications in the window are MED or LOW , intensity is

decreased by 1 and 2 respectively. These steps are depicted by Algorithm ??

(intensityTransformation). Figure ?? shows the effect of applying this

transformation to the data in Figure ??. It is easy to see that there are three

major PIOs in Figure ??. Note that it is easy to automate the process of locating

PIOs by setting the start of a PIO whenever the intensity becomes larger than

a certain threshold. Throughout this paper, we assume the intensity threshold

is 0.

3. Analyzing Performance Improvement Opportunities

Now that we have a technique for detecting PIOs, the next step is to analyze

them. In our approach for PIO analysis we use the SARatio described in the

previous section as a foundation for training a set of association rules [?] which

Algorithm 1 intensityTransformation(n, clasfSet, intensity)
Require: Window size n, a set of SARatio classifications clasfSet, the current intensity.
Ensure: The intensity of the last n classifications is added to the current intensity.

1: window = clasfSet.getLastItems(n)
2: cntLow = count(window,LOW)
3: cntMed = count(window,MED)
4: cntHigh = count(window,HIGH)
5: maxCnt = max(cntLow, cntMed, cntHigh)
6: if maxCnt == cntHigh then
7: intensity = intensity + 2
8: else if maxCnt == cntMed then
9: intensity = max(intensity − 1, 0)

10: else
11: intensity = max(intensity − 2, 0)
12: end if
13: return intensity

9

help us analyze the PIO. We use association rules because they make relation-

ships in data explicit, allowing us to use these relationships in our analysis.

In this section, we will explain how these association rules can assist us in

analyzing PIOs and how we generate them.

3.1. PIO Analysis Using Assocation Rules

The goal of analyzing PIOs is to find out which component forms the bottle-

neck. This component can then be replaced or adapted to optimize the perfor-

mance of the system. Performance counters [?] (or performance metrics) offer

easy-to-retrieve performance information about a system. These performance

counters exhibit details about the state of components such as memory, CPU

and web servers queues and therefore we would like to exploit this information

to decide which component(s) form the bottleneck. An important observation

is that the performance of a system often is characterized by unexpected com-

binations of performance counter values, rather than following simple rules of

thumb [?]. Therefore, we cannot simply detect a bottleneck component using

a threshold for one performance counter. It is our expectation that throughout

a PIO, we can detect clusters of performance counter values which point us in

the direction of the bottleneck component(s).

Performance analysis is usually done on high-dimensional data, i.e., many

performance counters, and analysis of this data is not trivial. In addition,

understanding the results of automated analysis is often difficult. Therefore,

we propose to use visualization as a foundation for our PIO analysis approach.

The requirements of such a visualization technique are:

• It must allow easy detection of clusters of performance counters

• It must be capable of displaying high-dimensional data

A visualization technique which fulfills these requirements is the heat map [?

]. Figure ?? depicts an example of a heat map, which could assist during

performance analysis. The heat map displays data for two performance counters

(PC1 and PC2) monitored on five servers (S1 – S5). In this heat map, darker

10

Figure 2: Rule Coverage Heat Map

squares mean that there is a stronger indication that the component on which

this performance counter was monitored forms a bottleneck. In Figure ?? it is

easy to see that server S2 and performance counter PC2 on server S5 require

deeper investigation. In addition, a heat map is capable of displaying high-

dimensional data because every performance counter is represented by one row

in the heat map. As the rows do not overlap, the visualization is still clear for

high-dimensional data.

3.1.1. The Rule Coverage Matrix

The heat map in Figure ?? is a direct visualization of the rule coverage

matrix depicted by Table ??. The rule coverage matrix contains information

which helps us detect clusters of performance counters causing a PIO. In the

remainder of this paragraph we will explain how association rules help us to

generate this matrix.

Table 1: Rule Coverage Matrix for Figure ??

t =0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1PC1 0 1
S1PC2 0 0 1 2 3 2 1 0 1 2 1 0 0 0 0 0 0 0 0 0 0
S2PC1 0 0 1 2 3 4 5 6 7 6 7 8 9 8 7 6 5 6 5 4 3
S2PC2 0 0 1 2 3 4 5 6 7 6 7 8 9 8 7 6 5 6 5 4 3
S3PC1 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 3
S3PC2 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2
S4PC1 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2
S4PC2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2
S5PC1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
S5PC2 0 0 1 2 3 4 5 6 7 8 9 10 11 10 9 8 7 8 7 8 9

11

3.1.2. Association Ruleset Generation

During the association ruleset generation (or training) phase, we collect and

analyze logged actions and performance data of a system and build a set of

association rules. An example association rule could be:

CPU Utilization ≥ 80% & Memory Usage ≥ 50% → HIGH

This rule signals that during the training phase we observed that if the CPU

is used at 80% or more and the memory is used for at least 50% there was a

significant slowdown in the system, i.e., the SARatio was HIGH.

To generate such association rules, we monitor the performance counters

and log all actions during a training period. The set of interesting performance

counters is different for different systems and different applications. Therefore,

we advise to monitor a large set of performance counters initially, and to narrow

down the set to monitor after generating the association rules later. After

this, we calculate the SARatio for every time frame in the action log and use

this together with the monitored performance counter data as input for the

association rule generation algorithm. The result of this will be association

rules that will take performance counter values as input and output SARatio

classifications. In this way, we bridge the low level performance counters to a

SARatio classification. This allows us to monitor the performance counters and

then use them for a) PIO location and b) PIO analysis.

3.1.3. Rule Coverage Matrix Generation

Our approach for rule coverage matrix generation uses a matrix m with

one row for each performance counter and one column for every time t we

receive a measurement. This matrix contains the raw values monitored for each

counter. Because performance analysis is difficult to do on raw performance

counter values, we maintain a so-called rule coverage matrix mrcm to assist

during performance analysis. The rows of this matrix contain the performance

counters, the columns depict measurements of performance counters. Every

measurement contains all performance counter values monitored in a certain

time interval. The first column, representing the first measurement is initialized

12

to 0. Each time a new measurement is received, the last column of mrcm is

copied and the following algorithm is applied:

• Increase mi,j
rcm by 1 if performance counter i is covered by a high rule at

measurement j.

• Leave mi,j
rcm equal to mi,j−1 for a med rule

• Decrease mi,j
rcm by 1 if performance counter i is covered by a low rule at

measurement j, with a minimum of 0

Note that the original ‘raw’ values of the performance counters in m are left

untouched in this process. We update the value of every mi,j
rcm only once for

every measurement, even though multiple covering rules may contain the same

performance counter.

The rationale behind building the rule coverage matrix this way is the fol-

lowing:

1. The ruleset describes all known cases of when the system was performing

slowly.

2. We expect all measurements made during a PIO to be covered by the

same, or similar rules when they are classified. The reason for this is that

we expect that abnormal values of (combinations of) performance counters

will be exhibited for a longer period of time, i.e., throughout the PIO.

3. When entering this into the rule coverage matrix as described, higher

values in mrcm will appear because these values will be increased for per-

formance counters which occur in adjacent measurements.

4. Eventually, clusters of higher values in mrcm for performance counters for

specific components will appear.

5. These clusters can be used to do performance maintenance, e.g., by pin-

pointing a bottleneck component.

13

The following example illustrates this. Figure ?? shows the resulting mrcm

after applying our approach to the measurements and ruleset of Table ?? for a

system consisting of two servers S1 and S2, which are monitored through three

performance counters (S1PC1, S1PC2 and S2PC1). The first column depicts

the situation after the measurement done at t = 0. This measurement fires rule

0, which does not include any performance counters, leaving all values in the

rule coverage matrix untouched. The measurement made at t = 1 fires rule 3,

hence increasing only the value for S1PC1. Continuing this procss results in the

matrix depicted by Figure ??.

Figure ?? shows the heat map of this matrix. In our simple example we can

see a cluster of dark coloured performance counters at server S1, indicating this

server may be a bottleneck.

Table 2: Sample ruleset and performance measurements

Sample association ruleset Sample measurements
1 S1PC1>80 & S2PC1<60 → high t S1PC1 S1PC2 S2PC1
2 S1PC1>70 & S1PC2>70 → high 0 40 60 80
3 S1PC1>90 → high 1 95 60 80
4 S1PC2<30 → med 2 98 80 80
5 else → low 3 98 95 55

4 98 80 80
5 40 45 80

0 1 2 3 4 5

S1PC1 0 1 2 3 4 4
S1PC2 0 0 1 2 3 3
S2PC1 0 0 0 1 0 0

covered by rules # 5 3 2,3 1,2,3 2,3 5

Figure 3: Rule coverage matrix for Table ?? and the corresponding heatmap

As association rule learning is a form of supervised learning, it is possible

that the generated association ruleset does not cover all PIOs. This is inherent to

the characteristics of supervised learning, as such learning algorithms generate

classifiers which are specialized at detecting cases that have occurred during the

training phase. In future work, we will investigate how to improve the quality

of the generated association rule set.

14

Training Phase

Data Collection

1a. ApplicationLog

<date, action,

responsetime, userID>

Association rulesets RULESLO & RULESMH

Data Preparation

3. Calculate

SAratio for all

time intervals

4. Label performance

measurements with

LOW, MED or HIGH

2. Classify

actions as

SLOW or

NORMAL

Learning

5. Generate

association

rules
1b. PerformanceLog

<date, measurement>

Analysis Phase

6. Monitor new

performance

measurement

7. Classify

measurement

Training phase output

8. Update rule coverage matrix Analysis of bottleneck

components

PIO Analysis Result

Figure 4: Steps of our approach for analyzing PIOs

In the next section we will discuss the implementation of our approach.

4. Implementation

Figure ?? depics all the steps required for the implementation of our ap-

proach. In this section, we will explain every step taken.

4.1. Training Phase

During the training phase (see Section ??) the association rules used for

PIO analysis are generated. First, we collect the required data and calculate

the SARatio for every time frame. Then, we generate the association ruleset.

4.1.1. Data Collection

We log all actions in the system, including their response time and the ID

of the user that made them, for a period of time (step 1a in Figure ??). In

parallel, we make low-level system measurements at a defined interval t (step

1b). This results in the following log files:

15

• A log file ApplicationLog containing the (1) date, (2) action, (3) respon-

seTime and (4) userID (if existent) for every action made to the application

• A log file PerformanceLog containing (1) low-level system performance

measurements and the (2) date at which they were made

In the rest of this paper we will assume the ApplicationLog contains re-

quests made to the application (i.e., the webserver log — records will have the

format date, page, responseTime, userID).

4.1.2. Data Preparation

After collecting the data, we classify all actions in the ApplicationLog as

slow or normal (step 2) and calculate the SARatiot per time interval t as

described in Section ?? (step 3). We label all low-level measurements in the

PerformanceLog with their corresponding load classification (step 4).

4.1.3. Learning

The final step of the training phase is to apply the association rule learning

algorithm to the labeled data (step 5). Because the LOW class is much larger

than the MED and HIGH classes, we generate a random subset of the LOW

class, which is approximately equal in size to the number of MED plus the

number of HIGH elements. This helps us to deal with the problem of overfit-

ting [?], and improves the classification result as the result will not be biased

towards the LOW class anymore.

From experimentation we know that association rule learning algorithms

generate bad performing association rules for this type of data when trying to

generate rules for the LOW , MED and HIGH classes in one run. Therefore,

we run the learning algorithm twice on different parts of the dataset to improve

the classification.

We combine the MED and HIGH classes into the temporary OTHER class

and use the random subset of the LOW class. We then run the rule learning

algorithm twice:

• For separating the LOW and OTHER classes → RULESLO

16

• For separating the MED and HIGH classes → RULESMH

The final results of the training phase are the association rulesets RULESLO

and RULESMH .

4.2. Analysis Phase

During the analysis phase, unlabeled low-level measurements are monitored

(step 6) and classified into one of the load classes LOW , MED andHIGH using

the rulesets. First, the measurement is classified into the LOW or OTHER class

using the RULESLO ruleset. When it is classified into the OTHER class, it

is classified again using the RULESMH ruleset to decide whether it belongs to

the MED or HIGH class (step 7). After the classification is done, the rule

coverage matrix is updated (step 8). Finally, this matrix can be used to analyze

performance improvement opportunities.

5. Experimental Setup

The goal of our evaluation is to show that our approach is capable of fulfilling

the two requirements posed in Section ??, namely detecting the timeframes

during which the system performed relatively slow and detecting the bottleneck

components. To do this evaluation, we propose two case studies. In case study I

(Section ??), we will show that the SARatio is an accurate metric for detecting

timeframes during which the system was slow. In addition, in this case study we

will show that our technique is capable of estimating the SARatio classifications

using performance counter measurements. In case study II (Section ??), we will

use the knowledge of a performance expert to manually verify the classification

results of our approach. This verification will show that our approach is capable

of detecting bottleneck components.

Hence, in these case studies we address the following research questions:

1. Is the SARatio an accurate metric for detecting the timeframes during

which the system was slow? (Case study I)

2. Is our technique for the estimation of SARatio classifications using per-

formance counter measurements accurate? (Case study I)

17

3. How well do our the results of our PIO analysis approach correspond with

the opinion of an expert? (Case study II)

In this section, the experimental setup of the case studies is presented.

5.1. Case Study Systems

We performed two case studies on SaaS systems: (1) on a widely-used bench-

mark application running on one server (RUBiS [?]) and (2) on a real industrial

SaaS application running on multiple servers (Exact Online [?]).

5.1.1. RUBiS

RUBiS is an open source performance benchmark which exists of an auction

site and a workload generator for this site. The auction site is written in PHP

and uses MySQL as database server. The workload client is written in Java.

We have installed the auction site on one Ubuntu server, which means that the

web and database server are both on the same machine. The workload client

was run from a different computer running Windows 7.

5.1.2. Exact Online

Exact Online is an industrial multi-tenant SaaS application for online book-

keeping with approximately 18,000 users4. Exact Online is developed by Exact,

a Dutch-based software company specializing in enterprise resource planning

(ERP), customer relationship management (CRM) and financial administra-

tion software. The application currently runs on several web, application and

database servers. It is written in VB.NET and uses Microsoft SQL Server 2008.

5.2. Process

Training Phase. The ApplicationLog and PerformanceLog are collected us-

ing the webserver and OS-specific tools and are imported into a SQL database;

all steps in the data preparation phase are performed using a sequence of SQL

queries. The generation of the LOW, MED, HIGH classes is done by custom

4In fact, there are about 10,000 users with 18,000 administrations, but for clarity we assume
1 user has 1 administration throughout this paper.

18

implementation in Java. For the implementation of the rule learning algorithm

we have used the JRip class of the WEKA API [?], which is an implemen-

tation of the RIPPERk algorithm [?]. We used the JRip algorithm because

it is a commonly used association rule learning algorithm and experimentation

showed that this algorithm gives the best results for our datasets with respect

to classification error and speed.

Analysis Phase. The steps performed during the analysis phase are imple-

mented in Java, resulting in a tool that can be used on newly monitored data.

The rule coverage matrix is generated with the help of the WEKA API. The

visualizations used for PIO analysis are generated using JFreeChart [?] and

JHeatChart [?].

6. Proof-of-Concept: Case Study I for SARatio Classification Estima-
tion Using Performance Counter Measurements

Our PIO analysis approach relies on the rule coverage matrix. To build this

matrix, we use a combination of association rules and performance counters

to estimate SARatio classifications. As a proof-of-concept, we have verified

that this combination is indeed a solid foundation for estimating the SARatio

classification in the following settings:

• On a simulated PIO in RUBiS

• On a real PIO in EOL

In this section, these proof-of-concept studies will be presented.

6.1. RUBiS

The goals of the RUBiS proof-of-concept were as follows:

• To show that our approach can closely estimate the SARatio caused by

synthetically generated traffic

• To show that it is capable of dealing with problems on the client side, i.e.,

that it does not recognize client side problems as PIOs

19

In order to generate several traffic bursts, we have configured 3 RUBiS work-

load clients to run for 30 minutes in total. Figure ?? shows the number of hits

per second generated by the clients. The number of hits generated was chosen

after experimentation to reach a level where the computer running the client

reached an overloaded state. This level was reached around t = 800, causing

a slowdown on the clients which resulted in less traffic generated. Due to the

implementation of RUBiS which uses synchronous connections [?], i.e., the

client waits for a response from the server after sending a request, the response

times went up. Because Apache logs the time to serve the request, i.e., the

time between receipt of the request by the server and receipt of the response

by the client, this overload situation also resulted in higher durations in the

ApplicationLog. However, this increase in response times is not caused by a

server problem (i.e., noticeable from performance counter values), hence we ex-

pect our approach to convert performance counter measurements at that time

to low SARatio values.

6.1.1. Training Phase

Data Collection. Table ?? shows the set of performance counters monitored on

the server; we used Dstat [?] to log them every second. Together with the

Apache access log, we could now create the SQL databases ApplicationLog

and PerformanceLog. These databases have the same structure as those in the

EOL proof-of-concept so that the same queries could be used. Table ?? contains

some statistics about the collected data.

Data Preparation. Because the applications in RUBiS perform equal actions for

all users, we did not calculate the mean and standard deviation per (application,

user)-tuple but per application instead. Table ?? shows the number of slow and

normal requests for these applications. Figure ?? shows the distribution of

SARatio for the RUBiS case study, together with the 85th and 95th percentile.

Learning. Performing the association rule learning algorithm resulted in a rule-

set RULESLO of 6 rules and a ruleset RULESMH of 2 rules. Table ?? shows

the generated rules.

20

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

hi
ts

t

Figure 5: Traffic generated for the RUBiS case study

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

95%85%

t

di
st

rib
ut

io
n(

S
A

ra
tio

)

Figure 6: Distribution of SARatio for 30 minutes of RUBiS traffic

CPU stats Memory stats
system, user, idle, wait used, buffers, cache, free
hardware & software interrupt Process stats

Paging stats runnable, uninterruptable, new
page in, page out IO request stats

Interrupt stats read requests, write requests
45, 46, 47 asynchronous IO

System stats Swap stats
interrupts, context switches used, free

Filesystem stats File locks
open files, inodes posix, flock, read, write

IPC stats
message queue, semaphores
shared memory

Table 3: Monitored performance counters for RUBiS

21

Table 4: Association rules generated in the RUBiS proof-of-concept

RULESLO

(mem/cach ≤ 2175963136) & (mem/used ≥ 1103503360) → OTHER
(mem/cach ≥ 1910624256) & (mem/buff ≤ 316026880) → OTHER
(mem/buff ≥ 316256256) & (mem/buff ≤ 316358656) & (system/int ≤ 6695)

& (dsk/read ≥ 118784) → OTHER
(mem/buff ≤ 316497920) & (system/int ≥ 7052) & (mem/used ≤ 1080979456) → OTHER
(mem/cach ≤ 2215194624) & (dsk/read ≤ 24576) → OTHER
else → LOW

RULESMH

(filesystem/files ≤ 2336) → HIGH
else → MED

real intensity
estimated intensity

Figure 7: Real intensity versus estimated intensity

22

6.1.2. Analysis Phase

To validate our approach for the RUBiS case study we 1) calculated the

intensity directly from the ApplicationLog using the SARatio and 2) estimated

the intensity using assocation rules. The rationale behind step 2 is that we need

to estimate the SARatio classifications using association rules before we can

estimate the intensity. If the estimated intensity then matches with the intensity

calculated during step 1, we have a validation that our approach for estimating

the SARatio using performance counter measurements yields correct results for

the RUBiS case. Because the association rules were generated from a subset of

the PerformanceLog as described in Section ??, part of the data to classify was

used as training data. We deliberately did this to include the data generated

by the overloaded client in the classification. Nonetheless, approximately 67%

of the data analyzed during the analysis phase was new. Figure ?? shows the

graph of the real and estimated intensity5.

6.1.3. Evaluation

The graphs for the real and estimated intensity are nearly equal, except for

one peak. As expected, the real intensity shows a peak around t = 800 due to

increased response times, caused by the synchronous connections, whereas the

estimated intensity does not. An interesting result of this is that while the real

intensity will falsely detect a PIO, the estimated intensity ignores this, which

is correct. The peak around t = 200 can be explained by the fact that the

workload client executes certain heavy search queries for the first time. After

this the results are cached, resulting in less load on the server. The intensity

estimation was capable of detecting this.

Revisiting the goals stated in the beginning of this section, the RUBiS proof-

of-concept shows our approach is capable of estimating the SARatio classifica-

tions well, as demonstrated by Figure ??. In fact, our approach is more precise

than the approach that relies on the average response time directly, as our ap-

5This graph is best viewed in colour.

23

proach did not classify the overloaded client as a server slowdown.

Another interesting observation is that our approach was capable of detecting

several known weaknesses in the RUBiS implementation [?], namely the fact

that it uses synchronous connections for the communication between the client

and the server, and the slow caching of the search queries at the beginning of

the benchmark.

6.2. Exact Online

The goals of the Exact Online proof-of-concept were as follows:

• To show that our approach can closely estimate the SARatio caused by

real traffic

• To show that our approach can detect PIOs in a period different than the

period used to train the association rules

• To show that we can estimate the SARatio during unexpected events

We have analyzed 64 days of data which was monitored during the execution

of Exact Online. During this period, a performance incident was caused by a

bug in a product update. This bug caused logfiles to be locked longer than

necessary, which resulted in bad performance.

As a proof-of-concept, we:

• Generated the association rulesets using data which was recorded 3 months

before the incident, to show that we do not need to constantly retrain our

rulesets

• Estimated the SARatio classifications during this incident using perfor-

mance counters, to show that our approach is capable of estimating the

SARatio during unexpected events

6.2.1. Training Phase

Data Collection. Exact Online performance data is stored for a period of 64

days in the form of logged performance counter values. Table ?? depicts the

24

subset of performance counters which are being logged. This list was selected

by Exact performance experts, who had at least 7 years of experience with per-

formance maintenance, and contains the performance counters most commonly

used during performance analysis. Therefore, we limited our case study to the

analysis of these performance counters recorded during 64 days. Table ?? shows

some details about the collected data.

The ApplicationLog was retrieved by selecting the required elements from

the Internet Information Server log. The performance measurements were logged

into a database called PerformanceLog by a service which collects performance

Exact Online RUBiS

ApplicationLog
actions 88900022 853769
applications 1067 33
users 17237 N\A
(application, user)-tuples 813734 N\A
monitoring period 64 days 30 minutes

PerformanceLog
measurements 182916 1760
performance counters 70 36
measurement interval 30s 1s

Table 5: Details about the case studies

Virtual Domain Controller 1 & 2, Staging Server
Processor\%Processor Time (60s)

Service 1 & 2
Memory\Available Mbytes (300s) Process\%Processor Time (30s)
Processor\%Processor Time (60s) System\Processor Queue Length (60s)

SQL Cluster
LogicalDisk\Avg. Disk Bytes/Read (30s) LogicalDisk\Avg. Disk Read Queue Length (30s)
LogicalDisk\Avg. Disk sec/Read (30s) LogicalDisk\Avg. Disk sec/Write (30s)
LogicalDisk\Avg. Disk Write Queue Length (30s) LogicalDisk\Disk Reads/sec (30s)
LogicalDisk\Disk Writes/sec (30s) LogicalDisk\Split IO/sec (60s)
Memory\Available Mbytes (60s) Memory\Committed Bytes (300s)
Memory\Page Reads/sec (30s) Memory\Pages\sec (30s)
Paging File\%Usage (60s) Processor\%Processor Time (30s)
Buffer Manager\Lazy writes/sec (60s) Buffer Manager\Buffer cache hit ratio (120s)
Buffer Manager\Page life expectancy (60s) Databases\Transactions/sec (60s)
Latches\Average latch wait time (ms) (30s) Latches\Latch Waits/sec (30s)
Locks\Lock Waits/sec (120s) Memory Manager\Memory grants pending (60s)
General Statistics\User Connections (60s) SQL Statistics\Batch requests/sec (120s)
SQL Statistics\SQL compilations/sec (120s) virtual\vfs avg read ms (60s)

Webserver 1 & 2
ASP.NET\Requests Current (60s) ASP.NET\Requests Queued (60s)
ASP.NET Apps\Req. Bytes In Total (120s) ASP.NET Apps\Req. Bytes Out Total (120s)
ASP.NET Apps\Req. in App Queue (60s) ASP.NET Apps\Requests Total (60s)
ASP.NET Apps\Req./sec (120s) Memory\Available Mbytes (120s)
Process\%Processor Time (30s) Process\Handle Count (60s)
Process\Thread Count (60s) Processor\%Processor Time (60s)

Table 6: Monitored performance counters for EOL (measurement interval)

25

counter values at set intervals on all servers. These intervals were configured by

company-experts, based on their experience with the stability of the counters,

and were in the range from 30 seconds to 10 minutes, depending on the counter.

The configured interval for every counter is depicted by Table ??.

Data Preparation. To verify that the response times of each application are

approximately normally distributed per user, we have inspected the histogram of

10 (application, user)-tuples which were ranked in the top 30 of tuples with the

highest number of actions. The tuples were selected in such a way that there was

a variety of users and applications. This inspection showed that the response

times follow the lognormal distribution, which is consistent with the results

found for think times (equivalent to response times) by Fuchs and Jackson [?

]. Table ?? displays the percentage of actions in the NORMAL and SLOW

classes for each sample based on the logarithm of the response time. As shown

in the table, the percentage of actions in the classes are close to what one would

expect when assuming the (log)normal distribution. The deviations are caused

by the fact that these response times were monitored in a real environment,

rather than a perfect environment without external influences [?].

Figure ?? shows the distribution of SARatio in the EOL case study, together

with the 85th and 95th percentile.

Sample # % NORMAL % SLOW # actions

EOL1 85.82 14.18 2736563
EOL2 89.64 10.36 1450835
EOL3 92.74 7.26 599470
EOL4 89.02 10.98 351494
EOL5 85.29 14.71 270268
EOL6 78.72 21.28 211481
EOL7 82.77 17.23 161594
EOL8 91.33 8.67 144050
EOL9 84.31 15.59 112867
EOL10 91.46 8.54 97793

RUBIS1 85.32 14.68 35651
RUBIS2 84.60 15.40 23262
RUBIS3 85.80 14.20 19842

normal distribution 84.2 15.8

Table 7: #actions per class for the selected samples

26

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

4

85%95%

SAratio

di
st

rib
ut

io
n(

S
A

ra
tio

)

Figure 8: Distribution of SARatio for 64 days of EOL traffic

Learning. Running the association rule learning algorithm on the EOL dataset

resulted in a ruleset RULESLO of 27 rules and a ruleset RULESMH of 29

rules6.

6.2.2. Analysis Phase

We analyzed an incident that happened 3 months after the training data

was recorded, which makes it a strong proof-of-concept as the training data

and incident data are not biased towards each other. To validate the rule-

sets, we have estimated the SARatio classifications using performance counter

measurements. Figure ?? graphs the intensity calculated after classifying all

measurements in the PerformanceLog of the 3 days surrounding the incident.

The bug was introduced around t = 3400 and solved around t = 4900.

6.2.3. Evaluation

Figure ?? shows a high peak from approximately t = 4100 to t = 4900, which

indicates our approach is capable of estimating the SARatio during unexpected

events. Note that the performance anomaly was detected later than it was

introduced because at the time of introduction there were very few users using

the application which left the anomaly temporarily unexposed. The other, lower

6Due to space limitations, we did not include the rules in this paper, but the complete set of
rules can be viewed at http://www.st.ewi.tudelft.nl/~corpaul/data/assocrules_eol.txt.

27

http://www.st.ewi.tudelft.nl/~corpaul/data/assocrules_eol.txt

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

incident

t

in
te

ns
ity

Figure 9: Intensity graph of the EOL incident based on estimated SARatio classifications

peaks were caused by heavier system load during administrative tasks such as

database maintenance, which are performed at night for EOL.

As a comparison, Figure ?? shows the performance anomaly criterium used

by the EOL team. In this criterium, an anomaly is reported when the average

response time in an hour exceeds 450ms. Figure ?? shows that shortly after the

start of the incident an anomaly was reported, however:

• This report was not handled until 4 hours later when working hours

started.

• This report was not considered an anomaly because the average response

time dropped to an acceptable value after the report, i.e., the report was

considered an isolated measurement due to long-running administrative

tasks.

At t = 36 another anomaly report was sent, which was investigated and lead

to a solution around t = 40. However, this was also an isolated measurement

which lead to confusion for the performance engineers.

Using our approach, the performance engineers would have had a stronger

indication that a performance anomaly was occurring as it shows a continuous

performance problem during the incident. In addition, our approach would have

28

(hour)

Figure 10: Current EOL performance anomaly criterium during incident

reported the anomaly between t = 34 and t = 35.

Revisiting the goals presented earlier in this section, the EOL case study

shows that the SARatio can be estimated closely by the approach as we were

able to identify ‘normal’ peaks and an incidental peak in the intensity graph

easily, even for data which was monitored 3 months after the data with which

the rulesets were trained.

7. Case Study II: Evaluation of Exact Online Analysis Results

In this section, we present our case study in which we did an evaluation

of PIO analysis results of our approach on industrial data. We address the

following research question:

• How well do the results of our PIO analysis approach correspond with the

opinion of an expert?

7.1. Case Study Description

Evaluating the precision of our PIO analysis approach is not trivial. Due to

the nature of our approach, which is to assist experts in their manual analysis,

the analysis results must be evaluated manually as well.

We have analyzed 66 days of data monitored during normal execution of

Exact Online. During this period, 271 performance counters were monitored

every minute on a total of 18 servers. These performance counters were collected

29

and stored in a centralized performance logging database. Note that the dataset

was different from the one used in Section ??. Because the server setup for

EOL changed and became more complex since the case study described in that

section, we decided to analyze the data for the new setup as we expected this

to yield more interesting results.

Over the period of 66 days, 236 PIOs were located in total using our ap-

proach. Because manual analysis with the help of an expert is time-consuming

and expensive, we verified only a random sample of this total set. In addition,

a false negative analysis (i.e., missed PIOs) is difficult as we do not have a com-

plete list of true PIOs for real data. Therefore, we extended our list of detected

PIOs with overload registrations made using the overload detection rule cur-

rently used by engineers of EOL (see Section ??). This rule will register any

hour during which the average response time was larger than 450ms as a system

overload (which is a form of a PIO). We manually verified a random sample

of these overload registrations as well, with the goal of getting an indication of

the number of false negatives of our approach. Table ?? depicts the number of

detected PIOs and overload registrations and the size of the random sample.

Our approach

Total # PIOs 236
random sample 12 (5.1%)

Average duration per hour

Total # registrations 182
random sample 5 (2.8%)

Table 8: Random sample description

7.2. Training Phase

The training phase for this case study was equal to the process described

in Section ??, with a different data set for the training period. For this case

study, the training data was monitored one week before the analyzed data. The

result of the training phase are rulesets RULESLO and RULESMH depicted

by Table ??.

30

RULESLO

(DBclus1/Processor/% Processor Time/ Total ≥ 13.02883)
& (DBclus1/SQLServer:Latches/Latch Waits/sec/null ≥ 598.898376) → OTHER

(DBclus1/Processor/% Processor Time/ Total ≥ 13.378229)
& (DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 1859) → OTHER

(ws2/Processor/% Processor Time/ Total ≥ 11.026497)
& (ws2/.NET CLR Exceptions/# of Exceps Thrown / sec/ Global ≥ 8.948925)
& (ws6/Process/Handle Count/ Total ≤ 21258) → OTHER

(DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 4357)
& (DBclus2/Memory/Available MBytes/null ≤ 5177)
& (ws5/Processor/% Processor Time/ Total ≥ 2.104228) → OTHER

(DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 4088)
& (DBclus1/SQLServer:Latches/Average Latch Wait Time (ms)/null ≥ 1.02296)
& (DBclus2/LogicalDisk/Avg. Disk sec/Write/T: ≥ 0.000543) → OTHER

(DBclus1/LogicalDisk/Disk Reads/sec/W: ≥ 20.217216)
& (IDws1/Paging File/% Usage/ Total ≥ 1.238918)
& (ws3/ASP.NET Apps v4.0.30319/Requests Timed Out/ Total ≥ 1) → OTHER

(ws6/ASP.NET Apps v4.0.30319/Requests Timed Out/ Total ≤ 0)
& (ws4/Processor/% Processor Time/ Total ≥ 13.349845)
& (ws1/.NET CLR Exceptions/# of Exceps Thrown / sec/ Global ≤ 2.83327)
& (DBclus1/LogicalDisk/Avg. Disk sec/Write/E: ≥ 0.000446) → OTHER

else → LOW

RULESMH

(ws3/ASP.NET Apps v4.0.30319/Request Bytes In Total/ Total ≤ 86408)
& (DBclus2/LogicalDisk/Avg. Disk sec/Read/W: ≥ 0.000932)
& (IDws1/LogicalDisk/Avg. Disk sec/Write/ Total ≥ 0.001162) → HIGH

(ws3/ASP.NET Apps v4.0.30319/Request Bytes In Total/ Total ≤ 70541)
& (DBclus2/LogicalDisk/Avg. Disk sec/Write/W: ≥ 0.0005)
& (DBclus2/Memory/Page Reads/sec/null ≥ 0.046007) → HIGH

(ws4/ASP.NET Apps v4.0.30319/Request Bytes In Total/ Total ≤ 81291)
& (DBclus1/LogicalDisk/Disk Reads/sec/J: ≥ 0.076917)
& (DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 131)
& (contr1/Server/Bytes Total/sec/null ≤ 204.351318) → HIGH

(ws1/ASP.NET Apps v4.0.30319/Request Bytes In Total/ Total ≤ 18344)
& (ws2/ASP.NET Applications/Request Bytes In Total/ Total ≤ 7161)
& (ws1/Server/Bytes Total/sec/null ≤ 2113.22168) → HIGH

(ws6/ASP.NET Apps v4.0.30319/Request Bytes Out Total/ Total ≤ 629862)
& (IDws2/Memory/Pool Paged Bytes/null ≥ 140587008)
& (IDws2/Memory/% Committed Bytes In Use/null ≤ 19.593651) → HIGH

else → MED

Table 9: Association rules generated during the random sample verification case study

31

7.3. Analysis Phase

During the analysis phase, 236 PIOs were detected using our approach. For

every PIO, the rule coverage matrix was saved into the database so that the

covered rules could be manually verified later. In addition, 182 hours were

marked as overload hours using the overload detection rule as described earlier

in this section. To generate the random sample, we randomly selected 12 starting

points for PIOs from the set of PIOs detected using our approach and 5 hours

from the set of overload hours from the database.

7.4. Evaluation

The analysis results were evaluated by a performance expert from Exact

who has 10 years of experience in performance analysis and deep knowledge

of the EOL infrastructure. In this evaluation the expert focused on evaluating

a) whether the detected PIO was actually a real PIO and b) whether the rule

coverage matrix points to the bottleneck component. To verify whether the rule

coverage matrix points to the bottleneck component, the expert used a number

of performance reports generated by EOL. These reports contained traditional

performance metrics. These reports exhibited the following information for all

servers in the system:

• Configuration details for all performance counters (interval, min./max.

measurements per hour)

• Details about background services (page views, total duration, query du-

ration, average duration)

• Details about the number of performance counter values monitored versus

the number of expected values based on the configuration of the counters

• Details about which servers have the service calls and queries that take

the longest to execute

• Details about the running processes (overlap and duration)

• Details per application (duration, query duration)

32

• Histograms for all performance counters of the average value per hour

• Page views per hour

• Average duration per hour

• Overview of running processes and applications at a certain time

All these reports can be tailored to show only data for a certain period. To

decide whether a detected PIO was a real PIO, the expert inspected the reports

for variations in these traditional metrics. This process is the usual process for

performance analysis at Exact. During the evaluation, the expert:

• Analyzed the performance data monitored around the time of the detected

PIO

• Made a manual diagnosis of the system at that time

• Decided whether the detected PIO was actually a PIO

• Compared his diagnosis with the diagnosis made by our approach

• Graded the diagnosis made by our approach with:

– 0 - (almost) completely wrong

– 0.5 - partly points in the right direction and/or incomplete

– 1 - (almost) completely correct

Table ?? and ?? show two examples of this process.

This process was executed for all 17 (12 from our approach and 5 from the

average response time rule) detected PIOs in the random sample. Table ??

shows the manual diagnosis, criterium used (rule coverage (RC) or average re-

sponse time (AVG)) and diagnosis correctness for the complete sample. Note

that we did not evaluate the diagnosis quality for ‘PIOs’ detected with the AVG

rule as this rule does not give us a diagnosis. In this case, the ‘Detected PIO?’

column contains whether our approach detected a PIO during this hour.

33

Table 10: Example PIO evaluation 1

PIO ID: 1 Date: 2012-02-26 01:47:56 Criterium used: Rule Coverage

Automated diagnosis:
DBclus2/LogicalDisk/Avg. Disk sec/Write/W:
DBclus2/Memory/Page Reads/sec/null
ws6/ASP.NET Apps v4.0.30319/Request Bytes In Total/ Total

Manual diagnosis:
Page reads/sec high on DBclus2. Cause: server restarted → cache empty so needs to be
filled up.

Verification:
Is real PIO: Yes Diagnosis correctness: 0.5
The automated diagnosis is correct but it should point to web servers ws1-ws6 as these
are all affected by the restart. Therefore, the diagnosis is incomplete.

Table 11: Example PIO evaluation 2

PIO ID: 2 Date: 2012-02-26 02:02:57 Criterium used: Rule Coverage

Automated diagnosis:
DBclus2/LogicalDisk/Avg. Disk sec/Read/W:
IDws2/LogicalDisk/Avg. Disk sec/Write/ Total
IDws2/Memory/% Committed Bytes in Use/null
IDws2/Memory/Pool Paged Bytes/null
ws6/ASP.NET Apps v4.0.30319/Request Bytes Out Total/ Total
ws6/ASP.NET Apps v4.0.30319/Request Bytes In Total/ Total

Manual diagnosis:
Several heavy background jobs which were originally scheduled apart from each other are
taking much longer now because of database growth, causing them to run at the same
time.

Verification:
Is real PIO: Yes Diagnosis correctness: 1
The diagnosis is correct as these background jobs are started from web server ws6 and
require the identification web server IDws2 and database cluster DBclus2 to run.

34

Table 12: Random sample evaluation

ID CriteriumManual diagnosis Is PIO? Diagnose
quality

Detected
PIO?

1 RC Page reads/sec high on DBclus2. Cause: server restarted
→ cache empty so needs to be filled up.

Yes 0.5 -

2 RC Several heavy background jobs which were originally
scheduled apart from each other are taking much longer
now because of database growth, causing them to run at
the same time.

Yes 1 -

3 AVG No PIO. No - No
4 RC Heavy background job. Yes 1 -
5 AVG Yes, a short hiccup due to a load balancer restart causing

traffic to be unbalanced.
Yes - Yes

6 RC Heavy background job Yes 1 -
7 AVG No PIO. No - No
8 AVG Combination of 2 and 6. Yes Yes
9 RC Same as 8, but detected by PIO analysis instead of av-

erage duration. Diagnosis helps to point correctly to the
background jobs but misses a problem on web server ws5
caused by the background jobs.

Yes 0.5 -

10 RC Same as 9 Yes 0.5 -
11 AVG Same as 3 No - No
12 RC Same as 9 Yes 0.5 -
13 RC Same as 9 Yes 0.5 -
14 RC Same as 9 Yes 0.5 -
15 RC No PIO. No 0 -
16 RC Problem with a background job which could not connect

to an external service, causing it to timeout.
Yes 1 -

17 RC No PIO. No 0 -

During the evaluation we noticed that large portions of the detected PIOs

were caused by the same events. The most significant event was running the

scheduled background jobs during the night. When these background jobs were

originally designed, they finished fast due to the smaller database size. Now

that the database has grown, these tasks take longer to finish and sometimes

their execution overlaps. This causes a slowdown in the system.

Table ?? shows a summary of the results of this case study. The first con-

clusion we can draw from this table is that our approach has high precision for

detecting PIOs (83%). The number of false positives detected by our approach

is low, and in fact, it is lower than the number of false positives detected by

the average response time rule. In addition, our approach gives a more detailed

time frame for the PIO. An example of this is PIO 5 in Table ?? which lasted for

approximately 10 minutes. Because the average response time rule notifies per

hour, the indication of the time frame is less precise than ours because we notify

per minute. However, it is important to realize that simply using the average

35

response time per minute does not work, because this will lead to a high number

of false positives. This is because the long duration of some applications (e.g.,

report generation) will be emphasized when one minute is used as a time frame,

resulting in the detection of a PIO.

In most cases the automated diagnosis using the rule coverage matrix was

at least partly correct. In most of these cases, the diagnosis was incomplete.

An example of this is PIO 9. In this case, the diagnosis did assist in selecting

the background jobs. However, it failed to point out that the CPU usage on

web server ws5 was at 100% for approximately 15 minutes, causing some of the

background jobs to slow down. This was noticed by graphing the raw values for

the CPU usage on the web servers around the time of the PIO.

After the evaluation, the expert indicated that our PIO analysis approach

was effective in assisting during the performance analysis process. Although

the expert had access to much information without our approach using the

reports, the main problem was that he did not know where to start with the

investigation. Our approach helped in providing this starting point.

Table 13: Summary results case study

PIO analysis approach
PIOs analyzed: 12

Real PIOs (precision): 10 (83%)
Diagnosis quality: 1: 4/12, 0.5: 6/12, 0: 2/12

Average response time rule
Overload hours analyzed: 5
Real overload (precision): 2 (40%)

Correct classification by PIO analysis approach: 5 (100%)

8. Discussion

8.1. The Requirements Revisited

8.1.1. Requirement 1: Detect the timeframes during which the system performed
relatively slow.

In our evaluation in Section ?? we have shown that our approach is capable

of detecting PIOs with a high precision. Initially, we aimed at detecting the

start and end time of a PIO. In practice however, together with the expert we

found that the end time of a PIO is difficult to determine. The reason for this

36

becomes clear from Figure ??, in which there are 4 peaks around t = 400. The

question is whether these 4 peaks represent 1 or 4 PIOs. In addition, during the

case study we noticed that the expert intuitively combined PIOs that lie closely

together in his investigation, rendering this question unimportant. Therefore,

we decided to use only the PIO starting time.

8.1.2. Requirement 2: Detect the component(s) that is/are the bottleneck com-
ponent(s).

In our evaluation in Section ?? we have shown that our approach is suc-

cessful in diagnosing a bottleneck in many cases. It was especially successful in

detecting problems with recurring tasks, due to the fact that it is easy to find

patterns in PIO times in this case. Especially in combination with information

from the application log (e.g., running applications and/or tasks during the

PIO), the expert was capable of completing his investigation for performance

optimization.

However, it appears difficult to diagnose several bottlenecks at the same time.

The main cause for this is the quality of the association rules. These rules should

exhibit as much information about performance counters as possible. Because

the rule generation is automated, it is possible that rulesets for some training

periods are not as detailed as desired. Therefore, a possibility for improving

the quality of the rulesets is to use several training periods and combine the

resulting rulesets. This possibility will be addressed in detail in future work.

8.2. Automatability & Scalability

Automatability. All steps in our approach are automated. An interesting prob-

lem is when to update the association rules. In the EOL proof-of-concept we

have shown that 3 months after training, our rulesets were still able to estimate

the SARatio, which leads to the expectation that the rules do not need regener-

ation often. An example of a situation in which the rules need to be regenerated

is after removing or adding a new server to the system. Our current solution is

to retrain all the rules with the new set of performance counters.

37

In our current case studies the length of the period during which training

data was monitored was based on the availability of the data. In future work

we will address the challenge of finding the ideal training period.

Scalability. The PerformanceLog and ApplicationLog analyzed during the

case study in Section ?? contained respectively 28 million and 135 million

records. Preparing the data and training the association rules took approxi-

mately 10 minutes. Classification of a new measurement took less than one

second, which makes the approach scalable as the data preparation and train-

ing phase are executed rarely. For the RUBiS case study, the data preparation

and training phase took two minutes.

Limitations. Our approach is lightweight and transparent; it requires no mod-

ification of application code as measurements are done at the operating system

level. In addition, our approach does not need knowledge about the structure

of the system.

8.3. Different Applications

An application which lies closely to our purpose of finding the moments

when the system performs relatively slow is anomaly detection. The difference

between a performance anomaly and a PIO is that the occurence of an anomaly

is incidental, while the occurence of a PIO is structural. While our approach is

capable of detecting performance anomalies, it is important to realize that it is

based on supervised learning. Supervised learning has inherent limitations for

anomaly detection, since a classifier trained with supervision can only detect

anomalies which have been seen before or are similar to earlier events. The

problem with anomalies is that they often have not occurred before, making it

difficult to detect using supervised training. Therefore, our approach is suitable

for detecting some performance anomalies but we expect a high number of false

negatives.

Another interesting application of our approach is that it can be used, after

some extension, in regression testing to validate a baseline performance after

38

updates. Because our approach is trained with the assumption that approxi-

mately 5% of the system is running relatively slow, we can use this assumption to

roughly validate the performance of the system after an update. If our approach

detects PIOs for more than 5% of the time, we know that the performance of

the system has gotten worse and we need to analyze exactly what part of the

update causes this.

8.4. Comparison With Other Techniques

We have shown in our evaluation that our approach is more precise than

using an average response time threshold. In addition, it gives a more detailed

indication of the starting time of a PIO. Likewise, we expect our approach

outperforms the use of thresholds for other traditional metrics, because these

do not take user and application characteristics into account as described in

Section ??.

Another important advantage of our approach over other techniques is that

it contains temporal information. The advantage of having access to temporal

information is that the in the diagnosis we can emphasize performance counters

which occurred throughout the PIO. These counters are more likely to give an

accurate bottleneck diagnosis. The rule coverage matrix allows experts to give

priority to certain performance counters in their analysis depending on their

value in the matrix. For example, in Figure ??, S2PC1, S2PC2 and S5PC2

would more likely be interesting for investigation than S1PC1 and S5PC1.

8.5. Lessons Learned

Initially, we expected that the expert would be most interesting in longer

lasting PIOs, as these are more likely to yield greater improvements when ex-

ploited. However, during the evaluation we found out that he was especially

interested in the shorter lasting PIOs. The main reason was that these shorter

PIOs must usually be exploited by subtle performance improvements, making

them more difficult to spot with the naked eye. In addition, it is usually easier to

diagnose longer lasting PIOs, because their is more information available. The

lack of information makes shorter lasting PIOs more challenging to analyze.

39

In addition, we found during the evaluation that the intensity transformation

does not work well in practice. The main reasons for this are:

• Because the transformation uses a sliding window, the PIO possibly has

already been running for some time. The expert wanted immediate noti-

fication when a PIO started.

• The downward part of the intensity graph is confusing as the PIO is actu-

ally already over at that time. This was the reason to use only the starting

time of a PIO as mentioned in Section ??.

These limitations must be taken into account when using the intensity trans-

formation.

9. Threats to Validity

9.1. External Validity

We acknowledge that both case studies were performed on SaaS applications,

and we believe especially the EOL case is representative of a large group of

(multi-tenant) SaaS applications. While the RUBiS case is not representative for

modern applications anymore [?], it is a widely-used benchmark in performance

studies and a useful second validation of our approach.

Only one expert was used for the evaluation during the case study. Because

our approach yields a result which is open to different interpretations, this

evaluation is subjective. Therefore, the evaluation of our approach by the expert

is subjective. However, in our opinion the evaluation is valid as this expert has

many years of experience with performance maintenance and the case study

system.

In our case study we have evaluated only a sample of the automated analysis

results. Because this sample was selected randomly we expect it is representative

of the complete result set.

40

9.2. Internal Validity

We have performed 10-fold cross-validation on the EOL dataset to ensure the

JRip algorithm used to generate the association rules generates stable rulesets

on this type of data.

In our experimental setup we have used both industrial and synthetic work-

loads in our case studies. While we acknowledge that the synthetic workload

may not provide a realistic load on the system, its main purpose was as a proof-

of-concept of our SARatio estimation approach.

A possible threat to validity is the fact that the overhead introduced by mon-

itoring the performance counters influences our training set and therefore our

classification scheme. However, as accessing performance counters is relatively

cheap [?], we assume that reading the value of n performance counters will

have O(n) overhead for every time period we make a measurement. Because this

results in constant overhead for all measurements, we assume that the overhead

introduced in the training set will also exist for the measurements made during

the classification phase and will therefore be negligible.

10. Related Work

In previous work, we have done a preliminary evaluation of our approach by

conducting a contextual interview with performance experts from industry [?

]. Feedback elicited during this interview led to the approach as it is presented

in the current paper. The rest of this section discusses methods for assisting

performance experts in finding performance improvement opportunities.

Performance Anomaly Analysis. Important tools for performance experts

are anomaly detection mechanisms. Often, these mechanisms detect anomalies

that can be prevented in the future by improving the performance of the system.

Breitgand et al. [?] propose an approach for automated performance main-

tenance by automatically changing thresholds for performance metrics for com-

ponents, such as response time. In their approach, they set a threshold for the

true positive and negative rate of the violation of a binary SLO. Based on this

setting, their model tries to predict and adapt the thresholds for components

41

such that the true positive and negative rate converge to their threshold, hence

improving the performance of the system. In contrast to our work, they use

single threshold values for performance metrics, while we use association rules

which lead to combinations of thresholds.

Cherkasova et al. [?] present an approach for deciding whether a change in

performance was caused by a performance anomaly or a workload change. They

create a regression-based model to predict CPU utilization based on monitored

client transactions. Zhang et al. [?] do anomaly detection by forecasting a

value for CPU utilization and comparing it to the actual utilization. In case the

difference is significant, an anomaly is detected. Zhang disregards administra-

tive tasks but our approach takes these into account. While Cherkasova et al.

and Zhang et al. focus on CPU utilization, our approach takes more metrics

into account.

Correa and Cerqueira [?] use statistical approaches to predict and diag-

nose performance problems in component-based distributed systems. For their

technique, they compare decision tree, Bayesian network and support vector

machine approaches for classifying. In contrast to our own work, their work

focuses on distributed systems, making network traffic an important part of the

equation.

In Oceano, Appleby et al. [?] correlate metrics such as response time and

output bandwidth with SLO violations. Oceano extracts rules from SLOs in

order to create simple thresholds for metrics. In contrast, our approach uses

more detailed performance metrics and more complex thresholds.

Munawar et al. [?] search for invariants for the relationship between met-

rics to specify normal behaviour of a multi-tier application. Deviations from

this relationship help system administrators to pinpoint the faulty component.

In their work they use linear regression to detect relationships between metrics,

which limits their research to linear relationships. Our approach does not explic-

itly look for direct relationships between metrics, but focuses on combinations

of values instead.

Cohen et al. [? ?] present an approach to correlate low-level measurements

42

with SLO violations. They use tree-augmented naive Bayesian networks as a

basis for performance diagnosis. Their work is different from ours in the way

we detect the possible performance improvement. As we combine several rules,

our approach is capable of giving a more detailed analysis of the location of the

improvement.

Syer et al. [?] use covariance matrices to detect deviations in thread pools

that indicate possible performance problems. The focus of their approach is on

thread pools while ours is not limited to a particular architectural pattern.

Malik et al. [?] have presented an approach for narrowing down the set of

performance counters that have to be monitored to automatically compare load

tests by using statistics. Their technique also ranks the performance counters

based on their importance for load tests. Their work focuses on selecting metrics

(i.e., the dimension reduction problem), while our work focuses on analyzing

those metrics instead.

Jiang et al. [?] analyze log files to see if the results of a new load test

deviate from previous ones. This allows developers to analyze the impact of their

changes. Nguyen et al. [?] address a similar problem, namely the problem of

finding performance regressions. The focus of these approaches is on analyzing

whether a change had the desired effect on performance, while our approach

focuses on finding what to change.

Profiling. Profilers are tools which collect run-time information about soft-

ware [?], such as the amount of memory used or the number of instructions

executed. More advanced profilers analyze the ‘run-time bloat’, e.g., unneces-

sary new object creations [?]. Profilers assist system administrators in the way

that they help identify the block or method which uses the most resources and

hence may form a bottleneck.

Agrawal et al. [?] use dynamic analysis to count the number of times basic

blocks are executed. They define the blocks that are executed most as possible

bottlenecks and hence try to optimize those blocks.

Bergel et al. [?] extend profiling with the possibility to detect opportunities

for code optimization. Using visualizations, they advise developers on how to

43

refactor code so that it will run faster. Their advice is based on principles such

as making often called functions faster.

In general, while there are methods for decreasing the amount of data and

instrumentation [? ?], execution profiling introduces considerable overhead due

to the large amount of data that needs to be monitored. In addition, because

profilers usually analyze hot code (e.g., the code that uses the most CPU cy-

cles), they are not always directly suitable for detecting all possible performance

improvements [?]. Finally, it is possible that many sites must be monitored

in a distributed environment. Therefore, while execution profiling plays an im-

portant role in performance maintenance, its use should be minimally. Our

approach can assist in reducing the execution profiling overhead by pinpointing

the hardware on which profiling should be done.

LagHunter [?] tries to decrease the overhead by only profiling landmark

functions, methods of which the human-perceptible latency can become too

high. LagHunter implements a method for automatically selecting which func-

tions are landmark functions. These landmark functions are considered possible

performance issues as they heavily influence the human-perceptible latency and

therefore can become an annoyance for users.

Using Heat Maps for Performance Maintenance. Heat maps have been

used for performance analysis before [? ?], but we have evaluated our approach

in an industrial setting and on multi-server data. In addition, in previous work

heat maps were used to plot the raw values of performance counters, without the

addition of extra information to assist the performance expert. Our approach

for heat maps does include this extra information. Heat maps have also been

used in other areas, e.g., repository mining [?].

11. Conclusion

In this paper we have proposed a technique for detecting and analyzing per-

formance improvement opportunities (PIOs) using association rules and perfor-

mance counter measurements. We have proposed the SARatio metric, which

allows us to specify the starting point of a PIO more precisely than traditional

44

metrics. We have shown that this metric can be estimated using performance

counter values in a proof-of-concept case study on a synthetic benchmark and

an industrial application.

In addition, the results of our PIO analysis approach were manually verified

in an industrial case study by a performance expert. The results of this case

study show that our approach has high precision when detecting PIOs and

can assist performance experts in their investigation of possible performance

optimizations. In short, our paper makes the following contributions:

• An approach for detecting and analyzing PIOs using association rules,

performance counters and the SARatio metric.

• A proof-of-concept case study in which we show that the SARatio can be

estimated using association rules and performance counters.

• An evaluation of our approach for PIO analysis done by a performance

expert.

Revisiting our research questions:

• RQ 1 How can performance counter values provide assistance during the

performance optimization process? We have presented our approach for

PIO detection, which is based on performance counter values and provides

assistance during the performance optimization process. We have shown

in two case studies that this approach is accurate and improves the speed

with which performance experts can do their investigation for performance

optimization.

• RQ 2 How can we interpret these values so that they can lead to the iden-

tification of the bottleneck component(s) of a system? We have presented

an approach for PIO analysis using the rule coverage matrix. We have

shown in an industrial case study that the results of this approach are

accurate and assist the performance expert in detecting the bottleneck

component(s).

45

11.1. Future Work

In future work we will focus on selecting the most suitable training period

or a combination of training periods in order to increase the quality of the asso-

ciation rules. In addition, we will investigate the possibilities of using multiple

models.

46

