
When to Let the Developer Guide: Trade-offs
Between Open and Guided Test Amplification

Carolin Brandt, Danyao Wang, Andy Zaidman
Delft University of Technology

c.e.brandt@tudelft.nl, wangdanyaoa@gmail.com, a.e.zaidman@tudelft.nl

Abstract—Test amplification generates new tests by mutating
existing, developer-written tests and keeping those tests that
improve the coverage of the test suite. Current amplification
tools focus on starting from a specific test and propose coverage
improvements all over a software project, requiring considerable
effort from the software engineer to understand and evaluate
the different tests when deciding whether to include a test in
the maintained test suite. In this paper, we propose a novel
approach that lets the developer take charge and guide the test
amplification process towards a specific branch they would like
to test in a control flow graph visualization. We evaluate whether
simple modifications to the automatic process that incorporate the
guidance make the test amplification more effective at covering
targeted branches. In a user study and semi-structured interviews
we compare our user-guided test amplification approach to
the state-of-the-art open test amplification approach. While our
participants prefer the guided approach, we uncover several
trade-offs that influence which approach is the better choice,
largely depending on the use case of the developer.

Index Terms—Software Testing, Test Amplification, Automated
Test Code Modification, User-centric Design, Human-Automation
Interaction

I. INTRODUCTION

Software testing is one of the central activities in the soft-
ware development lifecycle [1]. One part of this are developer
tests, i.e., small automated programs that software developers
write to check that their code behaves as they intend and
prevent it from breaking in the future [2]. While developer
testing is widely seen as valuable, it is also a tedious and
time-consuming activity [3]. One automated approach to relief
developers of this manual effort is test amplification. Test am-
plification mutates existing, developer-written tests to explore
new behavior of the code under test [4]. Previous studies have
shown that it can provide valuable tests to developers [5]–
[7], but at the cost of long runtimes [5], [7] and effort for
the developers to understand the behavior and impact of the
amplified tests [7]–[9]. Let us illustrate this with an example:

Masha, a software developer, is working on a
new feature of their software project, that requires
small changes in their existing code. Before sub-
mitting a patch, she needs tests that cover all her
new code, so she decides to use test amplification to
generate them automatically. She picks an existing
test from the class she worked on and asks the tool
to create new tests based on it. After a while the

This research was partially funded by the Dutch science foundation NWO
through the Vici “TestShift” grant (No. VI.C.182.032)

tool reports back and proposes several tests to her.
Unfortunately, the class did not have a high test
coverage, so she has to sift through quite a few
tests spending time to understand what code they
cover and realize it is not the code she is concerned
with. Even for the tests that target her code, she has
to switch between several methods under test and
every time recall what behavior this method should
have, so she can judge whether the generated test is
correct.

Our hypothesis is that these understandability issues are in
part rooted in the disconnect between the present point of
interest of a developer in the code base, and the dispersed
coverage contributions amplified tests are providing, i.e., they
need to rebuild the task context [10]. To bridge this disconnect,
we propose to involve the software developer more tightly in
the test amplification process. Ideally, they can convey what
piece of code they are interested in to test and then the test
amplification presents only those tests that are relevant for the
focus of the developer.

In this paper, we propose a novel approach of user-guided
test amplification. Starting from a method in their code base,
the developer can initiate the test amplification and choose in
a visualized control-flow graph which branch of the method
should be tested. The test amplification is then directed to
call this method specifically, and generates a variety of tests
for it. It measures the tests’ branch coverage and presents all
tests that cover the intended branch to the developer, using the
same control-flow graph visualization to help the developer
understand how the test executes the method under test.

We conduct a technical case study and a user study to
understand the impact and potential use of user-guided test
amplification.1 In both studies we compare it to the existing
test amplification approach [6], [7], which we will call open
test amplification for a clearer distinction. With our technical
case study on 31 classes from two open source projects, we
investigate whether our simple changes in the guided ampli-
fication process are indeed effective at producing a higher
ratio of tests for the targeted branch, and whether to guidance
enables us to cover more branches overall in a project. Our
findings from this study answer our first research question:

1We follow the empirical standard for engineering research:
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=
EngineeringResearch

1

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch

Fig. 1: Interaction with Brandt and Zaidman’s test exploration IDE plugin for open test amplification [7].

RQ1: How effective does guided test amplification generate
tests for targeted branches (compared to open test amplifi-
cation)?

In our user study, 12 developers apply both approaches to
two classes and we interview them about their experiences.
From this, we learn how they perceive each technique and
their considerations when comparing them to each other. Our
observations address our second research question:

RQ2: How do developers perceive guided test amplification
(compared to open test amplification)?

Our two evaluation studies show that user-guided test am-
plification does deliver on the intended goals of making the
test amplification process more effective and the coverage of
the amplified tests easier to understand. However, the studies
also show that the user-guided version of test amplification is
not always better. From the participant’s explanations during
the interviews we learned that user-guided test amplification
is closer to the real-life process of developing and testing new
code where the developer focuses on a specific feature, writing
code and tests for it. On the other hand, open test amplification
is more suited when focusing on improving the test suite
for an already existing code base, as it connects new tests
clearer to the already existing tests. This is one example of
the trade-offs between open and user-guided test amplification
that our studies make apparent. We discuss all trade-offs we
encountered to help the reader understand the strengths and
weaknesses of both approaches, and to help developers choose
which approach fits best to their goals and workflow.

II. TEST AMPLIFICATION

In this section, we introduce the concept of (open) test
amplification, which is realized in the state-of-the-art test

amplification tool for Java called DSpot [6].

The aim of test amplification is to generate new tests by
leveraging the knowledge in existing, human-written tests [4].
These new tests improve the existing test suite with respect
to a defined engineering goal, e.g., structural coverage or
mutation score. Our work is based on Brandt and Zaidman’s
proposal of developer-centric test amplification, which focuses
on generating short and easy-to-understand tests to be included
into the developer’s maintained code base [7].

A central part of Brandt and Zaidman’s proposal is to
combine the automatic test amplification with a test explo-
ration tool that guides the developer’s interaction with the
test amplification. Fig. 1 illustrates the workflow with their
prototype in form of an IDE plugin. The developer starts by
selecting an original test to be the basis for the amplification 1⃝
and requesting the plugin to amplify that test 2⃝. When the
amplification finishes, it notifies the developer 3⃝ that they
can start exploring the generated tests. The exploration tool
presents to the developer the additional coverage that an
amplified test provides 4⃝, the code of the test 5⃝, and action
buttons to easily add the test into the test suite or browse
through the list of amplified tests 6⃝.

The automated process behind test amplification (see the
upper half of Fig. 3) starts from an original test which
comes from the existing, manually written test suite of a
software project. We mutate the input phase of the test with
several amplification operators: changing literal values slightly
or replacing them with random values, as well as adding,
duplicating or removing method calls to the objects under
test. The old assertions are replaced by new ones which use
the current behavior of the system as the oracle. Then, we
execute all new tests and measure their instruction coverage.
The tool selects all tests that cover new instructions compared

2

Fig. 2: Interaction with user-guided test amplification.

to the existing test suite and presents them to the developer.

 Mutate
Input

 Select Tests that
Improve Coverage

Amplified
Tests

Call Targeted
Method

In the Targeted Branch

Open Test Amplification

Modifications
for Guided Test
Amplification

Generate
Assertions

Original
Test

Fig. 3: The automated process behind open test amplification
and modifications to it for guided test amplification.

The interaction and the underlying amplification process
starts from a developer-selected original test, randomly mu-
tates it and keeps all new tests that cover new instructions
anywhere in the project under test. We coin it open test
amplification as it openly looks for any new tests that could
be valuable for a project.

Previous studies on open test amplification showed that
with this approach, it is difficult for the users to connect
the test to the code under test it covers [7], [9]. Also, not
all uncovered code is equally important to be tested in the
opinion of the developers [7]. The original proposers of the
approach had to take several design decisions that limit the
power of the amplification, in order to make it fast enough to
be interactively used [7]. To address these shortcomings, we
propose to let the developer take the lead and guide the test
amplification towards the code they find relevant to be tested.

III. USER-GUIDED TEST AMPLIFICATION

To speed up the process of finding new tests and make
it easier for the developer to understand the context of the
generated tests, we propose to let the developer direct the test
amplification to the specific code they want to test. We call
this approach user-guided test amplification and build it upon
the developer-centric implementation of DSpot [6], [7].

The developer starts by selecting a method in the code under
test which they would like to test (see 1⃝ in Fig. 2). Then, the
test exploration tool presents them with a control flow graph
of that method, similar to the graph shown at 2⃝. The graph
shows the execution structure of the method through boxes
for each statement and condition, connected with arrows. The
arrows annotated with “True” or “False” represent branches
in the control flow of the method, letting the developer see
the different scenarios that might need testing. We compute
the existing test coverage for the method and highlight the
branches that are already covered in green, and those that are
not covered in red. The developer can select the branch that
they would like to cover and start the test amplification. The
tool automatically looks for the corresponding test class and
picks the first—often most simple—test as the original test for
the amplification. If no corresponing test class or test can be
found, the tool prompts the user to create a test and invoke
the amplification again. When inspecting the result, the test
exploration tool reuses the same control flow graph to show
the developer the additional coverage that the amplified test
provides 3⃝. The developer can then decide whether to add the
test to the test suite or to continue exploring the other tests or
invoke the tool again for other branches.

We add two simple modifications to the underlying auto-
mated test amplification process to incorporate the guidance
provided by the developer. The lower half of Fig. 3 illustrates
the modifications we make to the open test amplification pro-
cess. As the first modification to the input of the original test,
we call the method selected by the developer with randomly
generated values for the parameters. When an object is needed,
DSpot looks for a public constructor and uses it with random
values to initialize the object. Then we continue by randomly
mutating the test input as with open test amplification. All
produced tests that cover the branch selected by the developer

3

are selected as results to be presented to the developer.
We intentionally make simple modifications and largely rely

on the amplification operators available in the base tool DSpot,
e.g., the random generation of parameter values for object
initialization. Our aim is to see whether such simple changes
can already be effective to improve test amplification before
considering more complex and runtime-impacting alternatives.

IV. EVALUATION

To evaluate our proposed user-guided test amplification, we
conduct two comparative studies: a technical case study and a
user study. Our first goal is to judge the effectiveness of our
technical changes to the test amplification process: does the
guidance lead to a larger proportion of the generated tests
covering the targeted branch compared to using open test
amplification (RQ1)? The second goal is to elicit the opinions
of developers on interacting with user-guided and open test
amplification (RQ2).

RQ1: How effective does guided test amplification gen-
erate tests for targeted branches (compared to open
test amplification)?

RQ2: How do developers perceive guided test amplifica-
tion (compared to open test amplification)?

To answer RQ1 we conduct a technical case study, where
we apply both approaches to generate tests for 100 branches
sampled from 31 classes of two open source projects. We
analyze the ratio of amplified tests fulfilling our coverage goals
to determine which approach is more effective. To answer
RQ2 we perform a user study with 12 developers that apply
both open and guided test amplification to test two classes.
Then we interview each participant to elicit their impression
of each approach and how they compare to each other.

A. Design Technical Case Study

In our technical case study, we sample code branches from
two open source projects and apply both guided and open test
amplification to try to cover them. We measure how many
branches can be covered at all by each approach, and what
percentage of the amplified tests generated in one run cover
the targeted branch.

We select two open source projects as study objects:
Javapoet 2, a library to generate java source files, and Stream-
lib 3, a library for summarizing data in streams. An important
selection criterion was the traceability from code to tests: in
both projects we can identify the matching test class for a
class, because they adhere to consistent naming conventions.
To select the targeted methods under test, we pick all classes
with a clearly identified test class and from these classes
select all public, non-static and non-abstract methods, which
are the methods that can be called by DSpot’s amplification
operators. Taking all branches from the selected methods under
test (160 from Javapoet, 264 from Stream-lib), we randomly

2https://github.com/square/javapoet
3https://github.com/addthis/stream-lib

sampled 100 branches per project. From their matching test
class, we take the first test as the original test method for the
amplification.

We run both guided and open test amplification for each of
the sampled branches, limiting the number of produced tests
to 200 per run. Next, we collect all resulting tests as well as
their coverage information. Per project, we calculated the ratio
of covered branches over the sampled branches (Equation (1)).

ratio covered branches =
branches covered

branches sampled
(1)

We calculate for each approach per project the average ratio
of successful tests (Equation (2)) over all runs. The ratio of
successful tests looks at how many of the returned amplified
tests do indeed cover the targeted branch.

ratio successful tests =
tests covering branch

tests returned
(2)

B. Results Technical Case Study

Table I shows the calculated effectiveness of guided and
open test amplification in comparison. We see that the guided
test amplification can cover more branches in both projects, but
the difference is small, and neither approach can cover more
than 41% of the sampled branches. This shows that guiding the
test amplification by explicitly calling the method that contains
the targeted branch is only marginally helpful in covering a
larger variety of branches of a project.

TABLE I: Ratio of covered branches (see Equation (1))).

Javapoet Stream-lib

Open Test Amplification 23% 35%
Guided Test Amplification 32% 41%

To understand why many branches could not be covered
by either test amplification approach, we manually inspected
the branches that could not be covered. A core reason for
not covering a branch was that the objects under test or the
target method parameters are not initialized with the right
values. In some cases, this came from the amplification tool
not supporting the parameter’s type, e.g., for a class without
a public constructor. Then, the tool sets the parameters to
null or empty values, which lead to exceptions when trying to
generate assertions. We saw that Javapoet’s classes have more
methods whose parameter types are classes without public
constructors, while Stream-lib mostly works with simple data
types for the parameters. As the amplification tool’s imple-
mentation does not support initializing classes without public
constructors, this could explain why the amplification is more
effective on Stream-lib than on Javapoet. Similarly, generating
tests for faults or locations that require complex input objects
is challenging for search-based tools like EvoSuite [11].

We investigated whether the choice of the original test im-
pacts the ability to cover a certain branch. For this, we sampled
ten branches that were not covered by the amplification and
also not the existing test suites. Then, we amplified all tests in

4

the corresponding test class, but still could not generate tests
that cover the sampled branches. This shows that selecting
different initial tests likely does not impact how effective the
test amplification is at covering the sampled branches. The
earlier mentioned likely cause for not covering the branches,
not being able to generate the right initialization for the objects
under test, seems to not be solved by selecting different initial
tests.

Table II shows how many of the tests generated in one run of
guided and open test amplification cover the targeted branch.
While the ratio of tests that successfully cover the targeted
branch with open test amplification is only 24% for Javapoet
and 45% for Stream-lib, for guided test amplification this ratio
is 70% for both projects. These results show that the guided
test amplification is substantially more likely to produce tests
that cover the targeted branch. This indicates, that the simple
guidance we implemented into the guided test amplification—
calling the method containing the targeted branch—is indeed
effective at guiding the test amplification towards our target.
Therefore, using guided test amplification enables us to set the
amplification to generate fewer tests, while still having a good
chance at receiving a test that covers the targeted branch.

TABLE II: Average ratio of successful tests, which cover the
targeted branch (see Equation (2)).

Javapoet Stream-lib

Open Test Amplification 24% 45%
Guided Test Amplification 70% 70%

Looking how the ratio of successful tests is distributed
over the sampled, targeted branches (Fig. 4), we see clear
differences between the projects. While in Javapoet the distri-
butions are dense and the higher effectiveness of guided test
amplification is clearly visible, for the Stream-lib project the
ratio of tests successfully covering the targeted branch differs
much more significantly from branch to branch. One possible
explanation for this difference is that number of methods in
Javapoet’s classes is higher than in Stream-lib. This means
that it benefits more from the modification in guided test
amplification that explicitly calls the method under test before
the further input mutation.

C. Answer to RQ1: How effective does guided test amplifica-
tion generate tests for targeted branches (compared to open
test amplification)?

Summarizing the results of our technical case study, we can
see that guided test amplification is more effective than
open test amplification when covering a specific targeted
branch. However, both approaches fail to cover the majority of
the sampled branches and depending on the project there can
be a large variety in the ratio of generated tests covering the
targeted for both approaches. We will discuss and interpret
these observations together with the insights from our user
study in Section V.

Fig. 4: Distribution of the ratio of successful tests (see Equa-
tion (2)).

D. Design User Study

Our central ideas for guided test amplification were moti-
vated by the interaction with the user: the developer initiates
the test amplification and guides it towards a method and
branch, reducing the search space for new tests. In addition,
this should help the developer understand and review the
generated tests, because they already built up the necessary
mental task context of the method unter test [10]. To elicit the
opinions of developers on the use of guided test amplification
in comparison to open test amplification, we conduct a study.

The user study starts with a questionnaire collecting demo-
graphic information and informed consent from each partici-
pant. Then, the participants are introduced to the concept of
test amplification and asked to generate tests for two classes
with similar complexity taken from the open source project
Stream-lib. Each developer applied both open and guided
test amplification, and we equally shuffled the order of the
approaches and which class they test according to the four
groups in Table III. After the participant solved both tasks,
we conduct a semi-structured interview. Guided by a list of
closed questions (see Figs. 5 and 6) we ask the participants
to reflect on their experience with the open and guided test
amplification, to compare both approaches and to express their
overall impression of the amplified tests.

We conducted the study fully remotely in sessions of 60 to
90 minutes. We recruited 12 participants through convenience
sampling in our professional networks and on social media.
You can find the complete tasks and questionnaires in our
online appendix [12]. Our study design was approved by our
local ethics review board.

E. Results User Study

From the demographic questionnaire, we learn that we
have a relatively young population of 12 participants with a
development experience of one to three years (7), four to six
years (4) and seven to nine years (1). Two of the participants
had used an automatic test generation tool before. Their main
programming languages were Python (6), Java (4), or C++ (3),

5

TABLE III: Task ordering for our participant groups.

Group First Task Second Task

1 User-Guided Test Amplification
StreamSummary

Open Test Amplification
ConcurrentStreamSummary

2 User-Guided Test Amplification
ConcurrentStreamSummary

Open Test Amplification
StreamSummary

3 Open Test Amplification
StreamSummary

User-Guided Test Amplification
ConcurrentStreamSummary

4 Open Test Amplification
ConcurrentStreamSummary

User-Guided Test Amplification
StreamSummary

and they mainly identified as working in general software
development (4), research (2) or data and analytics (2).

1) Guided Test Amplification: Looking at the feedback
regarding the guided test amplification, presented in Fig. 5, the
participants strongly agree that the control flow graph showing
the coverage of the target method is easy to understand (Q1).
When asked whether the information provided is valuable,
the participants strongly agree (Q2) and point out that the
primary value is in visualizing the code structure and coverage,
especially when the complexity of the method under test is
high. Question (Q3) centers around whether the control flow
graph effectively lets the participants convey their expectation
of what to cover to the amplification. On average the partici-
pants agree to this, pointing out that it also helps identify all
scenarios that are possible when calling the method under test.

They agree that the same visualization is also easy to
understand when it comes to showing the coverage of an
amplified test (Q4), and helps to select which amplified test to
keep and add into the test suite (Q5). In this selection process,
the visualization was especially helpful when the amplified
tests provided diverse coverage contributions in methods with
many branching points. Two participants were neutral about
using the control flow graph to select a test, pointing to that
they only want to cover the previously selected branch and
rather focus on the code of the amplified test instead when
selecting or add the test without further inspection.

2) Open Test Amplification: When it comes to the open
test amplification, our study participants are more divided,
but on average agree that the text-based instruction coverage
explanation is easy to understand (Q6, Q7) and provides
useful information (Q8). The main complaints were that listing
each occurrence of new instruction coverage was too detailed
and that the connection between the test and the covered
instructions was not clear even with the provided hyperlinks.
The participants that were positive found the class and method
names informative and liked that the hyperlinks let them
locate the code under test conveniently. We asked whether
the provided information about the amplification mutations
in the test (Q9) and the additional coverage (Q10) helped
the developers select which test to keep. The participants on
average agreed that the additional coverage is helpful to select
which test to keep (Q10). However, they criticized that they
could not see the existing coverage to judge if a line in the
code under test is already covered or not. One participant
also thought out loud about whether the provided coverage

is actually important coverage.
3) Both Approaches Compared: After discussing each am-

plification approach separately with our participants, we asked
several questions to compare both approaches (see Fig. 6).
Directly asked whether the instruction coverage of open test
amplification or the branch coverage of guided test amplifica-
tion is easier to understand, all participants prefer the branch
coverage (Q13). The participants found it easier to map the
branch coverage to the source code structure. Some were
also not familiar with the concept of instruction coverage and
struggled to identify the single instructions in a line of code.
Most participants prefer the visualized control flow graph over
representing coverage as highlights in the editor (Q14). Using
the visualization they did not need to read the source code of
the method under test.

We asked the developers to reflect which approach helps
them more during test generation (Q16) and they were divided
between the two approaches. Seven participants prefer the
guided test amplification as it is closer to writing tests in real-
life scenarios, where they focus on specific features to cover.
Two participants prefer open test amplification: one proposes
to use it early in the test creation process to cover as much code
as possible, the other focuses on connecting a new test with
the existing ones it is based on, which is clearer during open
test amplification. Three participants were neutral and voted
to combine the two approaches. When they do not have a
specific coverage goal they would use open test amplification,
while they would choose the guided test amplification when
they aim for more control over each tests’ coverage.

Regarding selecting which resulting test to incorporate into
the test suite, the participants mainly prefer the guided test
amplification (Q15). The ten participants voting for guided test
amplification mention that when writing tests they usually have
a specific feature in the code they want to cover, which they
can achieve by guiding the test amplification. One participant
prefers open test amplification as they focus on covering the
whole project as much as possible and want to compare
the different tests based on their total contributed coverage.
One participant is neutral and would use both approaches
depending on the situation.

Finally, we asked about their overall impression of the am-
plified test, which was positive (Q11, Fig. 5). The participants
on average strongly agree that they would use test amplifica-
tion again (Q12) and gave a variety of suggestions on how to
improve the tools for both test amplification approaches. One
aspect they noted positively is that the tool clearly indicates
when it could not generate a test for a selected branch, which
made these situations less negative in the participants’ opinion.

F. Answer to RQ2: How do developers perceive guided test
amplification (compared to open test amplification)?

Looking at all the results of our user study, we see that
a majority of our participants prefer the user-guided test
amplification approach (Q16) because it fits better into the
typical situation they create tests in: when they want to
test a specific location in their code. Factors contributing to

6

Q5 The the Control Flow Graph and branch/line coverage is helpful when you select tests.
Q4 The test generation results displayed with the Control Flow Graph are clear and easy to understand.

Q3 The interaction with the Control Flow Graph effectively assists you in conveying your test expectations.
Q2 The Control Flow Graph of the method under test provides valuable information.

Q1 The Control Flow Graph of the method under test is easy to understand.
Strongly disagree Disagree Neutral Agree Strongly agree

Q10 The instruction coverage and highlighting code are helpful when you select tests.
Q9 The information on modifications applied to tests are helpful when you select tests.

Q8 The test information provides valuable information.
Q7 The generation result displayed with additional instruction coverage is clear and easy to understand.

Q6 The instruction coverage and corresponding code highlighting is easy to understand.

0% 20
%

40
%

60
%

80
%

10
0%

Q12 You would want to use the tool to help you write tests in the future.
Q11 The amplified test cases provided by the tool satisfy your expectations.

Fig. 5: Participant answers on each of the two amplification approaches and test amplification in general.

Q13 Which type of coverage is easier to understand?
Instruction Coverage Neutral Branch Coverage

Q14 Which display form of coverage is easier to understand?
Text Neutral Control Flow Graph

0% 20
%

40
%

60
%

80
%

10
0%

Q16 Which type of test amplification is more helpful for you to generate test cases?
Q15 Which type of test amplification helps you select the amplified test cases more?

Open Test Amplification Neutral User-Guided Test Amplification

Fig. 6: Participant answers on comparing user-guided and open test amplification.

this judgement are that all participants found branch coverage
easier to understand than instruction coverage (Q13), and most
preferred the structure-revealing control-flow graph visualiza-
tion over the more precise textual representation of additional
coverage (Q14). This preference for user-guided test amplifi-
cation is also supported by the overall more positive ratings in
the detailed questions about the approach (Q1-5), compared to
the detailed questions about open test amplification (Q6-10).

From the explanations of our participants we learned that
they do not universally prefer user-guided test amplification
over open test amplification, but that it depends on their use
case, the information that they need to judge the amplified tests
and the amount of control they want to have over the ampli-
fication process. The results of our technical study showed
that the effectiveness of guided test amplification compared to
open test amplification depends on the class structure in the
code under test and the data types used as parameters. Taken
together, we see that there are trade-offs between the two
approaches that should be considered when choosing either
to work with or to improve in future research. In Section V we
collect these trade-offs and discuss the implications of them
for practitioners and researchers.

G. Threats to Validity

There are several threats to the validity of our two studies
and their results. When it comes to internal validity, we miti-
gated the threats by switching the order of the two approaches
(threat: learning effect) and which class each approach was
applied to (threat: dissimilar classes) equally over the four
randomly-assigned participant groups. The characteristics of
the two projects and their classes in our technical study could
dictate the outcome of our technical study. To mitigate this,
we manually analyzed the classes and transparently discuss the
impact of the number of methods per class and the complexity
of the used data types on the effectiveness comparison of
the test amplification approaches. To ensure the confirmability

of our user study results, we focus on presenting the closed
question ratings and support them with explanations staying
as close as possible to the participants’ formulations.

Regarding construct validity, the results of both studies are
influenced by our prototype implementations. We used the
same test amplification tool for both approaches, which is
based on DSpot and limited to Java, with the only differences
in implementation described in Section III. Another threat is
whether we are measuring the effect of the different amplifica-
tion approaches or the changed user interface (UI) from open
to user-guided test amplification. We agree with the original
creators of developer-centric test amplification [7] that a tool
for developers and its UI can fundamentally not be developed
or studied in isolation. To mitigate this threat, we ask separate
questions about the information and the UI elements to our
participants (Q1/2, Q4/5, Q6/10, Q13/14).

The external validity of the results from our technical
study is threatened by the two projects selected for the case
study. We observed that the complexity of the used data
types and the number of methods in a class influence the
effectiveness of the test amplification. Further studies on a
larger variety of projects and classes are needed to demonstrate
the generalizability of our findings. Another threat to the
external validity of our user study is whether the participants
experienced the whole variety of methods which to test with
amplification. To mitigate this, we selected example classes
with a varied complexity of methods and initial tests that cover
some methods of the class fully, partially or not at all. In
the user study we have participants from a range of different
software domains, but no participant has more than ten years
of development experience, making the results potentially not
generalizable to very senior developers.

7

V. DISCUSSION AND IMPLICATIONS FOR PRACTITIONERS
AND RESEARCHERS

With designing user-guided test amplification, we set out to
improve the effectiveness of the process and the understand-
ability of the produced tests. Our technical case study indicates
that user-guided test amplification is indeed more effective,
and the user study suggests that developers find its components
more understandable than those of open test amplification.
However, we also saw that the effectiveness of each approach
varies per project and class, and that the developers might
prefer different test amplification approaches depending on
their current goal with testing. In this section, we will discuss a
series of trade-offs that we identified based on our two studies
and the design of both amplification techniques. Table IV gives
an overview of these trade-offs, together with the source from
which we take the answer for either technique.

The two amplification approaches fit two complimentary
use cases for software developers. From the participants
reflecting on which approach is more helpful to generate tests
(Q16), we learned that the user-guided version is better suited
when they write tests in conjunction with the production code,
also called test-guided development [3], [13]. When their focus
is to improve the test suite itself, e.g., to address technical test
debt [14]–[17], open test amplification would be the better
choice. This is because it connects an amplified test clearer to
the original test from the test suite by pointing out the applied
input modifications.

Open test amplification also informs the developer about
the coverage impact of an amplified test across the whole
project [7]. With the high prevalence of integration tests in
JUnit test suites [18], [19], tests amplified from them can im-
prove test coverage in several locations throughout a software
project [9]. Because this scattered coverage information can be
confusing [7] and partially irrelevant to developers [9], user-
guided test amplification focuses only on the impact in the
targeted method. In return, it can use the available room to
convey the stronger metric of branch coverage in a simple
and easy to understand visualization (Q14).

A previous study on the interaction of software developers
with test amplification showed the importance of managing
the users’ expectations and making sure they align with what
the tool can provide [7]. Open test amplification only proposes
tests for locations it can actually cover, so it can easily fulfill
the user’s expectations for receiving tests. In our proposal of
user-guided test amplification the developers can select any
branch as a target, but as we saw in the technical study, more
than half of the branches in our study projects could not be
covered. This might disappoint the user and not meet their
expectations. When the participants of our study encountered
this, they however were positive about the fact that the tool
clearly reported that it could not generate a test (participant
reflection on Q12). To address the low success rate of guided
test amplification, we would need to initialize the objects
and parameters correctly to hit the targeted branch (manual
inspection technical study). Advanced techniques like concolic

execution [20]–[22], or search-based optimization [23] could
address this. However, these can be expensive to compute.

When studying the effectiveness of test amplification in our
technical study, we saw that guided test amplification produces
a higher ratio of tests that successfully cover the targeted
branch. This highly fits the use case of testing the developer’s
current focal method. In contrast, the more explorative search
in the whole method space of a class under test that open test
amplification performs is more effective when the goal is to
improve the coverage across the whole class. Someone who
uses guided test amplification for this would need to invoke it
over and over again for each method in the class.

A. Implications for Practitioners

Our evaluation of user-guided and open test amplification
uncovered a set of trade-offs a software developer or their
manager should consider when choosing which approach to
apply. The main, reoccurring consideration is why someone
wants to generate tests: (1) to improve the test suite itself
(choose open test amplification), or (2) to get support for
writing tests while working on a specific part of the production
code (choose user-guided test amplification). Beyond this, our
study also shows anecdotal evidence that when a code base
contains many complex classes with private constructors, test
amplification with our state-of-the-art tool will likely not be
able to cover many branches.

B. Implications for Researchers

For researchers in the area of test amplification and gener-
ation, as well as developer-centric support tools, the insights
from our study point to several new research directions.

Improving the effectiveness of guided test amplification asks
for more advanced techniques to initialize objects to cover
the targeted branch. Can we apply computationally expensive
techniques while still providing an interactive user experience?

Could we actively ask the developer to help us with the
initialization of objects that are hard to create? Here the
question is whether they would know enough to provide a
valuable initialization and whether the automation would still
be worth it to use for the developer if they would have to
contribute such substantial effort to the test generation.

Many decisions in the design of either test amplification
approach are motivated by the required interactive speed.
Would it be feasible to pre-generate tests in the background
and then selectively present relevant ones to the developer
when they request tests? A complication here is that current
developer-test generation approaches like test amplification or
search-based generation with EvoSuite [24], require the code
under test to be available. However, we observed repeatedly in
our user study that developers are looking for tests covering
the code they just wrote a short while ago.

Why did the participants of our study prefer the control-flow
graph visualization of the branch coverage over the bytecode
instruction visualization of the line coverage? Based on our
observations, we conjecture that the following aspect could
influence this: (1) using a coverage metric that is embedded

8

TABLE IV: Trade-offs between user-guided and open test amplification.

User-Guided Test Amplification Open Test Amplification

Fits use case Writing production code & wanting tests for it [participant
reflection on Q16]

Improving test suite and resolving technical debt [partici-
pant reflection on Q16, [7]]

Understand coverage contribu-
tion and test execution

In targeted method in detail [Q4, design user-guided test
amplification]

Across the whole project [9]

Expectation of receiving tests Might disappoint if targeted branch cannot be covered
[Technical study]

Only proposes tests / additional coverage it can provide
[design open test amplification [7]]

Runtime efficiency More effective at providing tests for method of interest
[Technical study]

Can provide larger coverage variety of tests for whole
class [7]

in the developer’s mental structure of the code, (2) limiting
the scope of the displayed code coverage to just the one
method the developer is concerned about, and (3) presenting
the existing coverage in conjunction with the additionally
provided coverage, letting the developer grasp the differential
impact a new amplified test makes.

VI. RELATED WORK

In this section, we discuss related work from the areas of
directed and interactive test generation.

A. Directed Test Generation

Search-Based Software Testing (SBST) uses search algo-
rithms to automatically find tests that a variety test objectives
captured in a fitness function [25]. SBST has been used
to automate test generation for various test goals, such as
maximizing structural coverage [26]–[30] and crash reproduc-
tion [23], [31], [32].

Test suite augmentation techniques are used to generate tests
that target code changes that the existing test suite does not
cover [33]. Xu et al. proposed several approaches for test aug-
mentation using concolic testing [34], genetic algorithms [35],
and a combined, hybrid approach [36], [37]. In their concolic
approach, they find the source node of a changed branch and
select existing tests that reach this source node. Then they
explore different directions of path conditions to find new
tests for the changed branch. Their genetic algorithm uses a
fitness function that prefers the distance of a test’s execution
to the changed branch. In contrast to their approach, our test
amplification focuses on all uncovered branches of a software,
not just the recently changed ones. Further, our approach is
simpler, as we only select a few initial tests and only amplify
them with one evolutionary iteration.

Several researchers focused on generating targeted tests
to support debugging. Ma et al. propose directed symbolic
execution, using the distance to the target line as information to
guide the symbolic execution [38]. Dinges et al. [39] combine
symbolic execution, to find a suitable entry point to reach a
target statement, with concolic execution and heuristics, to try
to satisfy constraints too difficult for the symbolic execution.
Our approach makes use of the existing tests as a basis for
the amplification, and we do not use symbolic execution to
reduce our computational costs.

B. Interactive Test Generation

Several techniques are discussed to incorporate informa-
tion provided by humans into the test generation process.
Marculescu et al. proposed Interactive Search-Based Soft-
ware Testing (ISBST) to involve domain specialists in test
generation [40]. Their feedback adapts the fitness function
during the search process by changing the relative importance
of system quality attributes. The primary difference between
their work and ours is that they involve domain specialists
in the test generation, while we target software developers.
They pointed out the importance of perfecting how automated
test systems communicate with users and ensuring that results
are understandable to the users when transferring ISBST to
industry [41]. We address this in the design of our interface,
visualizing information about the test amplification results to
help the user’s comprehension.

Murphy et al. propose to apply grammatical evolution into
SBST and incorporate human expertise into the search [42].
They proposed that users can define the search space they
want their tests to be created from by specifying a gram-
mar. Ramı́rez et al. observed two key issues hindering the
acceptance of automated tests by analyzing various studies that
evaluated the effectiveness and acceptance of test generation
tools [43]: the opacity of the generation process and the lack of
cooperation with the tester. To address this, they incorporate
the tester’s subjective assessment of readability to compare
tests with the same fitness in a search-based test generation
process. Our work also addresses the concerns Ramı́rez et
al. raised. We cooperate with testers and make the process
transparent by letting testers express their branch coverage
goal and guide the test generation. We also improve the
understandability of tests by connecting the amplified tests
with testers’ coverage goals.

VII. CONCLUSION AND FUTURE WORK

The aim of user-guided test amplification was to ease the
effort for software developers when understanding amplified
tests, by letting them point the test generation to a specific
target branch and then visualizing the resulting coverage
leveraging a control flow graph of the method under test.
Through our technical case study, we show that even sim-
ple modifications to the amplification process make guided
test amplification more effective at generating tests for a

9

targeted branch. Our user study shows that developers prefer
the interaction with user-guided test amplification, but that
the choice for either technique is dependent on the current
use case of the developer. From our studies and the design
of both approaches, we identify and discuss four trade-offs
that influence the choice between open and user-guided test
amplification: (1) the current task and goal of the developer,
(2) where the amplified test should provide coverage, (3) the
ability to fulfill the user’s expectation to receive a generated
test, and (4) the available time for the test amplification.

Beyond the research implications we mentioned earlier, our
work can be the basis for several future research directions:

We observed the developer’s wishes to generate tests while
they are working on a particular piece of code. While user-
guided test amplification is a step in this direction, the next
step would be to detect when a developer has finished a
change, and automatically generate and propose a test for the
code change to the developer.

The feedback on the coverage visualization showed that it
helps developer to understand test coverage better. On the other
hand, the expectations of the user guiding the amplification
now requires more advanced test generation approaches that
are already available in other tools. The next step, would be to
disconnect the test generation tool from the interaction layer
that proposes the tests to developers. This allows for more
flexibility in choosing the test generation tool that is right for
the job while still benefitting from the continued advancement
in test communication.

REFERENCES

[1] K. L. Beck, Test-Driven Development - By Example, ser. The Addison-
Wesley signature series. Addison-Wesley, 2003.

[2] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Pearson
Education, 2007.

[3] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[4] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” J.
Syst. Softw., vol. 157, p. 110398, 2019.

[5] STAMP, “Use cases validation report v3,” https://github.com/STAMP-
project/docs-forum/blob/master/docs/, 2019.

[6] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: A study with ten mature open-source
projects,” Empir. Softw. Eng., vol. 24, no. 4, pp. 2603–2635, 2019.

[7] C. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, p. 96, 2022.

[8] S. Bihel and B. Baudry, “Adapting amplified unit tests for human
comprehension,” KTH Internship Report, 2018.

[9] C. Brandt and A. Zaidman, “How does this new developer test fit in? A
visualization to understand amplified test cases,” in Working Conference
on Software Visualization (VISSOFT). IEEE, 2022, pp. 17–28.

[10] C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-
gramming tasks,” Softw. Qual. J., vol. 19, no. 1, pp. 5–34, Aug 2010.

[11] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in 39th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE CS, 2017, pp. 263–272.

[12] Anonymous, “Online appendix for ”when to let the developer
guide: Trade-offs between open and guided test amplification”,”
https://doi.org/10.5281/zenodo.8074647, Jun. 2023.

[13] A. Santos, S. Vegas, O. Dieste, F. Uyaguari, A. Tosun, D. Fucci,
B. Turhan, G. Scanniello, S. Romano, I. Karac, M. Kuhrmann,
V. Mandic, R. Ramac, D. Pfahl, C. Engblom, J. Kyykka, K. Rungi,
C. Palomeque, J. Spisak, M. Oivo, and N. Juristo, “A family of
experiments on test-driven development,” Empir. Softw. Eng., vol. 26,
no. 3, p. 42, 2021.

[14] E. da S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 7th IEEE International Work-
shop on Managing Technical Debt (MTD). IEEE Computer Society,
2015, pp. 9–15.

[15] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21, 2012.

[16] Z. Codabux and B. J. Williams, “Managing technical debt: An industrial
case study,” in 4th International Workshop on Managing Technical Debt
(MTD). IEEE Computer Society, 2013, pp. 8–15.

[17] G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understanding test
debt,” Trends in Software Testing, pp. 1–17, 2017.

[18] F. Trautsch, S. Herbold, and J. Grabowski, “Are unit and integration test
definitions still valid for modern java projects? an empirical study on
open-source projects,” J. Syst. Softw., vol. 159, 2020.

[19] J. Van Geet and A. Zaidman, “A lightweight approach to determining the
adequacy of tests as documentation,” Proc. PCODA, vol. 6, pp. 21–26,
2006.

[20] K. Sen, “Concolic testing,” in IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM, 2007, pp. 571–572.

[21] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, “jfuzz: A
concolic whitebox fuzzer for java,” in First NASA Formal Methods
Symposium (NFM), ser. NASA Conference Proceedings, vol. NASA/CP-
2009-215407, 2009, pp. 121–125.

[22] P. Garg, F. Ivancic, G. Balakrishnan, N. Maeda, and A. Gupta,
“Feedback-directed unit test generation for C/C++ using concolic execu-
tion,” in 35th International Conference on Software Engineering (ICSE).
IEEE Computer Society, 2013, pp. 132–141.

[23] P. Derakhshanfar, X. Devroey, and A. Zaidman, “Basic block cover-
age for search-based unit testing and crash reproduction,” CoRR, vol.
abs/2203.02337, 2022.

[24] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans.
Software Eng., vol. 39, no. 2, pp. 276–291, 2013.

[25] S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn, “An
orchestrated survey of methodologies for automated software test case
generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, 2013.

[26] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” in 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE) and 13th European Software
Engineering Conference (ESEC). ACM, 2011, pp. 416–419.

[27] L. Baresi and M. Miraz, “Testful: automatic unit-test generation for
java classes,” in 32nd IEEE/ACM International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 281–284.

[28] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: an open source tool
for search based software testing of C programs,” Inf. Softw. Technol.,
vol. 55, no. 1, pp. 112–125, 2013.

[29] J. Holmes, I. Ahmed, C. Brindescu, R. Gopinath, H. Zhang, and
A. Groce, “Using relative lines of code to guide automated test gen-
eration for python,” CoRR, vol. abs/2103.07006, 2021.

[30] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST).
IEEE Computer Society, 2015, pp. 1–12.

[31] M. Soltani, P. Derakhshanfar, A. Panichella, X. Devroey, A. Zaidman,
and A. van Deursen, “Single-objective versus multi-objectivized op-
timization for evolutionary crash reproduction,” in 10th International
Symposium on Search-Based Software Engineering (SSBSE), ser. LNCS,
vol. 11036. Springer, 2018, pp. 325–340.

[32] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and A. van
Deursen, “Botsing, a search-based crash reproduction framework for
java,” in 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2020, pp. 1278–1282.

[33] R. Bloem, R. Koenighofer, F. Röck, and M. Tautschnig, “Automating
test-suite augmentation,” in 14th International Conference on Quality
Software. IEEE, 2014, pp. 67–72.

[34] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test
suite augmentation: Techniques and tradeoffs,” in 18th ACM SIGSOFT

10

https://github.com/STAMP-project/docs-forum/blob/master/docs/
https://github.com/STAMP-project/docs-forum/blob/master/docs/

International Symposium on Foundations of Software Engineering.
ACM, 2010, pp. 257–266.

[35] Z. Xu, M. B. Cohen, and G. Rothermel, “Factors affecting the use
of genetic algorithms in test suite augmentation,” in Genetic and
Evolutionary Computation Conference (GECCO). ACM, 2010, pp.
1365–1372.

[36] Z. Xu, Y. Kim, M. Kim, and G. Rothermel, “A hybrid directed test
suite augmentation technique,” in IEEE 22nd International Symposium
on Software Reliability Engineering (ISSRE). IEEE CS, 2011, pp. 150–
159.

[37] Z. Xu, Y. Kim, M. Kim, M. B. Cohen, and G. Rothermel, “Directed test
suite augmentation: An empirical investigation,” Softw. Test. Verification
Reliab., vol. 25, no. 2, pp. 77–114, 2015.

[38] K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in 18th International Symposium on Static Analysis (SAS),
ser. LNCS, vol. 6887. Springer, 2011, pp. 95–111.

[39] P. Dinges and G. A. Agha, “Targeted test input generation using

symbolic-concrete backward execution,” in ACM/IEEE International
Conference on Automated Software Engineering (ASE). ACM, 2014,
pp. 31–36.

[40] B. Marculescu, R. Feldt, and R. Torkar, “A concept for an interactive
search-based software testing system,” in 4th International Symposium
on Search Based Software Engineering (SSBSE), ser. LNCS, vol. 7515.
Springer, 2012, pp. 273–278.

[41] B. Marculescu, R. Feldt, R. Torkar, and S. M. Poulding, “Transferring
interactive search-based software testing to industry,” J. Syst. Softw., vol.
142, pp. 156–170, 2018.

[42] A. Murphy, T. Laurent, and A. Ventresque, “The case for grammatical
evolution in test generation,” in Genetic and Evolutionary Computation
Conference (GECCO). ACM, 2022, pp. 1946–1947.

[43] A. Ramı́rez, P. Delgado-Pérez, K. J. Valle-Gómez, I. Medina-Bulo, and
J. R. Romero, “Interactivity in the generation of test cases with evolu-
tionary computation,” in IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2021, pp. 2395–2402.

11

	Introduction
	Test Amplification
	User-Guided Test Amplification
	Evaluation
	Design Technical Case Study
	Results Technical Case Study
	Answer to RQ1: How effective does guided test amplification generate tests for targeted branches (compared to open test amplification)?
	Design User Study
	Results User Study
	Guided Test Amplification
	Open Test Amplification
	Both Approaches Compared

	Answer to RQ2: How do developers perceive guided test amplification (compared to open test amplification)?
	Threats to Validity

	Discussion and Implications for Practitioners and Researchers
	Implications for Practitioners
	Implications for Researchers

	Related Work
	Directed Test Generation
	Interactive Test Generation

	Conclusion and Future Work
	References

