
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Shaken, Not Stirred.
How Developers Like Their Amplified Tests

Carolin Brandt , Ali Khatami , Mairieli Wessel , and Andy Zaidman

Abstract—Test amplification makes systematic changes to existing, manually written tests to provide tests complementary to an
automated test suite. We consider developer-centric test amplification, where the developer explores, judges and edits the amplified
tests before adding them to their maintained test suite. However, it is as yet unclear which kind of selection and editing steps
developers take before including an amplified test into the test suite. In this paper we conduct an open source contribution study,
amplifying tests of open source Java projects from GitHub. We report which deficiencies we observe in the amplified tests while
manually filtering and editing them to open 39 pull requests with amplified tests. We present a detailed analysis of the maintainer’s
feedback regarding proposed changes, requested information, and expressed judgment. Our observations provide a basis for
practitioners to take an informed decision on whether to adopt developer-centric test amplification. As several of the edits we observe
are based on the developer’s understanding of the amplified test, we conjecture that developer-centric test amplification should invest
in supporting the developer to understand the amplified tests.

Index Terms—Software Testing, Automatic Test Generation, Developer-Centric Test Amplification

✦

1 INTRODUCTION

AUTOMATED testing has become central to ensure a
high quality during software development [1], [2], [3].

Nevertheless, writing tests is seen as a tedious and time-
consuming task [4], [5], [6]. This is where automatic test
generation comes in by supporting developers and relieving
them of the burden of writing tests [7], [8], [9], [10], [11].

State-of-the-art test generation tools are powerful in pro-
tecting against regressions [12], finding crashes [13], and
reproducing crashes [14], [15]. However, they are rather
difficult to adopt in day-to-day software engineering, in
part due to the difficulty to understand the generated test
scenarios [16], [17]. For developers it is crucial to understand
a test when it fails and they have to localize the underlying
fault [18], [19].

This is where test amplification shows promise: instead
of generating completely new tests, e.g., with genetic al-
gorithms (e.g., EvoSuite [9]), test amplification makes sys-
tematic changes to existing, manually written tests with
the intent to provide tests that are complementary to the
existing test suite [20]. In contrast to generated tests that are
stored separately from manually written tests, e.g., when
tests are regenerated after software evolution [21], [22],
our focus is on developer-centric amplified tests. Developer-
centric test amplification is a concept we coined in our
previous work [23]. It proposes that developers adopt the
amplified tests into their main test suite, potentially after
manually adjusting the amplified tests. Developer-centric
test amplification means (1) developers benefit from only
having to validate amplified tests, instead of writing these
tests manually, and (2) understanding the tests should be

• C. Brandt, A. Khatami and A. Zaidman are with the Delft University of
Technology. E-mail: c.e.brandt@tudelft.nl

• M. Wessel is with Radboud University.

This research was funded by the Dutch science foundation NWO through the
Vici “TestShift” grant (No. VI.C.182.032).

easier because they originate from manually written tests.
To illustrate this more vividly we introduce an example use
case of developer-centric test amplification:

Adriana is a software developer in a project that is
struggling with automated testing, as pressure for new
features makes it hard to find time to write tests. She
has some time left this sprint and decides to invest it
into testing. To be quicker, she uses a developer-centric
test amplification tool which generates compiling and
passing tests that cover code that is not covered by the
test suite. Adriana browses through the proposed tests,
inspecting their behavior and new coverage contribu-
tion to judge which ones to include in the test suite.
Whenever she decides to keep a test, she takes a look
at its code and does some adjustment to make them
easier to understand for her colleagues and fit better
to their project’s style and quality. After adding several
new tests into the test suite of her project, she commits
them all and prepares a merge request that describes the
improvements to the test suite.

While several studies have investigated the shortcom-
ings of generated and amplified tests from the developer’s
perspective [16], [23], [24], little is known about which kind
of adjustments developers would make to an amplified test
before including it in the test suite. Therefore, the goal of this
paper is to better understand the effort that developers need
to go through when (1) deciding whether to add an ampli-
fied test to the test suite, and (2) adjusting the amplified test
before it can be added. To this end, we conduct a qualitative
open-source contribution study [25], [26]: We amplify tests
for 52 open-source projects and open 39 pull requests to
contribute the amplified tests back to the projects. For the
test amplification, we employ DSpot, which is the original,
arche implementation of test amplification for Java created
by Danglot et al. [20], [25]. Our qualitative investigation in

https://orcid.org/0000-0001-7623-1970
https://orcid.org/0000-0002-2212-2311
https://orcid.org/0000-0001-8619-726X
https://orcid.org/0000-0003-2413-3935

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

this paper is steered by the following research questions:

RQ1: What deficiencies do we observe in DSpot ampli-
fied tests when preparing them for a pull request?

RQ1.1: On which criteria do we select a candidate test
to include in the test suite?

RQ1.2: Which manual edits do we perform to improve
the tests before submission?

RQ2: What feedback do we receive from the maintainers
on the DSpot amplified tests?

RQ2.1: Which changes are proposed during the pull
request discussion?

RQ2.2: What kind of information is requested by the
maintainers during the pull request discussion?

RQ2.3: How do the maintainers justify their judgment
over the amplified tests during the pull request
discussion?

Based on an existing dataset of buildable Java repos-
itories [27], we try to amplify tests for 312 open source
projects. We employ the developer-centric test amplification
of DSpot [23], [28], together with a new automatic post-
processing module that filters and simplifies the amplified
tests. For each of the 52 projects where the test amplification
succeeds, we manually select a candidate test to submit in
a pull request. The criteria that emerge during this selection
process answer RQ1.1. We manually edit the candidate tests
to improve their quality before opening a pull request. Based
on our experiences in this phase, we build a checklist of edits
to expect, the answer to RQ1.2. To validate whether these
edits would also be proposed by open source maintainers,
we omit the manual editing for half of the projects.

We open pull requests for 39 projects with one ampli-
fied test each. To clarify our contribution to the project
maintainers, we provide an automatically generated textual
description of the amplified test. During the discussion,
we incorporate any proposed changes and answer arising
questions. 19 pull requests were accepted and 13 closed.
We analyze the discussions on the completed pull requests
to elicit the changes that the maintainers propose (RQ2.1),
the information they request to understand the amplified
tests (RQ2.2), and how they justified their judgment over
the amplified tests (RQ2.3). As we manually selected which
amplified tests to submit and manually edited half of them
to improve their quality before submitting, the results for
the second set of research questions more closely represent
what amplified test are capable of with human intervention,
or with automation advancing might be capable of in the
future.

2 DEVELOPER-CENTRIC TEST AMPLIFICATION

The technique of test amplification generates new tests by
modifying test that were written by developers [20]. Our
work is based on the developer-centric test amplification of
DSpot [23], [25], which we introduce in this section.

To explore new behavior, DSpot mutates the setup and
action phase of an existing test, called the original test, by
changing the values of literals and removing or adding
method calls to the objects under test. The old assertions

// Together with all generated tests, reaches a mutation score of 0.8518
@Test public void test09() {
InputStream.nullInputStream();
PipedReader pipedReader0 = new PipedReader();
Reader reader0 = Reader.nullReader();
ByteArrayOutputStream byteArrayOutputStream0 = new ByteArrayOutputStream(17);
ObjectOutputStream objectOutputStream0 =

new ObjectOutputStream(byteArrayOutputStream0);
BufferedOutputStream bufferedOutputStream0 =

new BufferedOutputStream(objectOutputStream0);
MockPrintStream mockPrintStream0 =

new MockPrintStream(bufferedOutputStream0, true);
CopyUtils.copy(reader0, (OutputStream) mockPrintStream0);
Reader reader1 = Reader.nullReader();
assertNotSame(reader1, reader0); }

Fig. 1: Test generated by EvoSuite for apache/commons-io.

are removed and replaced by new assertions. For the oracle,
DSpot uses the current behavior of the system: it executes
the test and observes returned values, which it uses as
the expected value of the new assertion. This leads to all
generated tests passing. The developer-centric variant of
DSpot aims at generating concise and simple tests, so it adds
one setup mutation and one assertion per test it generates.
Lastly, only tests that execute instructions not yet covered
by the test suite are kept and shown to the developers1.

As the next step in developer-centric test amplification,
a developer browses and inspects the new, amplified tests.
They judge whether a test is valuable to include into their
test suite, e.g., because of the additional coverage it pro-
vides. The developer can also edit the tests where they see
fit, like adding meaningful names or explanatory comments.
The goal is that they include the selected and edited tests
into their test suite and keep maintaining them in the future.

Developer-centric test amplification is one instance of a
variety of approaches to automatically generate xUnit tests.
In comparison to, e.g., the widely studied search-based test
generation of EvoSuite [9], it differs in these central points:
1) EvoSuite generally works without input of manually

written tests, while DSpot mutates existing, manually
written tests [25]. This introduces the assumption of
more readable tests from the outset.

2) EvoSuite generally aims to generate a whole test suite
at once [29], while DSpot’s approach is closer to test
augmentation: Complementing an already existing test
suite with matching additional tests [30], [31].

3) The developer-centric variant of DSpot sees the devel-
oper judging and editing a test as a central component
before adding the test to a maintained test suite. That is
why it should always be combined with additional infor-
mation and approaches to facilitate the communication
between the test generation and the developer [23].
Fig. 1 and Fig. 2 illustrate the difference of tests gener-

ated by EvoSuite and developer-centric DSpot, respectively.
Recently, Roslan et al. [32] extended EvoSuite to support

test amplification in combination with EvoSuite’s powerful
search-based test optimization. While they reported anecdo-
tal evidence of less readability than DSpot-generated tests,
all previous developer-involving studies with EvoSuite do
not consider the test amplification approach. In Section 7 we
connect and contrast our findings with those of the previous
user studies of EvoSuite.

1. DSpot can select tests based on mutation score, the developer-
centric variant selects on added instruction coverage for its easier
explainability and better performance.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

// Covers new instructions in ByteArrayOutputStream.reset and
↪→ AbstractByteArrayOutputStream.resetImpl

@Test public void testToByteArrayImplAndResetImpl() {
InputStream in = new ByteArrayInputStream(inData);
in = new ThrowOnCloseInputStream(in);
final ByteArrayOutputStream baout = new ByteArrayOutputStream();
final OutputStream out =

new ThrowOnFlushAndCloseOutputStream(baout, false, true);
final Writer writer = new OutputStreamWriter(out, StandardCharsets.US_ASCII);
CopyUtils.copy(in, writer);
writer.flush();
baout.reset();
Assertions.assertEquals("", baout.toString()); }

Fig. 2: Test generated by developer-centric DSpot.

Another approach that can be related to test amplifi-
cation and search-based test generation is fuzzing, where
random, but valid inputs are generated and iteratively
mutated to test the robustness of a software system [33].
While the techniques overlap in their use of mutation and
aim to improve the quality of the software under test, there
are significant differences that make it difficult to apply the
findings of developer-centered fuzzing studies [34], [35] to
our work. Fuzzing focusses on highly structured test inputs
and requires the use of fuzzing harnesses to call the system
under test [36]. In comparison, test amplification and search-
based test generation produce ready to use test structures
leveraging xUnit frameworks [37], which developer-written
tests also use. Furthermore, fuzzing primarily targets ro-
bustness, aiming to uncover crashes or unintended execep-
tions in the software under test [33]. Because of this, fuzzing
is often used to address security and reliability concerns,
where any fuzzer output that leads to an undesirable crash
is relevant to be addressed [38]. In comparison, developer
tests like the ones produced by test amplification typically
have a functional oracle or assertion that checks that the
code under test behaves as expected. Therefore, the tests
generated by amplification and search-based approaches
improve the quality of the functional test suite, which in
turn improves the confidence in the correct behavior of the
code under test. Beyond that, the developer test suite can
also serve as documentation [3], [39], [40] and a starting
point for developers to localize the root cause of a test
failure [18], [19], two use cases where the understandability
of the tests is crucial.

3 AUTOMATIC POST-PROCESSING FOR
DEVELOPER-CENTRIC TEST AMPLIFICATION

We previously conducted an exploratory study to evaluate
a test amplification plugin for the IntelliJ IDE [23]. The
developers we interviewed mentioned several aspects they
would change before accepting the amplified tests into their
test suite. For example, removing unnecessary statements or
changing cryptic identifiers to meaningful ones. The partic-
ipants also pointed to methods that they found not relevant
to test, e.g., simple getters. To automate these already known
points, we design an automatic post-processing tool for
developer-centric amplified tests: the prettifier. The prettifier
is based on an existing module in DSpot and is run after the
amplification described in Section 2. The aim of the prettifier
is to make the resulting tests: (1) more concise, (2) easier to
read, and (3) more relevant to developers.

The participants of the previous study spent a lot of their
time understanding the behavior of an amplified test [23]. This

understanding was the basis for their judgment on whether
to accept a test into their test suite. Previous studies have
shown that a natural language description helps developers
to understand generated tests [18], [41]. To reduce the effort
required by developers to understand an amplified test, we
generate natural language descriptions of the behavior and
impact of the test compared to the rest of the test suite.

In this section we will present our design for the pretti-
fier and the description generation for amplified tests.

3.1 Prettifier module
To automate several of the post-processing steps indicated
by our previous study [23], we extend Danglot et al.’s
prettifier module for DSpot [28]. Our approach takes three
steps: (1) minimizing the tests to make them faster to read,
(2) renaming variables and the test methods to make them
less cryptic and more expressive, and (3) filtering and priori-
tizing the tests according to their relevance to the developer.

3.1.1 Minimizer
To remove statements that were part of the original test, but
are not relevant for the amplified test, we adopt Oosterbroek
et al.’s approach [42]. They minimize amplified tests, while
retaining the provided additional coverage. The approach
works in increasingly conservative steps: a) remove all state-
ments except the assertion and the ones needed for the code
to compile, b) remove all statements that do not directly
interact with the assertion, i.e., by setting variables used in
there, or c) remove all statements that do not (in)directly
interact with the assertion, i.e., by calling a method on the
object involved in the assertion. When a step decreases the
coverage or causes the test to fail, the next step is tried.

We also activate two existing minimizers of DSpot. One
in-lines single use variables created by the DSpot amplifi-
cation, the other removes redundant casts included by the
amplification for safety.

3.1.2 Test and Variable Renamer
To make the tests easier to read and understand, we imple-
ment a simple variable renamer that hides DSpot’s interme-
diate variable names (__DSPOT_path_696) with less cryp-
tic, simple names (String2, pattern: <Type><N>). Further,
we generate meaningful names for the amplified tests based
on the additional coverage they provide using the NATIC
approach [43]. NATIC identifies in which unique methods
a test covers additional instructions, compared to the other
amplified tests and the existing test suite. Similar to Daka et
al.’s approach [17], we rank the methods according to how
much additional coverage they contain, concatenate up to
two of the method names and generate a unique test name
such as “testGetFileAndHasLength”.

3.1.3 Filter and Prioritize
One issue with automatic test generation can be the large
number of tests produced. Specifically with developer-
centric test amplification, some generated tests target meth-
ods that developers find irrelevant to test, such as simple
getters, or hashCode. To reduce the number of tests not
relevant to developers, we included a developer-centric
filter in the prettifier. It removes tests that only contribute

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

coverage in simple getters or setters, i.e., one line methods
starting with “get” or “set”. The filter also removes tests that
only add coverage in Java’s hashCode method. Because ex-
ception handling code is commonly under-tested [44], [45],
we explicitly keep any test that checks for an exception. The
prettifier puts the test with the most additionally covered
instructions first, so that the developers inspect the most
impactful amplified test first.

3.2 Descriptions for Amplified Tests
In our previous study [23], we saw that a major step for the
developers was understanding the behavior and intent of an
amplified test. The developers studied the code of the test,
compared it to the original test and inspected the newly
covered code under test. To support the understanding of
amplified tests, we design an approach for an automatically
generated, natural language description for amplified tests.
The description surfaces the behavior and impact of the
test compared to the existing test suite. It is meant to be
informative for the developer without having to read the
code, e.g., as a description in a pull request that proposes an
amplified test.

Assertion Change

Coverage Original Test

Test that when .

This tests the methods . The test is based on .

Fig. 3: The basis template for our description of amplified
tests.

Similar to previous test description generators [18], [41],
we use a template-based approach. It consists of four com-
ponents, as presented in Fig. 3: (1) Describing the asser-
tion, (2) describing the change to the setup of the test, (3)
describing the additional coverage that is contributed, and
(4) pointing to the original test. We fill these components
based on information collected during the amplification
process. Fig. 4 shows an example test and its correspond-
ing description. In this case, the assertion is an expected
exception, the change made by the amplification was to set
the value of a literal method call parameter to an empty
string. The description indicates that additional coverage is
situated in the method BuilderFactory.build, and that
the original test was buildDouble. The full templates and
our implementation are open-source and shared as part of
our replication package [46].

Test that a java.lang.NumberFormatException is thrown
when the parameter data is set to "" .
This tests the method BuilderFactory.build .
This test is based on the test buildDouble .
/* Coverage improved at
redis.clients.jedis.BuilderFactory.build L. 8 +2 instr. */
@Test public void testBuild() throws Exception {
try {
Double build = DOUBLE.build("".getBytes());
fail("testBuild should throw NumberFormatException"); }

catch (NumberFormatException expected) {
assertEquals("empty String", expected.getMessage()); }}

Fig. 4: An example amplified test and its generated de-
scription. The original test and the name of the changed
parameter are not visible.

4 OPEN SOURCE CONTRIBUTION STUDY

The goal of this paper is to gain a clearer understanding of
the changes that developers would make to amplified tests
before including them into their test suite. To this end, we
conduct a qualitative open source contribution study [25],
[26], utilizing DSpot’s developer-centric test amplification,
our improved prettifier, and the automatically generated
descriptions for amplified tests. The central step of the
contribution study is to open pull requests with amplified
tests to open source projects. However, it was crucial to
us to not antagonize the project maintainers against us or
the research community [47], [26]. Thus, we first carefully
selected amplified tests that we believe are a valuable con-
tribution to the project, and only opened a pull request if
we found any. We document the criteria that arose during
this selection process, including how often we applied each
of them (RQ1.1). We also received feedback on the value of
the submitted tests during the pull request reviews, which
we analyze to answer RQ2.3.

As the maintainers of a software project are responsi-
ble to update the tests when the software evolves, their
feedback is invaluable to understand which changes are
necessary before including an amplified test in a maintained
test suite. This is why analyzing the changes proposed
during the pull requests is a central part of our study
(RQ2.1). To keep the burden on the open source developers
as minimal as possible, we manually edited and improved
the amplified tests for half of the projects before submitting
the pull requests. The other half we submitted without
editing, to validate whether the edits we choose would
also be proposed by a maintainer. To lead our editing, we
created and continuously updated a checklist of potential
edits, which we use to answer RQ1.2.

Another ambition of our study is to evaluate whether
the automatically generated textual descriptions are helpful
for understanding the behavior and value of amplified tests.
Therefore, for a third of the projects we submitted the pull
request with the generated description. For another third,
we submitted the description and a question on whether
the explanation was helpful, and for a third of the projects
we submitted the pull request without any explanation of
the amplified test. When analyzing the pull request discus-
sions, we study what kind of information the maintainers
requested, and the connection to whether an explanation
was provided initially (RQ2.2).

Our qualitative study consists of five steps: First, (1) we
select candidate projects for our study. Next, (2) we use the
developer-centric test amplification of DSpot and our pretti-
fier to generate the amplified tests and their descriptions.
Then, (3) we manually select and improve the amplified
tests, documenting our emerging criteria. After this, (4) we
open pull requests with the amplified tests. Finally, (5) we
analyze the feedback from the project maintainers during
the pull request discussions. In the following, we will detail
the separate steps of our study.

4.1 Repository Selection
Our first step is to find GitHub projects that are suitable
for applying DSpot’s test amplification. As our approach

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

requires building Java projects, and selecting coverage-
improving tests with the JaCoCo2 tool, we use Khatami
and Zaidman’s dataset [27], [48]. They tried to automatically
build and calculate the code coverage of 1454 popular Java
GitHub projects. We consider the 312 projects for which Ja-
CoCo could successfully measure code coverage, and select
one module per project3.

4.2 Running the Test Amplification
We run DSpot on all selected project modules with a budget
of 30 minutes on a desktop PC. For the exact configuration
of DSpot and the hardware specification, we refer to our
replication package [46]. We collect all test classes generated
by DSpot. We also kept partial results, so if the amplification
of all test classes would take longer than 30 minutes we
consider all test classes that were completed within 30
minutes. Next, we apply the prettifier to simplify and filter
the amplified tests and generate matching descriptions.

4.3 Manual Selection and Editing
We analyzed all amplified tests and created two checklists:

• How we select the best test to submit to the project.
• Which aspects we manually edit to improve the tests

before proposing them to a project.
The first two authors reviewed all, the other authors a
subset of the tests. Then we met up to come to a negotiated
agreement [49] on the points for both checklists. During the
selection and editing process of the study, performed by
the first author, new points emerged. We validated them
through discussions with other authors to mitigate bias and
increase the reliability of the checklists [49].

For each project we selected one test to contribute in
a pull request: a test we found the most valuable for the
project, or a test where we were curious about the main-
tainer’s reaction. For one half of the projects we manually
edited the tests with the help of our checklist and own
software engineering experience. To validate if such edits
are necessary, and understand which edits are important to
developers, we left the tests for the other half of the projects
unedited. One goal of this study is to contribute to the open
source community while learning from their feedback. It
was crucial to us to only ask for the community’s reviewing
effort if we think a test is valuable for the project. If we did
not find a test that seemed valuable, we excluded the project
from the rest of the study.

4.4 Contributing Back the Tests
We opened pull requests for the resulting tests. The pull
request description mentions that we want to add a test and
the generated description. As Fig. 5 shows, we modified
each mention of a method in the “Coverage” and “Original
Test” parts to be a clickable link to the corresponding code
on GitHub. The description contains a note that this pull
request was part of a research study. However, we did not
reveal that the tests were partially automatically generated.

2. https://www.jacoco.org/jacoco/index.html, visited August 2022.
3. Alphabetically the first. In trials we saw that the amplification not

succeeding in one module of a project often means the same for other
modules.

Fig. 5: An example pull request description from P14-PDM.

This is because we wanted to avoid negative backlash based
on biases against automatic test generation. Before opening
the pull request, we studied the contribution guidelines of
the project and followed them, e.g., validating that a linter
passes, or applying an auto-formatter. After opening the
pull requests, we answered all questions by the maintainers
and incorporated any changes they requested.

4.5 Data Analysis
We performed open and axial coding procedures [50] on
the pull request discussions completed as of 19-02-2023.
The first author analyzed the discussions by inductively
applying open coding, wherein they identified discussion
points on code changes, requests for information, judg-
ment statements over the tests, and other possibly relevant
characteristics of the pull request. They then performed an
initial analysis to group the open codes, employing constant
comparison [51] to the pull request discussions to validate
our interpretation. To increase the reliability of the results
and mitigate bias, the first and second authors refined the
code set by merging codes together, updating code names,
and identifying a different granularity level for a code. The
authors discussed the emergent codes together with the
original data and modified the codes until they reached a
negotiated agreement [49]. The outcome was a set of higher-
level categories as cataloged in our codebook [46]. The
resulting higher-level categories are structuring the answers
to our research questions in the following section, marked
in bold. The lower-level codes captured the details that we
use to illustrate the presented categories by giving concrete
examples from the pull request discussions.

5 RESULTS

In this section we discuss the results of our study: the
test amplification, the manual preparation for the pull
request, and our analysis of the discussions with the
maintainers. To clarify in which projects each observa-
tion occurred, we use shorthand references in the style
P[n]-(E|P)(D|N)(M|C|O|D). The number uniquely
identifies each project in our study, while the last three
characters give a concise overview on the central dependent
variables for the pull requests: (1) was the test Edited or
Plain from the amplification tool, (2) did we provide the
generated Description or Not, (3) the outcome of the pull
request: Merged, Closed, nO reaction yet, under Discussion.
Projects where we did not select any test to contribute are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

indicated as P[n]-N--. Table 1 gives an overview of all
open source projects in our study, including the number
of our pull request. We also report the project’s size, total
number of commits, number of contributors, number of pull
requests, and the year the repository was created, showing
that our study includes a diverse set of projects.

5.1 Running the Test Amplification
The base dataset [27] identified 312 repositories with in total
1821 Java modules that JaCoCo can automatically calculate
coverage for. After selecting one module per repository, we
in total tried to generate amplified tests for 312 modules.
From the DSpot amplification, we obtained 238 classes with
generated tests for 62 projects. For the other projects, DSpot
crashed during the execution or could not produce any tests
that improve the instruction coverage within the budget of
30 minutes. To these tests we apply the prettifier, resulting
in 190 classes with 1297 generated tests for 52 projects.
For the gap of 10 projects, all amplified tests were filtered
out according to the criteria we explained in Section 3.1.3.
Many projects only have a few tests generated (less than
5 generated test in 25 out of 52 projects), with a few large
outliers (P51-PDC: 618 tests, P50-PDM: 123, P10-EDM: 96).

5.2 RQ1.1: On which criteria do we select a candidate
test to include in the test suite?
For each project that we generated amplified tests for, we
explored the new tests to choose a candidate test for the
pull request. Initial exploration showed that there was a
considerable number of unsuitable tests that could not be
submitted for a variety of reasons. To transparently show
the effort required to select the amplified tests in our study,
we document our process of identifying the candidate test
extensively. Through this process arose two checklists: one
with negative selection criteria and one with positive selection
criteria. With the negative criteria we identify tests that are
not worth continuing with, e.g., because they would take so
much effort to improve, that writing a new test from scratch
felt easier. As we only submit one test per project, we used
the positive criteria to pick which test of multiple possible
candidates to choose for this study.

5.2.1 Negative Selection Criteria

We excluded amplified tests for the following reasons:
Coverage False Positive (P22-N–, P29-N–, P32-N–, P13-N–,
P34-ENO, P43-N–): Appearing in six projects, the most-
prevalent criterion to reject a test was a coverage false positive,
i.e., tests where inspection revealed no additional coverage
over existing tests. For example, the method calls leading
to the additional coverage were in code taken over from
the original test, that was not influenced by the amplified
change (P22-N–, P29-N–, P32-N–). In three other cases, we
browsed through the existing tests for the same object and
found tests that are already calling the instructions the
amplified test claims to newly cover (P13-N–, P34-ENO,
P43-N–). We found that in three false positive cases mocking
was used (P13-N–, P29-N–, P32-N–), pointing to missing
support for mocks in DSpot’s coverage calculation.
Simple Getters and Setters with Non-Standard Names

(P11-N–): Tests only contribute coverage in simple getters
and setters with non-standard names (not starting with ‘get’
or ‘set’), which should have been filtered by the prettifier.
Could Not Find Class (P37-N–, P40-N–): We could not find
the test class and the class under test (P37-N–), or the class
with additional coverage (P40-N–).
Test Did Not Pass (P2-EDC): A test did not pass because the
expected exception was not thrown. This and the last issue
could be caused by the time difference between the commit
at which we amplified the tests and the commit on which
our pull request was based.
Assertion Unrelated to New Coverage (P20-N–, P22-N–,
P29-N–, P32-N–): In four projects, we found tests where
the generated assertion does not check the behavior of the
newly covered code. For example, the assertion is generated
at a location before the call to the newly covered code (P20-
N–), or the checked value is not influenced by the newly
covered code (P23-N–, P42-PDM, P48-EDM). In both cases,
while the test covers the code, we cannot claim that it tests
the code.
No Explicitly Thrown Exception (P17-EDC, P19-N–, P23-
N–, P24-PNC): In four projects, we found tests for
RuntimeExceptions implicitly caused, e.g., in an unpro-
tected call on a parameter that was set to null during
amplification. As these exceptions did not seem to be part of
the developer-intended behavior, we excluded these tests.
Change Unrelated to Assertion or New Coverage (P6-N–):
We excluded tests where the amplified change did not in-
fluence the asserted value nor the additional coverage. The
amplification process should check whether the amplified
change is necessary for the additional coverage an amplified
test is providing.
Readability and Understandability (P6-N–, P23-N–, P25-
ENM, P38-ENC): A further negative selection criterion we
used in four projects was that tests were not good to under-
stand or not readable, because parts of them were cryptic,
long, or verbose. For example, in P23-N– the original tests
already contained complex configuration of mock behavior.
Unclear Connection between Test and Additional Cov-
erage (P13-N–, P16-N–, P20-N–): In three projects, we en-
countered tests where it was unclear how the amplified
change or the generated assertion leads to the new coverage
reported by the amplification. In contrast to the coverage
false positives, we did not find a test executing the same
instructions, but we could not trace how the method calls in
the new test would lead to execute the covered instructions.

5.2.2 Positive Selection Criteria
The positive selection criteria are divided into two groups:
selecting the most valuable test, or one that we were curious
about for our study. In seven projects, we did not need to
apply any positive criteria, as there was only one test gen-
erated (P3-PDC, P9-EDM, P18-ENC, P21-EDM, P44-EDO,
P47-ENC, P49-PDC). In 13 projects, the negative selection
criteria already excluded all generated tests, we excluded
these projects from the rest of our study (P6-N–, P11-N–,
P13-N–, P16-N–, P19-N–, P20-N–, P22-N–,
P23-N–, P29-N–, P32-N–, P37-N–, P40-N–, P43-N–).

We used the following criteria for the positive selection:
Most Additional Coverage (P3-PDC, P9-EDM, P18-ENC,
P21-EDM, P44-EDO, P47-ENC, P49-PDC): In six projects, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1: The open source projects used in our study, including metrics to show their size, activity and age. Metrics were
collected through the SEART GitHub search [52] on 2023-09-14. Each pull request can be accessed by the hyperlink in the
third column, or via https://github.com/<project>/pull/<pr number>.

ID Project O
ur

Pu
ll

R
eq

ue
st

Li
ne

s
of

C
od

e

C
om

m
it

s

C
on

tr
ib

ut
or

s

Pu
ll

R
eq

ue
st

s

C
re

at
io

n
Ye

ar

P1-EDC apache/commons-io #358 55k 4.323 97 478 2009
P2-EDC apache/curator #418 57k 2.817 114 478 2014
P3-PDC apache/guacamole-client #731 118k 6.616 80 909 2016
P4-EDM apache/httpcomponents-core #349 82k 3.742 65 424 2009
P5-ENM apache/unomi #436 78k 2.608 44 645 2015
P6-N– apache/zookeeper – 182k 2.511 191 2.056 2009
P7-EDM authme/authmereloaded #2562 69k 4.131 111 740 2013
P8-PDM axonframework/

axonframework
#2244 158k 10.281 154 1.679 2011

P9-EDM cloudbees-oss/
zendesk-java-client

#480 15k 953 62 425 2013

P10-EDM decorators-squad/eo-yaml #504 15k 944 20 240 2016
P11-N– dependencytrack/

dependency-track
– 314k 3.946 94 963 2013

P12-PNC digitalpebble/storm-crawler #974 51k 1.815 39 344 2013
P13-N– dius/java-faker – 62k 834 83 515 2011
P14-PDM eclipse/lemminx #1228 511k 1.305 38 824 2018
P15-PNM ff4j/ff4j #571 71k 1.413 80 367 2013
P16-N– firebase/firebase-admin-java – 85k 447 42 610 2017
P17-EDC gitlab4j/gitlab4j-api #852 50k 2.169 145 362 2014
P18-ENC glyptodon/guacamole-client #470 118k 6.608 79 471 2013
P19-N– hangarmc/hangar – 66k 2.874 41 860 2020
P20-N– hibernate/hibernate-tools – 51k 3.177 16 4.415 2011
P21-EDM hyperledger/

fabric-chaincode-java
#244 17k 490 35 282 2017

P22-N– jenkinsci/email-ext-plugin – 21k 1.748 95 484 2010
P23-N– jenkinsci/jira-plugin – 15k 1.481 79 546 2010
P24-PNC jqno/equalsverifier #654 36k 2.884 31 542 2015
P25-ENM jsqlparser/jsqlparser #1568 52k 2.030 112 420 2011
P26-ENO jtablesaw/tablesaw #1124 1.182k 2.514 80 467 2016
P27-ENM lukas-krecan/jsonunit #530 14k 1.549 39 461 2012

ID Project O
ur

Pu
ll

R
eq

ue
st

Li
ne

s
of

C
od

e

C
om

m
it

s

C
on

tr
ib

ut
or

s

Pu
ll

R
eq

ue
st

s

C
re

at
io

n
Ye

ar

P28-PNO maven-nar/
nar-maven-plugin

#389 42k 1.277 71 213 2009

P29-N– mcmmo-dev/mcmmo – 56k 6.627 165 631 2012
P30-EDM miso-lims/miso-lims #2680 342k 4.801 20 2.596 2012
P31-PDC moquette-io/moquette #680 20k 1.394 41 316 2014
P32-N– mybatis/guice – 16k 1.809 25 520 2013
P33-ENM nats-io/nats.java #663 56k 1.578 48 591 2015
P34-ENO netflix/zuul #1265 26k 1.512 54 1.080 2013
P35-PDC nlpchina/elasticsearch-sql #1179 145k 1.010 30 250 2014
P36-PDM oblac/jodd #788 36k 5.364 57 267 2012
P37-N– open-metadata/

openmetadata
– 639k 7.322 176 7.347 2021

P38-ENC openhft/chronicle-queue #1115 41k 7.516 58 705 2013
P39-PND perwendel/spark #1257 12k 1.067 124 528 2011
P40-N– pwm-project/pwm – 186k 3.063 41 293 2015
P41-EDO qos-ch/logback #574 74k 4.451 113 644 2009
P42-PDM redis/jedis #3019 70k 2.269 188 1.680 2010
P43-N– redouane59/twittered – 47k 701 24 278 2020
P44-EDO rickfast/consul-client #461 11k 556 72 255 2014
P45-PDM rubenlagus/telegrambots #1070 33k 1.050 91 474 2016
P46-EDO spotify/dbeam #486 6k 821 14 645 2017
P47-ENC spring-projects/

spring-data-couchbase
#1461 40k 1.210 48 589 2013

P48-EDM synthetichealth/synthea #1082 1.015k 4.662 68 728 2016
P49-PDC teamnewpipe/

newpipeextractor
#850 155k 2.479 64 642 2017

P50-PDM wikidata/wikidata-toolkit #691 44k 1.891 28 553 2014
P51-PDC xerial/sqlite-jdbc #741 30k 1.521 110 383 2014
P52-EDM zsmartsystems/

com.zsmartsystems.zigbee
#1333 165k 1.180 29 1.080 2017

test we selected covered the most additional instructions.
This takes little effort, as the tests in each class are already
sorted according to their additional coverage contribution.
Understandability (P12-PNC, P15-PNM, P25-ENM, P26-
ENO, P28-PNO, P39-PND, P41-EDO, P46-EDO): In nine
projects, we selected tests based on their understandability,
as we expect an easy to understand test to more likely be
accepted. For this, three criteria emerged that we used in
conjunction: a) the coverage improvement is local to a few,
closely related methods, b) the connection from the test to
the additionally covered methods is clear from the methods
called in the test, and c) the test is small and simple.

On several occasions, we choose a candidate test because
we were curious about the developer’s reaction. In all these
cases, we still only considered tests we believe to be a
valuable contribution to the project. Non-valuable tests are
identified by the negative selection criteria discussed before.
Exception Test (P10-EDM, P17-EDC, P24-PNC, P30-EDM,
P34-ENO, P35-PDC, P38-ENC, P42-PDM, P51-PDC): In nine
projects, we selected a test that checks for an exception.
Could Be Considered Not Worth Testing (P7-EDM, P8-
PDM, P31-PDC, P36-PDM, P45-PDM, P52-EDM): In six
projects, the test was contributing coverage in methods that
developers could consider not valuable to test, such as a
complex setters, toString, or equals.
Documentation Mismatch (P27-ENM): In P27-ENM we
selected a test whose behavior did not match with the
documentation of the method under test.
Improve Assertion Manually (P33-ENM): For P33-ENM,

we were curious if we can improve an assertion that is not
checking the newly covered code.
Uncommonly Large Coverage Increase (P50-PDM): In P50-
PDM, one small method call lead to a lot of new coverage,
more than what we saw throughout the study.

Answer to RQ1.1: When selecting tests for the pull re-
quests, we mainly excluded coverage false positives, tests
with assertions that do not check the newly covered code,
or tests that check for unintended runtime exceptions.

5.3 RQ1.2: Which manual edits do we perform to im-
prove the tests before submission?
In this section we present the checklist that we created to
guide our manual editing step before opening pull requests.
Align Assertion Style (P4-EDM, P5-ENM, P7-EDM, P9-
EDM, P10-EDM, P17-EDC, P25-ENM, P26-ENO, P27-ENM,
P30-EDM, P33-ENM, P34-ENO, P38-ENC, P41-EDO, P44-
EDO, P47-ENC, P52-EDM): The edit we performed in the
largest number of projects (17) was to align the assertion
style with the other tests. Examples include: statically im-
porting assertEquals, and unifying the assertion frame-
work, e.g., transforming plain JUnit assertions to their Ham-
crest versions. DSpot did not remove Hamcrest assertions,
so we had to remove old, no longer matching assertions.
Remove Unnecessary Code (P2-EDC, P4-EDM, P5-ENM,
P7-EDM, P10-EDM, P26-ENO, P34-ENO, P38-ENC, P41-
EDO, P44-EDO, P47-ENC, P48-EDM, P52-EDM): The second

https://github.com/apache/commons-io/pull/358
https://github.com/apache/curator/pull/418
https://github.com/apache/guacamole-client/pull/731
https://github.com/apache/httpcomponents-core/pull/349
https://github.com/apache/unomi/pull/436
https://github.com/AuthMe/AuthMeReloaded/pull/2562
https://github.com/AxonFramework/AxonFramework/pull/2244
https://github.com/cloudbees-oss/zendesk-java-client/pull/480
https://github.com/decorators-squad/eo-yaml/pull/504
https://github.com/DigitalPebble/storm-crawler/pull/974
https://github.com/eclipse/lemminx/pull/1228
https://github.com/ff4j/ff4j/pull/571
https://github.com/gitlab4j/gitlab4j-api/pull/852
https://github.com/glyptodon/guacamole-client/pull/470
https://github.com/hyperledger/fabric-chaincode-java/pull/244
https://github.com/jqno/equalsverifier/pull/654
https://github.com/JSQLParser/JSqlParser/pull/1568
https://github.com/jtablesaw/tablesaw/pull/1124
https://github.com/lukas-krecan/JsonUnit/pull/530
https://github.com/maven-nar/nar-maven-plugin/pull/389
https://github.com/miso-lims/miso-lims/pull/2680
https://github.com/moquette-io/moquette/pull/680
https://github.com/nats-io/nats.java/pull/663
https://github.com/Netflix/zuul/pull/1265
https://github.com/NLPchina/elasticsearch-sql/pull/1179
https://github.com/oblac/jodd/pull/788
https://github.com/OpenHFT/Chronicle-Queue/pull/1115
https://github.com/perwendel/spark/pull/1257
https://github.com/qos-ch/logback/pull/574
https://github.com/redis/jedis/pull/3019
https://github.com/rickfast/consul-client/pull/461
https://github.com/rubenlagus/TelegramBots/pull/1070
https://github.com/spotify/dbeam/pull/486
https://github.com/spring-projects/spring-data-couchbase/pull/1461
https://github.com/synthetichealth/synthea/pull/1082
https://github.com/TeamNewPipe/NewPipeExtractor/pull/850
https://github.com/Wikidata/Wikidata-Toolkit/pull/691
https://github.com/xerial/sqlite-jdbc/pull/741
https://github.com/zsmartsystems/com.zsmartsystems.zigbee/pull/1333

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

most prevalent edit (13 projects) was to remove variables
and statements that were not relevant for the asserted
behavior of the amplified test. These are left over from
the original test, or temporary variables created by the test
amplification and missed during their intended removal.
In rare cases we also had to remove unnecessary casts or
parentheses, introduced by the test generation for safety.
Adapt To Match Other Edits (P5-ENM, P7-EDM, P18-ENC,
P21-EDM, P33-ENM): In five projects, we had to adapt the
description of the test to match our manual edits. In P5-
ENM we also adapted the test name and the expected value
of the assertion to match the behavior that changed during
our edits.
Apply IDE Recommendation (P2-EDC, P17-EDC, P52-
EDM): In three projects, IntelliJ proposed a simplification
through static analysis, e.g., reducing an always true condi-
tion.
Resolve Formatting and Linters (P8-PDM, P10-EDM, P26-
ENO, P46-EDO): The contribution guidelines of projects
sometimes state to apply auto-formatting (P8-PDM, P10-
EDM, P46-EDO) or resolve all linter warnings (P10-EDM)
before finalizing a pull request. In P26-ENO, we added line
breaks to long lines to improve the readability.
Change Test Name (P25-ENM, P34-ENO, P52-EDM): We
changed the test name to avoid duplication with existing
tests (P25-ENM, P52-EDM), or make the test name fit the
convention of the other test names in the class (P34-ENO).
Resolve Unrelated Amplified Change, Additional Cov-
erage or Generated Assertion (P5-ENM, P21-EDM, P33-
ENM): We encountered tests where the amplified change,
additional coverage, or generated assertion were unrelated.
In two cases, we changed the assertion to check the behavior
of the newly covered code (P21-EDM, P33-ENM). In P5-
ENM and P33-ENM the amplified change and the new
assertion provided additional coverage, but they were not
related to each other. We selected one test goal and adapted
the rest of the test.
Move Test (P1-EDC, P7-EDM, P10-EDM, P52-EDM): In two
cases (P1-EDC, P10-EDM), the object under test and the
additional coverage were not related to the test class of the
original test. We moved the tests to a better fitting class. In
two other projects (P7-EDM, P52-EDM), we added our tests
below other tests that were targeting the same method.
Simplify Literals (P7-EDM, P21-EDM, P46-EDO): For three
tests, we simplified literal values in the test setup. For
example, we removed extra clauses from a constructed SQL
query that were not relevant for the new test (P46-EDO).
Make Compile (P17-EDC, P25-ENM): In two projects, we
found parameters that no longer fit the signature of the
called method. We adapted them, e.g., by copying over
variable initializations from other tests (P25-ENM).

Answer to RQ1.2: When manually editing the amplified
tests, we most often aligned the assertions’ style to the
test class and removed code unnecessary for the test
scenario.

5.4 RQ2.1: Which changes are proposed during the
pull request discussion?
Here we present the changes discussed by the maintainers
on the pull requests with amplified tests, structured along
the categories that emerged from our analysis.
Code Style Conventions (P1-EDC, P8-PDM, P14-PDM,
P33-ENM, P42-PDM, P47-ENC, P50-PDM, P51-PDC): Most
frequently, the maintainers proposed changes to let the
code adhere to style conventions [53], [54], [55], [56]. This
regarded aligning the static import of assertion methods
(P1-EDC, P8-PDM, P14-PDM, P50-PDM) or used constants
(P42-PDM) to the rest of the class, adding a blank line at
the end of the file (P33-ENM), or listing our name among
the authors of the file in the comment block (P47-ENC),
resolving linter warnings (P1-EDC) to make the CI pass
(P51-PDC), or adhering to variable naming conventions (P1-
EDC). While these seem like conventions of the project, they
were not explicitly stated in the contribution guidelines we
examined before each pull request.
Remove Unnecessary Code (P12-PNC, P14-PDM, P49-PDC,
P50-PDM): The next most frequently discussed change was
removing unnecessary code. Three maintainers pointed to
unused variables (P12-PNC, P49-PDC, P50-PDM). The test
in P14-PDM saved the return value of a relevant method call
in an unused variable. In P12-PNC the maintainer criticized
a statement that had no impact on the test result, and in
P49-PDC the reviewer pointed to unnecessary parentheses.
Change Test Name (P4-EDM, P8-PDM, P10-EDM, P14-
PDM): In four pull requests the reviewers suggested chang-
ing the test name. The proposed names described the sce-
nario of the method calls in the test (P4-EDM, P8-PDM,
P10-EDM), or the exception expected by the assertion (P14-
PDM). For P10-EDM, the maintainer explained their naming
convention: “all test names should follow the pattern xDoes-
Something”.
Practice Defensive Programming (P1-EDC, P4-EDM, P49-
PDC): Over three projects we got five proposals related to
defensive programming. The maintainer of P49-PDC sug-
gested to not check for the complete message of an excep-
tion, which could fail if the code under test is refactored. The
same reviewer asked to use interfaces instead of concrete
implementations and to set variables as final where possible.
The review of P4-EDM proposed to assert the return value
of an intermediate call. The reviewer of P1-EDC advised to
use the specialized try-with-resources when writing to an
InputStream within a try environment.
Simplify Setup (P1-EDC, P8-PDM, P10-EDM, P14-PDM):
The maintainers of four projects proposed to simplify the
test setup. For example, in P8-PDM, we replaced a multiple
times modified object with a fitting default instance. The
reviewer of P14-PDM recognized that another call than
one under test could throw the expected exception and
proposed a change to avoid the tests passing because of the
earlier thrown exception.
Choose More Powerful Assertion (P8-PDM, P10-EDM, P49-
PDC): Three maintainers pointed to the benefit of using a
stronger assertion method. For example, in P8-PDM they
endorsed a change from assertFalse(...equals()) to
assertNotEquals(..).
Merge or Extend Test (P3-PDC, P42-PDM, P48-EDM): Three

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

projects discussed merging the contributed test with other
tests for the same method. P3-PDC and P42-PDM pointed
to moving the assertion to an existing test. The maintainer
for P48-EDM proposed to add an assertion to test a second
scenario in the method under test and was open to keep
both in the same test or split them up into two unit tests.
Use Meaningful Scenario (P7-EDM, P25-ENM, P47-ENC):
Three maintainers proposed changing the test setup to a
more meaningful scenario. For example, the test for P25-
ENM used default initializations for SQL queries. The re-
viewer of P25-ENM criticized that the queries were not
meaningful, and asked to “craft an actual valid expression.”
Move Test (P12-PNC, P50-PDM, P47-ENC): Three reviews
asked to move the test to another class as it tested a different
object than the original test modified by the amplification.
Change Assertion Message (P42-PDM, P30-EDM): The
maintainers of P42-PDM and P30-EDM both proposed to
change the assertion message to explain why the code
throws the exception that is expected by the test case.
Move Test Data (P1-EDC): For P1-EDC we moved the
amplified test to another class, including globally defined
test data. The maintainer asked us to move the test data into
the test itself, as it was the only test using the data.
Test All Scenarios (P48-EDM): In P48-EDM the reviewer
proposed to add a second assertion, to let the resulting test
check for both the succeeding and failing scenario.

Answer to RQ2.1: The majority of changes proposed dur-
ing the pull request reviews were focused on adhering to
code style conventions and removing unnecessary code.

Fig. 6 looks closer at the connection between whether we
manually edited a test and whether changes were proposed
during the review. We observe that for both edited and not
edited tests the maintainers were more often proposing
changes than not. Three tests without edits were merged
without any further changes, while in six projects the pull
requests were closed even when changes were discussed.
The latter happened, e.g., because through the discussion it
became clear that the test is redundant to existing tests (P1-
EDC), or the maintainers provided feedback on the code
even though they already concluded to not accept the test
(P49-PDC).

Edited: 18 Changes Proposed: 17 Merged: 19

No Changes Proposed: 15 Closed: 13Not Edited: 14

Fig. 6: Flow of editing tests, changes proposed during the
pull request and pull request outcome.

5.5 RQ2.2: What kind of information is requested by the
maintainers during the pull request discussion?
Next to proposing changes, the maintainers also requested
different kinds of information during the discussions:
Purpose of the Pull Request / Test (P3-PDC, P12-PNC,
P25-ENM, P27-ENM): Four reviewers asked to explain the
purpose of the pull request or the test, such as “I’m unsure

what issue this is targeting at resolving” (P3-PDC), or “what
problem exactly will this PR solve?” (P25-ENM).
Added Value (P2-EDC, P25-ENM, P27-ENM, P51-PDC): In
four cases, we were asked about the added value that the
test is providing.
Coverage Increase (P1-EDC): One maintainer included a
coverage tool, checking the coverage increased.
Description about the Test (P33-ENM): For P33-ENM we
did not include the textual description at first, but we were
asked to add a description about our test into the pull
request.
Contribution Compared to Existing Tests (P1-EDC): The
maintainer of P1-EDC asked what our test checks in com-
parison to existing tests for the same method.
Curiosity (P7-EDM, P14-PDM, P24-PNC, P50-PDM): Three
reviewers asked questions out of curiosity, such as “how
[our tool] generated the parameter input” (P7-EDM), which
IDE and formatter we used (P14-PDM), and how we came to
writing a test for this specific method (P24-PNC, P50-PDM).

Fig. 7 presents a closer analysis of the relationship be-
tween whether we provided a description in the initial pull
request (such as in Fig. 5) and whether additional infor-
mation was requested by the reviewers (excluding curious
questions). We can see that questions appeared just as often
whether we provided the generated description or not (4
projects each), and two pull requests without description
were merged without requests for more information. In con-
trast, curious questions on the details of our process were
mainly asked for pull requests with a description. When
we provided a description, giving additional information
never lead to a merged pull request (4 projects), while the
majority of pull requests with a description were merged
without further requests for clarification (14 projects).

Description Provided: 22 No Information Requested: 24
Merged: 19

Closed: 13
Information Requested: 8No Description Provided: 10

Fig. 7: Flow of description provided, information requested
during the pull request and pull request outcome.

Answer to RQ2.2: The maintainers mostly asked for
more information regarding the purpose and value of the
contributed test.

5.6 RQ2.3: How do the maintainers justify their judg-
ment over the amplified tests during the pull request
discussion?
Another aspect we analyzed were the reasons that reviewers
accepted or rejected our pull requests.
Completeness of Contribution (P3-PDC, P5-ENM, P31-
PDC, P47-ENC, P49-PDC): Three reviews pointed out that
the contribution was not complete enough. This was be-
cause all possible outcomes of a method should be tested
(P31-PDC, P49-PDC), only a more comprehensive set of
changes would be worth merging (P3-PDC), or an issue
tracker entry (P5-ENM) needs to exist, and a discussion
should happen before including a patch (P3-PDC).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Would Not Test (P2-EDC, P9-EDM, P49-PDC, P51-PDC):
Three maintainers pointed out that the test was targeting
methods they would not test, such as simple methods (P2-
EDC, P49-PDC), classes taken from libraries (P51-PDC), or
toString as it is used for debugging only (P9-EDM).
Test Untested Scenarios (P1-EDC, P9-EDM, P24-PNC, P27-
ENM, P52-EDM): It was important to the reviewers that the
proposed tests were testing yet untested scenarios. In P52-
EDM and P9-EDM this was the rationale to merge the pull
request, in P1-EDC and P24-PNC this was the reason to close
the pull requests as the maintainers found other tests for the
same scenarios. The reviewer of P27-ENM pointed out that
“ideally there should be some intention behind each test.”
Clear Test Scenario (P25-ENM, P27-ENM, P38-ENC): Three
maintainers mentioned a meaningful scenario (P25-ENM)
and clarity about what the test is testing (P27-ENM, P38-
ENC).
Code Quality (P1-EDC, P31-PDC:) The reviewer of P1-
EDC pointed out that the code should pass the linter. The
maintainer of P31-PDC criticized that some code in the test
is irrelevant for the method under test.

In several cases, we have no indication of the rationale
for accepting or rejecting the pull request: Four projects
merged (P15-PNM, P21-EDM, P36-PDM, P45-PDM) and
two closed (P35-PDC, P17-EDC) our pull request without
any comment.

Answer to RQ2.3: When verbalizing a rationale for their
judgment on the amplified tests, the project maintainers
mentioned the need for a comprehensive contribution of
tests for meaningful, untested scenarios.

6 DISCUSSION

In the previous section, we reported on the selection and
manual edits we conducted before submitting the tests in
pull requests, as well as the reactions of the maintainers
concerning proposed changes, requested information, and
rationale for their decisions to accept or reject the pro-
posed tests. To connect our observations, we summarize
the guidelines for developers to select and edit amplified
tests in Table 2. Further in this section, we discuss the
implications of our findings for developers that consider
using developer-centric test amplification, and for test am-
plification researchers and tool designers. We also present
threats to the validity of our study.

6.1 Guidelines for Developers to Select and Edit Ampli-
fied Tests
A strong take-away from our study is that the tests cre-
ated by state-of-the-art test amplification tools still needed
selection and editing efforts before they are incorporated
into a maintained test suite. To summarize and connect
the observations we made for our five research questions,
we present guidelines for developers on what aspects they
should consider when reviewing an amplified test. Here,
selection and editing are put together and the decision
which action to take is left to the developer. If an issue is too
large, or it it is unclear how to resolve it, the developer might
choose to exclude the test entirely. If they see an easy change

to address the issue, they might choose to edit the test and
include it in their maintained test suite. Table 2 gives an
overview and explanation of each of our guidelines, as well
as the observations from our study that it is based on.

We recommend, that a developer using developer-
centric test amplification, should review each test individ-
ually and consider whether:

• the newly covered code is indeed not yet covered by
any other test,

• the newly covered code or scenario is relevant to be
tested in their maintained test suite,

• the test only contains code necessary for its behavior or
understandability,

• the assertion in the test validates the behavior of the
newly covered code,

• the test behavior and its impact on the test suite is
understandable to them and their colleagues,

• the code style is adequate and adheres to their coding
guidelines,

• the test is at an appropriate location and whether it
should be merged or extended with another test.

6.2 Relation to existing Literature
Several of the edits to amplified tests we observed in our
study are related to existing knowledge about high-quality
tests and shortcomings in automatically generated tests.
This section illustrates how each of our guidelines is sup-
ported by existing literature. However, to our knowledge,
there is no research looking at what changes developers
concretely make to generated or amplified tests before in-
cluding them in a test suite.

6.2.1 Valid Coverage Improvement
Our first guideline is that the targeted code should not be
covered by another test that might not have been considered
by the coverage data used by the test amplification process.
We observed something similar in an industrial study where
developers considered code that was accounted for in other
quality assurance practices or test suites to be not as relevant
to test with a regression test [57]. In the concrete cases,
the code blocks were covered by fuzzing, so the develop-
ers might have seen this robustness testing as sufficient.
While improving an engineering goal such as coverage or
mutation score is at the heart of the definition of test ampli-
fication [20], we see in this study that in practice we cannot
always rely on the coverage data that test amplification tools
use. This data might exclude other tests, higher-level test
suites or other quality assurance practices.

6.2.2 Tests Relevant Code/Scenario in Project
When testing software, developers need to decide which
code is worth testing with automated tests [58]. In other
studies we conducted, we observed that not all code is
relevant for developers to cover with regression tests [23],
[57]. This is in line with the common recommendation to not
aim for 100% code coverage [59], [60]. In interviews with
developers, Kochhar et al. found that the judgment what
to test is subjective, as participants disagreed whether it is
useful to test simple things [40]. There can also be behaviors
of code that should not be tested. Galindo-Guiterrez et al.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Concern in
Amplified Test

Connected Codes / Observations (Source RQ) Explanation

Valid Coverage
Improvement

Test Untested Scenarios (2.3) Check that the targeted code is not
tested by another test
(which might not be considered by am-
plification tool or coverage data)

Added Value, Coverage Increase, Contribution Compared to Existing Tests (2.2)
Coverage False Positive (1.1)

Tests Relevant
Code/Scenario
in Project

Use Meaningful Scenario (2.1) Check that the new coverage provided
by the test covers code that is relevant
to test with your test suite

Would Not Test (2.3)
No Explicitly Thrown Exception (1.1)

Only Necessary
Code

Change Unrelated to Assertion or New Coverage (1.1) Check that all code in the test is
relevant for the test’s execution
or understandability

Remove Unnecessary Code (1.2, 2.1)
Resolve Unrelated Amplified Change, Additional Coverage or Generated As-
sertion (1.2)

Checks Behav-
ior of Newly
Covered Code

Assertion Unrelated to New Coverage (1.1) Check that the assertion of the test actu-
ally validates the behavior of the addi-
tionally covered code

Resolve Unrelated Amplified Change, Additional Coverage or Generated As-
sertion (1.2)

Test Scenario
and Impact are
Understand-
able

Readability and Understandability (1.1)

Check that you can / your colleagues
could understand the test and what it is
testing

Simplify Literals (1.2)
Simplify Setup (2.1)
Change Assertion Message (2.1)
Unclear Connection between Test and Additional Coverage (1.1)
Clear Test Scenario (2.3)
Change Test Name (1.2, 2.1)

Good Code
Style, Adhering
to Guidelines

Code Style Conventions (2.1)

Check that the code is well written and
adheres to your guidelines

Align Assertion Style (1.2)
Apply IDE Recommendation (1.2)
Resolve Formatting and Linters (1.2)
Change Test Name (1.2, 2.1)
Practice Defensive Programming (2.1)
Choose More Powerful Assertion (2.1)
Code Quality (2.3)

Appropriate
Scope and
Location

Move Test (1.2, 2.1) Check that the test is at an appropri-
ate location and has the right granular-
ity (move/merge/extend with other test
otherwise)

Merge or Extend Test (2.1)
Change Test Name (1.2, 2.1)
Move Test Data (2.1)
Test All Scenarios (2.1)

TABLE 2: Guidelines to select and edit amplified tests

identified checking for NullPointerExceptions that are
not explicitly thrown in the code under test as an undesir-
able behavior of EvoSuite-generated tests.

6.2.3 Only Necessary Code
Our third guideline recommends removing all code that is
not necessary for the execution of the test. This code might
be left over from the original test that was amplified or no
longer needed after other changes to the test. Similarly, the
test smell “General Fixture” [61] is based on unnecessary
code in test setup methdos, and unnecessary code is also
a problem in production code [62]. Panichella et al. [63]
propose to use optimization heuristics like purification [64],
carving [65] or slicing [66] to improve generated tests by
focussing them on one, semantically coherent scenario.

6.2.4 Checks Behavior of Newly Covered Code
Our next guideline concerns the assertions of the amplified
tests, which should check the behavior of the newly covered
code. It is well known that structural coverage can give an
indication whether a test suite is bad, but does not indicate
error detection and prevention strength [40], [67], [68]. The
ability to reveal faults in the targeted production code is a
criterion in Grano et al.’s quality factors for unit tests [69].
A miss-match between the act and assert phase of a test was
one of the quality issues Galindo-Gutierrez et al. detected in

tests generated by EvoSuite [70]. To address these issues, we
could employ more refined metrics to select the amplified
tests, such as checked coverage [71], oracle adequacy [72],
or mutation score [73]. However, one must way the trade-
offs reagarding runtime, because such stronger metrics are
generally more expensive to compute [74]. For mutation
score, limiting the mutants to relevant lines [75], i.e., the
additionally covered lines, could be an option to speed up
computation. On the other hand, Zhang et al. [67] found that
human-written assertions are stronger at detecting seeded
faults than assertions generated by the tool Randoop [76].

6.2.5 Test Scenario and Impact are Understandable
The understandability of tests, or lack thereof, is mentioned
in several user-involving studies on automatic test genera-
tion [16], [18], [24]. Code reviewers are concerned with the
understandability of test that are contributed [77]. The un-
derstandability of a test is impacted by test names [17], [43],
[78], variable identifiers [41], [79], [80], meaningful com-
ments or summaries [18], [41], and the test data [81], [82],
[83], [84], [85]. Lin et al. showed that the quality of identifier
names is low in manually written and especially automat-
ically generated tests [79]. The concern with readability of
generated tests is a central motivation for the development
of language model based test generation approaches [86],
[87]. However, it was also shown that the judgment how

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

readable a test is differs per developer [85], and that experi-
ence influences the test comprehension process [82]. Daka et
al. observed that developer-given test names could contain
abstract knowledge about the test intent or scenarios, which
was not the case for their generated names that focused on
covered methods and asserted values [17].

6.2.6 Good Code Style, Adhering to Guidelines
Our guideline to ensure that the amplified tests have a
good code style and adhere to the coding guidelines of a
project, can also be observed in more general code review
practices that require consistency of code style [88], [89].
Specifically for assertions, Zamprogno et al. found that
developers prefer assertion statements that are consistent
with the code style of the test suite [90]. While explicit
guidelines on how to contribute to open source projects are
more and more common [91], these documents often do not
sufficiently reflect the whole process [92], [93] and especially
lack information about not automatically checkable guide-
lines [94].

6.2.7 Appropriate Scope and Location
The final guideline in our list is to ensure that an amplified
test has an appropriate scope and is in the right location
within the code base. A too large scope, i.e., too much tested
in one method, can be the test smell “Eager Test” [61] or a
sign of lacking semantic coherence [63]. It also can make the
test long, which negatively impacts understandability [40],
[80]. Existing literature recommends that test code should
be well-modularized and structured [40], [81]. Duplication
of test setups over multiple tests is an indication of code
clones hindering the maintainability of test code [70], which
can be the motivation to merge an amplified test with an
existing test from the test suite.

6.3 Implications for Practitioners
In this paper, we characterized the selection and editing
steps developers are likely to conduct before incorporating
amplified tests into their maintained test suite. For software
developers and project managers, our results can be the
basis to take an informed decision on whether to adopt
developer-centric test amplification, by providing a realis-
tic view on the kind of adjustments required by developers.
We divide these efforts into two groups: (1) actions that
could be automated by customizing the test amplification
to a project, and (2) actions that highly benefit from the
developer’s comprehension.

To the first category, we count the coverage false posi-
tives, additional coverage in not-test-worthy methods, ad-
hering to code style guidelines, and using defensive pro-
gramming constructs. If a software developer applies test
amplification out of the box, without any further customiza-
tion, they would run into these issues, such as we did
during our study. However, if the project would commit
to a longer use and invest the time in configuring and
customizing the amplification tool for their project, such
efforts can potentially be automated.

The other set of efforts require the software developers to
understand the amplified test—which they aim for already
before accepting the test. These efforts are about changing

the scenario of the test to be simpler or more meaningful,
removing left over code, moving or merging the test, or
adding a clearer test name. With these, the test becomes
easier to understand, therefore easier to maintain and more
helpful when trying to locate the fault when the test fails.
These changes have a large impact on the quality of the
resulting test, addressing commonly observed shortcomings
of automatically generated tests [16], [24], [80].

6.4 Implications for Researchers and Tool Designers
Previous user studies on test generation and amplification
have shown that software developers find it important to
understand the produced tests [10], [16], [23]. Understand-
ing the tests was also necessary for us when selecting and
editing the amplified tests, just as for the maintainers, who
asked for additional clarification when the test or the pull
request description were not clear enough. During this
study, we elicited several adjustments to amplified tests
that require an understanding of the behavior of the test.
We conjecture, that such edits are much easier for devel-
opers to perform than for an automated tool. The next
step for researchers would be to investigate whether test
amplification collaborating with the developer for changes
that require understanding is an effective alternative to
automating them.

Because understanding is a prerequisite for the devel-
oper’s manual edits, we conjecture that it is crucial for
developer-centric test amplification tools to provide the
information that developers need to understand and mod-
ify the amplified tests. As we saw in Section 5.5, the de-
scriptions we generate are one component that contributes
here, pointing to the amplified changes and the additionally
provided coverage. However, throughout our study we
experienced that further information support is necessary.
For example, visually connecting the methods called in the
test with the additional coverage could help developers un-
derstand how the amplified test provides this coverage [95].
Developers would also benefit from knowing which other
tests cover the same method [18], [96], to determine the
difference to these tests, or to validate if all scenarios of a
method are tested. When we performed changes to the test
scenario, we were at times not sure whether the coverage
reported by the test amplification tool is still provided. We
hypothesize that a close integration of test amplification
and manual editing would let the developer verify their
changes in the terms of the test amplification tool.

While we plead to leverage the developer’s understand-
ing and expertise to collaboratively produce valuable tests,
our results also point to possible improvements of the
automatic amplification process. During our selection we
encountered tests where the generated assertion was not
checking the behavior of the newly covered code. One could
apply local mutation analysis to verify that an assertion
is really checking the additionally covered code, similar to
Ma et al.’s commit-aware mutation testing [75]. This means
applying mutations only to the newly covered code and
evaluating whether they cause the amplified test to fail. This
approach would have a better performance than selecting
amplified tests on mutation score directly, and we could still
use the more widely understood instruction coverage when
communicating the value of a test to the developer [97].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

We encountered amplified tests that are based on com-
plex, manually written tests whereas their tested scenario
did not need this complexity. We propose to improve test
amplification by smartly selecting the original test to
modify, starting from simple tests and continuing to more
complex ones. This way, the simple cases that can be tested
through test amplification are caught with simple original
tests, and the more complex original tests are only used if
the amplification covers scenarios that need this complexity.

In the edits we conducted ourselves, as well as the ones
proposed by maintainers, we moved tests to other classes,
because the test target of the amplified test was no longer the
same as the target of the original test. Clearly identifying
the target of an amplified test would empower amplifica-
tion tools to propose a better location for the produced test,
and to communicate the intended impact of the amplified
test clearer to the developer. From our observations, the
tests were moved to test classes that are related to the
additionally covered methods, or related to the methods
directly called in the test.

6.5 Threats to Validity
There are several threats to the validity of our results:

6.5.1 Reliability of Results
To ensure the consistency and reliability of our qualita-
tive analysis’ findings, the first two authors revised the
emergent codes throughout discussions until they reached
a negotiated agreement [49]. We also employed constant
comparison [51], whereby each interpretation and finding
is compared with existing findings as it emerges from the
data analysis to increase the construct validity. Especially
for the manual selection and edits we conducted ourselves
(adressing RQ1), the background of the researchers might
have influenced which issues we identified in the amplified
tests. Present are the threats of confirmation bias and exper-
imenter bias, where our previous experience of issues with
amplified tests leads to us overly focussing on these issues.
Independent evaluators with a different background with
regards to test generation might have identified other issues.
Even when considering the presence of these biases, we
deemed the manual selection and editing necessary to avoid
antagonizing the open source maintainers by submitting
tests that are clearly not ready to be merged. To mitigate
the impact of our background, we carefully structured and
documented our selection and editing process through the
checklists that form the answers to RQ1.1 and RQ1.2 and
invite other researchers and software engineering practition-
ers to replicate our study and compare their findings.

6.5.2 Construct Validity
The deficiencies we observed in the amplified tests are
closely related to the current state of the test amplification
tool DSpot. It is the state-of-the-art for test amplification
in Java, and the archetypical implementation of test am-
plification that other tools are based on [32], [98], [99].
Still, the selection and edit efforts will change when the
automation improves in the future. If efforts we observed
are automated, developers might be willing to make new
kinds of changes to improve the amplified tests. Because

we manually selected the amplified tests to submit in pull
requests and edited half of them to improve their quality
before submitting, the results to RQ2 do not directly reflect
current amplified tests, but rather what test amplification
might be capable of in the future. To mitigate this, we
carefully document and report the selection and editing
checklists we used in the answers to RQ1 and pull our take-
away recommendations on both our manual efforts and the
maintainers’ feedback in the pull request discussions.

6.5.3 Participant Bias
We did not reveal that the tests were at least partially au-
tomatically generated, and the maintainers’ feedback might
change if they were aware of this. The maintainers could
also face a social desirability bias, answering in a way that
they expect us or their surroundings to prefer. To mitigate
this we did not reveal our exact research questions to them,
and conducted the study in their familiar environment of
pull request discussions.

6.5.4 Internal Validity
In most of the pull request discussions the maintainers did
not communicate their rationale for accepting or rejecting
the pull request. We hypothesize that such a judgment is
based on a plethora of factors, e.g., the code quality or
the coverage contribution. As visible in Table 1, our study
includes a diverse set of projects, whose individual size,
contributors, or general interaction with pull requests, might
influence the acceptance of a pull request. To mitigate the
threat of inferring too much from the pull request outcome,
we focused our analysis on the concrete discussion com-
ments from the project maintainers.

6.5.5 Generalizability
The threat of internal generalizability concerns whether the
sampled study objects are representative of our population
of interest: open-source Java projects. We only considered
projects where DSpot did not fail during execution, and
produced amplified tests within 30 minutes. Other software
projects might need a considerably higher up-front effort
to adapt the test amplification tool before they can apply
it and show a different set of deficiencies in the produced
tests. Projects that need more than 30 minutes to build
or use external tools that cannot be set up with DSpot’s
plain Maven or Gradle support, might show a unique set
of selection criteria and change wishes from the developers.
To mitigate this threat, we focus on providing an overview
of the possible selection and change efforts that developers
can encounter. While we specify how often each of them
occurred in our study, we refrain from hypothesizing how
likely they would appear in any project.

With respect to external generalizability and external
validity, we acknowledge the need for replication studies
with other programming languages, test frameworks or
project settings. The feedback from maintainers of less active
projects could differ, and industrial projects could have
different requirements for automated tests.

7 RELATED WORK

In another open source contribution study [25], Danglot et
al. showed that DSpot is able to provide valuable additions

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

to existing test suites by amplifying tests. They amplified
40 test classes of 10 projects and opened 19 pull requests of
which 13 were accepted. Compared to their study, we focus
on comprehensively documenting which kind of manual
adjustments are necessary before submitting an amplified
test, conduct our study on a larger number of repositories
and pull requests, and present a detailed analysis of the
feedback from the open source maintainers. We previously
conducted an exploratory study evaluating an IntelliJ plugin
to facilitate developer-centric test amplification from within
the developer’s IDE [23]. While we gathered a broad variety
of feedback through interviews with developers, this work
focuses on the concrete changes that maintainers and code
owners would make to the amplified tests, independently
of IDE tooling.

There have been several studies of search-based test
generation with EvoSuite that involved users [10], [16], [24].
Our findings corroborate several results from these studies,
such as the importance of readability for the developers [16],
[24], that the quality of a test is strongly connected to
how easy it is to elicit its behavior [24], and a diversity of
preferences for tests between different developers [24]. Daka
et al. [80] established identifiers, line length and constructor
and method calls as important features of the readability of
a test. We go further into analyzing what a developer would
change to obtain a satisfactory test from a, potentially less
readable, generated one. Similar to us, Almasi et al. [16]
asked the participants of their industrial case study what
they would change in the generated tests to keep them.
Our findings corroborate their results that developers would
change the test data, or scenario, and the assertions to more
meaningful ones. In contrast to their study, our open source
contribution study spreads over a larger variety of projects.
We point to a greater diversity of concrete changes that were
important to the projects we contributed to, such as aligning
with code style conventions, or moving and merging tests.

In a large-scale, manual study of EvoSuite generated
tests, Galindo-Gutierrez et al. [70] identified 13 new quality
issues in automatically generated test cases, which are not
covered by the previous definitions of test smells [61], [63],
[100]. While our study is based on a different test generation
approach and tool, several of their quality issues coincide
with the deficiencies we observe in DSpot amplified tests,
and which we recommend developers to consider when se-
lecting and editing amplified tests. They name three quality
issues concerning a mismatch between the act and assert
sections of the test case, which correspond to our observa-
tions of unrelated amplified change, additional coverage or
generated assertion (RQ1). Our filter criterion “No Explic-
itly Thrown Exception” is also present in their list of quality
issues. A set of their collected issues does not apply to the
approach of test amplification, where one test is generated
and then integrated into an existing test suite. These issues
concern code and test scenarios that are redundant between
the many tests EvoSuite generates, or violate the stricter
unit testing paradigm aimed at by EvoSuite, i.e., only testing
behavior directly in the class under test.

Incorporating the developer’s expertise into the test am-
plification process, is also central in interactive search-based
test generation [101], [102], [103]. In contrast to this field,
we do not ask the developer to provide specific types of

judgments to improve the search process, but instead they
customize the amplified test to its final state for their test
suite.

Several previous works investigated generating descrip-
tions for automatically generated [18], [41], [104] and man-
ually written tests [105], [106] and have shown that these
descriptions help developers understand the tests [18], [41],
[106]. Similar to us, these approaches leverage the called and
covered methods to describe the intention of the test case.
Our description is specialized for amplified tests, focussing
on the amplified change and new assertion, while referring
to the original test, leading to a shorter description.

8 CONCLUSION

In this paper, we manually analyzed the amplified tests of 52
projects, and discussed them through 39 pull requests with
their open source maintainers. In a nutshell, we contribute:

• Insights into the selection and manual editing we per-
formed to prepare the amplified tests for a pull request.

• Insights into the proposed changes, requested informa-
tion and judgment of open source maintainers towards
developer-centric amplified tests.

• Improvements to the test suites of 19 open source
projects through our accepted pull requests.

Throughout the whole study we repeatedly observed that
amplified tests need to be understood by developers before
they consider including the tests into their maintained test
suite. This understanding was also the basis for several
kinds of edits we made and changes that were proposed
by the maintainers, opening up a fundamental question for
researchers working on developer-centric test amplification:

Should we focus on further automating test amplification
or focus on supporting developers in understanding the
amplified tests, leaving some edits to them?

Therefore, the next steps in this line of research are to
investigate this tradeoff and to develop tools that support
developers with information and actionable recommenda-
tions while editing amplified tests. Further, we want to im-
prove the state-of-the-art of test amplification by automating
the now manual efforts and by sharpening the quality of
the amplified tests through local mutation analysis. We
encourage researchers to validate whether our results hold
for other programming languages and test generation tools.

REFERENCES

[1] K. L. Beck, Test-Driven Development - By Example, ser. The
Addison-Wesley signature series. Addison-Wesley, 2003.

[2] M. Aniche, C. Treude, and A. Zaidman, “How developers en-
gineer test cases: An observational study,” IEEE Trans. Software
Eng., vol. 48, no. 12, pp. 4925–4946, 2022.

[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” IEEE
Trans. Software Eng., vol. 40, no. 11, pp. 1100–1125, 2014.

[4] M. Beller, G. Gousios, and A. Zaidman, “How (much) do de-
velopers test?” in IEEE/ACM International Conference on Software
Engineering (ICSE). IEEE CS, 2015, pp. 559–562.

[5] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When,
how, and why developers (do not) test in their IDEs,” in Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
2015, pp. 179–190.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[6] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284,
2019.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investiga-
tion of search-based test case generation,” IEEE Trans. Software
Eng., vol. 36, no. 6, pp. 742–762, 2010.

[8] L. Baresi and M. Miraz, “TestFul: Automatic unit-test generation
for java classes,” in IEEE/ACM International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 281–284.

[9] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite genera-
tion for object-oriented software,” in ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE) and European
Software Engineering Conference (ESEC). ACM, 2011, pp. 416–419.

[10] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? A
controlled empirical study,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 4, pp. 23:1–23:49, 2015.

[11] M. Swillus and A. Zaidman, “Sentiment overflow in the testing
stack: Analysing software testing posts on stack overflow,” J. Syst.
Softw., vol. 205, 2023.

[12] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li,
“Scaling up automated test generation: Automatically generating
maintainable regression unit tests for programs,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE CS, 2011, pp. 23—32.

[13] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robust-
ness tester for java,” Softw. Pract. Exp., vol. 34, no. 11, pp. 1025–
1050, 2004.

[14] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and
A. van Deursen, “Botsing, a search-based crash reproduction
framework for java,” in IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2020, pp. 1278–1282.

[15] P. Derakhshanfar, X. Devroey, A. Zaidman, A. van Deursen, and
A. Panichella, “Good things come in threes: Improving search-
based crash reproduction with helper objectives,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 211–223.

[16] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Bene-
felds, “An industrial evaluation of unit test generation: Finding
real faults in a financial application,” in IEEE/ACM International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE CS, 2017, pp. 263–272.

[17] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and
thing2?” in ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2017, pp. 57–67.

[18] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C.
Gall, “The impact of test case summaries on bug fixing perfor-
mance: An empirical investigation,” in IEEE/ACM International
Conference on Software Engineering (ICSE). ACM, 2016, pp. 547–
558.

[19] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Elsevier, 2009.

[20] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,”
J. Syst. Softw., vol. 157, p. 110398, 2019.

[21] M. Nassif, A. Hernandez, A. Sridharan, and M. P. Robillard,
“Generating unit tests for documentation,” IEEE Trans. Software
Eng., 2021.

[22] STAMP, “Use cases validation report v3,” https://github.com/
STAMP-project/docs-forum/blob/master/docs/, 2019.

[23] C. Brandt and A. Zaidman, “Developer-centric test amplifica-
tion,” Empir. Softw. Eng., vol. 27, no. 4, p. 96, 2022.

[24] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated unit test gener-
ation during software development: A controlled experiment and
think-aloud observations,” in International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2015, pp. 338–349.

[25] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus,
“Automatic test improvement with DSpot: A study with ten
mature open-source projects,” Empir. Softw. Eng., vol. 24, no. 4,
pp. 2603–2635, 2019.

[26] C. Brown and C. Parnin, “Sorry to bother you: Designing bots for
effective recommendations,” in International Workshop on Bots in
Software Engineering (BotSE). IEEE/ACM, 2019, pp. 54–58.

[27] A. Khatami and A. Zaidman, “State-of-the-practice in quality
assurance in open source software development—replication
package,” 2022. [Online]. Available: https://doi.org/10.5281/
zenodo.6563549

[28] B. Danglot, M. Monperrus, W. Rudametkin, and B. Baudry,
“An approach and benchmark to detect behavioral changes of
commits in continuous integration,” Empir. Softw. Eng., vol. 25,
no. 4, pp. 2379–2415, 2020.

[29] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Trans. Software Eng., vol. 39, no. 2, pp. 276–291, 2013.

[30] R. Bloem, R. Koenighofer, F. Röck, and M. Tautschnig, “Automat-
ing test-suite augmentation,” in International Conference on Quality
Software. IEEE, 2014, pp. 67–72.

[31] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Di-
rected test suite augmentation: Techniques and tradeoffs,” in
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 2010, pp. 257–266.

[32] M. F. Roslan, J. M. Rojas, and P. McMinn, “An empirical compar-
ison of EvoSuite and DSpot for improving developer-written test
suites with respect to mutation score,” in International Symposium
on Search-Based Software Engineering (SSBSE), ser. LNCS, vol.
13711. Springer, 2022, pp. 19–34.

[33] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, The
Fuzzing Book. CISPA Helmholtz Center for Information Security,
2023.

[34] O. Nourry, Y. Kashiwa, B. Lin, G. Bavota, M. Lanza, and Y. Kamei,
“The human side of fuzzing: Challenges faced by developers
during fuzzing activities,” ACM Trans. Softw. Eng. Methodol.,
vol. 33, no. 1, nov 2023.

[35] S. Plöger, M. Meier, and M. Smith, “A usability evaluation of AFL
and libfuzzer with CS students,” in Conference on Human Factors
in Computing Systems (CHI). ACM, 2023, pp. 186:1–186:18.

[36] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim,
and Y. H. Hwang, “Utopia: Automatic generation of fuzz driver
using unit tests,” in 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023. IEEE, 2023,
pp. 2676–2692.

[37] M. Olsthoorn, A. van Deursen, and A. Panichella, “Generating
highly-structured input data by combining search-based testing
and grammar-based fuzzing,” in IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2020, pp.
1224–1228.

[38] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Chal-
lenges and reflections,” IEEE Softw., vol. 38, no. 3, pp. 79–86, 2021.

[39] D. Hoffman and P. Strooper, “API documentation with executable
examples,” J. Syst. Softw., vol. 66, no. 2, pp. 143–156, 2003.

[40] P. S. Kochhar, X. Xia, and D. Lo, “Practitioners’ views on good
software testing practices,” in IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE/ACM, 2019, pp. 61–70.

[41] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella,
S. Panichella, D. Gonzalez, and M. Mirakhorli, “DeepTC-
Enhancer: Improving the readability of automatically generated
tests,” in IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 287–298.

[42] W. Oosterbroek, C. Brandt, and A. Zaidman, “Removing re-
dundant statements in amplified test cases,” in IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2021, pp. 242–246.

[43] N. Nijkamp, C. Brandt, and A. Zaidman, “Naming amplified
tests based on improved coverage,” in IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, 2021, pp. 237–241.

[44] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in java programs,” J. Syst. Softw., vol.
106, pp. 82–101, 2015.

[45] S. Sinha and M. J. Harrold, “Criteria for testing exception-
handling constructs in java programs,” in International Conference
on Software Maintenance (ICSM). IEEE CS, 1999, p. 265.

[46] Anonymous Authors, “Replication package for “Shaken,
not stirred. How developers like their amplified tests”,”
https://doi.org/10.5281/zenodo.7034924, 2023.

[47] R. Lakshmanan, “Minnesota university apologizes for
contributing malicious code to the linux project.”
[Online]. Available: https://thehackernews.com/2021/04/
minnesota-university-apologizes-for.html

https://github.com/STAMP-project/docs-forum/blob/master/docs/
https://github.com/STAMP-project/docs-forum/blob/master/docs/
https://doi.org/10.5281/zenodo.6563549
https://doi.org/10.5281/zenodo.6563549
https://thehackernews.com/2021/04/minnesota-university-apologizes-for.html
https://thehackernews.com/2021/04/minnesota-university-apologizes-for.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[48] A. Khatami and A. Zaidman, “State-of-the-practice in quality
assurance in java-based open source software development,”
Software: Practice and Experience (SP&E), 2024, to appear.

[49] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Nego-
tiated coding and reliability,” The internet and higher education,
vol. 9, no. 1, pp. 1–8, 2006.

[50] A. L. Strauss and J. M. Corbin, “Basics of qualitative research:
Techniques and procedures for developing grounded theory,”
SAGE Publications, 1998.

[51] B. G. Glaser and A. L. Strauss, Discovery of Grounded Theory:
Strategies for Qualitative Research. Routledge, 2017.

[52] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in
github for MSR studies,” in IEEE/ACM International Conference
on Mining Software Repositories (MSR). IEEE, 2021, pp. 560–564.

[53] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen,
“Work practices and challenges in pull-based development: The
integrator’s perspective,” in IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE CS, 2015, pp. 358–368.

[54] M. V. Mäntylä and C. Lassenius, “What types of defects are really
discovered in code reviews?” IEEE Trans. Software Eng., vol. 35,
no. 3, pp. 430–448, 2009.

[55] M. Beller, A. Bacchelli, A. Zaidman, and E. Jürgens, “Modern
code reviews in open-source projects: Which problems do they
fix?” in Working Conference on Mining Software Repositories (MSR).
ACM, 2014, pp. 202–211.

[56] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in IEEE/ACM International Conference on
Software Engineering (ICSE). IEEE CS, 2013, pp. 712–721.

[57] C. Brandt, M. Castelluccio, C. Holler, J. Kratzer, A. Zaidman, and
A. Bacchelli, “Mind the gap: What working with developers on
fuzz tests taught us about coverage gaps,” in IEEE/ACM Inter-
national Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), 2024.

[58] M. Aniche, Effective Software Testing: A Developer’s Guide. Simon
and Schuster, 2022.

[59] M. Gittens, K. Romanufa, D. Godwin, and J. Racicot, “All code
coverage is not created equal: A case study in prioritized code
coverage,” in Conference of the Centre for Advanced Studies on
Collaborative Research. IBM, 2006, pp. 131–145.

[60] B. Marick, J. Smith, and M. Jones, “How to misuse code cover-
age,” in International Conference on Testing Computer Software, 1999,
pp. 16–18.

[61] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok,
“Refactoring test code,” in International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP),
2001, pp. 92–95.

[62] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and
K. Prommer, “How much does unused code matter for mainte-
nance?” in International Conference on Software Engineering (ICSE).
IEEE Computer Society, 2012, pp. 1102–1111.

[63] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn, “Test smells 20 years later: Detectability, validity,
and reliability,” Empir. Softw. Eng., vol. 27, no. 7, p. 170, 2022.

[64] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, 2014, pp. 52–63.

[65] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving
and replaying differential unit test cases from system test cases,”
IEEE Trans. Software Eng., vol. 35, no. 1, pp. 29–45, 2009.

[66] S. Messaoudi, D. Shin, A. Panichella, D. Bianculli, and L. C.
Briand, “Log-based slicing for system-level test cases,” in ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM, 2021, pp. 517–528.

[67] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with
test suite effectiveness,” in Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). ACM, 2015, pp. 214–224.

[68] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan, “Code coverage
and postrelease defects: A large-scale study on open source
projects,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1213–1228, 2017.

[69] G. Grano, C. D. Iaco, F. Palomba, and H. C. Gall, “Pizza versus
pinsa: On the perception and measurability of unit test code
quality,” in IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2020, pp. 336–347.

[70] G. Galindo-Gutierrez, M. N. Carvajal, A. F. Blanco, N. Anquetil,
and J. P. S. Alcocer, “A manual categorization of new quality

issues on automatically-generated tests,” in IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2023.

[71] D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE Computer Society, 2011,
pp. 90–99.

[72] M. Staats, M. W. Whalen, and M. P. E. Heimdahl, “Programs,
tests, and oracles: The foundations of testing revisited,” in Inter-
national Conference on Software Engineering (ICSE). ACM, 2011,
pp. 391–400.

[73] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an ap-
propriate tool for testing experiments?” in International Conference
on Software Engineering (ICSE). ACM, 2005, pp. 402–411.

[74] C. Brandt, D. Wang, and A. Zaidman, “When to let the developer
guide: Trade-offs between open and guided test amplification,”
in IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2023, pp. 231–241.

[75] W. Ma, T. Laurent, M. Ojdanic, T. T. Chekam, A. Ventresque, and
M. Papadakis, “Commit-aware mutation testing,” in IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 394–405.

[76] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE CS, 2007, pp.
75–84.

[77] D. Spadini, M. F. Aniche, M. D. Storey, M. Bruntink, and A. Bac-
chelli, “When testing meets code review: Why and how develop-
ers review tests,” in IEEE/ACM International Conference on Software
Engineering (ICSE). ACM, 2018, pp. 677–687.

[78] B. Zhang, E. Hill, and J. Clause, “Towards automatically generat-
ing descriptive names for unit tests,” in IEEE/ACM International
Conference on Automated Software Engineering (ASE). ACM, 2016,
pp. 625–636.

[79] B. Lin, C. Nagy, G. Bavota, A. Marcus, and M. Lanza, “On the
quality of identifiers in test code,” in International Working Con-
ference on Source Code Analysis and Manipulation (SCAM). IEEE,
2019, pp. 204–215.

[80] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Joint Meeting on Foundations
of Software Engineering (ESEC/FSE). ACM, 2015, pp. 107–118.

[81] D. Winkler, P. Urbanke, and R. Ramler, “What do we know
about readability of test code? - A systematic mapping study,”
in IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022, pp. 1167–1174.

[82] C. S. Yu, C. Treude, and M. F. Aniche, “Comprehending test code:
An empirical study,” in IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019, pp. 501–512.

[83] A. Deljouyi and A. Zaidman, “Generating understandable unit
tests through end-to-end test scenario carving,” in Proceedings of
the International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2023, pp. 107–118.

[84] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “What factors
make SQL test cases understandable for testers? A human study
of automated test data generation techniques,” in IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2019, pp. 437–448.

[85] P. Delgado-Pérez, A. Ramı́rez, K. J. Valle-Gómez, I. Medina-
Bulo, and J. R. Romero, “InterEvo-TR: Interactive evolutionary
test generation with readability assessment,” IEEE Trans. Software
Eng., vol. 49, no. 4, pp. 2580–2596, 2023.

[86] N. Rao, K. Jain, U. Alon, C. L. Goues, and V. J. Hellendoorn,
“CAT-LM training language models on aligned code and tests,”
in IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE, 2023, pp. 409–420.

[87] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sun-
daresan, “Unit test case generation with transformers and focal
context,” arXiv preprint arXiv:2009.05617, 2020.

[88] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, May
27 - June 03, 2018. ACM, 2018, pp. 181–190.

[89] W. Zou, J. Xuan, X. Xie, Z. Chen, and B. Xu, “How does code style
inconsistency affect pull request integration? An exploratory
study on 117 GitHub projects,” Empir. Softw. Eng., vol. 24, no. 6,
pp. 3871–3903, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[90] L. Zamprogno, B. Hall, R. Holmes, and J. M. Atlee, “Dynamic
human-in-the-loop assertion generation,” IEEE Trans. Software
Eng., vol. 49, no. 4, pp. 2337–2351, 2023.

[91] A. Khatami and A. Zaidman, “Quality assurance awareness in
open source software projects on GitHub,” in IEEE International
Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 2023, pp. 174–185.

[92] M. Guizani, A. Chatterjee, B. Trinkenreich, M. E. May, G. J.
Noa-Guevara, L. J. Russell, G. G. C. Zambrano, D. Izquierdo-
Cortazar, I. Steinmacher, M. A. Gerosa, and A. Sarma, “The long
road ahead: Ongoing challenges in contributing to large OSS
organizations and what to do,” Proc. ACM Hum. Comput. Interact.,
vol. 5, no. CSCW2, pp. 407:1–407:30, 2021.

[93] Z. Zhang, O. Sievi-Korte, U. Virta, H. Järvinen, and D. Taibi, “An
investigation on the availability of contribution information in
open-source projects,” in 47th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2021, Palermo, Italy,
September 1-3, 2021. IEEE, 2021, pp. 86–90.

[94] O. Elazhary, M. D. Storey, N. A. Ernst, and A. Zaidman, “Do as
I do, not as I say: Do contribution guidelines match the github
contribution process?” in IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019, pp. 286–290.

[95] C. Brandt and A. Zaidman, “How does this new developer test
fit in? A visualization to understand amplified test cases,” in
Working Conference on Software Visualization (VISSOFT). IEEE,
2022, pp. 17–28.

[96] V. Hurdugaci and A. Zaidman, “Aiding software developers
to maintain developer tests,” in European Conference on Software
Maintenance and Reengineering (CSMR). IEEE CS, 2012, pp. 11–
20.

[97] A. Arcuri, “An experience report on applying software testing
academic results in industry: We need usable automated test
generation,” Empir. Softw. Eng., vol. 23, no. 4, pp. 1959–1981, 2018.

[98] M. Abdi, H. Rocha, S. Demeyer, and A. Bergel, “Small-amp: Test
amplification in a dynamically typed language,” Empir. Softw.
Eng., vol. 27, no. 6, p. 128, 2022.

[99] E. Schoofs, M. Abdi, and S. Demeyer, “AmPyfier: Test amplifica-
tion in python,” J. Softw. Evol. Process., vol. 34, no. 11, 2022.

[100] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On
the interplay between software testing and evolution and its ef-
fect on program comprehension,” in Software Evolution. Springer,
2008, pp. 173–202.

[101] B. Marculescu, R. Feldt, R. Torkar, and S. M. Poulding, “Trans-
ferring interactive search-based software testing to industry,” J.
Syst. Softw., vol. 142, pp. 156–170, 2018.

[102] A. Ramı́rez, J. R. Romero, and C. L. Simons, “A systematic review
of interaction in search-based software engineering,” IEEE Trans.
Software Eng., vol. 45, no. 8, pp. 760–781, 2019.

[103] A. Ramı́rez, P. Delgado-Pérez, K. J. Valle-Gómez, I. Medina-Bulo,
and J. R. Romero, “Interactivity in the generation of test cases
with evolutionary computation,” in IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2021, pp. 2395–2402.

[104] M. Kamimura and G. C. Murphy, “Towards generating human-
oriented summaries of unit test cases,” in IEEE International
Conference on Program Comprehension (ICPC). IEEE CS, 2013, pp.
215–218.

[105] D. Gaston and J. Clause, “A method for finding missing unit
tests,” in IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2020, pp. 92–103.

[106] B. Li, C. Vendome, M. L. Vásquez, D. Poshyvanyk, and N. A.
Kraft, “Automatically documenting unit test cases,” in IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST). IEEE CS, 2016, pp. 341–352.

Carolin Brandt Carolin Brandt is a Ph.D. student
at the Software Engineering Research Group
of the Delft University of Technology. She re-
ceived her bachelor’ degree from the Technical
University of Munich and in 2020 completed the
Elite Graduate Program Software Engineering at
the Technical University of Munich, the Univer-
sity of Augsburg and the Ludwigs-Maximilians-
University of Munich. The focus of her research
is the interaction of software developers with au-
tomated tools that are designed to support their

work. Her goal is to embed the developer’s expertise into automatic test
generation tools to create test cases that the developers can directly use
to improve their test suites and the quality of their software.

Ali Khatami Ali Khatami is a PhD candidate
in the Software Engineering Research Group at
Delft University of Technology, the Netherlands.
He received his MSc degree in Software En-
gineering from Sharif University of Technology,
in 2021. Currently, he is part of the TestShift
project under the supervision of Andy Zaidman.
His research interests lie in the intersection of
software quality assurance (QA) practices and
software analytics, conducting both quantitative
and qualitative research in this area, with a fo-

cus on software engineers’ awareness of QA within their projects and
exploring ways to improve QA in open-source software projects.

Mairieli Wessel Mairieli Wessel is an assistant
professor at the Department of Software Sci-
ence, Radboud University, The Netherlands. In
2021, she received her Ph.D. degree in Com-
puter Science from the University of São Paulo,
Brazil. Mairieli’s research interests include soft-
ware engineering and computer-supported co-
operative work, focused on software bots and
open source development.

Andy Zaidman Andy Zaidman is a full profes-
sor in software engineering at Delft University
of Technology, The Netherlands. He received
the MSc and PhD degrees in Computer Sci-
ence from the University of Antwerp, Belgium,
in 2002 and 2006, respectively. His main re-
search interests include software evolution, pro-
gram comprehension, mining software reposito-
ries, software quality, and software testing. He
is an active member of the research community
and involved in the organization of numerous

conferences (WCRE’08, WCRE’09, VISSOFT’14 and MSR’18). In 2013
he was the laureate of a prestigious Vidi mid-career grant, while in
2019 he received the most prestigious Vici career grant from the Dutch
science foundation NWO.

	Introduction
	Developer-Centric Test Amplification
	Automatic Post-Processing for developer-centric test amplification
	Prettifier module
	Minimizer
	Test and Variable Renamer
	Filter and Prioritize

	Descriptions for Amplified Tests

	Open Source Contribution Study
	Repository Selection
	Running the Test Amplification
	Manual Selection and Editing
	Contributing Back the Tests
	Data Analysis

	Results
	Running the Test Amplification
	RQ1.1: On which criteria do we select a candidate test to include in the test suite?
	Negative Selection Criteria
	Positive Selection Criteria

	RQ1.2: Which manual edits do we perform to improve the tests before submission?
	RQ2.1: Which changes are proposed during the pull request discussion?
	RQ2.2: What kind of information is requested by the maintainers during the pull request discussion?
	RQ2.3: How do the maintainers justify their judgment over the amplified tests during the pull request discussion?

	Discussion
	Guidelines for Developers to Select and Edit Amplified Tests
	Relation to existing Literature
	Valid Coverage Improvement
	Tests Relevant Code/Scenario in Project
	Only Necessary Code
	Checks Behavior of Newly Covered Code
	Test Scenario and Impact are Understandable
	Good Code Style, Adhering to Guidelines
	Appropriate Scope and Location

	Implications for Practitioners
	Implications for Researchers and Tool Designers
	Threats to Validity
	Reliability of Results
	Construct Validity
	Participant Bias
	Internal Validity
	Generalizability

	Related Work
	Conclusion
	References
	Biographies
	Carolin Brandt
	Ali Khatami
	Mairieli Wessel
	Andy Zaidman

