
A Framework-based Runtime Monitoring Approach for
Service-Oriented Software Systems

Cuiting Chen
Delft University of Technology

The Netherlands
cuiting.chen@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Hans-Gerhard Gross
Delft University of Technology

The Netherlands
h.g.gross@tudelft.nl

ABSTRACT
The highly dynamic and loosely coupled nature of a service-
oriented software system leads to the challenge of under-
standing it. In order to obtain insight into the runtime
topology of a SOA system, we propose a framework-based
runtime monitoring approach to trace the service interac-
tions during execution. The approach can be transparently
applied to all web services built on the framework and reuses
parts of information and functionality already available in
the framework to achieve our goals.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—reverse engineering

General Terms
Management

Keywords
runtime monitoring, SOA

1. INTRODUCTION
Today, many organizations deploy services for realizing

their IT landscapes. They aim at exploiting the ability of
the service technologies to integrate existing legacy compo-
nents, and to better cope with changing business require-
ments. These are two core demands of industry which are
addressed adequately through highly dynamic and loosely
coupled service-oriented architectures (SOA) [14]. In partic-
ular, services can be discovered, bound and executed during
operation time, enabling (online) evolution [8].
However, loose coupling and the highly dynamic nature of

service-based software systems also present challenges in the
maintenance and evolution processes. For example, the ac-
tual configuration of a system realized with services, and
the usage of its parts, can only be seen at runtime [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QASBA ’11 September 14, 2011, Lugano, Switzerland
Copyright 2011 ACM 978-1-4503-0826-7/11/09 ...$10.00.

Although online maintenance and evolution is technically
well supported, system comprehension, a key prerequisite
for conducting maintenance and evolution [16], is not [8].
Understanding complex SOA in order to plan and imple-
ment maintenance and evolution, is still one of the major
challenges for software engineers [13].

Information that can be derived statically is not enough
for understanding and visualizing how a SOA is deployed
at runtime, and how the services interact in order to real-
ize the business goals of various users. Instead, or in ad-
dition, runtime monitoring should be employed as the pri-
mary means to obtain data on the dynamic behavior of a
SOA and its usage. In this way, software engineers can get
a better understanding of the service-based software system
and, consequently, they can plan and perform necessary sys-
tem maintenance and evolution activities more adequately
and timely. By also adding the usage information of in-
dividual services to the extracted views, the engineers can
better plan maintenance, thus reducing the disturbances to
the nominal system operation of an entire IT infrastructure.
Moreover, online monitoring can facilitate SOA governance
through supporting load balancing, identifying performance
bottlenecks, or usage profiling.

In this paper, it is our goal to support software engineers
by creating high-level views of how services (dynamically)
interact, i.e., the runtime topology. In order to realize this,
we first identify the associated monitoring data, that will
subsequently help engineers in the (online) maintenance and
evolution of service oriented architectures. Furthermore, in
order to acquire the required information, we propose to
extend existing service frameworks to support monitoring,
and to be able to exploit information readily available inside
these frameworks. For example, the addressing information
used to send and receive requests and responses can be ex-
tracted to reversely reason about the invocation sequences
and activities of users. That way, engineers can update and
maintain parts of the SOA with low current usage, or they
can defer maintenance to periods with expected low usage,
thereby minimizing disturbance. Some of the data required
for planning and realizing such maintenance activities are
already provided by SOA frameworks through logging mech-
anisms contained in many platforms. Moreover, additional
mechanisms can be integrated into frameworks, in order to
provide required data according to various comprehension
goals. For example, a framework can be extended to add
a sequence id to SOAP messages, which provides the or-
der of messages caused by an invocation traversing different
machines. At present, our investigation is based on Apache

BookingWS

inputReq

HousingWS

search

FlightWS

search

Hotel1WS

Hotel2WS

AirComp1

AirComp2

AirComp3

User1

only flight

User2

flight+hotel

R21

R11

R12

R13

R15

R14

R22

R23

R16

Figure 1: SOA system Scenario

Axis2/Java1, which is an open-source web service framework
implemented in Java and which provides various features to
ease the development of web services.
In order to being able to comprehend a SOA, we formulate

the following research questions:
RQ1 Which information is required to understand a SOA

system?
RQ2 How can we exploit the information from a running

SOA system?
RQ2.1 If the web service is built on a SOA framework,

which information is already inside the framework?
This paper is structured as follows: in Section 2, we present

the proposed approach for runtime monitoring, while Sec-
tion 3 discusses our prototype-implementation based on the
Axis2 framework. In Section 4, we address the aforemen-
tioned research questions and discuss the feasibility of the
approach. Section 5 is about related work; and in Section 6
we conclude our paper with future work.

2. PROPOSED APPROACH

Goal.
Our basic goal is to support the comprehension process of

complex SOA systems. In particular, we are interested in
understanding the runtime topology of services, which en-
tails obtaining insight into how services work together to
execute a particular functionality. Recovering this type of
information calls for a dynamic analysis approach, which
means monitoring the SOA system during runtime. An ad-
ditional benefit of adopting a dynamic analysis approach
is that we are able to follow an on-demand comprehension
strategy, i.e., we only deal with information relevant to the
execution scenario and to the part that we want to under-
stand [6]. In order to accomplish this dynamic analysis,
we aim to integrate monitoring techniques into web service
frameworks, as to leverage all available information inside
the framework for monitoring. This approach (1) can be
transparently applied to all web services built on the frame-
work, and (2) parts of information and functionality already
existing in the framework can be reused to achieve our goals.
Figure 1 presents the runtime scenario of a service-based

system: customers with different inputs invoke a different set
of services involved. In particular, you will see that depend-
ing on whether a customer requires a flight or a flight/hotel
combination, a different set of services is invoked. In order
to reconstruct the runtime topology of a SOA system, i.e.,

1http://axis.apache.org/axis2/java/core/

how services interact at runtime, we at least need to obtain
the following data from the web service framework:
service id: before we deduce the interactions between ser-

vices, we should first be able to identify the services
involved. The service name is not enough, as there may
be different services sharing the same name. Moreover,
those services can be described in the same service de-
scription file with different target namespaces. There-
fore, in order to uniquely identify a service, we propose
a simple scheme using the combination of the URI of
the service description file, the target namespace and
the service name as the service id.

interface id: to further know which function a user is in-
voking in a service, it is also necessary to log the name
of the invoked service interface. However, a service
can contain two operations, i.e., interfaces, with the
same name and different parameters. For example,
earlier versions of WSDL2, one of the most common
web service description languages, support operation
overloading. Hence, the information of parameters is
also required to distinguish an operation.

process id: in order to trace an invocation passing through
a number of web services, a specific identifier named
process id is needed to link all requests and responses
involved.

sequence id: as service-based systems are frequently de-
ployed in a distributed context, using only time stamps
to deduce the invocation sequence of the services might
be problematic, since physical clocks in various ma-
chines may have different deviations. This problem
can be mediated by using either a logical clock [10] or
vector clock [7, 12], or by a simple mechanism, which
involves adding a sequence id to the message that is
being sent to the next service. For each request that
comes into the SOA system, a new sequence id counter
is created and each time this request causes a new mes-
sage to be sent to another service, the sequence id is
incremented.

SOA frameworks.
Generally, a web service consists of three major parts: a

listener, a proxy, and the service implementation [15]. When
a web service is created based on a service framework, typ-
ically the service developers only need to implement the
core business logic in the service implementation, and the
other two parts are realized in the framework. It is the lis-
tener’s task to detect incoming and outgoing messages pass-
ing through the server. The proxy deals with messaging and
addressing.

Once the listener receives an incoming request, it will for-
ward the message to the proxy, which will parse the request
to obtain the information of the invoking service and in-
terface. Then the content of the request is delivered to the
target service. After the service sends back the response, the
proxy will decode the response and the listener will dispatch
the result to the invoker. In order to execute the invocation
properly, the service framework stores the addressing infor-
mation to dispatch requests and responses at runtime. In
addition, each service creates a specific instance of itself for
each invocation, and an object id is assigned to the instance
for the aim of identification.

2http://www.w3.org/TR/wsdl

Hence, some information required to rebuild the runtime
topology of the system, such as the information for the ser-
vice id and the interface id, is already inside the framework.
However, obtaining the other information elements from the
framework requires extra work. Generally, a framework does
not offer a process id for each message. Thus, we can either
extend the framework to enable the new id generation, or
reuse the existing ids inside the framework. For example, it
is feasible to reuse the object id of the service firstly invoked
in a sequence as a process id (the mechanism to determine
the first invoked service will be considered in future work).
The framework keeps passing the id to all following messages
involved in the same activity. After logging the information,
we can identify all messages containing the same process id
as belonging to the same invocation. For the sequence id,
however, a particular mechanism should be added into the
framework to guarantee its delivery and incrementation.
Service frameworks typically have a logging system in

place to track abnormal behavior that might arise. It is
our aim to reuse these monitoring mechanisms and extend
them for our purposes.

3. PROTOTYPE IMPLEMENTATION
In order to operationalize our idea, we decided to use the

Apache Axis2 framework (Java implementation) as our re-
search vehicle. Axis2 is an open-source web service frame-
work which supports various protocols for web services, such
as SOAP, REST, etc. It also offers many features to ease the
development of web services. Inside the framework, a set of
transport components are built to send and receive messages,
a core engine invokes a number of pre-required handlers to
deal with part of the information in the message, and a han-
dler named message receiver further delivers the message to
the invoked service implementation for execution3.
Axis2 maintains an information model to store all data

inside the framework in two major categories: Description
and Context. The static information, like deployment details
of services, is kept inside the description. While all data
related to the runtime execution are hierarchically stored
inside the context. For example, the service name is con-
tained in the ServiceContext and the operation name in the
OperationContext. As such, we are able to obtain the afore-
mentioned service id and interface id from the contexts.
Furthermore, these contexts also reserve some empty fields

for future extension. We will be making use of these fields
for the process id and the sequence id. In particular, in
the newly created process id field, we will store the object
id of the first service that we encounter as a process id, and
pass it on to the next service. Furthermore, Axis2 follows an
approach where it will carry over these ids from the previous
hop if the ids are available. We will also store the sequence
id in one of these reserved slots.
Axis2 integrates Apache Log4j4 to support logging. The

logging configuration can be adjusted by modifying the prop-
erty file without changing the logging statements in the
source code. We can reuse this logging feature to facili-
tate the information extraction from the Axis2 framework.
For instance, we can add logging statements into a handler
class, in order to output the information inside contexts. Af-

3http://axis.apache.org/axis2/java/core/docs/
Axis2ArchitectureGuide.html
4http://logging.apache.org/log4j/

terwards we are able to choose which information should be
logged and where to store the information by specifying the
logging properties. In addition, Axis2 also offers a SOAP-
Monitor module, which is a type of handler, to enable the
monitoring of SOAP messages. When a web service built
on Axis2 is configured to support this module, the SOAP-
Monitor is added into the chain of handlers registered by
the service inside the Axis2 framework. As result, it will
intercept all SOAP messages from/to the web service. This
SOAPMonitor can be reused to show the information ex-
tracted from the contexts.

4. DISCUSSION
In the previous section, we presented the concepts of our

approach. As a proof of concept, we have created two simple
web services with Axis2 which run on an Apache Tomcat
server5. The first web service (WS1) is concerned with user
management, while the second webservice (WS2) generates
a random number. A user can call WS1 to obtain the user
information through a web browser. When WS1 receives the
request, it calls WS2 to generate a random number as a user
id. Then WS1 sends back the id to the user.

For this preliminary investigation, we made sure to run the
web server in a debug mode and used an IDE to dynamically
observe each step of the execution. With these observations
of the proof of concept setup, we are now in a position to
address the research questions that we raised in Section 1.

RQ1: Which information is required to understand a SOA
system? Basically, in order to understand how the services
work together to perform a certain functionality, we need to
know how services depend on each other, i.e., how services
call each other at runtime. This requires us to have the
knowledge of the runtime topology of services. The runtime
topology will enable a high-level comprehension of how ser-
vices interact. A more detailed comprehension process can
be started by also tracing the individual services for under-
standing purposes (e.g., with a tool like Extravis [5]).

RQ2: How can we exploit the information from a running
SOA system? We addressed this question in Section 2,
where an approach for framework-based runtime monitor-
ing is proposed. In particular, we identified the need to col-
lect the following pieces of information: the service’s name,
namespace and URI, the operation’s name and its parame-
ters, the process id and the sequence id. We also instantiated
this approach with a prototype implementation in Axis2.

RQ2.1: If the web service is built on a SOA framework,
which information is already inside the framework? Also in
Section 2 we detailed how our approach can be instantiated
in the Axis2 framework. Particularly, we can obtain the
information for the service id and the interface id straight
from the framework. We did add a sequence id and a pro-
cess id to be able to completely reconstruct the runtime
topology. An important follow-up question remains in this
context, namely whether our approach generalizes to other
SOA frameworks.

5. RELATED WORK
Service monitoring is an essential technique for SOA sys-

tems to trace execution, verify regulation, detect runtime

5http://tomcat.apache.org/

error, etc. Our work focuses more on the understanding of
SOA systems through monitoring, and we have identified
the following related approaches.
Zmuda et al. [17] propose a flexible monitoring architec-

ture for SOA runtime frameworks. They define requirements
for their monitoring architecture and develop a simple proof-
of-concept monitoring scenario. Because of the preliminary
nature of their work, they discuss technical and implementa-
tion issues, but do not introduce concrete monitoring goals.
Li et al. [11] propose an architectural framework to mon-

itor the interactions of web services and validate the inter-
actions with pre-defined constraints at runtime. They in-
tercept the SOAP messages passing through web services,
extract important elements corresponding to operation in-
vocation from the content of messages, and then validate
the real invocation with interaction constraints. They also
focus on the sequence of messages, but mainly in order to
try to link a response to the related request.
Baresi et al. monitor the composition of services at run-

time [1]. However, they focus on describing the interactions
of web services with assertions and checking the conformance
between services and their contracts.
Keller et al. [9] present a solution for monitoring service-

level agreements for web services. The WSLA framework
built in the paper provides an extensible language based on
XML schema to define SLAs and a set of monitoring services
to automatically monitor the SLAs at runtime.
Another monitoring approach that focuses on fault de-

tection, rather than system understanding, is presented by
Chen [3]. They propose a monitoring technique for service-
able component systems with probing algorithms. That is
able to flexibly localize the errors happening in the system.

6. FUTURE WORK
In the future, we will continue to carry out our research by

extending the current implementation with Axis2 and evalu-
ating our approach. Furthermore, we will consider generaliz-
ing the approach to accommodate other service frameworks.
After knowing the runtime topology of a SOA system,

which enables a high-level understanding, we aim at extend-
ing the current monitoring approach to obtain more infor-
mation from the SOA system. In particular, we want to
extend our approach so that we can:

1. determine at which points in time certain services are
scarcely used in order to maintain and test the SOA
system at runtime, while keeping the number of users
affected by these actions to a minimum.

2. build a statistical user profile, i.e., a profile that con-
tains the most frequently used functionality of a user
and the periods at which the user used these. This in-
formation can, e.g., be used to improve load balancing.

We also envision to continue our investigation into web
service frameworks to determine which other information
we can extract from them, and which other functionality we
can further reuse for our goals.
In addition, after the information is logged from the sys-

tem, a next challenge is to efficiently visualize this infor-
mation, knowing that trace information can sometimes be
difficult to scale [4]. We intend to build an application which
is able to present the global view of running system. This
application would provide a real-time overview of the state
of the services and the interactions between them, based on
the monitored information.

Acknowledgement. The authors would like to acknowl-
edge NWO for sponsoring this research through the Jacquard
ScaleItUp project. Also many thanks to our industrial part-
ners Adyen and Exact.

7. REFERENCES
[1] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors

for composed services. In Proceedings of the 2nd
international conference on Service oriented
computing (ICSOC), pages 193–202. ACM, 2004.

[2] G. Canfora and M. Di Penta. Service-oriented
architectures testing: A survey. In Software
Engineering, volume 5413 of Lecture Notes in
Computer Science, pages 78–105. Springer, 2009.

[3] Z. Chen. Service fault localization using probing
technology. In Proceedings of the International
Conference on Networking, Sensing and Control
(ICNSC), pages 937–942. IEEE, 2006.

[4] B. Cornelissen, L. Moonen, and A. Zaidman. An
assessment methodology for trace reduction
techniques. In Proc. of the Int’l Conf. on Software
Maintenance (ICSM), pages 107–116. IEEE, 2008.

[5] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen,
A. van Deursen, and J. J. van Wijk. Execution trace
analysis through massive sequence and circular bundle
views. Journal of Systems and Software,
81(12):2252–2268, 2008.

[6] B. Cornelissen, A. Zaidman, A. van Deursen,
L. Moonen, and R. Koschke. A systematic survey of
program comprehension through dynamic analysis.
IEEE Transactions on Software Engineering,
35(5):684–702, 2009.

[7] C. J. Fidge. Timestamp in message passing systems
that preserves partial ordering. In Proceedings of the
Australian Computing Conference, pages 56–66, 1988.

[8] N. Gold, C. Knight, A. Mohan, and M. Munro.
Understanding service-oriented software. IEEE
Software, 21(2):71–77, 2004.

[9] A. Keller and H. Ludwig. The WSLA framework:
Specifying and monitoring service level agreements for
web services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[10] L. Lamport. Ti clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565,
1978.

[11] Z. Li, Y. Jin, and J. Han. A runtime monitoring and
validation framework for web service interactions. In
Proceedings of the Australian Software Engineering
Conference (ASWEC), pages 70–79. IEEE CS, 2006.

[12] F. Mattern. Virtual time and global states of
distributed systems. In Proceedings of the Workshop
on Parallel and Distributed Algorithms, pages
215–226. Elsevier, 1989.

[13] J. Moe and D. A. Carr. Understanding distributed
systems via execution trace data. In Proceedings of the
International Workshop on Program Comprehension
(IWPC), pages 60–67. IEEE CS, 2001.

[14] M. P. Papazoglou, P. Traverso, S. Dustdar,
F. Leymann, and B. J. Krämer. Service-oriented
computing: A research roadmap. In F. Cubera, B. J.
Krämer, and M. P. Papazoglou, editors, Service

Oriented Computing (SOC), number 05462 in
Dagstuhl Seminar Proceedings, 2006.

[15] J. Snell, D. Tidwell, and P. Kulchenko. Programming
Web Services with SOAP. O’Reilly Media, 2001.

[16] A. Zaidman, M. Pinzger, and A. van Deursen.
Software evolution. In P. A. Laplante, editor,
Encyclopedia of Software Engineering, pages

1127–1137. Taylor & Francis, 2010.

[17] D. Zmuda, M. Psiuk, and K. Zielinski. Dynamic
monitoring framework for the SOA execution
environment. Procedia Computer Science,
1(1):125–133, May 2010.

