
Improving Service Diagnosis Through Invocation Monitoring

Cuiting Chen, Hans-Gerhard Gross and Andy Zaidman
Delft University of Technology, the Netherlands

Email: {cuiting.chen;h.g.gross;a.e.zaidman}@tudelft.nl

Abstract—Service oriented architectures support software
runtime evolution through reconfiguration of misbehaving
services. Reconfiguration requires that the faulty services can
be identified correctly. Spectrum-based fault localization is an
automated diagnosis technique that can be applied to faulty
service detection. It is based on monitoring service involvement
in passed and failed system transactions.

Monitoring only the involvement of services sometimes leads
to inconclusive diagnoses. In this paper, we propose to extend
monitoring to include also the invocation links between the
services. We show through simulations and a case study with
a real system under which circumstances service monitoring
alone inhibits the correct detection of a faulty service, and how
and to which extent the inclusion of invocation monitoring can
lead to improved service diagnosis.

Keywords-fault localization, spectrum, similarity coefficient

I. INTRODUCTION

Service-oriented architecture (SOA) is an architectural
pattern that supports the construction of dynamic, adaptable,
and evolvable systems well [1]. Evolution takes place simply
through runtime reconfiguration and versioning of the ser-
vices involved in a SOA, e.g. through exchanging a faulty
service for a healthy one [2]. Due to their highly dynamic
nature, and the ultra-late binding of the service instances,
which is one of the inherent characteristics of SOA [3],
traditional development-time quality assurance approaches
must be superseded by techniques targeting operation time.

Spectrum-based fault localization (SFL) is a statistics-
based, automatic diagnosis technique that has been demon-
strated to perform well in pinpointing critical services during
runtime [4]. It works by automatically inferring a diagnosis
from observed symptoms [5]. A diagnosis is a ranking of the
potentially misbehaving services, and the symptoms are ob-
servations about service involvement in system transactions,
plus pass/fail information for each transaction [4][6].

Even though, SFL was found to perform well in SOA,
there are specific circumstances under which suboptimal
diagnoses are achieved. A particular issue arises when
service instances are tightly coupled. This means that sev-
eral services are (almost) always invoked in combination,
thereby inhibiting discriminative information to be produced
in observations used by SFL, leading to inconclusive or
ambiguous diagnoses. In other words, tightly coupled ser-
vices are correctly pinpointed, but assigned the same rank
in the diagnosis, as if they were one single service in its
own right. Another issue arises when services exhibit fault

intermittency. This means a service only fails sometimes
when invoked.

Experiments performed for earlier work [7] suggest that
ambiguity and intermittency can be resolved through incor-
porating more detailed information to be used by SFL. One
approach is the instrumentation of the services in order to
retrieve finer grained observations on the code block level
of a service implementation. This has been demonstrated
to be successful in [7], but with the limitation that each
service must support the instrumentation. Another approach
would be the inclusion of information expressing the invo-
cations between the services. We refer to these observations
as invocation link activation observations. That way, the
observations used by SFL do not only incorporate which
services have been involved in a particular transaction, but,
additionally, which routes through which invocation links
between services were taken in a transaction. Our hypothesis
is that this additional information can help to improve SFL-
based diagnosis.

From these considerations, we can formulate the following
research questions to be addressed in this paper:

RQ1 (To which extent) can the usage of information
expressing activation of links between services
improve diagnosis?

RQ2 How does topology, i.e. the organization of the
invocation links between services, affect diagnosis,
and are there general characteristics of topology
that improve diagnosis?

The main contributions of this work are an approach and
algorithm that can be used to incorporate link invocation
information in SFL, and a case study to demonstrate the
extent to which invocation link information can improve
SFL-based diagnoses.

The remainder of the paper is organized as follows. Sec-
tion II briefly introduces spectrum-based fault localization
and explains how it can be applied in service-based systems.
Section III explains the problem in detail, and how it can
be addressed. Section IV shows how system simulations
can be used to outline the approach and make an initial
assessment. Section V evaluates our approach with a real
service-based system, and Section VI discusses the results
of the experiments performed. Finally, Sections VII and VIII
present the related work and conclude the paper.

II. BACKGROUND

A. Spectrum-based Fault Localization

SFL calculates a diagnosis, i.e. a ranking of potentially
faulty components (source code lines, blocks, etc.), from
symptoms, i.e. observations about component involvement
in system executions, plus pass/fail information about the
executions [6]. Component involvement is expressed in
the form of so-called block-hit-spectra, producing for each
execution a binary coverage value per component [8][9]
with covered=1 and not covered=0. This can be derived
through coverage tools or monitors. Each system execution
leads to a spectrum, represented by a column in a so-called
activity matrix. Each spectrum is associated with a binary
verdict (pass=0, fail=1) from an oracle. Execution of several
transactions adds spectra to the activity matrix. Each line in
the activity matrix represents activation of one component
over time. The verdicts lead to a binary output vector with
pass/fail information. The diagnosis is calculated through
applying a similarity coefficient (SC) to each component ac-
tivation vector and the output vector. The similarity denotes
the likelihood of a component being the faulty one, and,
therefore, determines its position in the ranking. Any SC
may be used; however, the Ochiai SC has been found to work
best [10]. Intuitively, SFL works by comparing the different
combinations of component involvements in the individual
system operations. Components that have not taken part in
an activity or are used more in passing activities are less
likely faulty in case a failure is detected. This basic SFL
approach is illustrated in Table I by means of a simple
Ruby program. The program is comprised of components
C0 − C10, and it is exercised with 6 system transactions,
leading to the corresponding component activations for each
transaction t1 − t6 noted down in the activity matrix. Four
transactions fail (output=1); two pass (output=0). The Ochiai
SC is calculated for the output vector and each component’s
activation vector. Finally, the similarity values are brought
in a descending order. This results in C3 being ranked top
with 100% likelihood, which represents the location of the
fault in this example system (fault marked in bold).

B. SFL for Service-based Systems

Applying SFL in service-based systems requires the SFL
concepts to be adapted to the service context. This has
implications in terms of the component granularity, system
activation, component coverage and the verdicts.

The service represents the natural component granularity.
It is the basic unit that can be restarted, exchanged, or
otherwise treated, in case an error is detected. Alternatively,
a service operation, which represents a business functionality
of a service, may denote a finer level of granularity that is
easy to observe.

Activation in service-based systems is not so obvious,
and it cannot be done through merely exercising test cases.

Table I
ILLUSTRATION OF BASIC SFL

C Character counter t1 t2 t3 t4 t5 t6 SC

def count(string) [Activity Matrix]
C0 let = dig = other = 0 1 1 1 1 1 1 0.87
C1 string.each char { |c| 1 1 1 1 1 1 0.87
C2 if c===/[A-Z]/ 1 1 1 1 0 1 0.93
C3 let += 2 1 1 1 1 0 0 1.00
C4 elsif c===/[a-z]/ 1 1 1 1 0 1 0.93
C5 let += 1 1 1 0 0 0 0 0.71
C6 elsif c===/[0-9]/ 1 1 1 1 0 1 0.93
C7 dig += 1 0 1 0 1 0 0 0.71
C8 elsif not c===/[a-zA-Z0-9]/ 1 0 1 0 0 1 0.47
C9 other += 1 } 1 0 1 0 0 1 0.47
C10 return let, dig, other 1 1 1 1 1 1 0.87

end

Output vector (verdicts) 1 1 1 1 0 0

Because a service instance can serve many application
contexts, it will not be exclusively activated from within one
application, but from a potentially arbitrary number of other
applications operating in other contexts. The application of
SFL in a service-based system requires a system execution
to be made explicit through a unique transaction ID. This
separates the service executions of different application
contexts.

Component involvement in transactions is typically mea-
sured through coverage tools. However, since there is no
single controlling authority that can produce service cover-
age information, involvement of a service in a transaction
must be produced differently. As such, applying SFL in
service-based systems requires dedicated monitors, which
observe the service communication and associate the ser-
vices/operations with their corresponding transaction IDs.
This can either be done by the services themselves or
through modern service frameworks. For example, Apache’s
Axis21, Redhat’s JBoss2, or Ebay’s Turmeric3 come well-
equipped with extensive monitoring facilities that can be
adopted to producing service involvement information.

A transaction’s pass/fail information comes from an ora-
cle. Runtime errors, exceptions, warnings and logs are nat-
ural choices for realizing oracles in service-based systems.
They are readily available through the platforms managing
the communication between services, or they are initiated
through the business logic, i.e., the services themselves.

C. Implementation of SFL for Service-based Systems

We base our implementation on Ebay’s open source
service framework Turmeric. It offers many inbuilt features
that support the (online) collection of system data required
for applying SFL in service-based systems. This allows the
implementation of online monitoring to record the block-hit
spectra for SFL with minimum amendments, yielding a slen-
der design. Our prototypical implementation is summarized

1http://axis.apache.org
2http://www.redhat.com/products/jbossenterprisemiddleware/
3https://www.ebayopensource.org/index.php/Turmeric

Data Store

Web Services

Turmeric platform
<monitoring

data>

(3)
Diagnosis

Engine

 SFL activity
matrix

<monitoring
data>

(1)
System

Activation
<oracles>

(2)
SFL Monitor

<activation data>

diagnosis

<Ochiai SC>

Figure 1. Monitoring and diagnosis architecture based on Turmeric

briefly in the following. A more detailed description is also
available [4].

Typically, services would be activated at the application
interface through user interaction. However, in our case,
system activation is automated through SoapUI4 combined
with JMeter5 for evaluation purposes. These tools are used
to create SOAP messages and execute them automatically,
thereby mimicking real user interaction.

Involvement of a service in a transaction is derived from
Turmeric’s online monitoring facilities [11]. It provides a
specific pipeline message-handling mechanism, which can
be extended by additional custom-built handlers dedicated to
monitoring incoming and outgoing traffic of a service. The
monitors associate transactions with the respective service
handlers that process the transaction, resulting in service
activation information per unique transaction. Because this
mechanism is able to distinguish incoming and outgoing
messages, it can also be used to produce invocation link
activation information, simply by associating an outgoing
transaction of one service with an incoming transaction of
another service.

Verdicts are also generated based on Turmeric’s message
handling facility. Dedicated monitors are used to log upcom-
ing exceptions or other noteworthy events and outcomes into
a data store for further analysis. Thus, any one of these
noteworthy occurrences can be associated with a unique
transaction ID and be used as verdict for calculating a
diagnosis.

The actual diagnosis is conducted offline in a diagnosis
engine. It is designed as a separately operating application
that collects the service involvement information and ver-
dicts produced by the oracles. Activities and verdicts are
transformed into an activity matrix and an output vector for
further calculation of a diagnosis. This implementation is
summarized in Fig. 1.

III. PROBLEM STATEMENT AND APPROACH

The topology shown in Fig. 2 and its corresponding ac-
tivity matrix and diagnosis in Table II illustrate the problem

4http://www.soapui.org
5http://jmeter.apache.org

Figure 2. Example topology: illustration of the problem

Table II
ACTIVITY MATRIX AND DIAGNOSIS: ILLUSTRATION OF THE PROBLEM

Nodes Activity Matix SCo

L24 00000010010100000010000000100000000100000100000000 0.436
S6 10100111110100111111011100101010000110001110010000 0.340
L46 10100111110100111111011100101010000110001110010000 0.340
S4 10100111110100111111011100101010000110001110010000 0.340
L12 00000010010100010011000001101000000100000100011000 0.320
S2 00000010010100010011000001101000000100000100011000 0.320
L56 00000000010000001000000100100000000000001000000000 0.258
S1 11 0.245
L13 10100111110100111101011100101010000010001010010000 0.241
S3 10100111110100111101011100101010000010001010010000 0.241
L34 10100111110100111101011100101010000010001010010000 0.241
L35 00000000110000111000011100100010000000001000010000 0.167
S5 00000000110000111000011100100010000000001000010000 0.167
S7 00000010100000001000010000000000000000000000010000 0.000
L47 00000010100000001000010000000000000000000000010000 0.000

Output 00000000000000000010000000100000000010000000000000

addressed in this paper. This topology is comprised of six
healthy services with h = 1.0 and one faulty service S4

with h = 0.9, representing low intermittent fault behavior.
Intermittency of 0.9 means that if S4 is invoked, it will fail
in 10% of the cases. Failure probability is set to f = 0.0
in all services, meaning that once a fault is activated, it will
not be detected immediately (i.e., turn into failure), making
diagnosis more realistic and difficult. Services S3, S4 and S6

are tightly coupled, indicated through the highest possible
invocation probabilities of their respective links between
them (L13 = L34 = L46 = 1.0). It means when S3 is
invoked, its subsequent tightly linked services S4 and S6

will also always be invoked.
A diagnosis in which only the activity of the services was

considered would lead to S4 and S6 being ranked top with
SCo = 0.34, leading to an ambiguous result. However, after
introducing invocation link information into the calculation
of the diagnosis, as demonstrated in Table II, the service
S4 becomes more suspicious, since it is associated with the
top ranked invocation link L24. This is reasonable, because
all incoming and outgoing invocation links associated with a
service represent more precise information about the activity
of a service over time. Each invocation link represents a
specific path leading into a service or leaving the service.
If there are more paths to be observed, this leads to more

varied activation observations for the service through the
different paths, and, therefore, to more accurate information
about which path lead to the activation of a fault. In the
case of tightly-coupled services, but also when services
exhibit intermittent fault behavior, the additional information
is beneficial for the diagnosis.

In other words, any of the links associated with a service
represent a potentially different path through the service,
thereby increasing the observation granularity. This is similar
to adding monitors inside the services without touching their
implementations, and we expect it can lead to similar results
as reported in [7], without having to instrument the service
implementation. In fact, this exploits topological information
of the system, and it may be regarded as a first step towards
combining SFL with model-based diagnosis [12].

The specification shown in Alg. 1 defines the algorithm
used to exploit the additional information introduced by the
invocation link observations. It takes as input the ranking R
of services and invocation links produced by SFL and the
topological information A of the system, i.e. which service is
associated with a link, and returns a set of potentially faulty
services as diagnosis D. If all SC in R are 0.0, there was no
observed failure. All services are considered to be healthy.
If there was a failure and each item in R with the highest
SC is a service, it returns these services as the diagnosis D.
Otherwise, it means that some links ranked higher than or
equal to services, and we can exploit the invocation link
information. In this case, it extracts all links L that are
ranking higher than or equal to the top-ranked service, and
then it checks which services have the highest number of
associations with those links. These services are stored in
S. If S only contains one service, i.e. |S| == 1, then the
algorithm returns D with the service as potentially faulty
service. Otherwise, if there are more services with the same
highest number of associations, it selects the ones with the
highest SC and returns them as diagnosis D.

The algorithm determines the services with the highest
number of associations with higher- or equally highly-
ranked links. An invocation link ranking higher indicates
that it is more likely to activate the fault and cause the
failure. Therefore, a service which is associated more with
these higher-ranked links is more likely to contain the fault
than other services. In other words, services that are more
associated with higher-ranked links are more related to the
paths traversing those links which were covered when a fault
was activated. Since a link cannot be faulty, the service is
convicted that participates more in these paths that lead to
fault activation.

In a nutshell, components that are more activated in
failing transactions are more likely faulty. Invocation links
are components that cannot be faulty. Services that are more
associated with those assumed faulty links, are more likely
faulty.

For example, service S4 in Fig. 2 has two associations

with the higher-ranked links L24 and L46, S6 has one associ-
ation with the higher-ranked links, i.e. zero associations with
L24, and one association with L46. That way, we can say
that service S4 is more suspicious to be faulty than service
S6, because service S4 is participating more in transactions
involving the assumed more likely faulty links L24 and L46.
Because links cannot be faulty, service S4 becomes the
most likely convict in this example case, which represents a
correct diagnosis.

Algorithm 1 Diagnose(R,A)
Require: R : Ranking of the services and links produced by SFL;

A : Associations between services and links
(Topological information)

Ensure: D : Set of potentially faulty services as diagnosis

1: T, L, S,D ← ∅
2: sctop = getHighestSC(R)
3: if (sctop != 0.0) then
4: T ← {i|i.sc == sctop and i ∈ R}
5: if (∀i ∈ T and i is service) then
6: D ← T
7: else
8: servicetr = getTopRankedService(R)
9: L← {l|l.sc ≥ servicetr.sc and l is link and l ∈ R}

10: S ← getServicesWithHighestNumOfAssoc(L,A)
11: if (|S| == 1) then
12: D ← S
13: else
14: scmax = getHighestSC(S)
15: D ← {i|i.sc == scmax and i ∈ S}
16: end if
17: end if
18: end if
19: return D

IV. SYSTEM SIMULATIONS

A. SFL Simulator

In order to validate our approach quickly and easily, we
performed the initial assessment with our SFL simulator.6

It provides functions for setting up component topologies,
executing the topologies thereby gathering coverage infor-
mation, and calculating diagnoses. As an example refer to
the topology shown in Fig. 2 and its corresponding activity
matrix and diagnosis in Table II. These are generated by our
simulator.

A topology is created by defining a number of compo-
nents. Each component is defined by the component name,
component health, and failure probability. Health denotes
the probability that a component will not produce an error.
Failure probability determines the likelihood of a component
to issue a failure immediately when a fault is propagated to
it or its own fault is activated. Once a fault is activated
it is checked in every subsequent component invocation
whether it leads to failure. If a failure is detected, the
execution is stopped. If all component failure probabilities

6https://github.com/SERG-Delft/sfl-simulator

are set to 0.0, the error is detected at the end of the
execution. Components in a topology can be connected
through defining an invocation link between them with an
associated invocation probability. This defines the likelihood
that a linked component will be invoked during execution.

Based on the topology with components and invocation
links, the simulator can be controlled to perform executions.
This requires that one or several entry points (components or
links) are activated. Every activation of the topology leads
to a particular control flow according to the initially defined
probabilities, thereby generating coverage observations for
the activity matrix and pass/fail information. These observa-
tions are collected and used to calculate a diagnosis ranking.

B. Pilot Simulation

In order to investigate how invocation link activation
information influences the diagnosis for a service-based
system, we used the SFL simulator to build a trial topology
(Fig. 3). It is comprised of 12 components with different
incoming and outgoing numbers of invocation links between
them. Components C4, C5, and C6 are set to be faulty,
and they represent the study subjects on which we focus
our interest. From initial experiments, performed for [7],
we figured that the number of incoming and outgoing
links might be significant for improving diagnosis through
adding invocation link information (compare with Fig. 2).
This comes from how additional invocation link monitors
can separate the specific invocation paths leading into and
coming out of components.

The three faulty components shown in Fig. 3 represent
three extreme cases, i.e. a component with one incoming link
and several outgoing links (C4), a component with several
incoming links and one outgoing link (C6), and a component
with several incoming and outgoing links (C5). In order to
study the effects of invocation link activation information
on diagnosis, the topology is executed according to different
criteria.

In each experiment, the failure probabilities of the com-
ponents are varied, i.e. Pf = 0.0 or Pf = 1.0, representing
the probability that a failure can be detected when a fault
was triggered. In addition, the invocation probabilities Pi

between the concerned (faulty) components and their peers
are varied, i.e. high interaction probability Pi = 0.9, low
interaction probability Pi = 0.1. This represents the proba-
bility that a component associated with this link is activated.
In each experiment, one of the components is set to be
faulty with intermittency, i.e. low health h = 0.1 and high
health h = 0.9, and it represents the probability that a faulty
component will fail when invoked.

Table III summarizes the results of the experiments per-
formed with these diverse topology setups. Every line in
the table represents three experiments comprised of 500
diagnoses each. Every experiment was carried out with a
specific topology setup, indicated in the first three columns,

C11

h=1.0
f=0.0

C0

h=1.0
f=0.0

C1

h=1.0
f=0.0

C2

h=1.0
f=0.0

C3

h=1.0
f=0.0

C6

h=0.9
f=0.0

C5

h=0.1
f=0.0

C4

h=0.9
f=0.0

C8

h=1.0
f=0.0

C9

h=1.0
f=0.0

C10

h=1.0
f=0.0

C7

h=1.0
f=0.0

Figure 3. Topology for the pilot simulation

Table III
PILOT SIMULATION (500 ACTIVATIONS)

Topology Setup C4 C5 C6

Pf Pi h better worse better worse better worse

0.0 0.9 0.9 8.1% 3% 15% 0% 0.4% 0%
0.0 0.1 0.9 24.1% 3.4% 28.6% 2.9% 5.4% 0%
0.0 0.9 0.1 0% 0% 89% 0% 0.2% 0%
0.0 0.1 0.1 17.6% 2.7% 10.7% 0.2% 4.9% 2.2%

1.0 0.9 0.9 0% 47.9% 9.8% 0% 2.6% 0%
1.0 0.1 0.9 0% 3.6% 1.2% 1.2% 1.3% 1.3%
1.0 0.9 0.1 0% 0% 0% 0.2% 0% 0%
1.0 0.1 0.1 0.5% 8.7% 0% 1.7% 0% 0.7%

and with every of the three concerned components, C4, C5,
or C6 set to be faulty. For each of the 500 activations, the
simulator was set to calculate one diagnosis based on only
component activation observations, and another diagnosis
based on both component and invocation link activation
observations. The result of a diagnosis can be classified
as correct, ambiguous or incorrect. A correct diagnosis
pinpoints the faulty component correctly and uniquely (no
duplicate top rankings). An ambiguous diagnosis pinpoints
the faulty component but includes other healthy components
on the same rank (duplicate top rankings). An incorrect
diagnosis ranks any arbitrary healthy component higher than
the faulty component.

Table III shows for each of the concerned components
the percentage of how much better or worse the diagnoses
become through incorporating invocation link activation in-
formation compared with merely using component activation
information. The percentage is calculated based on the total
number of failed transactions. Better means that an initially
incorrect or ambiguous diagnosis can be performed cor-
rectly, through including invocation link information. Worse
means that an initially correct diagnosis would become
ambiguous or incorrect through including invocation link
information.

From Table III, we can see that if the failure probability
is low, i.e. Pf = 0.0 (top part of the table), using invocation
link activation information is more beneficial, in general. All

concerned components show more better than worse results.
Component C5 scores the highest improvements, which, we
believe, is attributable to its high number of incoming and
outgoing invocation links.

An interesting result that we did not anticipate initially
is the poor performance when the failure probability is
high, i.e. Pf = 1.0. This is shown in the bottom part of
Table III. In this case, invocation observation carries not
merely useless, but even misleading information. This comes
from how the simulator treats failure probability. It stops a
transaction if a failure is detected in a component, thereby
dismissing all information about its outgoing invocation
links. This leads to component C4 issuing the worst results,
because of its low overall number of considered invocation
links, i.e. only one incoming link. Because C5 and C6 have
more incoming links, that can be considered in the diagnosis,
their results are not so bad. This suggests that for the sake
of diagnosability real systems should have more invocation
links between their components/services, and they should be
built to recover from failure and continue operation.

Other interesting observations are the effects of health
on the calculation of diagnoses. When failure probability
is high, i.e. 1.0, and health is low, i.e. 0.1, it means an
activation always causes a failure immediately. In this case,
C5 and C6 are only becoming worse, i.e. invocation link ac-
tivation information has no improvement at all. In addition,
the overall worst case can be observed for component C4

when failure probability, invocation probability and health
probability are all high, i.e. Pf = 1.0, Pi = 0.9 and h = 0.9.

From these simulations, we can conclude that using invo-
cation link observations in SFL is beneficial if the topology
is highly interconnected (many invocation links between the
services), and if a failure is detected, the system should
recover and continue its operation, if possible.

C. Simulation with a Real System

After having established a strong empirical relation be-
tween the number of incoming and outgoing invocation link
activation observations and the quality of an SFL-based
diagnosis, the next step is to assess our approach through
simulation with a real system, which represents a more
realistic setup compared to the pilot simulation. We use a
simulation of our case study system presented in Section V.

The simulated system consists of a number of compo-
nents, i.e. service interfaces, and invocation links between
them. Two of the components that exhibit poor diagnos-
ability in the real system are set to be faulty with low
intermittency of h = 0.8, all other components are set to
be healthy. The two poorly diagnosable components are Ex-
changeCurrencyService and OrderProcessorService. In the
following, we refer to them as ECS and OPS, respectively.
The invocation probabilities between the components used
for simulation are determined experimentally, based on the
implementation logic plus the test data used in order to

Table IV
DETERMINING THE NUMBER OF SIMULATION ACTIVATIONS

System Minimal Number Maximal Number
Activations of Failed Activations of Failed Activations Deviation

100 62 82 10.00%
500 393 416 4.60%
1000 776 818 4.20%
2000 1585 1614 1.45%
5000 3985 4046 1.22%

execute the real system. Failure probability in the simulation
is set to 0.0, reflecting the behavior of the real system, i.e.
faults are not detected immediately.

The number of simulations is set to a high value, i.e.
2000, in order to create a statistically significant data set.
One problem with simulating real systems is that the simu-
lation of service and invocation link activation is completely
random, solely based on the predetermined probabilities,
whereas, in the real system, invocations follow distinct
patterns coming from the system’s usage profile. In order to
retrieve a meaningful dataset in the simulation, it is therefore
essential to generate many activations. Table IV shows how
the number of activations leads to a realistic number of failed
transactions in the simulation. A low number of activations
in the simulation results in high deviation of the number
of failed transactions compared to the real system. Only
at 2000 activations in the simulator, the deviation in failed
transactions compared to the real system becomes acceptably
small. Any more activations in the simulation do not improve
the deviation from the real system significantly. Hence our
choice of 2000 activations for the simulation.

In the simulation, both components, ECS and OPS, are
activated with component activation observation enabled,
and then with both component and invocation link activation
observation enabled. Table V presents the total number of
activation failures, how many of the failed activations lead to
incorrect (inc), ambiguous (amb) and correct (cor) diagnoses
based on two activation criteria, respectively. In both cases,
diagnosis improves considerable when invocation activation
information is included, i.e. an improvement from 49.5%
to 63.4% correct diagnoses for component ECS, and from
24.1% up to 52.6% correct diagnoses for component OPS.

Table VI shows more details about how the inclusion
of invocation link activation information makes diagnoses
better or worse in the simulations. For service ECS, 235
diagnoses (out of 1616) are better, of which 132 ambiguous
diagnoses can be turned into correct diagnoses (Amb→Cor),
and also 103 incorrect diagnoses can be turned into correct
ones (Inc→Cor). However, 11 correct diagnoses are turned
into incorrect diagnoses (Cor→Inc). For service OPS, the
improvement is much better. Inclusion of invocation link
actviation information improves the diagnoses in 485 cases
(out of 1703), 115 ambiguous diagnoses can be resolved, and
370 diagnoses can be corrected. We did not find any worse

Table V
SIMULATION RESULTS FOR 2000 ACTIVATIONS

of Component Activation Comp. + Invocation Activation
Comp. Fail. Inc Amb Cor Cor-% Inc Amb Cor Cor-%

ECS 1616 624 192 800 49.5% 577 15 1024 63.4%

OPS 1703 1165 127 411 24.1% 785 22 896 52.6%

Table VI
DETAILED DISTRIBUTION OF BETTER AND WORSE DIAGNOSES

THROUGH INVOCATION COVERAGE

Better Diagnoses Worse Diagnoses
Services Total Amb→Cor Inc→Cor Total Cor→Amb Cor→Inc

ECS 235 132 103 11 0 11

OPS 485 115 370 0 0 0

diagnoses for service OPS. In future work, we will analyze
these results carefully and try to determine why some cases
issue worse results. This may indicate a limitation of our
approach in terms of which kind of topology might be
misleading diagnosis.

V. CASE STUDY

In order to evaluate our approach more thoroughly, we
conducted an experiment on our original case study SFL
Stonehenge7 introduced in [4], and adapted it to the require-
ments implied by our problem statement. The system was
extended to deal with invocation link activation information.

SFL Stonehenge is a service-based system simulating the
stock market. It supports users in buying and selling of
stocks, checking orders, and performing currency conversion
operations for foreign stock acquisition. Figure 4 illustrates
the basic service architecture of the system. It is comprised
of 10 web services including one external currency exchange
service, plus a web application for user interaction. In
addition, it accesses two data stores. The services provide
the following operations. BusinessBasicService and Busines-
sAccountService provide the functions for user authentica-
tion, login, and the user account. BusinessOPService and
BusinessStockService are used for buying and selling stock,
checking orders, and compiling market summaries. Quote-
Service and OrderProcessorService are used to process the
stock orders placed by a user. ExchangeCurrencyService
and ExchangeCheckService are responsible for the currency
operations, and the ConfigurationService binds all the other
services together, and acts like a registry.

A. Conducting the Case Study

The case study system is the same system that we used
in the simulations with two faulty services exhibiting poor
diagnosability, i.e. ExchangeCurrencyService (ECS) and
OrderProcessorService (OPS). Both services exhibit tight

7https://github.com/SERG-Delft/sfl-stonehenge

coupling with their peers plus intermittent fault behavior.
The goal of the case study is to assess to which extent
the inclusion of invocation link activation information can
improve their diagnosability.

We applied the PIT mutation tool8 in order to create 65
faulty service versions, 24 faulty versions of ECS and 41
faulty versions of OPS. For each of the 65 faulty system
versions, we use JMeter9 to execute 48 web service requests
as test scenarios in order to cover all service operations.
Upon completion of all transactions for one faulty system
version, the diagnosis engine is invoked to parse the mon-
itoring data, identify the failures in the system, and create
an activity matrix with an output vector. The monitoring
is provided through the Turmeric framework, mentioned in
Sect. II-C and detailed in [4]. Turmeric already logs all
required transaction information, e.g., the traces of a service
invoking other services. In other words, the invocation link
activation information is readily available in the existing
monitors.

In order to assess to which extent the additional invocation
link activation information makes diagnoses better or worse
for the two faulty services, we invoked the diagnosis engine
twice per execution. First, it creates activity matrices that are
only comprised of service interface activation data. Second,
it creates activity matrices that include both service interface
activation data plus invocation link activation data. The two
data sets can then be compared. The whole experiment is
designed for the single fault case. We ensure that each of
the 65 versions of the system contains only one fault, either
in ECS or in OPS.

B. Case Study Results

Table VII summarizes the case study results. It shows
for each of the two faulty services, ECS and OPS, the
total number of passed and failed transactions (pass/fail) in
the experiment. Some transactions pass, because the faults
introduced by the mutations are not triggered. Then, it shows
for the failed transactions, the incorrect, ambiguous and
correct diagnosis results based on two activation criteria,
i.e., for service interface activation information on the left
hand side, and for both service interface plus invocation link
activation information on the right hand side. The results
indicate considerable improvements in diagnoses that are
based on service activation information plus invocation link
activation. ECS improves from 13.6% up to 86.4% correct
diagnoses, and OPS improves from 70.3% up to 91.9%
correct diagnoses.

Table VIII shows details on how the diagnoses in the case
study become better or worse after including the invocation
link activation information. For ECS, 17 diagnoses are
improved from incorrect to correct. For OPS, 2 diagnoses are

8http://pitest.org/
9http://jmeter.apache.org

Users Web
Application

BusinessAccount
Service

Stonehenge
Database

BusinessOP
Service

BusinessStock
Service

ExchangeCheck
Service

ExchangeCurrency
Service (ECS)

BusinessBasic
Service

Configuration
Service

OrderProcessor
Service (OPS)

Quote
Service

<external>
currency exchange

service

Stock
Database

Figure 4. Case study system: SFL stonehenge

Table VII
DIAGNOSIS RESULTS FOR SFL STONEHENGE

Serv. Interface Activation Serv. Iface + Link Activation
Service Pass Fail Inc Amb Cor Cor-% Inc Amb Cor Cor-%

ECS 2 22 19 0 3 13.6% 3 0 19 86.4%

OPS 4 37 9 2 26 70.3% 3 0 34 91.9%

Table VIII
DETAILED RESULTS FOR BETTER AND WORSE DIAGNOSES

Better Diagnoses Worse Diagnoses
Service Total Amb→Cor Inc→Cor Total Cor→Amb Cor→Inc

ECS 17 0 17 1 0 1

OPS 8 2 6 0 0 0

improved from ambiguous to correct, 6 are improved from
incorrect to correct. OPS does not receive any worse result,
while for service ECS, one diagnosis deteriorates, i.e. from
correct to incorrect. Careful analysis of this single worse
diagnosis leads us to an explanation. The faulty service
ECS is not only invoked by other services, but also directly
from the user. Since we did not take the invocation link
activations between users and services into account, this
missing invocation link, which actually always activates the
fault, cannot help to improve the diagnsis. This indicates
the importance of including all the invocation links of the
topology in the calculation of diagnoses. Once this link is
added, the incorrect diagnosis can be corrected.

VI. DISCUSSION AND LESSONS LEARNED

In the simulations and the case study we could identify
considerable improvements by incorporating invocation link

activation information into the calculation of SFL-based
diagnoses. Our approach works, because it applies the same
rules of the basic SFL that work for component activation in-
formation, also to the invocation link activation information.
That is, services that participate more in failing transactions
are more likely faulty, plus services that are more associated
with links participating more in failing transactions, are more
likely faulty.

A. Revisiting the Research Questions

RQ1 – The extent to which the usage of invocation
link information can improve diagnosis: Both simulation
and case study demonstrate that incorporating invocation
link activation information in addition to service interface
activation information can significantly improve diagnoses
performed by spectrum-based fault localization. In the sim-
ulations of the case system, correct diagnoses for service
ECS could be improved by around 14%-points through the
additional observations, and for service OPS by around
29%-points. Interestingly, the overall improvement in cor-
rect diagnoses in the real system is higher than for the
simulation, i.e. improvement for ECS by around 73%-
points, and for OPS by around 22%-points, when including
the additional observations. We believe this much better
result in the real service-based system compared to its
simulation comes from the fact that the simulator generates
completely random invocation combinations beteen services,
whereas, in the real system, service invocations follow less
dynamic combinations, according the system’s typical usage
patterns. In other words, in the real system, much less
different paths are exercised leading to a few prominent
invocation patterns, whereas the simulation produces many
more different service invocation combinations. This is an

interesting observation which will be further researched in
the future, i.e. can the combination of usage profile plus
its associated invocation patterns be used as information in
order to improve diagnosis?

When we compare the current results with the results of
our earlier work presented in [7], in which we instrument
the services themselves with additional observation points,
it becomes apparent that including information about the
invocation links between services is inferior (about 10%–
15% worse). For the same case study system, this other
approach could achieve 100% correct and unambiguous
service diagnoses [7]. However, the huge advantage of invo-
cation link observations is that they can be retrieved through
the service platform, whereas, for our earlier approach, the
service implementations had to be amended, which is not
always possible.

RQ2 – The effects of topology on the quality of the
diagnosis: We refer to topology as the organization of the
activation observation points in the service-based system,
i.e. the service and link coverage monitors. Through the
simulations and the conduction of the case study, we can
demonstrate that the topology of the observation points has,
indeed, an effect on the quality of the diagnoses calculated
by SFL. In the case study, we compared the number of
correctly performed diagnoses for merely monitoring ser-
vice interface activation vs. interface plus invocation link
activation, and observed considerable improvements. The
improvements come from how the additional invocation link
activation information helps split the topology into finer
grained and separable units thereby helping to discriminate
better the various service invocation paths. The simulations
suggest that a high number of incoming and outgoing invo-
cation links is beneficial, however, through the case study
we found that any more than one incoming and outgoing
link is improving the results. We believe, it is not so much
the total number of incoming and outgoing links which
makes a difference, but how those links lead to more diverse
activation of the execution paths within a service, thereby
exploiting information similar to that generated by service-
internal monitors, as demonstrated in [7]. These effects will
be studied in future work.

As general guideline for determining the monitoring
topology of a service-based system, we propose to

• split the monitoring of services into finer grained units
representing better the service’s different functions.

• exploit additional information better that is suitable to
separate the execution paths of the transactions flowing
through the services.

VII. RELATED WORK

Chen et al. present Pinpoint [13], a similar diagnosis
approach plus a tool using similarity coefficients in order
to infer a diagnosis from system activation and component

involvement. However, even though their title suggests oth-
erwise, they do not address the specific issues of diagnos-
ing services, i.e. the problems of inter-service diagnosis,
and the fact that services are used in different contexts.
Yan, et al. [14], [15], propose a model-based approach to
diagnose orchestrated Web service processes. Modeling is
done through discrete event systems, which imposes a heavy
burden on the user of the technique. Zhang et al. [16], [17]
describe approaches for diagnosing quality-of-service prob-
lems in service-oriented architectures. Mayer and colleagues
[18], [19], describe a similar diagnosis approach that is based
on analyzing execution traces of failed transactions.

Wong et al. [20] discuss a number of code coverage-
based heuristics to be used in fault localization. Grosclaude
describes a model-based monitoring approach for diagnosing
component-based systems, and suggests to use transactions
IDs in order to associate messages sent between compo-
nents [21]. This is also proposed by [13], and we see it
as a standard approach to determine which service takes
part in which system transaction. Chatzigiannakis and Pa-
pavassiliou [22] use principle component analysis in order
to identify faulty nodes in sensor networks.

Heward et al. in [23] describe an algorithm for optimiza-
tion of monitoring configurations for web services. They
use their optimization algorithm in order to reduce the
monitoring overhead in a service-based system, something
that would also benefit our proposed techniques.

Li et al. [24] describe an approach for control flow
analysis and coverage for web services. Thye use their
approach for testing purposes. Bartolini et al. [25] propose
service coverage criteria that are based on service invocation
monitoring. Their approch is also used for testing. Baresi et
al. [26] introduce smart monitors for composed services, and
Moser et al. [27] and Spanoudakis et al. [28] describe non-
intrusive monitors for service-based systems.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how to incorporate invo-
cation link activation information in Spectrum-based Fault
Localization techniques to diagnose a service system. We
devised an algorithm to deduce the faulty service based on
the association number of services and higher-ranked invo-
cation links. The pilot simulation revealed that the invocation
links together with our algorithm can improve the diagnosis
for component with diverse interactions when the fault
does not cause failure immediately. Experiments on both
simulation and real case study system further confirmed that
the invocation link information can significantly improve the
diagnosis under more realistic setting-up.

In the future, we are going to explore for which type
of a topology can the invocation link information used for
better diagnosis, and which other context information, such
as systems usage profile, can be also used for diagnosis.

ACKNOWLEDGMENT

We would like to acknowledge NWO for sponsoring this
research through the Jacquard ScaleItUp project. Also many
thanks to our industrial partners Adyen and Exact.

REFERENCES

[1] G. Canfora and M. Di Penta, “Service-oriented architectures
testing: A survey,” in Software Engineering, ser. LNCS.
Springer, 2009, vol. 5413, pp. 78–105.

[2] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay,
and M. Munro, “Service-based software: the future for flex-
ible software,” in Proc. Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2000, pp. 214–221.

[3] G. Lewis and D. Smith, “Service-oriented architecture and
its implications for software maintenance and evolution,” in
Frontiers of Software Maintenance (FOSM). IEEE, 2008,
pp. 1–10.

[4] C. Chen, H.-G. Gross, and A. Zaidman, “Spectrum-based
fault diagnosis for service-oriented software systems,” in
Proc. of the Int’l Conf. on Service-Oriented Computing and
Applications (SOCA). IEEE, 2012.

[5] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund,
“A practical evaluation of spectrum-based fault localization,”
Journal of Systems and Software, vol. 82, no. 11, pp. 1780–
1792, 2009.

[6] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J.
van Gemund, “Spectrum-based sequential diagnosis,” in Proc.
Int’l Conf. on Artificial Intelligence (AAAI). AAAI Press,
2011, pp. 189–196.

[7] C. Chen, H.-G. Gross, and A. Zaidman, “Improving service
diagnosis through increased monitoring granularity,” in 7th
Intl Conf. on Software Security and Reliability, Washington,
DC, June, 18–20 2013, p. to appear.

[8] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program
profiling for software maintenance with applications to the
year 2000 problem,” in European Softw. Engineering Conf.
& Symp. on Foundations of Softw. Engineering (ESEC/FSE),
ser. LNCS. Springer, 1997, vol. 1301, pp. 432–449.

[9] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. van Gemund,
“Diagnosis of embedded software using program spectra,” in
Proc. Int’l Conf. and Workshops on Engineering of Computer-
Based Systems (ECBS). IEEE, 2007, pp. 213–220.

[10] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “An evaluation
of similarity coefficients for software fault localization,” in
Proc. Int’l Symp. on Dependable Computing (PRDC). IEEE,
2006, pp. 39–46.

[11] C. Chen, A. Zaidman, and H.-G. Gross, “A framework-based
runtime monitoring approach for service-oriented software
systems,” in Int’l Workshop on Quality Assurance for Service-
Based Applications (QASBA). ACM, 2011, pp. 17–20.

[12] J. de Kleer and J. Kurien, “Fundamentals of model-based
diagnosis,” in Fault Detection, Supervision and Safety of
Technical Processes. IFAC, 2003, pp. 25–36.

[13] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in Prod. Int’l Conf on Dependable Systems and
Networks (DSN). IEEE, 2002, pp. 595–604.

[14] Y. Yan and P. Dague, “Modeling and diagnosing orchestrat-
edweb service processes,” in Proc. Int’l Conf on Web Services
(ICWS). IEEE, 2007, pp. 51–59.

[15] Y. Yan, P. Dague, Y. Pencole, and M.-O. Cordier, “A
model-based approach for diagnosing fault in web service
processes,” International Journal of Web Services Research
(IJWSR), vol. 6, no. 1, 2009.

[16] J. Zhang, Y. Chang, and K.-J. Lin, “A dependency matrix
based framework for QoS diagnosis in SOA,” in Proc.
Int’l Conf on Service-Oriented Computing and Applications
(SOCA). IEEE, 2009, pp. 1–8.

[17] J. Zhang, Z. Huang, and K. Lin, “A hybrid diagnosis approach
for QoS management in service-oriented architecture,” in Int’l
Conf. on Web Services (ICWS). IEEE, 2012, pp. 82–89.

[18] W. Mayer, G. Friedrich, and M. Stumptner, “Diagnosis of
service failures by trace analysis with partial knowledge,” in
Service-Oriented Computing, ser. LNCS. Springer, 2010,
vol. 6470, pp. 334–349.

[19] ——, “On computing correct processes and repairs using
partial behavioral models,” in 20th European Conference on
Artificial Intelligence (ECAI), 2012, pp. 582–587.

[20] W. E. Wong, V. Debroy, and B. Choi, “A family of code
coverage-based heuristics for effective fault localization,”
Journal of Systems and Software, vol. 83, no. 2, pp. 188–
208, 2010.

[21] I. Grosclaude, “Model-based monitoring of component-based
software systems,” in Int’l Workshop on Principles of Diag-
nosis, 2004, pp. 155–160.

[22] V. Chatzigiannakis and S. Papavassiliou, “Diagnosing anoma-
lies and identifying faulty nodes in sensor networks,” Sensors
Journal, IEEE, vol. 7, no. 5, pp. 637 –645, May 2007.

[23] G. Heward, J. Han, J.-G. Schneider, and S. Versteeg, “Run-
time management and optimization of web service monitoring
systems,” in Proc. Int’l Conf on Service-Oriented Computing
and Applications (SOCA). IEEE, 2011, pp. 1–6.

[24] L. Li, W. Chou, and W. Guo, “Control flow analysis and
coverage driven testing for web services,” in Int’l Conf. on
Web Services (ICWS). IEEE, 2008, pp. 473–480.

[25] C. Bartolini, A. Bertolino, and E. Marchetti, “Introducing
service-oriented coverage testing,” in Automated Software
Engineering - Workshops, 2008. ASE Workshops 2008. 23rd
IEEE/ACM International Conference on, 2008, pp. 57–64.

[26] L. Baresi, C. Ghezzi, and S. Guinea, “Smart monitors for
composed services,” in Proc. Int’l Conf. on Service-Oriented
Computing (ICSOC). ACM, 2004, pp. 193–202.

[27] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive
monitoring and service adaptation for ws-bpel,” in Proc. Int’l
Conf. on World Wide Web (WWW). ACM, 2008, pp. 815–
824.

[28] G. Spanoudakis and K. Mahbub, “Non-intrusive monitoring
of service-based systems,” International Journal of Coopera-
tive Information Systems, vol. 15, no. 03, pp. 325–358, 2006.

