
Improving Service Diagnosis Through Increased Monitoring Granularity

Cuiting Chen, Hans-Gerhard Gross and Andy Zaidman
Delft University of Technology, the Netherlands

Email: {cuiting.chen;h.g.gross;a.e.zaidman}@tudelft.nl

Abstract—Due to their loose coupling and highly dynamic
nature, service-oriented systems offer many benefits for real-
izing fault tolerance and supporting trustworthy computing.
They enable automatic system reconfiguration in case that a
faulty service is detected. Spectrum-based fault localization
(SFL) is a statistics-based diagnosis technique that can effec-
tively be applied to pinpoint problematic services. It works by
monitoring service usage in system transactions and comparing
service coverage with pass/fail observations.

SFL exhibits poor performance in diagnosing faulty services
in cases when services are tightly coupled. In this paper, we
study how and to which extent an increase in monitoring
granularity can help to improve correct diagnosis of tightly
coupled faulty services. We apply SFL in a real service-based
system, for which we show that 100% correct identification
of faulty services can be achieved through an increase in the
monitoring granularity.

Keywords-residual defect, fault localization, online monitor-
ing, simulator, service framework;

I. INTRODUCTION

The dynamic features inherent to service-oriented soft-
ware systems such as online deployment of services and
runtime reconfiguration and evolution, facilitate fault toler-
ance mechanisms for such systems in a natural way. This
disposition of service-based systems makes the handling
of emerging problems to support fault tolerance straight-
forward. If a service misbehaves during operation it can
be exchanged for another healthy service through simple
runtime reconfiguration [1], [2]. However, before a service
may be exchanged, it must be determined with certainty
that this service, indeed, represents the root cause of the
failing system, and that it is not merely propagating an
error from somewhere else [3]. Even though service-oriented
systems provide all the ingredients necessary to recover from
and adapt to operation time failures [4], adequate runtime
diagnosis approaches that identify a faulty service accurately
are still missing. Diagnosis for services has been proposed
in the past [5], [6], but the techniques are based mainly on
static system modeling, disregarding the dynamic nature of
service-based systems.

Recent work [7] demonstrates that spectrum-based fault
localization (SFL), a statistics-based diagnosis technique can
effectively be used in order to pinpoint faulty components in
service-based systems. SFL works by automatically inferring
a diagnosis from observed symptoms [8]. The diagnosis
is a ranking of potentially faulty components, i.e. the ser-

vices in a service-based system, and the symptoms are
observations about service involvement in system activation,
i.e. the service transactions, plus pass/fail information for
each transaction [7], [9]. SFL is based on the assumption
that a service is more likely to be faulty, if it participates
more in failing transactions, and it mimics how a human
diagnostician would exonerate parts of a system that cannot
be used to explain a particular failure observation.

Although SFL can effectively be used in diagnosing faulty
services, experiments performed for our previous work [7]
show that incorrect diagnoses are more likely, if services
are tightly coupled. In other words, if a service S1 always
invokes another service S2, the diagnosis is such that both
services S1 and S2 will be convicted, leading to incorrect
or inconclusive diagnoses. In a traditional setting with a
human diagnostician, this is not so much of an issue.
Since it would mean that more services would have to be
inspected, in order to determine the true root cause of failure,
thereby merely increasing the residual diagnosis cost [10].
However, in the case of an autonomously acting fault-
tolerant system, it would mean that reconfiguration or other
self-healing activities would be applied to more suspects,
thereby unnecessarily treating healthy services.

Careful analysis of the experiments performed for [7]
reveals that the difficulty of tight coupling for the SFL
approach can be explained either by the architecture of the
system and how services interact, or by the granularity of the
observations used for SFL. Whereas, in the first instance, it
would be rather difficult to try and rearrange the architecture
in order to decouple services for any individual system
configuration; in the second instance, it would be relatively
easy to introduce more observation points in the architecture,
and thus increase the level of granularity, in order to support
the calculation of a conclusive diagnosis. As a consequence,
the goal of this paper is to explore the effects of changing the
level of observation granularity and assess its impact on the
calculation of a diagnosis. We concentrate on the following
concrete research questions:

RQ1 How does the observation granularity affect the
calculation of an SFL-based diagnosis?

RQ2 How is the granularity determined? In other words,
what are good locations for monitoring?

RQ3 To which extent can incorrect diagnoses be re-
solved, and what is the overhead incurred?

We make the following contributions. We describe an
approach and implementation for increasing the observation
granularity in services, and show how this can improve
the accuracy of diagnosing faulty services. We introduce a
novel SFL simulator. This is used to study the effects of
changing the observation granularity on the calculation of
the diagnosis in many different system configurations. We
assess the overhead of our approach and implementation in
a real case study and discuss its implications.

The remainder of this article is organized as follows:
Sect. II presents the research field and techniques related to
our approach. Sect. III outlines why tight service interaction
inhibits the calculation of a diagnosis by SFL, and why
increased monitoring granularity is adequate to alleviate this
problem. Sect. IV introduces the SFL Simulator and explains
how it can be used to assess the performance of our proposed
approach quickly. Sect. V describes the case study used
to assess our proposed approach. Sect. VI discusses the
experimental results and the limitations. Finally, Sect. VII
presents related work and Sect. VIII concludes the paper.

II. BACKGROUND

A. Spectrum-based Fault Localization

SFL infers a diagnosis, i.e. a ranking of potentially
faulty components (source code lines, blocks, etc.), from
symptoms, i.e. observations about component involvement
in system executions, plus pass/fail information about the
executions [9]. Component involvement is expressed in the
form of block-hit-spectra (hence the name Spectrum-based
Fault Localization), producing for each execution a binary
coverage value per component [11][12] with covered=1 and
not covered=0. This can be derived from a coverage tool.
Each system execution, i.e. a test, leads to a spectrum and
is associated with a binary verdict (pass=0, fail=1) from
an oracle. Execution of several tests produces an activity
matrix, representing activation of each component over
time. The test verdicts lead to a binary output vector with
pass/fail information. The diagnosis is calculated through
applying a similarity coefficient (SC) to each component
activity vector and the output vector. The similarity denotes
the likelihood of a component being the faulty one, and,
therefore, determines its position in the ranking. Any SC
may be used; however, the Ochiai SC has been found to work
best [13]. Intuitively, SFL works by comparing the different
combinations of component involvements in the individual
system operations. Components that have not taken part in
an activity or are used more in passing activities are less
likely faulty in case a failure is detected.

The basic SFL approach is illustrated in Table I by
means of a simple Ruby program. This example system
is comprised of components C0 − C10 with a source code
line as component granularity. It is exercised with 6 system
executions, i.e., test cases or transactions, leading to the
corresponding component activation for each transaction

Table I
ILLUSTRATION OF BASIC SFL

C Character counter t1 t2 t3 t4 t5 t6 SC

def count(string) [Activity Matrix]
C0 let = dig = other = 0 1 1 1 1 1 1 0.87
C1 string.each char { |c| 1 1 1 1 1 1 0.87
C2 if c===/[A-Z]/ 1 1 1 1 0 1 0.93
C3 let += 2 1 1 1 1 0 0 1.00
C4 elsif c===/[a-z]/ 1 1 1 1 0 1 0.93
C5 let += 1 1 1 0 0 0 0 0.71
C6 elsif c===/[0-9]/ 1 1 1 1 0 1 0.93
C7 dig += 1 0 1 0 1 0 0 0.71
C8 elsif not c===/[a-zA-Z0-9]/ 1 0 1 0 0 1 0.47
C9 other += 1 } 1 0 1 0 0 1 0.47
C10 return let, dig, other 1 1 1 1 1 1 0.87

end

Output vector (verdicts) 1 1 1 1 0 0

t1 − t6 noted down in the activity matrix. Four transac-
tions have failing test outcomes (1); two have passing test
outcomes (0), noted in the output vector. The Ochiai SC
is calculated for the output vector and each component’s
activity vector. Finally, the similarity values are brought in
a descending order. This results in C3 being ranked top with
100% likelihood, which represents the location of the fault
in this example system (fault marked in bold).

B. SFL for Service-based Systems

Applying SFL in service-based systems requires the SFL
concepts to be adapted to the service context. This has
implications in terms of the component granularity, system
activation, component coverage and the verdicts.

The service represents the natural component granularity.
It is the basic unit that can be restarted, exchanged, or
otherwise treated, in case an error is detected. Alternatively,
a service operation, which represents a business functionality
of a service, may denote a finer level of granularity.

Activation in service-based systems is not so obvious, and
it cannot be done through exercising test cases. Because a
service instance can serve many application contexts, it will
not be exclusively activated from within one application, but
from a potentially arbitrary number of other applications
operating in other contexts. Applying SFL in a service-
based system requires a system execution to be made explicit
through a unique transaction ID, which separates the service
executions of different application contexts.

Component involvement in transactions is typically mea-
sured through coverage tools. However, since there is no sin-
gle controlling authority that can produce service coverage
information, involvement of a service in a transaction must
be produced differently. To apply SFL in service-based sys-
tems requires dedicated monitors, which observe the service
communication and associate the services/operations with
their corresponding transactions. This can either be done by
the services themselves or through modern service frame-

works. For example, Apache’s Axis21, Redhat’s JBoss2,
or Ebay’s Turmeric3 come well-equipped with extensive
monitoring facilities that can be adopted to producing service
involvement information.

A transaction’s pass/fail information comes from an ora-
cle. Runtime errors, exceptions, warnings and logs are nat-
ural choices for realizing oracles in service-based systems.
They are readily available through the platforms managing
the communication between services, or they are initiated
through the business logic, i.e., the services themselves.

C. Implementation of SFL for Service-based Systems

We base our implementation on Ebay’s open source
service framework Turmeric.3 It offers many inbuilt features
that support the (online) collection of system data required
for applying SFL in service-based systems. This allows the
implementation of online monitoring to record the block-hit
spectra for SFL with minimum amendments, yielding a slen-
der design. Our prototypical implementation is summarized
briefly in the following (more details in [7]).

Typically, services would be activated at the application
interface through user interaction. However, in our case,
system activation is automated through SoapUI4 combined
with JMeter5 for evaluation purposes. These tools are used
to create SOAP messages and execute them automatically,
thereby mimicking real user interaction.

Involvement of a service in a transaction is derived from
Turmeric’s online monitoring facilities [14]. It provides a
specific pipeline message-handling mechanism, which can
be extended by additional custom-built handlers dedicated
to monitoring incoming and outgoing traffic of a service.
Combined with a unique transaction ID, the monitors can
associate transactions with the respective service handlers
that process the transaction, resulting in service activation
information per unique transaction.

Verdicts are also generated based on Turmeric’s message
handling facility. Dedicated monitors are used to log upcom-
ing exceptions or other noteworthy events and outcomes into
a data store for further analysis. Thus, any one of these
noteworthy occurrences can be associated with a unique
transaction ID and be used for calculating a diagnosis.

The actual diagnosis is conducted offline in a diagnosis
engine. It is designed as a separately operating application
that collects the service involvement information and ver-
dicts produced by the oracles. Activities and verdicts are
transformed into an activity matrix and an output vector for
further calculation of a diagnosis. This implementation is
summarized in Fig. 1.

1http://axis.apache.org
2http://www.redhat.com/products/jbossenterprisemiddleware/
3https://www.ebayopensource.org/index.php/Turmeric
4http://www.soapui.org
5http://jmeter.apache.org

Data Store

Web Services

Turmeric platform
<monitoring

data>

(3)
Diagnosis

Engine

 SFL activity
matrix

<monitoring
data>

(1)
System

Activation
<oracles>

(2)
SFL Monitor

<activation data>

diagnosis

<Ochiai SC>

Figure 1. Monitoring and diagnosis architecture based on Turmeric

III. PROBLEM STATEMENT AND APPROACH

A. The Problem of Tight Service Coupling

The goal of this paper is to study the effects of tight
service coupling on the calculation of a diagnosis. Topology
A displayed in Fig. 2 illustrates these effects. Topologies B
and C demonstrate how tight coupling may be resolved in
order to retrieve definite diagnoses. The topologies shown in
Fig. 2 and their corresponding diagnoses (Table II) are pro-
duced with the SFL Simulator described later in Section IV.
The topologies are comprised of six services, S0 – S5, with
service S3 being the faulty one with low health (h=0.0).
All other services are set to be 100% healthy. Every service
represents an observation point, which produces coverage
information for the corresponding activity matrices.

In topology A (Fig. 2), services S0, S2, S3 and S5

are tightly coupled, indicated through the 1.0 invocation
probabilities between them. Once S0 is invoked, S2, S3

and S5 will also always be invoked, leading to a diagnosis
that blames not only the faulty service S3, but also all
of its tightly coupled peers. The first activity matrix in
Table II illustrates this typical behavior of SFL. Three of the
four tightly linked services are assigned the same similarity
coefficient, and thus, the same rank in the diagnosis, with
Ochiai SC = 1. Because tight coupling does not produce
discriminative coverage information, it always leads to in-
correct, and in this case, ambiguous diagnoses. It should be
noted that service S5 does not appear in the ranking shown
in Table II, because it is not executed if S3 fails, i.e. with
a fatal failure. This simulation was set to stop a transaction
in case of a fatal failure.

An easy way to relax tight interactions would be the re-
duction of the invocation probabilities between the services.
Topology B in Fig. 2 shows invocation probabilities of the
originally tightly-coupled services reduced to 0.9 each. This
slight adjustment in the invocation probabilities leads to so
much more decoupling of the services and introduction of
more discriminative information in the observations, that a
correct and unambiguous diagnosis can be calculated in the
related activity matrix for Topology B in Table II. Both,
fatal failure, i.e. stop the failing transaction, and warning,

Topology A Topology B Topology C

Figure 2. Example topologies illustrating tight service coupling (A) and
potential decoupling (B, C)

i.e. continue the erroneous transaction, are simulated. In the
warning case, this leads to occasional execution of service
S5, which represents a more difficult diagnosis. However,
the diagnosis is correct and unambiguous in both cases.

B. Approach

In real systems, the invocation probabilities between
individual services cannot be adjusted arbitrarily, because
they are determined by the business logic, and the input
parameters coming from the external system context, i.e. the
system’s usage profile. In order to retrieve similar discrim-
inative power in the observations, a feasible adjustment in
the topology must be invented that leads to similar results as
shown for Topology B. Experiments with the SFL Simulator
suggest that this may be achieved through increasing the
number of observation points in the topology, which boils
down to splitting services into sub-components, or simply
adding components. This increases the level of detail, i.e.
the observation granularity used for the similarity coeffi-
cients. By splitting services into finer-grained components,
we retrieve finer coverage information, plus finer grained
communication between the sub-components, with different
invocation probabilities between them.

This increase in observation granularity is illustrated in
Topology C (Fig. 2) and its effect shown in its corresponding
activity matrix. Service S2 is split into two sub-components,
S2.1 and S2.2, increasing the number of observation points.
When looking at both sub-components of S2 individually,
we observe that the execution towards the faulty service
S3 can follow two internal routes with (hopefully) different
invocation probabilities. In both topologies, B and C, S3 can
be reached through S2, and this can be observed. However,
in Topology C, two separate observable paths lead from S2

into S3. SFL exploits this additional information. Whether,
and to which extent the invocation probabilities will change
between the new sub-components through increasing the
observation granularity depends on careful selection of the

Table II
EXAMPLE ACTIVITIES/SIMILARITIES FOR THE TOPOLGIES IN FIG. 2

Topology A
Service Activity for Topology A (fatal failure) Ochiai SC

S5 00 0.000
S1 1000111101000001100001010010110000000100 0.592
S4 1001111101111100110110001010111000100100 0.742
S3 11 1.000
S2 11 1.000
S0 11 1.000
Errors 11

Topology B
Service Activity for Topology B (fatal failure) Ochiai SC

S5 00 0.000
S1 0000000000000100001000000011000010000100 0.340
S4 0011101001100000001110101011100100101001 0.668
S0 11 0.949
S2 1111101111111011111111111111111111111111 0.973
S3 1111101111111010111111111111011111111111 1.000
Errors 1111101111111010111111111111011111111111

Service Activity for Topology B (warning) Ochiai SC

S1 1000010000000010000000010010000011100000 0.485
S4 1011110100100100100110010000001111011001 0.590
S0 11 0.922
S5 1010111110001011111111110110111111110010 0.924
S2 1111111110101111111111111111111111111111 0.946
S3 1110111110001011111111111111111111111110 1.000
E 1110111110001011111111111111111111111110

Topology C
Service Activity for Topology C (fatal failure) Ochiai SC

S5 00 0.000
S1 1010000000000000000100000010000000000000 0.344
S4 0001000000110001101110010100111000000000 0.445
S2.2 1001001000000111001011110110111001110101 0.601
S0 11 0.689
S2.1 1001100100111001110110111010110000100110 0.851
S3 1001000100001011110110111010010001100110 1.000
Errors 1001000100001011110110111010010001100110

observation locations. This requires further investigation
when performing a case study (Sect. V).

IV. SYSTEM SIMULATIONS

A. SFL Simulator

Performing experiments with a fully fledged case study is
tedious. Every new experiment requires extensive adaptation
to new experimental requirements. This lead us to the
development of a simulator. It is developed in Ruby, and
used for assessing different system topologies quickly and
easily. It provides functions for setting up component topolo-
gies, executing the topologies thereby gathering coverage
information, and calculating diagnoses.

A topology is created by defining a number of compo-
nents. Each component is defined by the component name,
component health, and failure probability. Health denotes
the probability that a component will not produce an error
when it is executed. 1.0 represents a healthy component,
while a value in the range (0.0, 1.0) represents a faulty

component with intermittent fault behavior. 0.0 denotes no
fault intermittency, i.e., the component will always produce
an error if activated. Failure probability denotes the likeli-
hood of a component to propagate an error into a failure,
i.e. the fault observation. 1.0 means that if a component
encounters an error, this component will issue a failure, and
the simulated execution will be stopped. This can also be
used to discriminate fatal failures (i.e. component health
< 1.0 and failure probability = 1.0) from warnings (i.e.
failure probability = 0.0). In the case of a warning, the
system execution will continue normally and issue a failed
transaction at the end.

Components in a topology can be connected through
defining a link between them with an associated invoca-
tion probability. This denotes the likelihood that a linked
component will be invoked during execution. 1.0 denotes
that two components will always be invoked together (i.e.,
representing tight coupling), and 0.0 determines that a link
is never exercised.

Based on the topology with components and invocation
links, the simulator can be controlled to perform executions.
This requires that one or several entry points (components or
links) are activated. Every activation of the topology leads
to a particular control flow according to the initially de-
fined probabilities, thereby generating coverage and pass/fail
information. These observations are collected and used in
order to calculate a diagnosis.

For illustration purposes, Figure 3 displays an example
topology of our case study system produced by the SFL
Simulator. It is a more elaborate diagram than the ones
displayed in Fig. 2, and it shows components (i.e. the
services as boxes) with health and failure probabilities, h and
f, respectively, and link nodes (as ovals) with their respective
transaction probabilities. Figure 3 also shows a particular
instance after 200 transactions from the Web Application
(denoted as “Web” at the left hand side of the figure). The
whole numbers in the link nodes denote the frequencies of
invocations, and the thickness of each line also indicates
this.

The source code of the SFL Simulator is available for
download.6 Its usage for the work described in this paper
was twofold. First, we used it to develop our approach
described in Sect. III-B. Second, we applied it to simulate
our original case system described in [7], for an initial
assessment of our ideas in a more realistic setup (described
below).

B. Simulation Results

To assess our approach in a more realistic setup, we
imitated our case study system with the SFL Simulator.
In contrast to the topology shown in Fig. 3, which is
only displaying top-level services, we used a more detailed

6https://github.com/SERG-Delft/sfl-simulator

Table III
SIMULATION RESULTS FOR SERVICE DIAGNOSIS

Services Component # of Diagnosis Correct
Granularity Activ. Correct Incor. Diagn.

ExchangeCurrency i1 Interface 50 8 42 16%
Service i2 Sub-comp 50 39 11 78%

OrderProcessor i1 Interface 50 13 37 26%
Service i2 Sub-comp 70 47 23 67%

Table IV
REASONS FOR INCORRECT DIAGNOSES IN SIMULATION

Services Component Incorrect Fault not Other
Granularity Diagnoses Activated Reasons

ExchangeCurrency- i1 Interface 42 16 26
Service i2 Sub-comp 11 5 6

OrderProcessor- i1 Interface 37 5 32
Service i2 Sub-comp 23 5 18

model, looking at the service interface level. This follows the
original design of the case study system [7]. In addition, the
link probability in the simulations is based on the service
implementation logic plus the test data applied, and the
health intermittency is determined based on the number of
fault activations during test of the real system. Figure 3
shows a reduced topology of the simulated system (due to
space limitations).

In the original experiments, two services could be iden-
tified to exhibit the problem of tight service interaction,
i.e. ExchangeCurrencyService and OrderProcessorService,
resulting in incorrect diagnoses. The results of the simu-
lations performed for these two services are shown in Table
III. The simulations are based on two levels of detail. The
first level of granularity assessed is the service interface
level (indicated as i1 in Table III), and this corresponds to
our original experiments described in [7]. The second level
is more detailed and separates service interfaces into finer
grained sub-components (indicated as i2 in Table III). In
order to obtain a finer level of granularity, the Exchange-
CurrencyService is split into 2 sub-components and the
OrderProcessService is split into 7 sub-components. The
sub-components are determined following roughly the main
execution paths through these services. Their respective
invocation probabilities defined in their links are derived
experimentally from the original system in the case study.
The number of activations in the simulation (Table III) is
set to 50 and 70, respectively, in order to retrieve sufficient
fault coverage.

The low values for correctly performed diagnoses for
granularity i1 shown in Table III illustrate the poor perfor-
mance of SFL for tightly coupled services. A diagnosis is
considered to be correct, if the true faulty component is cor-
rectly and unambiguously identified by the SFL diagnosis.
In the initial setup (with interface-level granularity, i1), this
can only be achieved in 16% and 26% of the cases for the

BusinessStock

h=1.0

f=1.0

L0 = 1.0
200

BusinessBasic

h=1.0

f=1.0

L3 = 0.8
160

L4 = 0.9
173

BusinessOP

h=1.0

f=1.0

L5 = 0.9
188

L6 = 0.8
157

BusinessAccount

h=1.0

f=1.0

L1 = 1.0
453

OrderProcessor

h=0.9

f=0.0

L7 = 0.4
57

L8 = 0.2
41

L9-10 = 0.8
119

Configuration

h=1.0

f=1.0

L2 = 1.0
589

Quote

h=1.0

f=1.0

L11 = 1.0
110

ExchangeCurrency

h=0.9

f=0.0

L12 = 0.2
59

L13 = 0.5
119

L14 = 0.8
200

L15 = 0.5
123

ExchangeCheck

h=1.0

f=1.0

StonehengeDB

h=1.0

f=1.0

StockDB

h=1.0

f=1.0

ExternalCurrencyExchange

h=1.0

f=1.0

Web = 1.0
200

Figure 3. Topology of the case study produced by the SFL Simulator

two tightly coupled services. The simulation results for the
finer-grained level of observation granularity (i2, shown in
Table III) are much improved, up to 78% and 67%. However,
the improvement is poorer than expected. In fact, they are
worse than the results from the experiments performed for
the real case study described later (Table VII). This requires
some explanation:

1) Compared to the case study, fewer faults are activated
in the simulation (as shown in Table IV), leading
to missing diagnoses. The chance of executing some
faults is low through the combination of failure and
invocation probabilities defined in the simulation. In
other words, some faults that are activated in the case
study are not activated in the simulation.

2) Even though the number of activations corresponds to
the real system, the random activations between the
components is more diverse. The simulation uses ran-
dom invocations according to predefined probabilities
in order to exercise the topology. The probabilities are
retrieved experimentally from the real case study, but
they do not reflect the usage profile imposed by the
real test cases accurately. This leads to statistically sig-
nificant deviations of the executions in the simulation
compared to the real system.

3) The observation granularity in the real case system is
increased compared with the simulation (see Sect. V).
The simulator allows to define topologies with finer-
grained sub-components, however, estimating the link
probabilities and health values of these finer-grained
sub-components becomes increasingly more difficult.

All in all, the simulations suit our purpose in that they
confirm a positive effect of introducing more observation

points for the calculation of the diagnosis. In the following
section, we describe how our approach is evaluated in a real
system.

V. CASE STUDY

A. Case System

After having demonstrated in the simulator how an in-
crease in the observation granularity of a system can support
the calculation of an unambiguous diagnosis, the next step
is the evaluation of our proposed approach in a real service-
based system. We use our original case study SFL Stone-
henge7 from [7], and adapt it to the requirements implied by
our problem statement. SFL Stonehenge is a service-based
system simulating the stock market. It supports users in
buying and selling of stock, checking orders, and performing
currency conversion operations for foreign stock acquisition.

Figure 3 illustrates the basic service architecture of the
system. It is comprised of 10 web services including one
external currency exchange service, plus a web application
for user interaction. In addition, it accesses two data stores.
The services provide the following operations. BusinessBa-
sicService and BusinessAccountService provide the functions
for user authentication, login, and the user account. Busi-
nessOPService and BusinessStockService are used for buying
and selling stock, checking orders, and compiling market
summaries. QuoteService and OrderProcessorService are
used to process the stock orders placed by a user. Exchange-
CurrencyService and ExchangeCheckService are responsible
for the currency operations, and the ConfigurationService
binds all the other services together, and acts like a registry.

7https://github.com/SERG-Delft/sfl-stonehenge

Table V
ACTIVE MUTATORS IN THE EXPERIMENT

ID Mutator Error in the system

1 Negate Conditionals wrong internal state or response, null
or runtime exception

2 Return Values wrong response, null or runtime exception
3 Conditionals Boundary wrong internal state or response
4 Void Method Call wrong internal state
5 Math Mutator wrong internal state

Table VI
MUTATORS USED IN THE TWO TIGHTLY COUPLED SERVICES

Services Mutators (from Table V) # of Mutations

ExchangeCurrencyService 1 5
(24 mutated versions) 2 7

4 12

OrderProcessorService 1 15
(41 mutated versions) 2 1

3 1
4 23
5 1

B. Conducting the Case Study

Because the focus in this paper is on tight service in-
teraction, in the case study, again, we look at the two
tightly coupled services, ExchangeCurrencyService and Or-
derProcessorService. We apply the PIT mutation tool8 in
order to create 65 faulty service versions, 24 faulty versions
of ExchangeCurrencyService, and 41 faulty versions of
OrderProcessorService. Table V summarizes the type of
mutations applied with PIT, and it briefly states the purpose
of each mutator used, and the error it generates in the system.
Table VI illustrates the kind of mutators applied to the two
services. The different numbers of mutations per mutator
come from the presence or absence of specific code features
in the service implementations that PIT manipulates.

For each of the 65 faulty system versions, we use JMeter9

to execute 48 web service requests as test scenarios in order
to cover all service operations. Upon completion of all trans-
actions for one faulty system version, the diagnosis engine
is invoked to parse the monitoring data, identify the failures
in the system, and create an activity matrix with an output
vector. Then, it is assessed whether the resulting diagnosis
pinpoints the service correctly that contains the seeded fault.
The whole experiment is designed for the single fault case.
We ensure that each of the 65 versions of the system contains
only one fault, either in ExchangeCurrencyService or in
OrderProcessorService.

The conduction of the case study is split up into two
instances, i1 and i2. In instance i1, we invoke the original
case system with monitoring enabled at the service interface
level of granularity. The monitoring is provided through the
Turmeric framework, mentioned in Sect. II-C and detailed

8http://pitest.org/
9http://jmeter.apache.org

in [7]. In instance i2, we invoke the same system and use the
same Turmeric-based monitoring. Additionally, we also use
the EMMA Java code coverage tool10 to instrument the two
services. EMMA is capable of providing source code line
coverage information. However, we choose to retrieve code
block coverage information. We determine the code blocks
based on the internal control-flow structure of the service
implementations. In addition, in some cases we separate the
blocks for better isolation of tightly-coupled code sections.
This results in 10 sub-components each for both services.
We believe that code-block level of granularity is sufficient
for our purpose since it separates a service into units that
can be discriminated in the calculation of the diagnosis.

That way, we are able to increase the number of observa-
tion points in instance i2 to the highest level of granularity
required. The additional monitoring introduces more and
more diverse coverage information, which we expect will
yield better suited activity matrices, thus, leading to better
diagnoses. The results of these experiments are presented in
the following sub-section.

C. Case Study Results

Table VII and Table VIII summarize the results of the
case study for both instances, i.e. i1 for service interface
observation granularity and i2 for code block observation
granularity. Table VII shows the correctness of diagnoses in
both levels of observation granularity for each faulty service
version. A diagnosis is considered correct, if the faulty
service or one of its sub-components is ranked top, and no
other service receives the same ranking, i.e. the diagnosis is
correct and unique.

The improvement of the finer-grained observation granu-
larity over the original coarser-grained granularity is substan-
tial. Both services with incorrect diagnoses in our original
case study can now be diagnosed correctly and unambigu-
ously as the faulty services to a very high degree, i.e. 92%
and 90% shown in Table VII. Actually, the faults injected
in both services can always be diagnosed correctly, leading
to 100% correct and unambiguous diagnoses. This becomes
apparent when we look at the reasons for the incorrect diag-
noses shown in Table VIII. In the first instance, i1, 19 plus
9 out of the total number of incorrect diagnoses of the two
services produced wrong results because of tight interaction
on failure. This represents our original problem, and the table
indicates that it can be resolved entirely through increasing
the monitoring granularity for the considered services in the
second instance, i2. In both instances, i1 and i2, 2 plus 4
out of the total number of incorrect diagnoses are due to the
faults in the services not being activated. In other words, in
these cases no test execution was able to cover the faults
introduced through the mutations. In general, diagnosis can
only be initiated when a fault is actually detected. This is

10http://emma.sourceforge.net

Table VII
EXPERIMENTAL RESULTS FOR SERVICE DIAGNOSIS

Services Component # of Diagnosis Correct
Granularity Mut. Correct Incor. Diagn.

ExchangeCurrency- i1 Service Interface 24 3 21 13%
Service i2 Code Block 24 22 2 92%

OrderProcessor- i1 Service Interface 41 28 13 68%
Service i2 Code Block 41 37 4 90%

Table VIII
REASONS FOR INCORRECT DIAGNOSES IN EXPERIMENT

Services Component Incorrect No Acti- Tight
Granularity Diagnoses vation Interaction

on Failure

ExchangeCurrency- i1 Service Interface 21 2 19
Service i2 Code Block 2 2 0

OrderProcessor- i1 Service Interface 13 4 9
Service i2 Code Block 4 4 0

not attributable to our diagnosis technique, but a fundamental
problem of all coverage-based quality assurance approaches.

We can, therefore, claim that all faults can be diagnosed
correctly and unambiguously in our case study, if they
can be detected, i.e. they are propagated into failure. The
lower values of 92% and 90% shown in Table VII are a
consequence of intermittent fault behavior of the services, a
common property of software.

VI. DISCUSSION AND LESSONS LEARNED

A. General Observations

From the simulations and the case study, we conclude
that the monitoring granularity has indeed an effect on the
calculation of an SFL diagnosis. Further, increasing the
monitoring granularity facilitates the calculation of correct
and unambiguous diagnoses through introducing more and
more diverse observations into the statistics of the SFL
diagnosis. The increase in coverage diversity has a positive
effect on the similarity coefficients produced, because it
helps better convicting components that participate in failing
transactions and exonerating components that participate in
passing transactions.

Initially we expected that we would not be able to
achieve 100% correct diagnoses in our case study sys-
tem. We thought that some of the tight couplings between
sub-components would subsist across service boundaries,
thereby invalidating our decoupling effort. This was not case.
However, in the case study, some sub-components within the
services are still tightly coupled, so that the sub-components
are assigned the same similarity coefficient in the diagnosis.
In other words, even though we can pinpoint the faulty
service correctly, and this was our original goal, in some
cases, we cannot determine the location of the fault within
the service correctly. This comes from how we determine the
finer grained monitoring locations according to the predicate

nodes in the service implementations. Some of the monitored
code blocks are still exercised in combination, and thus, are
tightly linked.

Here, an important lesson learned is that we can reduce
tight coupling on the higher level of granularity, i.e. between
services, but we cannot remove it entirely on the lower
levels of granularity, e.g. within services. We acknowledge
the fact that topology plays a major role in the successful
application of spectrum-based fault localization in service-
based systems. In the future, we will look at other methods
of topological separation, for example program slicing tech-
niques [16].

B. Correct Diagnosis of Missing Faulty Components

Six mutations of instance two in our case study exhibit
strange behavior. The faulty services are diagnosed correctly,
but their corresponding faulty code blocks are not covered
according to the code block monitors, even though the fault
is triggered. Careful inspection of these six exceptions leads
to an explanation.

The EMMA code coverage tool calculates code coverage
based on the basic block level, instead of the code line level.
It considers a block as executed, if the block’s last byte
code instruction is executed.11 Unfortunately, the mutations
injected by the PIT mutation tool may cause the service to
be interrupted in the middle, when it is executing the faulty
code block. It leads to the phenomenon that EMMA does
not cover the faulty block while it is actually executed.

This unfortunate interference leads to an interesting lesson
learned: tight coupling is not only a curse, but it can
also be a cure, particularly in cases where not all sub-
components can be monitored separately. If two components
are tightly coupled, the monitored component may well hint
to a problem in its tightly coupled but unmonitored peers.
In such a case, two tightly coupled individual components
are correctly treated as one big component in the diagnosis.

C. Runtime Overhead

An important aspect of our proposed diagnosis technique
is the runtime overhead it imposes on the service-based
system. Since the diagnosis engine is detached from the
executing system, in Table IX, we focus on the overhead
of the runtime monitoring required for SFL. The table
shows average end-to-end process response times of 100
transactions of four representative system requests. We chose
the requests based on diversity in service interactions they
will create. Both services exhibit four fundamentally dif-
ferent combinations of interactions with other services. The
values are measured by JMeter on a standard (non-real-time)
Linux PC platform with Turmeric and EMMA installed. The
measurements indicate that the overhead for service-level
monitoring introduced by Turmeric is huge, whereas the

11http://emma.sourceforge.net/faq.html#q.blockcoverage

Table IX
OVERHEAD: TURMERIC/EMMA MONITORING IN MILLISECONDS

Service No Turmeric Monitor With Turmeric Monitor
Requests No Emma With EMMA No Emma With EMMA

Exch Req 1 36 36 315 326
Exch Req 2 7 7 64 69
Exch Req 3 49 48 400 417
Exch Req 4 30 31 249 246

Order Req 1 77 77 514 501
Order Req 2 86 88 459 470
Order Req 3 54 49 271 281
Order Req 4 39 38 276 271

additional block-level monitoring overhead introduced by
EMMA is minute.

After having reviewed our case study, it becomes apparent
that our admittedly poor prototypical implementation is
responsible for the disproportionately high values measured
for the service-level monitoring granularity in Turmeric. As
major inhibiting factor, we can identify the large number of
synchronous database accesses realized in our monitors. In
future experiments, we will replace this inefficient storage
implementation through an asynchronous publish-subscribe
solution, e.g. based on Redis.12

D. Threats to Validity

We are aware of a number of threats that might invali-
date our findings. We use SFL Stonehenge as case study.
Although it is a realistic system, our results may not be
applicable to any arbitrary service-based system. In fact,
the topology of a system may have an effect on how well
monitoring can be applied and diagnosis can be performed,
e.g., in the case of very few independent paths through the
logic. We mentioned the topology problem earlier as future
work.

Another potential threat comes from the tools used for
our work. We have tested our own implementation as much
as possible and compared the results of our case study
with the outcome obtained from the simulator. Although
the results are not the same, they are in a similar league,
reassuring us that there are no major flaws in our case study
implementation.

The PIT mutation testing tool is provided by a third party.
PIT is still under constant development and being improved,
but we consider it to be reliable.

VII. RELATED WORK

Chen et al. present Pinpoint [17], a similar diagnosis
approach plus a tool using similarity coefficients in order
to infer a diagnosis from system activation and component
involvement. However, even though their title suggests oth-
erwise, they do not address the specific issues of diagnosing
services, i.e. the problems of inter-service diagnosis, and

12http://redis.io

the fact that services are used in different contexts. Yan, et
al. [5], [6], propose a model-based approach to diagnose or-
chestrated Web service processes. Modeling is done through
discrete event systems, which imposes a heavy burden on
the user of the technique. Zhang et al. [18], [19] describe
approaches for diagnosing quality-of-service problems in
service-oriented architectures. Mayer and colleagues [20],
[21], describe a similar diagnosis approach that is based on
analyzing execution traces of failed transactions.

Wong et al. [22] discuss a number of code coverage-
based heuristics to be used in fault localization. Grosclaude
describes a model-based monitoring approach for diagnosing
component-based systems, and suggests to use transactions
IDs in order to associate messages sent between compo-
nents [23]. This is also proposed by [17], and we see it
as a standard approach to determine which service takes
part in which system transaction. Chatzigiannakis and Pa-
pavassiliou [24] use principle component analysis in order
to identify faulty nodes in sensor networks.

Heward et al. in [25] describe an algorithm for optimiza-
tion of monitoring configurations for web services. They
use their optimization algorithm in order to reduce the
monitoring overhead in a service-based system, something
that would also benefit our proposed techniques.

VIII. CONCLUSION AND FUTURE WORK

The goal of this paper is to investigate to which extent
an increase in monitoring granularity supports the diagnosis
of faulty services. Referring to our research questions, we
looked at:

RQ1: How the observation granularity affects the calcu-
lation of an SFL-based diagnosis. First, we used a simulator
to reason over different service topologies. Second, we
performed an actual case study on a SOA-based system,
varying the level of monitoring granularity. The main con-
clusion from both experiments is that increasing the level
of observation granularity can indeed improve diagnosis.
More precisely, in our case study we could obtain up to
100% correct diagnoses. This comes through the increased
variability in the observations used for the activity matrix of
the SFL technique.

RQ2: How the granularity may be determined. In other
words, what are good locations for monitoring? The natural
choice for placing monitors is at the service-level. However,
this is so coarse-grained that many cases cannot be correctly
diagnosed. Increasing the level of observation-granularity
can then only be done by going into the services, changing
their implementations. A brute force approach would be to
monitor every single line of code. The tool we use, EMMA,
is able to do this. However, we restrict the monitoring to
the code block level, representing unique execution branches
through a service or proper isolation of tight coupling. In the
case study, this was done manually, but the effort resembles
code slicing techniques. In future work, we will assess

to which extent such techniques may be used in order to
automate the placement of monitors.

RQ3: To which extent can incorrect diagnoses be im-
proved, and what is the overhead incurred? Our case study
demonstrates that we are able to diagnose all faulty services
correctly through increasing the monitoring granularity. Yet,
at the same time, we are also worried about the performance
overhead that the entire infrastructure adds. In particular, we
noted an overhead of around 700% for adding monitors to
our services-framework. We believe, this is attributable to
the inefficient prototypical implementation of our monitoring
framework in Turmeric. Specifically, we use synchronous
invocations in order to store the monitoring data for later
analysis. In the future, we will change this implementa-
tion into a publish-subscribe architectural style and use
asynchronous data logging. Adding finer-grained monitors
through code instrumentation inside the services did not
create any additionally measurable overhead.

ACKNOWLEDGMENT

We would like to acknowledge NWO for sponsoring this
research through the Jacquard ScaleItUp project. Also many
thanks to our industrial partners Adyen and Exact.

REFERENCES

[1] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay,
and M. Munro, “Service-based software: the future for flex-
ible software,” in Proc. Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2000, pp. 214–221.

[2] G. Canfora and M. Di Penta, “Testing services and service-
centric systems: challenges and opportunities,” IT Profes-
sional, vol. 8, no. 2, pp. 10 –17, march-april 2006.

[3] A. Mohamed and M. Zulkernine, “On failure propagation in
component-based software systems,” in Proc. Int’l Conf. on
Quality Software (QSIC). IEEE, 2008, pp. 402–411.

[4] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou,
and K. Pohl, “A journey to highly dynamic, self-adaptive
service-based applications,” Automated Software Engineering,
vol. 15, no. 3-4, pp. 313–341, 2008.

[5] Y. Yan and P. Dague, “Modeling and diagnosing orchestrat-
edweb service processes,” in Proc. Int’l Conf on Web Services
(ICWS). IEEE, 2007, pp. 51–59.

[6] Y. Yan, P. Dague, Y. Pencole, and M.-O. Cordier, “A
model-based approach for diagnosing fault in web service
processes,” International Journal of Web Services Research
(IJWSR), vol. 6, no. 1, 2009.

[7] C. Chen, H.-G. Gross, and A. Zaidman, “Spectrum-based
fault diagnosis for service-oriented software systems,” in
Proc. of the Int’l Conf. on Service-Oriented Computing and
Applications (SOCA). IEEE, 2012.

[8] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund,
“A practical evaluation of spectrum-based fault localization,”
Journal of Systems and Software, vol. 82, no. 11, pp. 1780–
1792, 2009.

[9] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J.
van Gemund, “Spectrum-based sequential diagnosis,” in Proc.
Int’l Conf. on Artificial Intelligence (AAAI). AAAI Press,
2011, pp. 189–196.

[10] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, and A. van
Gemund, “Prioritizing tests for software fault localization,”
in Int’l Conf. on Quality Software. IEEE, 2010, pp. 42–51.

[11] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program
profiling for software maintenance with applications to the
year 2000 problem,” in European Softw. Engineering Conf.
& Symp. on Foundations of Softw. Engineering (ESEC/FSE),
ser. LNCS. Springer, 1997, vol. 1301, pp. 432–449.

[12] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. van Gemund,
“Diagnosis of embedded software using program spectra,” in
Proc. Int’l Conf. and Workshops on Engineering of Computer-
Based Systems (ECBS). IEEE, 2007, pp. 213–220.

[13] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “An evaluation
of similarity coefficients for software fault localization,” in
Proc. Int’l Symp. on Dependable Computing (PRDC). IEEE,
2006, pp. 39–46.

[14] C. Chen, A. Zaidman, and H.-G. Gross, “A framework-based
runtime monitoring approach for service-oriented software
systems,” in Int’l Workshop on Quality Assurance for Service-
Based Applications (QASBA). ACM, 2011, pp. 17–20.

[15] T. Espinha, C. Chen, A. Zaidman, and H.-G. Gross, “Main-
tenance research in soa - towards a standard case study,” in
Proc. European Conf. on Software Maintenance and Reengi-
neering (CSMR). IEEE, 2012, pp. 391–396.

[16] M. Weiser, “Program slicing,” in Proceedings of the Interna-
tional Conference on Software Engineering (ICSE). IEEE
Press, 1981, pp. 439–449.

[17] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in Prod. Int’l Conf on Dependable Systems and
Networks (DSN). IEEE, 2002, pp. 595–604.

[18] J. Zhang, Y. Chang, and K.-J. Lin, “A dependency matrix
based framework for QoS diagnosis in SOA,” in Proc.
Int’l Conf on Service-Oriented Computing and Applications
(SOCA). IEEE, 2009, pp. 1–8.

[19] J. Zhang, Z. Huang, and K. Lin, “A hybrid diagnosis approach
for QoS management in service-oriented architecture,” in Int’l
Conf. on Web Services (ICWS). IEEE, 2012, pp. 82–89.

[20] W. Mayer, G. Friedrich, and M. Stumptner, “Diagnosis of
service failures by trace analysis with partial knowledge,” in
Service-Oriented Computing, ser. LNCS. Springer Berlin
Heidelberg, 2010, vol. 6470, pp. 334–349.

[21] ——, “On computing correct processes and repairs using
partial behavioral models,” in 20th European Conference on
Artificial Intelligence (ECAI), 2012, pp. 582–587.

[22] W. E. Wong, V. Debroy, and B. Choi, “A family of code
coverage-based heuristics for effective fault localization,”
Journal of Systems and Software, vol. 83, no. 2, pp. 188–
208, 2010.

[23] I. Grosclaude, “Model-based monitoring of component-based
software systems,” in Int’l Workshop on Principles of Diag-
nosis, 2004, pp. 155–160.

[24] V. Chatzigiannakis and S. Papavassiliou, “Diagnosing anoma-
lies and identifying faulty nodes in sensor networks,” Sensors
Journal, IEEE, vol. 7, no. 5, pp. 637 –645, May 2007.

[25] G. Heward, J. Han, J.-G. Schneider, and S. Versteeg, “Run-
time management and optimization of web service monitoring
systems,” in Proc. Int’l Conf on Service-Oriented Computing
and Applications (SOCA). IEEE, 2011, pp. 1–6.

