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Abstract Due to their loosely coupled and highly dynamic nature, service-oriented

systems offer many benefits for realizing fault tolerance and supporting trust-

worthy computing. They enable automatic system reconfiguration when a faulty

service is detected. Spectrum-based fault localization (SFL) is a statistics-based

diagnosis technique that can be effectively applied to pinpoint problematic ser-

vices. However, SFL exhibits poor performance in diagnosing services which are

tightly interacted. Previous research suggests that an increase in the number of

monitoring locations may improve the diagnosability for tight interaction.
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In this paper, we analyze the trade-offs between the diagnosis improvement

through increased monitoring granularity and the overhead caused by the intro-

duction of more monitors, when diagnosing tightly-interacted faulty services. We

apply SFL in a service-based system, for which we show that 100% correct identi-

fication of faulty services can be achieved through the increased monitoring granu-

larity. We assess the overhead with increased monitoring granularity and compare

this with the original monitoring setup. Our experimental results show that the

monitoring at the service communication level causes relatively high overhead,

whereas the monitoring overhead at a finer level of granularity, i.e. at the ser-

vice implementation level, is much lower, but highly dependent on the number of

monitors deployed.

Keywords residual defect · fault localization · online monitoring · simulator ·

service framework

1 Introduction

The dynamic features inherent to service-oriented software systems, such as on-

line deployment of services, and runtime reconfiguration and evolution, facilitate

fault tolerance mechanisms in a natural way, and it makes the handling of emerg-

ing problems straightforward. If a faulty service misbehaves during operation, it

can be exchanged for another healthy service through simple runtime reconfigura-

tion (Bennett et al, 2000; Canfora and Di Penta, 2006). However, before a service

may be exchanged, it must be determined with certainty that this service, indeed,

represents the root cause of the failing system, and that it is not merely propagat-

ing an error from somewhere else (Mohamed and Zulkernine, 2008). Even though
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service-oriented systems provide all the ingredients necessary to recover from and

adapt to operation time failures (Di Nitto et al, 2008), adequate runtime diagnosis

approaches that accurately identify a faulty service are still missing. Diagnosis for

services has been proposed in the past (Yan and Dague, 2007; Yan et al, 2009),

but the techniques are mainly based on static system modeling, disregarding the

dynamic nature of service-based systems.

Recent work (Chen et al, 2012) demonstrates that spectrum-based fault lo-

calization (SFL), which is a statistics-based diagnosis technique, can be applied

effectively to pinpoint faulty components in service-based systems. SFL works by

automatically inferring a diagnosis from observed symptoms (Abreu et al, 2009).

The diagnosis is a ranking of potentially faulty components, i.e. the services in a

service-based system, and the symptoms are observations about service involve-

ment in system activation, i.e. the service transactions, plus pass/fail information

for each transaction (Chen et al, 2012; Gonzalez-Sanchez et al, 2011). SFL is based

on the assumption that a service is more likely to be faulty, if it participates more

in failing transactions, and it mimics how a human diagnostician would exonerate

parts of a system that cannot be used to explain a particular failure observation.

Although SFL represents an adequate technique for diagnosing faulty services,

experiments performed for our previous work (Chen et al, 2012) show that incor-

rect diagnoses are more likely, if services are tightly interacted. In other words, if

a service S1 always invokes another service S2 and one of the services is faulty, the

diagnosis would be such that both services S1 and S2 will be convicted, leading

to incorrect or inconclusive diagnoses. In a traditional setting with a human diag-

nostician, this is not so much of an issue. Since it would mean that more services

would have to be inspected, in order to determine the true root cause of fail-
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ure, thereby merely increasing the residual diagnosis cost (Gonzalez-Sanchez et al,

2010). However, in the case of a service-based system acting on fault-tolerance

autonomously, it would mean that reconfiguration or other self-healing activities

would have to be applied to more suspects, thereby unnecessarily treating services

that are actually healthy.

Careful analysis of the experiments performed for (Chen et al, 2012) reveals

that the difficulty of tight coupling for the SFL approach can be resolved either by

the architecture of the system and how services interact or by the granularity of

the observations used for SFL. Whereas, in the first instance, it would be rather

difficult to try and rearrange the architecture in order to decouple services for any

individual system configuration; in the second instance, it would be relatively easy

to introduce more monitoring points in the architecture, and thus increase the

level of monitoring granularity, that would be sufficient to support the calculation

of a conclusive diagnosis.

As a consequence, the goal of this paper is to explore the trade-off between

increasing the accuracy of the diagnosis in the case of tightly interacting faulty

services on the one hand, and the performance penalty on the running service

system on the other hand. This current paper is an extension of our previous work

presented in (Chen et al, 2013). The previous article is focused on the improvement

of the diagnosis through increasing the monitoring granularity with a preliminary

overhead assessment. The main extension of the current paper is the addition of a

detailed analysis of runtime overhead caused by the different levels of monitoring.

In the current paper, we concentrate on the following concrete research questions:
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RQ1 How and to which extent can the monitoring granularity affect the correct-

ness of SFL-based diagnosis for service-oriented systems?

RQ2 How can we increase the monitoring granularity for diagnosis in service-

oriented systems?

RQ3 What is the overhead caused by the monitoring for diagnosis at various levels

of granularity?

We make the following contributions. We describe an approach and implemen-

tation for increasing the monitoring granularity in services, and show how this can

improve the accuracy of diagnosing faulty services. We use a SFL simulator to

study the effects of changing the monitoring granularity on the calculation of the

diagnosis in many different system configurations. We assess the overhead of our

approach and implementation in a real case study and discuss its implications.

The remainder of this article is organized as follows: Sect. 2 presents the re-

search field and techniques related to our approach. Sect. 3 outlines why tight ser-

vice interaction inhibits the calculation of a diagnosis by SFL, and why increased

monitoring granularity is adequate to alleviate this problem. Sect. 4 introduces

the SFL Simulator and explains how it can be used to assess the performance of

our proposed approach quickly. Sect. 5 describes the case study used to assess our

proposed approach. Sect. 6 presents the experiments measuring the runtime over-

head caused by the monitoring of different levels of granularity. Sect. 7 discusses

the experimental results and the limitations. Finally, Sect. 8 presents related work

and Sect. 9 concludes the paper.
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2 Background

2.1 Spectrum-based Fault Localization

SFL infers a diagnosis from symptoms. Diagnosis refers to a ranking of potentially

faulty components (source code lines, blocks, etc.). Symptoms are observations

about component involvement in system activations, plus pass/fail information

about the executions (Gonzalez-Sanchez et al, 2011). Component involvement is

expressed in the form of so-called block-hit-spectra (hence the name Spectrum-

based Fault Localization). It produces for each system activation a binary cover-

age value per component (Reps et al, 1997; Zoeteweij et al, 2007) with covered=1

and uncovered=0. Component coverage can be derived from a coverage tool. Each

system activation, which may be referred to as test, leads to a spectrum, and

it is associated with a binary verdict (pass=0, fail=1) from an oracle (Weyuker,

1982). Execution of several tests produces an activity matrix, representing acti-

vation of each component over time. The test verdicts lead to a binary output

vector with pass/fail information. The diagnosis is calculated through applying a

similarity coefficient (SC) to each component activity vector and the output vec-

tor. The similarity denotes the likelihood of a component being the faulty one,

and, therefore, determines its position in the diagnosis ranking. Any SC may be

used, however, the Ochiai SC has been found to work best (Abreu et al, 2006).

Intuitively, SFL works by comparing the different combinations of component in-

volvements in the individual system operations. Components that have not taken

part in a system activation or are used more in passing activations are less likely

to be faulty in case a failure is observed.
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Table 1: Illustration of SFL

Comp. Character counter t1 t2 t3 t4 t5 t6 SCo

public int count(String s){ [Activity Matrix]

C0 int upper = 0 ; int lower = 0; int digit = 0; int other = 0; 1 1 1 1 1 1 0.82

C1 for(int i = 0; i¡s.length(); i++){ 1 1 1 1 1 1 0.82

C2 char c = s.charAt(i); 1 1 1 1 1 1 0.82

C3 if(c >= ’A’ && c <= ’Z’) 1 1 1 1 0 1 0.89

C4 upper += 2; 1 1 1 1 0 0 1.00

C5 else if(c >= ’a’ && c <= ’z’) 1 1 1 1 0 1 0.89

C6 lower++; 1 1 0 0 0 0 0.71

C7 else if(Character.isDigit(c)) 1 0 1 0 0 1 0.58

C8 digit++; } 1 0 1 0 0 1 0.58

C9 other = s.length()-upper-lower-digit; 1 1 1 1 1 1 0.82

C10 return other; 1 1 1 1 1 1 0.82

}

Output vector (verdicts) 1 1 1 1 0 0

The basic SFL approach is illustrated in Table 1 by means of a simple Java

program. This example system is comprised of components C0−C10 with a source

code line denoting the component granularity. It is exercised with six system ac-

tivations, i.e., test cases or transactions, leading to the corresponding component

activation for each transaction t1 − t6 noted down in the activity matrix. Four

transactions have failing test outcomes (1); two have passing test outcomes (0),

noted in the output vector. The Ochiai SC is calculated for the output vector and

each component’s activity vector. Finally, the similarity values are brought in a

descending order. This results in C4 being ranked top with 100% likelihood, which

represents the location of the fault in this example system (fault marked in bold).
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2.2 SFL for Service-based Systems

Applying SFL in service-based systems requires the SFL concepts to be adapted to

the service context. This has implications in terms of the component granularity,

system activation, component coverage and the verdicts. The service represents

the natural component granularity. It is the basic unit that can be restarted, ex-

changed, or otherwise treated, in case an error is detected. Alternatively, a service

operation, which represents a business functionality of a service, may denote a

finer level of granularity.

Due to the loosely-coupled nature of services, activation in service-based sys-

tems is not so obvious. A service instance may serve many application contexts. In

other words, a service will not be exclusively activated from within one application

context, but from a potentially arbitrary number of other applications operating

in other contexts, i.e. the contexts of all clients that depend on a service. Applying

SFL in a service-based system, therefore, requires a system activation to be made

explicit through a unique transaction ID, which separates the service activations

of different application contexts.

Component involvement in transactions is typically measured through coverage

tools. However, since there is no single controlling authority that can produce

service coverage information, involvement of a service in a transaction must be

produced differently. To apply SFL in service-based systems requires dedicated

monitors, which observe the service communication and associate the services or

their operations with the corresponding transactions invoking the services or their

operations. This can either be done by the services themselves or through modern
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service frameworks. For example, Apache’s Axis21, Redhat’s JBoss2, or Ebay’s

Turmeric3 come well-equipped with extensive monitoring facilities that can be

adopted to producing service involvement information.

A transaction’s pass/fail information comes from an oracle. Runtime errors,

exceptions, warnings and logs are natural choices for realizing oracles in service-

based systems. They are readily available through the platforms managing the

communication between services, or they are initiated through the business logic,

i.e., the services themselves.

2.3 Implementation of SFL for Service-based Systems

This section presents the implementation of the aforementioned SFL concepts for

service-based systems. Firstly, the service operation is set as component granularity

for diagnosis, because it permits a more fine-grained diagnosis. Secondly, activation

of the service-based system used for our experiments is outlined. Thirdly, online

monitoring is required, in order to recover the service involvement in transactions,

and in order to calculate the verdicts. In addition, a diagnosis engine is built

in order to maintain the SFL activity matrices and calculate the diagnoses. The

organization of our SFL implementation for service-based systems is presented in

Fig. 1, and it is briefly summarized in the following (more details in (Chen et al,

2012)).

Typically, services would be activated at the application interface through user

interaction. However, in our case, system activation is automated through various

1 http://axis.apache.org

2 http://www.redhat.com/products/jbossenterprisemiddleware/

3 https://www.ebayopensource.org/index.php/Turmeric
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third-party tools for evaluation purposes, or through custom-built clients for as-

sessing overhead. There are some existing tools, which provide easy access to ser-

vices, such as SoapUI4 and JMeter5. Such tools are used to create SOAP messages

and execute them automatically, thereby mimicking real user interaction coming

from different application contexts. On top of that, our service system is built

on Ebay’s open source service framework Turmeric.This framework provides stub

code for each service, which allows developers to build customized client applica-

tions to invoke the services.

Turmeric also provides many inbuilt features to support the (online) collec-

tion of system data required for applying SFL in service-based systems. These

features facilitate the integration of online monitoring code, in order to record the

component coverage for SFL with minimum amendments, resulting in a slender

monitoring design. The message-handling mechanism of Turmeric is based on a

specific pipelined architecture. All incoming and outgoing messages will go through

the pipelines and will be processed by a group of default handlers. The default

handlers can be extended by adding custom-built handlers for monitoring, i.e.

our Turmeric monitors, dedicated to obtaining transaction information required

by SFL. For each service message, the Turmeric monitors will parse the message

context to get the transaction ID, the message content, the service and operation

names and other information referring to the transaction. The custom-built moni-

tors in the pipelines publish to a Redis in-memory data base instance6 in order to

forward the collected data asynchronously to the diagnosis engine. The diagnosis

4 http://www.soapui.org

5 http://jmeter.apache.org

6 We use the publish/subscribe feature for optimal performance; see http://redis.io/.
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Fig. 1: Monitoring and diagnosis architecture based on Turmeric

engine subscribes to the respective monitoring data via Redis and performs the

SFL calculations offline. That way, the monitoring data from messages belonging

to the same transaction can be easily traced, resulting in the involvement of service

operations in a unique transaction to be used in the diagnosis.

Verdicts are generated based on the monitoring data from Turmeric monitors.

A set of oracles is applied to determine the result of each transaction with pass or

fail, based on the message content. The monitors also check upcoming exceptions,

or other noteworthy events and outcomes during system operation. Any of these

noteworthy occurrences can be associated with a unique transaction ID, and used

to judge the transaction.

The actual diagnosis is conducted offline in a diagnosis engine. It is designed as

a separately operating application that collects all monitoring data to get service

activities and produce verdicts by applying oracles. Activities and verdicts are

transformed into an activity matrix and an output vector for further calculation

of a diagnosis. This implementation is summarized in Fig. 1.
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3 Problem Statement and Approach

One of the main targets of this paper is to study how tight service interaction in-

hibits the calculation of a diagnosis, and how adjusting the monitoring granularity

can help overcome this limitation. In order to explain the tight service interaction

problem we make use of a service topology. An example can be found on the left-

hand side in Figure 2. A topology is created by defining a number of components.

Each component is defined by the component name and the component health

(h). Health denotes the probability that a component will not produce an error

when it is executed: 1.0 represents a healthy component, while a value in the range

(0.0, 1.0) represents a faulty component with intermittent fault behavior. A health

value of 0.0 denotes no fault intermittency, i.e., the component will always produce

an error if activated. Components in a topology can be connected through defining

a link between them with an associated invocation probability.

Besides the service-topology, we also look at the monitoring topology, which is

basically a representation of where the monitors are in the service topology. In the

most basic case of Figure 2, where each component has exactly one monitor, the

monitoring topology corresponds to the service topology.

The diagnosis component topology then represents a virtual service topology in

which the components of the service topology are split up in subcomponents in case

multiple monitors per component are placed. This diagnosis component topology

can discern multiple calling paths within a component in the service topology.

3.1 The Problem of Tight Service Interaction

First, we explain how tight interaction aggravates diagnosis.
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Consider the service topology on the left-hand side in Fig. 2, which is com-

prised of six services, S0 – S5, with service S3 being the faulty one with low health

probability (h=0.0). All other services are set to be 100% healthy (healthy proba-

bility h=1.0). Services S2 and S3 are tightly interacted, indicated through the 1.0

invocation probability between them. It means once service S2 is invoked, service

S3 will also be invoked, leading to the same activity status for the two services.

This creates a problem for the diagnosis, when each service gets only one monitor,

as illustrated in the monitoring topology shown in the middle of Fig. 2. There is

a one-to-one mapping between the service topology and the topology of the mon-

itors, hence the topology of the diagnosis components, shown on the right-hand

side of Fig. 2.

The activity matrix and diagnosis results for this monitoring setup (produced

with the SFL Simulator, described later in Section 4) are presented in the table in

Fig. 2. Due to the tight interaction between services S2 and S3, the diagnosis not

only convicts the real faulty service, S3, but also its tightly-interacted peer, the

service S2. As indicated by the Ochiai Similarity Coefficients (SC) in Fig. 2, the two

services are assigned the same values (SC = 1.0), and thus, the same rank in the

diagnosis. In this diagnosis, both services are, in fact, treated as one single diagnosis

component. This ambiguity would bring extra effort to service maintainers to

identify the real faulty service, however, in case of automatic service recovery, both

services would have to be treated, thereby treating an otherwise healthy service

(S2). Therefore, in our approach, only a result that ranks the real faulty service

uniquely highest in the diagnosis, can be considered as a correct diagnosis. On the

other hand, a result that ranks any healthy services highest is categorized as an

incorrect diagnosis. In this example, tight interaction between services produces an
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Service Topology A Monitoring Topology A Diag. Comp. Topology A

Topology A

Component Activity for Topology A (fatal failure) Ochiai SC

S5 00000000000000000000 0.000

S1 00000000110000000100 0.280

S4 10111000000110001110 0.728

S0 11111111111111111111 0.922

S3 10111011101111111111 1.000

S2 10111011101111111111 1.000

Output 10111011101111111111

Fig. 2: Example topology illustrating tight service interaction

ambiguous diagnosis, i.e., both a healthy service and the faulty service are ranked

top, which is taken as an incorrect result by our definition.

3.2 Solving Tight Service Interaction – Potential Solution 1

A possible solution to deal with this insufficiency of diagnosis in the case of tight

service interactions would be to reduce the invocation probabilities between such

services. In other words, create a system, in which not every invocation of service

S2 will subsequently lead to the invocation of service S3. Service Topology B in

Fig. 3 illustrates such an architecture. The invocation probability between the two

initially tightly-interacted services is reduced to 0.9. Without having to change
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Service Topology B Monitoring Topology B Diag. Comp. Topology B

Topology B

Component Activity for Topology B (fatal failure) Ochiai SC

S5 00000000000000000000 0.000

S1 01000000000001010001 0.471

S4 11001001000111110100 0.745

S0 11111111111111111111 0.949

S2 11101111111111111111 0.973

S3 11101111110111111111 1.000

Output 11101111110111111111

Fig. 3: Example topology illustrating potential solution 1

the monitoring setup, this slight adjustment in the invocation probability leads

to enough decoupling of the services, and to the introduction of sufficiently more

discriminative information in the observations. Thus, a correct diagnosis can be

calculated in the related activity matrix for the Diagnosis Component Topology

B in the table shown in Fig. 3.

3.3 Solving Tight Service Interaction – Potential Solution 2 (Our Approach)

In real systems, the invocation probabilities between individual services cannot be

adjusted arbitrarily, because they are determined by the business logic, and the

input parameters coming from the external system context, i.e. the system’s us-
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age profile. In order to retrieve similar discriminative power in the observations, a

feasible adjustment in the monitoring topology must be invented that leads to sim-

ilar results as shown for Service Topology B. Experiments with the SFL Simulator

suggest that this may be achieved through increasing the number of observation

points (monitors) in the service topology. This boils down to logically splitting

services into sub-components, or simply adding components, and associating indi-

vidual monitors to these sub-components. This increases the level of detail, i.e. the

monitoring granularity used for the similarity coefficients, and helps discriminate

service invocations that follow different internal invocation paths. By defining a

monitoring topology that separates services into finer-grained sub-components, we

retrieve finer-grained coverage information, and finer-grained potential communi-

cation paths between the sub-components, with potentially different invocation

probabilities between them. The assumption that we do make here is that we have

access to the internals of the services to actually implement this finer-grained

monitoring.

This increase in the monitoring granularity is illustrated in Fig. 4. Here, Service

Topology C corresponds to Service Topology A shown in Fig. 2, with S2 and S3

being tightly interacted, and S3 being the faulty service. In contrast to Monitoring

Topology A, the new Monitoring Topology C is changed in such a way, that,

instead of using only one monitor, two monitors (M2.1 and M2.2) are associated

with service S2. Each of the monitors is in charge of different paths through Service

S2. So, in terms of monitoring, Service S2 is split into two sub-components: S2.1

and S2.2, as shown in the diagnosis component topology in Fig. 4. A possible

way to realize this splitting is through code slicing. Both sub-components lead

to two separate observable paths from S2 into S3, and the corresponding activity
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Service Topology C Monitoring Topology C Diag. Comp. Topology C

Topology C

Component Activity for Topology C (fatal failure) Ochiai SC

S5 00000000000000000000 0.000

S1 00000000000000010100 0.000

S2.1 10001101001001000000 0.679

S4 00000001011111011000 0.686

S0 11111111111111111111 0.806

S2.2 10110001111111001000 0.920

S3 10111101111111001000 1.000

Output 10111101111111001000

Fig. 4: Example topology illustrating potential solution 2

matrix is also changed. In this way, the diagnosis is able to produce a correct

and unambiguous result. This example illustrates that adding more observation

points can improve diagnosis for service systems with tight interactions. However,

whether, and to which extent the increasing of monitoring granularity can affect

diagnosis depends on careful selection of the observation locations. This requires

further investigation when performing a case study (Sect. 5)
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4 System Simulations

4.1 SFL Simulator

Performing experiments with a fully fledged case study is tedious. Every new

experiment requires extensive adaptation to new experimental requirements. This

leads us to the development of a simulator. It is developed in Ruby, and used

for assessing different system topologies quickly and easily. It provides functions

for setting up component topologies, executing the topologies thereby gathering

coverage information, and calculating diagnoses. In particular, setting up a system

topology in the simulator is easy and flexible, and the simulator can run a large

number of experiments for each system topology in a very short time.

Similarly to what we have explained in Section 3, a topology is created by

defining a number of components. Each component is defined by the component

name, component health, and failure probability. Health denotes the probability

that a component will not produce an error when it is executed. 1.0 represents

a healthy component, while a value in the range (0.0, 1.0) represents a faulty

component with intermittent fault behavior. 0.0 denotes no fault intermittency,

i.e., the component will always produce an error if activated. Different from the

model that we used in Section 3, for the simulator we extend our model with a

failure probability, which denotes the likelihood of a component to propagate an

error into a failure, i.e. the fault observation. A failure probability between 0.0

and 1.0 means the likelihood for a component to issue a failure and terminate

the transaction when it gets an error. The failure probability can also be used

to discriminate fatal failures (i.e. component health < 1.0 and failure probability
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= 1.0) from warnings (i.e. failure probability = 0.0). In the case of a warning, the

system activation will continue normally and issue a failed transaction at the end.

Components in a topology can be connected through defining a link between

them with an associated invocation probability. This denotes the likelihood that

a linked component will be invoked during execution. 1.0 denotes that two com-

ponents will always be invoked together (i.e., representing tight coupling), and 0.0

determines that a link is never exercised.

Based on the topology with components and invocation links, the simulator

can be controlled to perform executions. This requires that one or several entry

points (components or links) are activated. Every activation of the topology leads

to a particular control flow according to the initially defined probabilities, thereby

generating coverage and pass/fail information. These observations are collected

and used in order to calculate a diagnosis.

For illustration purposes, Figure 5 displays an example topology of our case

study system produced by the SFL Simulator. It shows components (i.e. the ser-

vices as boxes) with health and failure probabilities, h and f, respectively, and link

nodes (as ovals) with their respective transaction probabilities. Figure 5 also shows

a particular instance after 200 transactions from the Web Application (denoted as

“Web entry” at the left hand side of the figure). The whole numbers in the link

nodes denote the frequencies of invocations, and the thickness of each line also

indicates this.

The source code of the SFL Simulator is available for download.7 Its usage

for the work described in this paper was twofold. First, we used it to develop our

approach described in Sect. 3.3. Second, we applied it to simulate our original case

7 https://github.com/SERG-Delft/sfl-simulator
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BusinessStock

h=1.0

f=1.0

L0 = 1.0
200

BusinessBasic

h=1.0

f=1.0

L3 = 0.8
160

L4 = 0.9
173

BusinessOP

h=1.0

f=1.0

L5 = 0.9
188

L6 = 0.8
157

BusinessAccount

h=1.0

f=1.0

L1 = 1.0
453

OrderProcessor

h=0.9

f=0.0

L7 = 0.4
57

L8 = 0.2
41

L9-10 = 0.8
119

Configuration

h=1.0

f=1.0

L2 = 1.0
589

Quote

h=1.0

f=1.0

L11 = 1.0
110

ExchangeCurrency

h=0.9

f=0.0

L12 = 0.2
59

L13 = 0.5
119

L14 = 0.8
200

L15 = 0.5
123

ExchangeCheck

h=1.0

f=1.0

StonehengeDB

h=1.0

f=1.0

StockDB

h=1.0

f=1.0

ExternalCurrencyExchange

h=1.0

f=1.0

Web 
entry

Fig. 5: Topology of the case study produced by the SFL Simulator

Table 2: Simulation Results for Service Diagnosis

Services Component # of Diagnosis % Correct

Granularity Activations Correct Incorrect Diagnosis

ExchangeCurrencyService i1 Interface 50 8 42 16%

i2 Sub-comp 50 39 11 78%

OrderProcessorService i1 Interface 50 13 37 26%

i2 Sub-comp 70 47 23 67%

system described in (Chen et al, 2012), for an initial assessment of our ideas in a

more realistic setup (described below).

4.2 Simulation Results

To assess our approach in a more realistic setup, we imitated our case study system

with the SFL Simulator. Different from the topology shown in Fig. 5, which is only
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Table 3: Reasons for Incorrect Diagnoses in Simulation

Services Component Incorrect Fault not Other

Granularity Diagnoses Activated Reasons

ExchangeCurrencyService i1 Interface 42 16 26

i2 Sub-comp 11 5 6

OrderProcessorService i1 Interface 37 5 32

i2 Sub-comp 23 5 18

displaying top-level services (due to space limitations), in the simulator, we used a

more detailed system model that includes the service interface level. This follows

the original design of the case study system (Chen et al, 2012). In addition, the link

probabilities used in the simulations are based on the service implementation logic

plus test data applied. The system health (or failure intermittency) is determined

based on the number of fault activations during testing of the real system.

In the original experiments, two services could be identified to exhibit the

problem of tight service interaction, i.e. the ExchangeCurrencyService and the Or-

derProcessorService, resulting in incorrect diagnoses. The results of the simulations

performed for these two services are shown in Table 2. The simulations are based

on two levels of detail. The first level of granularity assessed is the service in-

terface level (indicated as i1 in Table 2), and this corresponds to our original

experiments described in (Chen et al, 2012). The second level is more detailed and

separates service interfaces into finer grained sub-components (indicated as i2 in

Table 2). The ExchangeCurrencyService is split into 5 subcomponents, and the

OrderProcessorService is into 7 subcomponents. The sub-components, which are

associated with individual monitors, are determined following roughly the main

execution paths through these services. Their respective invocation probabilities
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defined in their links are derived experimentally from the original system in the

case study. Since the simulation is made for single-fault case, i.e., only one com-

ponent/subcomponent can be set as faulty in one activation, so the number of

activations in the simulation (Table 2) is set to 50 and 70 for two services, respec-

tively, in order to retrieve sufficient fault coverage.

The low values for correctly performed diagnoses for granularity i1 shown in

Table 2 illustrate the poor performance of SFL for tightly interacted services. A

diagnosis is considered to be correct, if only the true faulty component is correctly

and uniquely identified by SFL. In the initial setup (with interface-level granular-

ity, i1), this can only be achieved in 16% and 26% of the cases for the two tightly

interacted services. The simulation results for the finer-grained level of monitor-

ing granularity (i2, shown in Table 2) are much improved, up to 78% and 67%.

However, the improvement is poorer than expected. In fact, they are worse than

the results from the experiments performed for the real case study described later

(Table 6). This requires some explanation:

1. Compared to the case study, fewer faults are activated in the simulation (as

shown in Table 3), leading to missing diagnoses. The chance of executing some

faults is low through the combination of failure and invocation probabilities

defined in the simulation. In other words, some faults that are activated in the

case study are not activated in the simulation.

2. Even though the number of activations corresponds to the real system, the ran-

dom activations between the components is more diverse. The simulation uses

random invocations according to predefined probabilities in order to exercise

the topology. The probabilities are retrieved experimentally from the real case
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study, but they cannot absolutely reflect the usage profile imposed by the real

test cases. This leads to statistically significant deviations of the executions in

the simulation compared to the real system.

3. The monitoring granularity in the real case system is increased compared with

the simulation (see Sect. 5). The simulator allows to define topologies with

finer-grained sub-components, however, estimating the link probabilities and

health values of these finer-grained sub-components becomes increasingly dif-

ficult.

All in all, the simulator always produces worse results when compared to the

real case study, i.e., an approach being tested positive in simulation is more likely

to receive positive results in real system. This is mainly due to the fact that it

builds system topologies based on probabilities. Therefore, using the simulator for

trial test can easily assess an approach without implementing it in a real system.

In our experiment, the simulations confirm the positive effect of introducing more

observation points for the calculation of the diagnosis. In the following section, we

describe how our approach is evaluated on a real system.

5 Case Study

5.1 Case System

After having demonstrated in the simulator how an increase in the monitoring

granularity of a system can support the calculation of a correct diagnosis, the next

step is the evaluation of our proposed approach in a real service-based system. We

use our original case study SFL Stonehenge8 from (Chen et al, 2012; Espinha et al,

8 https://github.com/SERG-Delft/sfl-stonehenge
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Fig. 6: Case study system: SFL stonehenge

2012), and adapt it to the requirements implied by our problem statement. SFL

Stonehenge is a service-based system simulating the stock market. It supports

users in buying and selling of stocks, checking orders, and performing currency

conversion operations for foreign stock acquisition.

Figure 6 illustrates the basic service architecture of the system. It is com-

prised of 10 web services including one external currency exchange service, plus a

web application for user interaction. In addition, it accesses two data stores. The

services provide the following operations. The BusinessBasicService and the Busi-

nessAccountService provide the functions for user authentication, login, and the

user account. The BusinessOPService and the BusinessStockService are used for

buying and selling stock, checking orders, and compiling market summaries. The

QuoteService and the OrderProcessorService are used to process the stock orders

placed by a user. The ExchangeCurrencyService and the ExchangeCheckService are
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responsible for the currency operations, and the ConfigurationService binds all the

other services together, and acts like a registry.

In the following, we show typical service transactions that can be performed

with our case system.

BusinessBasicService.login -->

ConfigurationService.getBSAccountLocations

BusinessAccountService.getAccountProfile

BusinessAccountService.updateAccountForLogin

BusinessBasicService.logout -->

ConfigurationService.getBSAccountLocations

BusinessAccountService.updateAccount

BusinessBasicService.register -->

ConfigurationService.getBSAccountLocations

BusinessAccountService.getAccountProfile

BusinessOPService.sell -->

ConfigurationService.getOPSLocations

OrderProcessorService.submitOrder -->

ConfigurationService.getQSLocations

QuoteService.getQuotes

ConfigurationService.getBSAccountLocations

BusinessAccountService.updateWallet

ExchangeCurrencyService.exchCurrency -->

ConfigurationService.getECheckLocations

ExchangeCheckService.checkCurrency

ExchangeCheckService.checkAmount

ConfigurationService.getBSAccountLocations

BusinessAccountService.updateWallet

5.2 Conducting the Case Study

Because the focus in this paper is on tight service interaction, in the case study,

again, we look at the two services, the ExchangeCurrencyService and the OrderPro-
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Table 4: Active Mutators in the Experiment

ID Mutator Error in the system

1 Negate Conditionals wrong internal state or response, null

or runtime exception

2 Return Values wrong response, null or runtime exception

3 Conditionals Boundary wrong internal state or response

4 Void Method Call wrong internal state

5 Math Mutator wrong internal state

cessorService, which present tight interactions with other services. We apply the

PIT mutation tool9 in order to create 65 faulty system versions, 24 faulty versions

for the ExchangeCurrencyService, and 41 faulty versions for the OrderProcessorSer-

vice. Table 4 summarizes the type of mutations applied with PIT, and it briefly

states the purpose of each mutator used, and the error it generates in the system.

Table 5 illustrates the kind of mutators applied to the two services. The different

numbers of mutations per mutator come from the presence or absence of specific

code features in the service implementations that PIT manipulates.

For each of the 65 faulty system versions, we use JMeter to execute 48 web

service requests as test scenarios in order to cover all service operations. Upon

completion of all transactions for one faulty system version, the diagnosis engine

is invoked to parse the monitoring data, identify the failures in the system, and

create an activity matrix with an output vector. Then, it is assessed whether the

resulting diagnosis pinpoints the service correctly that contains the seeded fault.

The whole experiment is designed for the single fault case. We ensure that each of

9 http://pitest.org/
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Table 5: Mutators used in the two Tightly interacted Services

Services Mutators (from Table 4) # of Mutations

ExchangeCurrencyService 1 5

(24 mutated versions) 2 7

4 12

OrderProcessorService 1 15

(41 mutated versions) 2 1

3 1

4 23

5 1

the 65 versions of the system contains only one fault, either in the ExchangeCur-

rencyService or in the OrderProcessorService.

The conduction of the case study is split up into two instances, i1 and i2.

In instance i1, we invoke the original case system with monitoring enabled at

the service interface level of granularity. The monitoring is provided through the

Turmeric framework, mentioned in Sect. 2.3 and detailed in (Chen et al, 2012). In

instance i2, we invoke the same system and use the same Turmeric-based monitor-

ing. Additionally, we also put monitors in the service implementation codes at the

code block level of granularity. Basically, we split the service implementation into

several code blocks, and put an observation point at the end of each block. The

observation point is also a Redis-based publisher. Once a code block is executed

to the end, the ID of the code block will be published to Redis. Based on the

time sequence, the application is able to associate the monitoring data from the

code block monitors with the transaction information from Turmeric monitors.

We determine the code blocks based on the internal control-flow structure of the
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service implementations. In some cases, we separate the blocks for better isolation

of tightly-interacted code sections. This results in 10 monitored sub-components

for each of the two services under consideration. That way, we are able to increase

the number of observation points in instance i2 to the finer level of granularity

required for correct diagnoses. The additional monitoring introduces more and

more diverse coverage information, which we expect will yield better suited activ-

ity matrices, thus, leading to better diagnoses. The results of these experiments

are presented in the following sub-section.

5.3 Case Study Results

Table 6 and Table 7 summarize the results of the case study for both instances,

i.e. i1 for service interface monitoring granularity and i2 for code block monitoring

granularity. Table 6 shows the correctness of diagnoses at both levels of monitoring

granularity for each faulty service version. A diagnosis is considered correct, if the

faulty service or one of its sub-components is ranked top, and no other service

receives the same ranking, i.e. the diagnosis is correct and unique.

The improvement of the finer-grained monitoring granularity over the original

coarser-grained granularity is substantial. Both services with incorrect diagnoses

in our original case study can now be diagnosed correctly and unambiguously as

the faulty services to a very high degree, i.e. 92% and 90% shown in Table 6.

Actually, the faults injected in both services can always be diagnosed correctly,

leading to 100% correct diagnoses. This becomes apparent when we look at the

reasons for the incorrect diagnoses shown in Table 7. In the first instance, i1, 19

plus 9 out of the total number of incorrect diagnoses of the two services produced
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Table 6: Experimental Results for Service Diagnosis

Services Component # of Diagnosis % Correct

Granularity Mutations Correct Incorrect Diagnosis

ExchangeCurrencyService i1 Service Interface 24 3 21 13%

i2 Code Block 24 22 2 92%

OrderProcessorService i1 Service Interface 41 28 13 68%

i2 Code Block 41 37 4 90%

wrong results because of tight interaction on failure. This represents our original

problem, and the table indicates that it can be resolved entirely through increasing

the monitoring granularity for the considered services in the second instance, i2. In

both instances, i1 and i2, 2 plus 4 out of the total number of incorrect diagnoses are

due to the faults in the services not being activated. In other words, in these cases

no test execution was able to cover the faults introduced through the mutations.

In general, diagnosis can only be initiated when a fault is actually detected. This

is not attributable to our diagnosis technique, but a fundamental problem of all

coverage-based quality assurance approaches.

Therefore, we can claim that all faults can be diagnosed correctly and unam-

biguously in our case study, if they can be detected, i.e. they are propagated into

failure. The lower values of 92% and 90% shown in Table 6 are a consequence of

intermittent fault behavior of the services, a common property of software.
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Table 7: Reasons for Incorrect Diagnoses in Experiment

Services Component Incorrect No Tight Interaction

Granularity Diagnoses Activation on Failure

ExchangeCurrencyService i1 Service Interface 21 2 19

i2 Code Block 2 2 0

OrderProcessorService i1 Service Interface 13 4 9

i2 Code Block 4 4 0

6 Runtime Overhead

6.1 Experimental Setup

An important aspect of our proposed diagnosis technique is the runtime overhead

it imposes on the service-based system. Since the diagnosis engine is detached

from the executing system, the analysis of diagnosis will not affect the system

performance, and the main impact of our diagnosis approach on the runtime per-

formance of service system is from the monitoring required for SFL. Therefore, we

focus on determining the overhead of the online monitoring. In the experiments,

we aim to measure the time overhead caused by the code block monitor for i2 (sub-

component granularity), the time overhead caused by the Turmeric monitor for i1

(service interface granularity), and the time overhead caused by the data-logging

(publishing to Redis) in the Turmeric monitor.

We chose a set of requests based on diversity in service interactions that they

will create, to invoke the ExchangeCurrencyService (ECS) and the OrderProces-

sorService (OPS), the main function of which are introduced in Section 5.1. Both

services have four fundamentally different associations with other services, e.g.

the BusinessAccountService or the ConfigurationService, which are interesting for
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performance measurements. Additionally, we also add the BusinessAccountService

(BAS) to the overhead experiments, in order to measure overhead under diverse

scenarios. This service does not invoke any other subsequent services. That way, we

can collect performance data for a range of different scenarios, i.e. with a variable

number of services involved in various shorter and more extensive transactions.

The service-based system is repeatedly invoked with diverse requests and under

various monitoring configurations set up. For each invocation, we measure the end-

to-end response time for the request. Then we compare the response time of the

exactly same request under different monitoring setups. Therefore, we are able to

observe the time overhead caused by Turmeric monitor or code block monitor.

For service activation, we used self-created service clients to invoke the services,

instead of JMeter (which we used in the case study described in Section 5). The

reason is that service clients are able to produce more reliable performance mea-

surement. When we compare the standard deviations of 15 requests over 1000 runs

for both JMeter and self-developed service clients, it becomes apparent that for

12 requests the spread obtained from our own service clients is much smaller than

when using JMeter. These results are shown in Table 8. Eventually, we decided to

drop JMeter in favor of our own developed clients.

Table 8: Standard Deviation of Experimental Results in Milliseconds

Tool BAS 1 BAS 2 BAS 3 BAS 4 BAS 5 BAS 6 BAS 7 ECS 1 ECS 2 ECS 3 ECS 4 OPS 1 OPS 2 OPS 3 OPS 4

Client 3.383 7.501 16.498 4.165 9.906 14.360 9.346 178.954 16.622 21.408 12.340 99.929 22.185 37.281 26.561

JMeter 11.108 28.237 22.445 21.238 32.805 42.031 47.468 209.220 9.143 26.714 13.545 113.760 28.661 23.106 19.369
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6.2 Overhead Results

Table 9 shows the average response times for activating the ECS and OPS services

1000 times. The requests to both the ECS and OPS services may involve other

services to complete. In other words, the request will initially invoke the ECS

or the OPS, but the invoked service will continue to call other services, in order

to complete a transaction. Thus, part of end-to-end response time from the ECS

or OPS services can be attributed to the communication between all involved

services. The total number of invoked Turmeric monitors depends on the number of

involved services. When the Turmeric monitors are enabled, a request to a service

will activate two Turmeric monitors, namely (1) one at the side of service request

and (2) the other one at the side of service response. If the first service invokes

another subsequent service, four additional Turmeric monitors will be activated to

handle the message at (1) the side of the client request for the invoking service, (2)

the side of service request for the invoked service, (3) the side of service response

for the invoked service, and (4) the side of client response for the invoking service.

Table 9 lists the number of activated Turmeric monitors for each service request.

Among the listed requests, ECS 2 only gets two Turmeric monitors, that is because

this request only invokes the ECS, it does not make the ECS invoke other services.

When code block monitors are enabled in the system, there will be 10 code block

monitors deployed for each of the two services, in order to improve the diagnosis

accuracy for the services as detailed in Sec 5. However, different requests will

activate different parts of service implementation, so that different code block

monitors will be invoked. The numbers of actually invoked code block monitors

for each request are also listed in Table 9.
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The four center columns in Table 9 termed “Monitors”, present the average

response times for each service request to the service system according to four

monitoring strategies, i.e. all monitors disabled (“None”), only code block moni-

tors enabled (“Code Block”), only Turmeric monitors enabled (“Turmeric”), both

monitoring strategies enabled (“Turmeric & Code Block”). Notable are the rela-

tively long response times for the requests ECS 1 and OPS 1. Based on a further

investigation into network traffic during an experiment with Wireshark10, we ob-

served that the first request that makes a service to invoke another new service

always consumes extra overhead. Since for the first request the service needs to

establish a connection to the other service, and the following requests can directly

reuse the connection if they are invoking the same service and the connection

data is still buffered in the system memory. Both ECS 1 and OPS 1 requests are

the first ones that the ECS and OPS services start with, respectively, and both

requests invoke a large set of services as compared with their following requests.

Therefore, the response times from both requests are much longer.

The three columns on the right-hand side in Table 9, termed “Impact (%)”,

show the impact of monitoring overhead for various monitoring setups compared

to the system without any monitoring at all (“None”). The values indicate that

Turmeric monitoring causes the most overhead in the system, while the overhead

from code block monitoring is minute and may be ignored. An outlier case is

the service request ECS 2, in which the impact from only Turmeric monitors is

slightly larger than the impact from both Turmeric and code block monitors. In

addition, we also observed two negative impact results from the service request

10 http://www.wireshark.org/
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ECS 4 and OPS 2. They are caused by the limitation of overhead measurement in

our experiments, which is discussed in Sec. 7.2.

The overhead results presented in Table 9 are different from the results ob-

tained in our previous overhead experiments outlined in our earlier article (Chen

et al, 2013). In this other article, the experiments were only aimed at getting

an initial feeling of the potential overhead caused by various monitoring strate-

gies, and we had to circumvent a few flaws in the implementation. The monitors

were not decoupled from the data base maintaining the activity matrices, thereby

adding considerable overhead through a sub-optimal synchronous implementation.

Moreover, earlier we used the EMMA coverage tool11 for realizing the code block

monitors. However, it also causes overhead in itself, because it uses code instru-

mentation, plus coverage information could only be generated when the application

server was shutting down, which lead to an awkward data collection procedure at

the end of each experiment. Both implementation issues are now being resolved by

using the publish/subscribe facility of Redis. Now, coverage information is simply

published to Redis the moment it is available, and a monitor is realized through a

single ultra-fast Redis operation. In our opinion, the application of an in-memory

publish/subscribe tool like Redis represents an optimal monitoring solution.

The overhead measurements shown in Table 9 are also influenced by communi-

cation between several involved services which leads to a large spread for the over-

head values measured. Furthermore, the number of code block monitors is fixed for

the concern of diagnosis. We conduct a similar experiment with the BAS service,

because the requests to the BAS service will not cause it to invoke subsequently

associated other service(s). This experiment helps us foresee the likely impact of

11 http://emma.sourceforge.net/
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Table 9: Average end-to-end response time from ECS and OPS services in Milliseconds over

1000 transactions.

Serv. # of Monitors Monitors Impact ( %)

Req. Turmeric Code-Block None Code-Block Turmeric Turmeric & Code-Block Turmeric Turmeric &

Code-Block Code-Block

ECS 1 14 6 2996.034 3002.367 3055.052 3065.618 0.21% 1.97% 2.32%

ECS 2 2 2 49.664 50.657 56.928 56.927 2.00% 14.63% 14.62%

ECS 3 14 5 72.58 74.456 118.256 120.189 2.58% 62.93% 65.60%

ECS 4 10 4 47.577 47.357 66.477 66.878 -0.46% 39.72% 40.57%

OPS 1 18 8 870.442 878.675 987.537 995.058 0.95% 13.45% 14.32%

OPS 2 18 7 135.504 130.494 177.714 180.371 -3.70% 31.15% 33.11%

OPS 3 18 8 310.94 320.227 351.423 353.64 2.99% 13.02% 13.73%

OPS 4 18 8 147.765 152.587 202.53 206.669 3.26% 37.06% 39.86%

inter-service communication overhead. For the request to the BAS service, two

Turmeric monitors handle the service messages at the side of service request and

service response, respectively. When code block monitoring is enabled, we deploy

different numbers of code block monitors in various service interfaces of BAS, in

order to discover the relation between the number of code block monitors and the

overhead they cause. For instance, the request BAS 1 will invoke a service inter-

face, which contains 10 code block monitors, and the request BAS 3 will invoke

another service interface with 100 code block monitors. The number of activated

monitors for each request to the BAS service are listed in Table 10.

Table 10 presents the average end-to-end response times of 1000 invocations

of BAS. Since the requests only invoke one service, the response times are much

lower than those found in Table 9, with the exception of the first service request

(BAS S). The BAS S request invokes the same service interface as the request

BAS 1, however, it is the first request that the service client starts with in each

experiment. As the first request in the whole experiment, it requires the service
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client to load the runtime libraries offered by the Turmeric platform to initialize

the communication with a Turmeric service, and it establishes the connection to

the derby database12 that our service system is using. These two parts consumes

the major part of the time overhead from the BAS S request. Due to the unreliable

deviation caused by the initialization step, we exclude the results from the BAS S

request in the following analysis.

The impact percentages shown in Table 10 expose more details about the

monitoring overhead. The impact through Turmeric monitoring is still obvious to

see. However, the impact of code block monitoring increases with the number of

code block monitors, which is to be expected. The overhead of a single code block

monitor is relatively low and may be ignored. However, using many monitors, i.e.

up to 100, in the same service, increases the overhead from the code-block monitors

to values similar to the ones exhibited by the Turmeric monitors.

Table 10: End-to-End Response time from BAS Service in Milliseconds

Serv. # of Monitors Monitors Impact ( %)

Req. Turmeric Code-Block None Code-Block Turmeric Turmeric & Code-Block Turmeric Turmeric &

Code-Block Code-Block

BAS S 2 10 1113.402 1146.469 1309.721 1315.575 2.97% 17.63% 18.16%

BAS 1 2 10 12.967 15.278 22.027 24.165 17.82% 69.87% 86.36%

BAS 2 2 1 45.087 45.851 60.424 60.606 1.69% 34.02% 34.42%

BAS 3 2 100 34.709 45.985 47.437 59.931 32.49% 36.67% 72.67%

BAS 4 2 10 28.63 30.229 34.876 35.619 5.59% 21.82% 24.41%

BAS 5 2 1 49.45 48.868 53.709 54.341 -1.18% 8.61% 9.89%

BAS 6 2 10 47.722 50.738 63.41 66.886 6.32% 32.87% 40.16%

BAS 7 2 100 25.637 32.611 39.17 44.635 27.20% 52.79% 74.10%

Based on the results presented in Table 9 and Table 10, we calculated the real

value of overhead caused by the monitoring for each service. Table 11 presents the

12 http://db.apache.org/derby/
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overhead for code block monitors. In the BAS service, the overhead corresponds to

the number of code block monitors. The maximum overhead caused by one code

block monitor is 0.8 ms; 10 code block monitors can cause overhead from 0.7 ms

to 3.5 ms; and when the number of code block monitors is increased up to 100,

the overhead also increases by 5.5 ms and 12.5 ms. Although, the overhead from

one and 10 code block monitors are similar, we can still see a linear increase in

overhead with an increase in the number of code block monitors. In the ECS and

OPS services, the number of activated code block monitors is very low, i.e., less

than 10. In four out of six cases, the total overhead from code block monitor is

small. However, in two cases, the caused overhead is comparable to the overhead of

100 code block monitors in the BAS service. These two cases come from the results

of ECS 1 and OPS 1, respectively. As mentioned before, both requests cause very

long response times. Furthermore, the deviations of response times caused by both

requests are also very large, i.e., 178.954 ms for ECS 1 and 99.929 ms for OPS 1,

as shown in Table 8. Although the results for code block monitoring from both

requests are relatively larger than that of other requests, they can be ignored,

when compared to the base response time results and their deviations. Therefore,

it is possible that the large deviations may influence the results for code block

monitoring.

Table 12 shows the overhead results for Turmeric monitors. Compared with

the overhead for code block monitors, it is more obvious to see the overhead of

Turmeric monitors increases along with the number of activated Turmeric moni-

tors.

We also investigate the amount of monitoring data produced by each request,

in order to see if the throughput of monitors affects their overhead. Table 13



38 Cuiting Chen et al.

Table 11: Monitoring Overhead for Code Block Monitor in Milliseconds

Service # of Code Block Monitors Minimum Overhead Maximum Overhead

BAS 1 -0.582 0.764

BAS 10 0.743 3.476

BAS 100 5.465 12.494

ECS 2 -0.001 0.993

ECS 4 -0.401 -0.22

ECS 5 1.876 1.933

ECS 6 6.333 10.566

OPS 7 -5.01 2.657

OPS 8 2.217 9.287

Table 12: Monitoring Overhead for Turmeric Monitor in Milliseconds

Service # of Turmeric Monitors Minimum Overhead Maximum Overhead

BAS 2 4.259 16.148

ECS 2 6.27 7.264

ECS 10 18.9 19.521

ECS 14 45.676 63.251

OPS 18 33.413 117.095

presents the total size of monitoring data from two levels of monitoring for each

request. Combined with the impact percentages of code block monitoring shown in

Table 10, we notice that the data size and the impact of code block monitoring for

BAS requests have exactly the same tendency, i.e., when the data size is large, the

impact percentage for the same request is also large, and vice versa. However, the

main reason behind this situation is that both the data size and the impact of code

block monitoring are tightly depending on the number of code block monitors. The

content of monitoring data from a code block monitor is the id of this code block,

so the monitoring data for all code block monitors in our system is always the
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same size. If more code block monitors are activated, more data will be generated.

If we further calculate the data size and the impact per code block monitor for

each BAS request, as shown in Table 14, we can more clearly see that larger data

size does not cause larger impact (compare BAS 1 with BAS 4) for code block

monitoring in BAS. We apply the same analysis to the rest of results, and our

conclusion is that the size of monitoring data is not really a big issue in terms of

overall monitoring overhead.

Table 13: The Size of Monitoring Data in Byte

Monitor BAS 1 BAS 2 BAS 3 BAS 4 BAS 5 BAS 6 BAS 7 ECS 1 ECS 2 ECS 3 ECS 4 OPS 1 OPS 2 OPS 3 OPS 4

Code B. 190 19 3K 270 21 270 3K 44 15 36 29 62 68 76 76

Turmeric 707 2K 915 805 782 2K 503 5K 548 6K 4K 10K 10K 10K 10K

Table 14: Data size vs impact per code block monitor for BAS(Just for illustration)

Monitor BAS 1 BAS 2 BAS 3 BAS 4 BAS 5 BAS 6 BAS 7

Data size 19 19 30 27 21 27 30

Impact % 1.7% 1.69% 0.32% 0.56% -1.18% 0.63% 0.27%

The Turmeric monitor that we implemented for the experiments in (Chen et al,

2013) caused a large amount of overhead. The major reason for this overhead was

due to the use of synchronous database access to record the monitoring data. In

the current implementation, we have changed the synchronous database access to a

Redis-based Publish/Subscribe messaging mechanism for the logging of monitoring

data, causing less overhead. The main function that Turmeric monitors perform is

to handle the incoming and outgoing messages, parse the context of a message to
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get predefined data for SFL and log the monitoring data. In order to investigate

how much of the total overhead can be attributed to just the logging of the data,

we created two setups in which the Turmeric monitors are enabled to handle

service messages and no code block monitoring was activated. In the first setup

the Turmeric monitor is set without data logging, while in the second setup the

monitor does publish the monitoring data.

The third and fourth columns in Table 15 show the end-to-end response time

of each request measured in the system. The third column represents the case

with data logging activated, while the fourth column shows the setup where data

logging has been disabled. The overhead of the data logging part in the Turmeric

monitors is calculated and presented in the fifth column. In order to assess how

much the data logging part can impact the performance of the Turmeric monitor,

we calculated the overhead of Turmeric monitors for each request based on the

results in Table 10 and Table 9, and also presented in the Table 15. The last column

of Table 15 presents the percentage of overhead caused by the data logging. In

most cases, the data logging causes between 20% and 40% of the overhead in the

Turmeric monitoring.

7 Discussion and Lessons Learned

7.1 Diagnosis Observations

From the simulations and the case study, we conclude that the monitoring gran-

ularity has indeed an effect on the calculation of an SFL diagnosis. Furthermore,

increasing the monitoring granularity facilitates the calculation of correct and un-

ambiguous diagnoses through introducing more and more diverse observations into
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Table 15: Overhead for the logging part in Turmeric monitor in Milliseconds

# of With Turmeric, No Code Block Monitoring Data Turmeric

Service Turm. Data logging Logging Monitor %

Requests Moni. Acticated Disabled Over. Overhead

BAS 1 2 22.027 18.745 3.282 9.06 36.23%

BAS 2 2 60.424 52.828 7.596 15.337 49.52%

BAS 3 2 47.437 45.798 1.639 12.728 12.88%

BAS 4 2 34.876 33.018 1.858 6.246 29.74%

BAS 5 2 53.709 51.922 1.787 4.259 41.96%

BAS 6 2 63.41 60.167 3.243 15.688 20.67%

BAS 7 2 39.17 36.939 2.231 13.533 16.49%

ECS 1 14 3055.052 2995.389 59.663 59.018 101.09%

ECS 2 2 56.928 54.036 2.892 7.264 39.81%

ECS 3 14 118.256 104.477 13.779 45.676 30.17%

ECS 4 10 66.477 60.841 5.636 18.9 29.82%

OPS 1 18 987.537 956.688 30.849 117.095 26.35%

OPS 2 18 177.714 165.165 12.549 42.21 29.73%

OPS 3 18 351.423 335.981 15.442 40.483 38.14%

OPS 4 18 202.53 181.418 21.112 54.765 38.55%

the statistics of the SFL diagnosis. The increase in coverage diversity has a positive

effect on the similarity coefficients produced, because it helps convict components

that participate more in failing transactions, and exonerate components that par-

ticipate more in passing transactions.

Initially we expected that we would not be able to achieve 100% correct di-

agnoses in our case study system. We thought that some of the tight couplings

between sub-components would subsist across service boundaries, thereby invali-

dating our decoupling effort. This was not case. However, in the case study, some

sub-components within the services are still tightly interacted, so that the sub-
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components are assigned the same similarity coefficient in the diagnosis. In other

words, even though we can pinpoint the faulty service correctly, and this was our

original goal, in some cases, we cannot determine the location of the fault within

the service correctly. This comes from how we determine the finer-grained moni-

toring locations according to the predicate nodes in the service implementations.

Some of the monitored code blocks are still exercised in combination, and thus,

are tightly linked.

Here, an important lesson learned is that we can reduce tight coupling on the

higher level of granularity, i.e. between services, but we cannot remove it entirely

on the lower levels of granularity, e.g. within services. We acknowledge the fact that

topology plays a major role in the successful application of spectrum-based fault

localization in service-based systems. In the future, we will look at other methods

of topological separation, for example program slicing techniques (Weiser, 1981).

In addition, all experiments with both the simulator and the case study were

set up for diagnosing a single fault in a service system. It is often not realistic that a

software system only contains one fault. However, when applying online diagnosis

for a service system, the diagnosis is activated immediately once a system failure

is observed, i.e., the monitoring data of the system for each round of diagnosis

only contains one failure. Within this context of single failure, the approach of

diagnosing a single fault for a running service system is practical and effective.

Multiple faults in a service system can be found one by one as long as they cause

a failure.
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7.2 Overhead Observations

In general, from the results of our overhead experiments, we observe that one

Turmeric monitor can cause more overhead than one code block monitor. The

overhead of Turmeric monitoring is always noticeable, whereas the overhead of

code block monitoring is only visible when many monitors are activated. A small

number of code block monitors in service system may be ignored in terms of a

potential performance impact they create. On the other hand, if the number of

code block monitors increases (e.g., 100), the caused overhead becomes comparable

to Turmeric monitors.

We are aware of the fact that every type of monitoring comes at a cost. How-

ever, assessing the cost through measurement of overhead can be affected by var-

ious factors. From our experiments we found that the service system itself may

influence the measurement. Basically, the response time of a request is a combina-

tion of service processing time, connection setup time, and message transmission

time (Repp et al, 2007). Services which have interactions with other services always

require more time in connection setup and message transmission. The connection

setup depends on the activity state of both services and their underlying infras-

tructures. Transmission time depends on the quality of the network used. Thus,

these two parts can be very dynamic and it may bring deviations to the overhead

measurement. In our case system, most services are internal. They are running on

the same computer system, so the message transmission time boils down to what

is typically used in local socket communication. However, since our system is also

based on the Turmeric platform, the connection to an internal service is setup with

the Turmeric runtime library, we cannot guarantee that this third-party library
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will not bring any variation to the connection setup or transmission. Moreover,

our system also uses an external service for real-time currency exchange, and we

are not able to monitor the activity state of this external service; plus all messages

to the external service go through an external network connection. If the overhead

caused by a monitor is too small, the connection setup or communication times

can completely hide it. For example, Table 10 shows negative impact by the code

block monitors invoked during the execution of BAS 5. This becomes obvious, if

we check Table 11. It demonstrates that the overhead caused by one code block

monitor is less than 1 millisecond, and Table 8, in which the standard deviation

from the same request is nearly 10 milliseconds. The same is true for the result of

“101.09%” for ECS 1 in Table 15 and the observation that the impact of Turmeric

monitoring is larger than that of both Turmeric and code block monitoring for

ECS 2 in Table 9.

We also determine that the data logging part inside the Turmeric monitoring

is less than half of overall performance impact of the Turmeric monitors. The rest

goes into intercepting and parsing all incoming or outgoing messages. Even though

it does not publish any data, the interception already causes a lot of overhead in

the monitoring.

Our experimental results show that a code block monitor consumes much less

overhead than a Turmeric monitor does. This finding leads to an straight-forward

idea for reducing monitoring overhead, which is completely replacing the Turmeric

monitors with code block monitors. Additionally, a code block monitor also pro-

duce much less monitoring data than a Turmeric monitor does, based on our cur-

rent implementation. A code block monitor only logs out the id of a code block,

while a Turmeric monitor offers service and operation data, transaction data, mes-
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sage content, etc. If a code block monitor is implemented to get all those data, its

overhead will also increase. In addition, a Turmeric monitor spends more than half

of overhead on obtaining the required information from the Turmeric framework,

even though those data are readily inside the framework. The code block monitor

is staying inside the service implementation, where to fetch those required data

and how to keep them would be a set of new problems for code block monitor.

If code block monitors are equipped with all those functionalities, it will generate

more overhead than it currently does, and its overhead may become comparable

with or even more than that of Turmeric monitor. Therefore, replacing Turmeric

monitor with code block monitor is not a good solution to deal with monitoring

overhead.

7.3 Threats to Validity

We are aware of a number of threats that might invalidate our findings. We use

SFL Stonehenge as case study. Although it is a realistic system, our results may

not be applicable to any arbitrary service-based system. In fact, the topology of a

system may have an effect on how well monitoring can be applied and diagnosis

can be performed, e.g., in the case of very few independent paths through the

logic. We see the topology problem as an important avenue for future work.

Currently we implement code block monitor with Redis pub/sub functionality.

It enables the diagnosis engine to receive the monitoring data from code block

monitors at runtime. However, the association between the monitoring data from

code block monitor and Turmeric monitor is based on timestamps, this approach

may not be applicable to service systems allowing concurrent transactions.
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A threat to our overhead experiments is the involvement of the external service

for currency exchange in our system. This service is out of our control. The connec-

tion to the external service highly depends on its activity state. Its response can

be very slow if it is overloaded. Correspondingly, the performance of the external

service can affect the measurement of the end-to-end response time for those re-

quests which invoke the external service. In addition, the Turmeric runtime library

may also have an influence on the connection setup of services built on Turmeric

platform.

Another potential threat comes from the tools used for our work. We have

tested our own implementation as much as possible and compared the results of

our case study with the outcome obtained from the simulator. Although the results

are not the same, they are in a similar league, reassuring us that there are no major

flaws in our case study implementation.

Another important threat to external validity is that the results for the over-

head experiment might be dependent on the underlying technology, e.g., Turmeric

or the way that the code block monitor is implemented. In future work we will

replicate our experiment with different underlying technology to establish whether

the obtained overhead results are generalizable.

We are also aware of the fact that code block monitors can not be inserted

into the service implementation without access to the source code, which in turn

typically entails the ownership of the service. Service-based systems can integrate

external services that are not owned, thus precluding the application of our ap-

proach. However, for those companies which own large enterprise IT infrastructure

and a lot of internal services running on it, such as eBay, Amazon and Google, the

placement of monitors inside services is both possible and useful.
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8 Related work

In this section we briefly discuss the studies most relevant to diagnosis for service-

based software systems. In particular, we start of by looking into other works that

do diagnosis of service-based systems in Section 8.1. Subsequently, in Section 8.2

we look into whether alternative fault localization techniques are applied. Finally,

in Section 8.3 we look into monitoring for service-based systems and measure-

ments for overhead of monitoring. Based on this small survey, we believe that we

are the first to study the combination of (1) spectrum-based fault localization, (2)

multi-level monitoring to overcome the fault localization problem for tightly in-

teracted services and (3) a detailed analysis of overhead of multi-level monitoring

for diagnosis.

8.1 Diagnosis for service-based systems

Chen et al. present Pinpoint (Chen et al, 2002), a similar diagnosis approach plus a

tool using similarity coefficients in order to infer a diagnosis from system activation

and component involvement. However, even though their title suggests otherwise,

they do not address the specific issues of diagnosing services, i.e. the problems of

inter-service diagnosis, and the fact that services are used in different contexts.

Yan, et al. (Yan and Dague, 2007; Yan et al, 2009), propose a model-based ap-

proach to diagnose orchestrated Web service processes. Modeling is done through

discrete event systems, which imposes a heavy burden on the user of the tech-

nique. Zhang et al. (Zhang et al, 2009, 2012) describe approaches for diagnosing

quality-of-service problems in service-oriented architectures. However, their diag-

nosis approaches cannot adapt well to the dynamic nature of SOA, due to the
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static information they used. Moreover, their bayesian-based approaches are more

heavyweight compared to spectrum-based approaches. Additionally, the authors

measure the execution time for diagnosis, but their main purpose is to compare the

performance of their two approaches, and they did not assess the overhead caused

by diagnosis to the performance of service system. Mayer and colleagues (Mayer

et al, 2010, 2012), describe a similar diagnosis approach that is based on analyzing

execution traces of failed transactions. However, the models they used for diagnosis

are rather complex, and proper evaluation is still pending.

8.2 Fault localization

Wong et al. (Wong et al, 2010) discuss a number of code coverage-based heuristics

to be used in fault localization. Grosclaude describes a model-based monitoring ap-

proach for diagnosing component-based systems, and suggests to use transactions

IDs in order to associate messages sent between components (Grosclaude, 2004).

This is also proposed by (Chen et al, 2002), and we see it as a standard approach

to determine which service takes part in which system transaction. Chatzigian-

nakis and Papavassiliou (Chatzigiannakis and Papavassiliou, 2007) use principle

component analysis in order to identify faulty nodes in sensor networks.

Spectrum-based fault localization is a lightweight technique, but alternatives

exists. One such alternative are techniques that are model-based. Although out-

side the realm of service-based computing, Feldman et al. have proposed a greedy

stochastic algorithm for computing diagnoses within a model-based diagnosis frame-

work (Feldman et al, 2010). An important drawback of these model-based ap-

proaches is that we need to provide a correct model of the nominal behavior of
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the entire service-based application, which is daunting. A second issue is the com-

binatorial explosion in the reasoning of model-based diagnosis that inhibits the

diagnosis of very large systems.

8.3 Monitoring for service based systems

There are a large number of papers about monitoring for service systems, however,

most of them are missing overhead measurements, e.g., (Zulkernine et al, 2008;

Keller and Ludwig, 2003). Furthermore, among those that do have monitoring

overhead measurements, most of them are lacking a real and proper service system

for evaluation, e.g., (Baresi and Guinea, 2013). In what follows, we present some

of the monitoring solutions that have been presented.

Lin et al. (Lin et al, 2009) implement a middleware to monitor and diagnose

service systems. They use a self-created example business process to measure the

overhead of data collection. They do not provide detailed analysis of monitoring

impact and types of monitor. Heward et al. in (Heward et al, 2010) quantify and

assess the performance impact of monitoring on a web service. Although they

measure the performance impact under various monitoring setups, the testing

vehicle they used is a single service.

Moscinat and Bonder present ADULA, a framework for automated mainte-

nance of BPEL (Business Process Execution Language) processes (Mosincat and

Binder, 2011). ADULA automatically detects and repairs service-level agreement

(SLA) violations caused by service performance degradation in a way transparent

to the user and to the BPEL engine. Their approach uses lightweight sampling

monitoring and allows for customizable violation detection. They have also imple-
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mented repair policies, so that a service which violates the SLA can be replaced

with another services that does adhere to the SLA violation. Their approach has

a clear focus on performance and not on correctness.

Baresi et al. present a step towards self-healing compositions of service. Their

approach is to monitor the execution of a service composition and trigger a suit-

able reaction so that the system can continue its execution (Baresi et al, 2007).

The faulty behaviors that they consider are non-answering services and services

violating their contracts. Their approach thus heavily relies on a contract viola-

tion being present. In contrast, our approach does not make assumptions towards

contract violations and is more geared towards detecting the actual defect in a

service composition.

9 Conclusion and Future work

The goal of this paper is to investigate the trade-off between making the diagnosis

of tightly interacting faulty services more accurate by increasing the monitoring

granularity and the resulting performance penalty on the service system.

Referring to our research questions, we looked at:

RQ1: How and to which extent the monitoring granularity affects the calculation of

an SFL-based diagnosis? First, we used a simulator to reason over different service

topologies. Second, we performed an actual case study on a SOA-based system,

varying the level of monitoring granularity. The main conclusion from both exper-

iments is that increasing the level of monitoring granularity can indeed improve

diagnosis. More precisely, in our case study we could obtain up to 100% correct
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diagnoses. This comes through the increased variability in the observations used

for the activity matrix of the SFL technique.

RQ2: How can we increase the monitoring granularity for diagnosis? The natural

choice for placing monitors is at the service-level. However, this is so coarse-grained

that many cases cannot be correctly diagnosed. Increasing the level of observation-

granularity can then only be done by going into the services, changing their imple-

mentations. A brute force approach would be to monitor every single line of code.

However, we restrict the monitoring to the code block level, representing unique

execution branches through a service or proper isolation of tight coupling.

RQ3: What is the overhead caused by the monitoring for diagnosis at various lev-

els of granularity? Our case study demonstrates that we are able to diagnose all

faulty services correctly through increasing the monitoring granularity. Yet, at the

same time, we are also worried about the performance overhead that the entire

infrastructure adds. The total impact of monitoring on the system performance

depends on the number of used monitors. In detail, the monitoring at the service

level, i.e., Turmeric monitoring, always causes more overhead than the monitoring

at a finer-grained level, i.e., code block monitoring. On the other hand, when the

number of code block monitors is small, the caused overhead can be negligible,

however, the overhead can also become comparable with Turmeric monitoring if

the number of code block monitors is increased.

Contributions Our work makes the following contributions:

1. We apply spectrum-based fault localization in the area of service-oriented sys-

tems in order to pinpoint problematic services.
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2. We introduce the problem of tight service interaction, an inhibiting factor

towards obtaining a good diagnosis of where the problematic service is located.

3. We present the SFL simulator, a simulation environment in which we can

simulate faulty behavior of services with a certain probability and which allows

us to study many service topologies with regard to the tight service interaction

problem.

4. We introduce the idea of intra-service fine-grained monitoring to overcome the

tight service interaction problem.

5. We present a case study with SFL Stonehenge, a small real-world and open-

source case study to illustrate that fine-grained monitoring can indeed help

overcome the tight service interaction problem.

6. We perform an in-depth study on the performance overhead of our fine-grained

monitoring approach.

Future work Based on the finding that the overhead of code block monitoring

is tightly related to the number of its monitors and its overhead can become

comparable with that of Turmeric monitoring, we plan to study where would be

the best place for monitors in a service system. Such monitor placement can achieve

the highest accuracy of diagnosis and the least disturbance to the service system

at runtime. In the case study, we did the placement of monitors manually, but in

future work, we would like to use some techniques, such as code slicing, to make

it automatic. Currently, the monitors for different granularities are also deployed

at compile time, we would like to enable dynamic monitoring in the future. This

can also facilitate the automation of monitor placement.
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Another area of future research is verifying whether our approach would also

work for component-based systems.
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