
Noname manuscript No.
(will be inserted by the editor)

Revisiting the Debate: Are Code Metrics Useful
for Measuring Maintenance Effort?

Shaiful Chowdhury · Reid Holmes ·
Andy Zaidman · Rick Kazman

Received: TBD / Accepted: TBD

Abstract Evaluating and predicting software maintenance effort using source
code metrics is one of the holy grails of software engineering. Unfortunately,
previous research has provided contradictory evidence in this regard. The de-
bate is still open: as a community we are not certain about the relationship
between code metrics and maintenance impact. In this study we investigate
whether source code metrics can indeed establish maintenance effort at the pre-
viously unexplored method level granularity. We consider ∼750K Java meth-
ods originating from 47 popular open source projects. After considering six
popular method level code metrics and using change proneness as a mainte-
nance effort indicator, we demonstrate why past studies contradict one another
while examining the same data. We also show that evaluation context is king.
Therefore, future research should step away from trying to devise generic main-
tenance models and should develop models that account for the maintenance
indicator being used and the size of the methods being analyzed. Ultimately,

Shaiful Chowdhury
Department of Computer Science
University of British Columbia, Vancouver, Canada
E-mail: shaifulc@cs.ubc.ca

Reid Holmes
Department of Computer Science
University of British Columbia, Vancouver, Canada
E-mail: rtholmes@cs.ubc.ca

Andy Zaidman
Department of Software Technology
Delft University of Technology, the Netherlands
E-mail: a.e.zaidman@tudelft.nl

Rick Kazman
Department of Information Technology Management
University of Hawaii, Honolulu, Hawaii
E-mail: kazman@hawaii.edu

2 Shaiful Chowdhury et al.

we show that future source code metrics can be applied reliably and that these
metrics can provide insight into maintenance effort when they are applied in
a judiciously context-sensitive manner.

Keywords Code Metrics · Maintenance · McCabe · Code Complexity

1 Introduction

The cost of software maintenance, which often exceeds the original cost
of development [1], has long been a concern for the software industry [2].
This has led to considerable research estimating maintenance effort given the
current state of a software project, to support project optimization and risk
planning (e.g., [3–9]). External software metrics—such as correctness, and
performance—can indicate future maintenance effort, but they are difficult
to collect [10] and are often not available in early development phases. In con-
trast, source code metrics are easy to collect and are available throughout the
software development life cycle. Therefore, a holy grail for the developer and
the research community has been to predict future maintenance effort from
code metrics [10].

A number of code metrics [8,11–13] have been used to predict maintenance
indicators such as defect proneness, change proneness, and test difficulty. How-
ever, the true effectiveness of code metrics has been a subject of debate for the
past forty years (e.g., [10,14,15]). While some studies showed that code metrics
were good predictors [16–20], in others the outcome was negative [10, 14, 21].
According to these critics, other than program size [10,22,23], we do not have a
single reliable code metric to estimate software maintenance effort [10,21,22].
In fact, size was found to be a good predictor of other code metrics [24], which
is frustrating, because if size is the only valid metric, we can not prioritize
maintenance activities between two components with similar sizes. Also, no
good code metrics except size means that forty years of research [25] on code
metrics is potentially useless.

In this paper, we revisit the usefulness of code metrics so that we can inform
both the research and developer communities as to whether code metrics are
indeed good maintenance predictors, or if they should be abandoned. Also, we
reproduce the previous contradictory claims as a means of guiding the research
community on how to evaluate future code metrics reliably. For example, while
some prior studies accounted for size (usually measured in Source Lines of
Code, without comments and blank lines [17]) as a confounding factor for
validating a metric, many did not. By using the complete history of ∼750K
Java methods from 47 popular open source projects, along with six source
code metrics and four change proneness based maintenance indicators, we
provide encouraging results. Our conclusion is that code metrics can in fact
help estimate maintenance effort, such as change proneness, even when the
confounding influence of size is eliminated. However, the impact of a code
metric varies in different evaluation contexts. For example, nested block depth
is not as good a predictor for large methods as it is for smaller methods, and

Title Suppressed Due to Excessive Length 3

metric performance can vary greatly based on the maintenance indicator used.
We support our conclusion by answering the following research questions:

RQ1: Is the confounding effect of size a driving factor for the previous con-
tradictory findings on the relationships between code metrics and maintenance
effort?

Contribution 1: We show that size is indeed a significant factor in pre-
vious contradictory claims about the validity of code metrics. With our new
method-level benchmark of code metrics and change evolution, we reproduce
three major prior observations: 1) Similar to some previous studies (e.g., [16,
26–28]), we first ignore size as a confounding factor, and show that code met-
rics are good maintenance predictors. 2) By dividing a metric value by size—a
common [14, 29, 30], but inaccurate approach [10] for size normalization—we
reproduce the claim that code metrics are good maintenance predictors. 3) We
then show that the widely adopted size normalization approach fails to neu-
tralize the size influence, and the maintenance impact of code metrics can still
be explained by their correlation with size. This reproduces the criticism that
without size influence there is no empirical evidence to support the validity of
code metrics other than size itself [10, 14].

RQ2: Why does the widely used size normalization approach not neutralize
the size influence?

Contribution 2: Our expectation was similar to many other previous
studies: a normalized metric (after dividing by size) should not have any cor-
relation with size. To our surprise, we find that this is not the case. Some
normalized metrics are negatively correlated with size while others are posi-
tively correlated with size. For example, normalized McCabe values are usually
higher when the code size is small, thus producing a negative correlation be-
tween maintenance effort and size. For some others, the observation is opposite.
We provide an explanation for why this unexpected observation is surprisingly
common across all considered metrics.

RQ3: Can we apply simple regression analysis for observing the true (size
neutralized) maintenance impact of code metrics (proposed in a recent study
by Chen et al. [31])?

Contribution 3: Our conclusion is encouraging. By a combination of bi-
variate (i.e., size∼maintenance) and multivariate (e.g., size + McCabe∼ main-
tenance) regression analysis we show that code metrics are indeed good main-
tenance predictors, even when their correlation with size is neutralized.

RQ4: Does the performance of code metrics vary based on the evaluation
context (maintenance indicators and method size), and why?

Contribution 4: We show that evaluation context is a significant factor
for code metric performance. Some code metrics perform well for small meth-
ods, but not for large methods. We show that these metrics lose variability
when applied to large methods. Once they reach a threshold they lose predic-
tive power. Other metrics, however, can increase monotonically (e.g., McCabe)

4 Shaiful Chowdhury et al.

and do not suffer from a lack of variability in the measurements. So their per-
formance is not negatively impacted by code size. Also, a metric’s performance
varies greatly based on the maintenance indicator used. A metric can be good
for estimating the number of revisions, but not good for estimating the size
and the nature of code modifications.

These observations are novel because they clearly show that code metrics
are useful as maintenance predictors, while explaining the apparent contradic-
tions from prior studies. With context-based evaluations, we provide new ways
to examine the effectiveness of existing and future code metrics, and how they
should be used to build more accurate software maintenance models. To aid
reproducibility, we provide a public replication package1 consisting of a data
set of ∼750K Java methods with their complete histories and the values for
all computed metrics and maintenance indicators over time.

1.1 Paper Organization

Section 2 discusses the potential root causes of the previous contradictory
claims about code metrics, which helped design the methodology of this paper.
Section 3 discusses the methodology. In Section 4, we reproduce the previous
contradictory claims about code metrics. We also discuss the inaccuracy of the
traditional size normalization approach. In Section 5, we show the true main-
tenance impact of code metrics by a combination of bivariate and multivariate
regression analysis. We also demonstrate why different evaluation contexts
should be considered before drawing any conclusion about code metrics. The
significance of our findings and threats to validity are presented in Section 6.
Section 7 concludes this paper with some potential future studies.

2 Related Work & Motivation

First we discuss the McCabe cyclomatic complexity, a metric for measuring
the number of linearly independent paths through a component [11]. This met-
ric was proposed in 1976, and has been widely studied and adopted [32,33]. We
can divide all the McCabe-related studies into two groups: studies that support
its validity (e.g., [4,17,26,34,35]), and studies that do not (e.g., [10,14,21,36]).
McCabe is not the only metric that has been debated. With strong empirical
evidence, other widely adopted metrics, such as C&K [12], readability [37] have
been criticized [10,21]. We identify the following factors that may influence the
outcome of a code metric study, and thus support contradictory conclusions.

User studies are subjective: Much metrics research relies on user stud-
ies to understand the impact of metrics on maintenance indicators [2,21,34,37–
43]. One peril related to user studies is that the outcome often depends on hu-
man subjects, and can be inconclusive or even contradictory [44]. Also, in the
context of code quality, user perception does not necessarily match with the
true quality of software [33]. Unsurprisingly, we observe contradictory results
for similar maintenance indicators while code metrics were evaluated: both
that code metrics are useful [16], and that they are not useful [21]. In this

1 https://github.com/shaifulcse/codemetrics-with-context-replication

Title Suppressed Due to Excessive Length 5

paper, we therefore focus on objective change measurements as maintenance
indicators that we collect from real-world software projects.

Size as a confounding factor: The most frequent criticism invalidat-
ing code metrics is that they are highly correlated with size [2, 14, 17, 32, 45].
Therefore, none of the metrics offer any new maintenance information when
normalized against size [10, 22]. To claim validity of a metric, we need to
show that the metric has predictive power even after its dependency to size
is neutralized. Despite this well and long established fact, several studies have
ignored it (e.g., [16,26–28]). In a recent study by Johnson et al. [16] developers
took less time to read code snippets that followed certain rules (e.g., reduced
nesting level) than those that did not follow such rules. The publicly available
dataset enabled us to analyze the size distribution of the snippets. Figure 1(a)
(cumulative distribution function of source lines of code) shows that the snip-
pets that broke the rule were much larger than those that followed the rules.
More lines of code would naturally take more time to read, so perhaps size
made the difference in reading time, and not the reduced nesting level.

Some studies, however, have attempted to neutralize size while evaluat-
ing code metrics. For example, Spadini et al. [18] evaluated the maintenance
impact of test smells in three different size categories: small (SLOC < 30),
average (30 < SLOC < 60), and large (SLOC > 60). Although this approach
should reduce the confounding impact of size to some extent, analyzing all
methods with SLOC > 60 (for example) in one group can not eliminate the
problem completely. A more common approach is to calculate metric density
per lines of code [10, 14, 29, 30]—i.e., 100×McCabe/Size. Unfortunately, Gil
et al. [10] argued that this approach is inaccurate and questions some of the
previous claims of validity for different code metrics. We argue that a metric is
a valid maintenance indicator only when it correlates with maintenance after
the confounding factor of size is neutralized, and traditional size normalization
approach does not help in making such observation. We need a new approach
to evaluate code metrics’ effectiveness.

Aggregated analysis: Some studies were based on aggregated analy-
ses [10,18,46]. That is, they combined all metrics and maintenance indicators
from all the studied projects. This is problematic for several reasons. Dif-
ferent external factors—e.g., code review policy [47], developer commit pat-
terns [48] and expertise [49]—cause code to evolve in projects differently. Fig-
ure 1(b) shows the distributions of revisions for all the methods in each of
our 47 projects (described later); each line corresponds to one project. Ev-
idently, these projects do not exhibit similar revision behavior. Combining
them together may lead us to inaccurate conclusions. Figure 1(c) shows that
the difference in distributions reduces after applying recommended log-normal
transformation [15], but the differences do not completely disappear. Even
for code metrics, the distribution in their measurements greatly vary based
on a project’s domain, programming language, and life span [50]. Also, some
projects are much bigger than others. This means that in aggregated analyses,
results can be unduly influenced by few big projects.

6 Shaiful Chowdhury et al.

10 12 14 16 18 20 22 24 26
SLOC

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Broke rule
Followed Rule

(a) Confound factor

100 101 102

#Revisions

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Distribution of method revisions

10 2 10 1 100 101

#Revisions

0.2

0.4

0.6

0.8

1.0

CD
F

(c) Distribution after log-normal transformation

Fig. 1: Figure (a) shows that size was not normalized in the study by Johnson
et al. [16]. Code snippets that broke the rules are much larger than the code
snippets that followed the rules, leading to inaccurate comparisons. Figure (b)
shows that aggregated analysis is inaccurate because different projects exhibit
different revision behaviors. Each line represents the revision distribution for
a given project, and these lines are very different from each other. Figure (c)
shows that these different revision patterns are not neutralized, even after
applying a log-normal transformation, as suggested by Gil et al. [15].

Title Suppressed Due to Excessive Length 7

These problems of aggregated analysis can be avoided by analyzing each
project individually [2–4, 28]. Individual project analysis, however, has been
criticized for selection and publication bias [10, 51]. As we also show in this
paper, there are always outlier projects that exhibit unique behavior, which
might seem normal if too few projects are studied. The argument is thus to
analyze each project separately, while studying a reasonably large number of
projects with a systematic unbiased selection process.

Granularity: Software maintenance studies have been conducted at dif-
ferent granularities that can influence observations [17]; these include the sys-
tem level [2, 29], class/file level [52], snippet level [39, 42], and even git diff

level [53]. Understanding maintenance at the method level granularity from
real software evolution data is difficult [54–56]; it is harder to reliably gen-
erate method level histories than file level histories. Despite the difficulty,
method level is the most desirable granularity [46, 57], because class/file level
granularity is often too coarse-grained for practical use [46, 58, 59]. We also
argue that if we can estimate maintenance at method level granularity, we can
extend this understanding to coarser levels of granularity—a class is generally
a collection of methods.

Maintenance Indicators: We consider software maintenance as a con-
struct [60], which is difficult to measure, but easier to estimate it through some
reflective indicators. Different studies have focused on different indicators: hu-
man effort to read and understand code [16,61], localizing bugs [9,46,57,62,63],
change proneness [10], or developer activities [3]. In this paper, we focus on four
change proneness indicators of Java methods (justified later). We show that
metric performance to understand maintenance can vary significantly based
on the indicators used.

3 Methodology

This section describes our process for: i) selecting projects, ii) choosing
code metrics and maintenance indicators, iii) collecting method-level history
for analysis, iv) age normalization for methods with different ages, and v)
selecting statistical approaches for analysis.

3.1 Project Selection

To reduce inaccuracies that may stem from aggregated analysis, we opted
to analyze individual projects. To neutralize selection bias, we took the union
of all GitHub Java projects used in four different software evolution stud-
ies [10, 18, 52, 56], totalling 47 projects—mixing projects from different pro-
gramming languages can significantly impact the outcome of code metrics
studies [50]. As we show later, this project set is able to highlight code metric
behaviors that are generic (true for most projects) and which behaviors are
rare. Table 1 describes the dataset. The table suggests that only a small num-
ber of methods (e.g., 95th percentile of revisions) undergoes a large number of
revisions. That means we can significantly reduce the search space for mainte-
nance optimization by identifying the top 5% high-churn methods. This paper
investigates, if code metrics are indeed helpful for such identification.

8 Shaiful Chowdhury et al.

Table 1: Description of the dataset used in this paper. In total, 744,197 Java
methods were collected from 47 GitHub Java projects. The small average, rev
(avg), and median number of revisions compared to the large 95th percentile
and maximum revisions suggest that most maintenance activities occur in
small areas of code.

Repository # methods # rev # rev # rev # rev
(avg) (med) (max) (95th percentile)

hadoop 70,524 1.8 1.0 67.0 6.0
elasticsearch 63,253 3.7 2.0 133.0 12.0
flink 38,482 1.9 1.0 96.0 8.0
lucene-solr 37,600 1.6 1.0 145.0 6.0
hbase 37,414 3.2 2.0 109.0 11.0
docx4j 36,543 2.2 2.0 49.0 4.0
intellij-community 36,387 3.6 2.0 158.0 13.0
weka 35,824 1.7 1.0 86.0 5.0
hazelcast 35,609 2.7 1.0 109.0 10.0
spring-framework 27,093 2.4 1.0 60.0 8.0
hibernate-orm 25,290 2.5 2.0 70.0 7.0
eclipseJdt 22,230 3.0 1.0 133.0 12.0
jclouds 21,478 1.7 1.0 65.0 6.0
guava 21,195 1.1 0.0 45.0 4.0
sonarqube 20,907 3.1 2.0 305.0 10.0
wildfly 19,980 2.2 1.0 94.0 9.0
netty 17,089 2.1 1.0 75.0 9.0
cassandra 16,271 1.6 0.0 178.0 6.0
argouml 12,775 3.4 2.0 156.0 10.0
jetty 10,743 2.2 1.0 93.0 8.0
voldemort 10,654 1.8 0.0 65.0 9.0
spring-boot 10,495 2.6 2.0 59.0 9.0
wicket 10,260 4.9 3.0 63.0 14.0
ant 9,837 2.0 1.0 73.0 8.0
mongo-java-driver 9,735 3.4 2.0 57.0 13.0
jgit 9,615 1.4 1.0 44.0 6.0
pmd 9,037 3.2 2.0 91.0 10.0
xerces2-j 8,335 1.4 0.0 65.0 6.0
RxJava 8,332 3.7 3.0 22.0 10.0
javaparser 6,324 3.4 1.0 84.0 15.0
openmrs-core 6,108 2.2 1.0 176.0 7.0
hibernate-search 5,391 3.2 2.0 61.0 11.0
titan 4,654 2.2 1.0 42.0 9.0
checkstyle 3,347 3.8 2.0 72.0 13.0
commons-lang 2,964 3.7 3.0 34.0 9.0
lombok 2,852 2.5 1.0 61.0 10.0
atmosphere 2,681 2.4 0.0 87.0 12.0
jna 2,653 2.3 1.0 38.0 8.0
Essentials 2,412 3.1 1.0 46.0 15.0
junit5 2,181 2.7 1.0 59.0 11.0
okhttp 1,970 4.7 3.0 54.0 16.0
hector 1,963 1.7 1.0 43.0 8.0
mockito 1,526 4.2 3.0 62.0 13.0
cucumber-jvm 1,222 2.7 1.0 36.0 9.0
commons-io 1,149 3.1 3.0 24.0 8.0
vraptor4 934 1.7 1.0 24.0 6.0
junit4 879 3.1 2.0 70.0 11.1

Title Suppressed Due to Excessive Length 9

We also note that the number of methods is significantly different across
the projects. If we were to adopt aggregated analysis, results for small projects
would be unnoticeable. The set of projects is clearly diverse. For example, even
for the subset that was used in [10], the number of developers ranges between
16 and 197, and development duration varies from one to 13 years.

3.2 Code Metric Selection

In contrast to method-level granularity, many of the popular code met-
rics, such as C&K and depth of inheritance, work only at class or higher level
granularities. Also, the objective of this paper is not to show which code met-
ric is the best for estimating maintenance effort, because there are many of
them [21]. Instead, we focus on code metric validity: are they useful at all, and
if so, are the underlying evaluation contexts important? Therefore, we focus
only on six widely adopted and widely studied metrics that are applicable
at method-level granularity. We show that these six metrics were sufficient
to reproduce previous contradictory claims and to examine how code metrics
should be reliably evaluated.

McCabe: The McCabe algorithm for measuring cyclomatic complexity
is simply: 1 + #predicates [11]. There are, however, two forms: one counts
logical && and ‖, and the other ignores them. We only consider the latter
form because considering them does not make any meaningful difference in
McCabe’s validity as a code metric [17].

McClure: A criticism of McCabe is that it does not consider the number
of control variables in a predicate. If the outcome of a predicate depends on
multiple control variables, it should be considered more complex than the one
with a single control variable [2]. McClure differs in this regard [8]: it measures
the sum of the total number of comparisons (thus includes && and ‖) and the
number of control variables in a component.

Nested Block Depth: Neither McCabe, nor McClure, considers nesting
depth. To both of these metrics, two methods each with two loops (for exam-
ple) are equally complex, even if one of them has nested loops and the other
does not. Measuring Maximum Nested Block Depth (referred to as NBD) is a
common solution [16,64].

Proxy Indentation: Hindle et al. [53] argued that a metric like McCabe
is hard to calculate because one needs a language-specific parser. They found
that it is similarly useful to use the level of indentation in a code component.
Counting the raw number of leading spaces in each line is equally good as
counting the number of logical spaces. Instead of calculating the max, sum,
mean, or median, the authors found that standard deviation of those counts
(referred to as IndentSTD) works as the best proxy for McCabe-like complex-
ity.

FanOut: The aforementioned metrics, to some extent, measure similar
complexities—mainly the number of conditional branches. Therefore, we add
FanOut (total number of method calls made by a given method) to our list.

10 Shaiful Chowdhury et al.

This metric provides an indication of how a particular method is dependent on
other methods (coupling). Mo et al. observed that highly coupled systems are
usually less maintainable [65]. We also wanted to use FanIn or unique FanOut,
but these two require a symbol solver that preprocesses a complete repository
for each change commit a method has. It would be extremely time demanding
for the ∼750K methods that we consider.

Readability: We also include a composite metric that combines different
code metrics to produce a single indirect maintenance index. For this we adopt
the widely used Readability metric by Buse et al. [37] which ranges from 0
(least readable) to 1 (completely readable code).

3.3 Maintenance Indicator Selection

Modeling maintenance effort is a difficult problem, because there are many
different effort indicators that should be considered for building a comprehen-
sive effort prediction model. A subset of these indicators include human effort
to read and understand code [1, 16, 21, 37], difficulty to modify a code [65],
bug proneness [59, 66], and change proneness [10, 28, 58, 67]. The objective of
this paper is not to build an effort prediction model, but to answer if code
metrics are at all useful for understanding maintenance effort, and how to
evaluate these metrics reliably. In that vein, we focus on change proneness,
as it is measurable without conducting user studies, reducing threats related
to such studies. Also, the community unanimously agrees about the utility
of change proneness as one of the most applicable maintenance effort indica-
tors [10,28,52,54,58,67–69]. While we considered bug proneness, we discarded
this indicator to reduce threats to construct validity. From our dataset, bug
proneness can be measured by capturing keywords from commit messages,
such as error, bug, and fixes [68, 70]. Unfortunately, this approach has been
criticized for low precision/recall [10, 18], which is further complicated due
to tangled changes. Developers often commit unrelated changes, which incor-
rectly labels bug-free code as buggy [48]. Additionally, change proneness is
often highly correlated to bug proneness [46, 66, 71–73]. Therefore, if a code
metric is a good predictor of change proneness, it is likely to be a good predic-
tor of bug proneness as well. Ultimately we selected the following four change
proneness indicators.

#Revisions: Number of revisions of a component is considered as an
indication of maintenance effort by many [3, 20, 64, 74]. The consensus is that
a well designed less complex component should not need many revisions.

Diff size: Number of revisions does not disclose how large a change is. If
two components are revised the same number of times, their maintenance effort
is not necessarily the same. Also, the number of revisions can be influenced by
developers’ commit habit or culture [47]. Therefore, some consider git diff

size a more accurate maintenance indicator [3, 75].

Additions only: Adding new lines is perhaps more difficult than deleting
lines. This threat can be reduced by considering only the number of new lines
added [3].

Title Suppressed Due to Excessive Length 11

Edit Distance: Lines of changed code, as a metric, is affected by noise
such as coding style; it does not distinguish modifications between large and
small lines. Also, a simple automatic rename method refactoring may modify a
large number of lines. Therefore, Levenshtein edit distance [76] is considered as
a better maintenance indicator than number of lines (added and/or deleted) [5,
21,75]. Levenshtein edit distance measures the number of characters added+
deleted+ updated for converting one source code version into another.

3.4 Data Collection and Representation

We require a method’s complete change history: how many times the
method was changed, when the changes happened, and what was changed?
There are only few tools that support history tracing at method level gran-
ularity: Historage [77], FinerGit [55], and CodeShovel [56, 78]. Historage and
FinerGit work similar to Git’s file tracking mechanism by converting each Java
method to a file. However, we find that this approach does not scale well to
larger projects. In contrast, CodeShovel tracks a method (even if the method’s
signature is changed) using string similarity and without any project prepro-
cessing. Unlike the other tools, CodeShovel’s accuracy was evaluated on both
open source and closed source industry projects, with 99% precision and 90%
recall.

After collecting the complete history of 744,197 Java methods from 47 se-
lected projects, we collected the evolution of their code metrics (e.g., SLOC,
McCabe), and change metrics (e.g., edit distance). To the best of our knowl-
edge, there is no existing tool that provides measurements in this form, so
we have implemented our own tool. We verified its correctness by randomly
selecting and validating 200 Java methods. In addition, the accuracy of the
tool was tested by an independent code metric researcher. A method, across
its evolution history, can have different values for the same code metric (e.g.,
initially the McCabe was 5, but then it changed to 3, and then to 5 again). For
a single method, we thus summed all the maintenance indicator values (e.g.,
sum of all edit distances) that a method had for each unique code metric value.
For a given method, for example, if edit distance 10, 20, and 30 correspond
to McCabe values 5, 3, and 5 respectively, McCabe value 5 is blamed for edit
distance 40 (10+30), and McCabe 3 is blamed for edit distance 20. This is
how we mapped code metrics value with different maintenance indicators to
study the relationships between them.

3.5 Age Normalization

It is inaccurate to compare the change history of two differently-aged meth-
ods. An older method is more likely to have more revisions than a newer
method [45, 79]. For the rest of the analysis, we consider methods that are at
least two years old: reasonably enough time to undergo their initial changes.
However, this approach does not completely neutralize the time effect; for
instance, we should not compare a two year with a year ten method. We neu-
tralize this by considering changes that happen only within the first two years
of these filtered samples. This is like time traveling to each of the methods

12 Shaiful Chowdhury et al.

100 101 102 103 104

Day

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
Age
All changes
Subsequent changes

Fig. 2: Two years is a good threshold for age normalization. We only lose
∼20% of the methods, and yet retain ∼60% of the revisions that happened
within our whole dataset.

change history when they were two years old. But why two years? Figure 2
(cumulative distribution functions with day) shows that more than 80% of our
methods (total 611,543 methods) are older than two years (Age). Among all
the revisions in whole dataset (All changes in the graph), ∼60% of them hap-
pened within the first two years. If we consider the interval time of subsequent
revisions, around 86% of changes happened within the first two years. If we
increase the age threshold value, we lose more methods. If we decrease it, we
lose more change history, so it is a trade-off. Note that if we set the threshold
to one or three years, the major conclusions of this paper remain the same.

3.6 Correlation and Statistical Significance

To apply Pearson’s formula for calculating correlation coefficients between
code metrics and maintenance indicators we need to establish that each metric,
for each change proneness indicator, for each project is normally distributed.
After applying the Anderson-Darling normality test [80] for some of the ran-
domly selected projects, we found that they are not normally distributed.
Therefore, we opted to use Kendall’s τ correlation coefficient. Unlike Pear-
son’s correlation coefficient, Kendall’s τ does not assume any distribution of
the data (non-parametric), and is less affected by outliers, which the commu-
nity has chosen to use for these kinds of analysis [10,81,82]. Unless otherwise
stated, all results in this paper are statistically significant (p-value < 0.05).
When necessary, we also use the Wilcoxon rank-sum test to test if the per-
formance distributions of the code metrics are statistically different, and if
so, we report how large the differences are (Cliff’s Delta effect size). Similar

Title Suppressed Due to Excessive Length 13

to Kendall’s τ , these two tests are non-parametric and do not assume any
distribution of the data [83,84].

As we consider each project separately, we present the results as distri-
butions. Therefore, we use the Cumulative Distribution Function (CDF) for
the visual representation of our results. We considered using XY-plots, but
CDF better conveys our findings. As CDF is a monotonic function, compar-
ing multiple lines (because of multiple code metrics) is easier than XY-plots’
zigzag-patterns.

4 Results: Looking into the Past

In this section, we reproduce previous claims about the relationship be-
tween code metrics and software maintenance (RQ1). We show that the debate
about source code metric effectiveness stems from improperly considering, or
normalizing for, size as a confounding factor. We show that the most commonly
used normalization approach fails to neutralize the size effect in practice. We
then explain why size normalization is difficult and remains an open research
problem (RQ2).

4.1 (RQ1) Metrics are (not) Useful

Figure 3 (a) shows the cumulative distribution functions (CDF) of the cor-
relation coefficients between the selected code metrics and number of revisions
(each line represents a particular metric and shows the distribution across
all the 47 projects). Results are similar for McCabe, McClure, and NBD, so
we show only McCabe to maintain graph readability. Evidently, all six code
metrics are correlated with maintenance measures, which means that they are
potentially good maintenance predictors. This approach aligns with a group
of prior studies (e.g., [16, 26, 27]) that did not attempt to control for size as a
confounding factor.

Correlating a metric with maintenance alone does not make a metric valid
or useful [10, 14]. The arguments supporting this are: (1) size is a great pre-
dictor of maintenance, and (2) many code metrics are highly correlated with
size. So a metric’s correlation with maintenance could simply be due to its
correlation with size. Figure 3(b) shows the correlation between SLOC and
the four maintenance indicators for all 47 projects (supporting argument 1).
Figure 3(c) shows that all the metrics are correlated with size (supporting
argument 2). We observe that the direction and strength of the correlation
between a code metric and maintenance is similar to the metric’s correlation
with size. For example, Readability is negatively correlated with both size
and maintenance (larger size means less readable and thus less maintainable).
For IndentSTD the correlation is somewhat lower (compared to McCabe and
FanOut) with size and thus lower with maintenance. These observations align
well with the criticism that when the influence of size is considered, we do not
have any empirical evidence to support the usefulness of code metrics [14].
From this we conclude that without size normalization we do not know the
true effectiveness of code metrics.

14 Shaiful Chowdhury et al.

0.4 0.2 0.0 0.2 0.4
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

McCabe
IndentSTD
totalFanOut
Readability

(a) Code metrics and #Revisions.

0.2 0.3 0.4 0.5 0.6
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

#Revisions
NewAdditions
DiffSizes
EditDistances

(b) SLOC and change indicators.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

McCabe
IndentSTD
totalFanOut
Readability

(c) Code metrics and SLOC.

Fig. 3: Figure (a) shows that all the code metrics are significantly correlated
with number of revisions in each project (observations are similar for other
maintenance indicators). Figure (b) shows that SLOC is positively correlated
with all the maintenance indicators. Figure (c) shows that code metrics are
correlated with SLOC. For graph readability, the number of marks in each line
is fewer than the actual number of data points.

Title Suppressed Due to Excessive Length 15

The most common approach for size normalization takes the density of
a metric and divides its measure in a component by the size of the compo-
nent [10,14,29,30]. For example, 100×McCabe/Size gives the McCabe value
per 100 lines of code, so we should have a normalized McCabe measure com-
pletely independent of size. The hypothesis is that, if we still see correlation
between a metric and maintenance, we can argue for the validity of the metric.
Figure 4(a) shows the distributions (for 47 projects) of correlation coefficients
for all the normalized code metrics with the number of revisions (results are
similar for other maintenance indicators). Evidently, all the metrics are still
correlated with maintenance. This supports the assumption of code metrics
validity after the size influence is neutralized.

To our surprise, we find that this commonly practiced size normalization
approach is inaccurate. Figure 4(b) shows the correlation distributions between
the normalized metrics and size for all 47 projects. Although we were expecting
the correlation to be close to zero, this is not the case. We also note that
the direction of the correlation between size and a metric still dictates the
direction of the correlation between maintenance and that metric. For example,
McCabe is negatively correlated with both size and number of revisions. We
later found that the same observation was made by Gil et al. [10], although
their granularity level was different (file-level instead of method-level). They
concluded that size is the only valid code metric because maintenance impact
of other code metrics can directly be explained by their correlations to size.
Despite our similar observation, we see hope if we carefully examine Figure 4(a)
and 4(b). For example, the correlations with revisions are similar for FanOut,
NBD, and McClure, but not as similar to size. For Gil et al., size explains
everything (file-level), but for us it does not (method-level).

This difference of observations can be explained by the findings of Land-
man et al. [17], who have studied the correlation between McCabe and size
at different granularity levels. In their study, the strong correlation between
McCabe and size is true only for large code units, but dwindles significantly
at the method level granularity. The authors, however, did not examine Mc-
Cabe’s impact on maintenance. In this paper, with the help of bivariate and
multivariate regression analysis, we show that code metrics are indeed good
maintenance predictors, even when their relations with size are neutralized.
But before examining this, we first explain why the widely adopted and be-
lieved size normalization fails (RQ2).

4.2 (RQ2) Size Normalization is Sensitive to Size

To see why size normalization does not work, we take a deeper look into
McCabe complexity (1+#predicates). Why is normalized McCabe negatively
correlated with size (and thus with maintenance)? Of course, a negative cor-
relation here indicates that the lower the size the higher the normalized value
(i.e., density per 100 lines of code). Interestingly, we find that the ‘1’ in the
McCabe formula (1 + #predicates) is a major issue. Consider a simple 3 line
Java method, which just returns the sum of two numbers. The McCabe is

16 Shaiful Chowdhury et al.

0.4 0.2 0.0 0.2 0.4
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(a) Normalized metrics and #Revisions.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(b) Normalized metrics and SLOC.

(c) Normalized McCabe against SLOC.

Fig. 4: Figure (a) shows that all the normalized code metrics are still signif-
icantly correlated with number of revisions in each project. However, Figure
(b) suggests that even the normalized code metrics are correlated with SLOC.
Figure (c) demonstrates why the normalized McCabe is negatively correlated
with SLOC (and thus with change).

Title Suppressed Due to Excessive Length 17

stat ic int normal izeIndex (f ina l byte [] ar ,
f ina l int index) { return index >= 0 ?
index : index + array . l ength ; }

Fig. 5: A sample method from Elasticsearch.

already 1, and the normalized value is 0.33 (1/3). The effect of ‘1’, however,
diminishes as method size grows. Figure 4(c) depicts normalized McCabe score
against size for all the 611,543 methods. Clearly, the normalized McCabe score
decreases with the increase in size because of the high density in small meth-
ods. We find that if we eliminate the ‘1’ from the formula, the size influence in
normalized McCabe is reduced, but does not go away completely. The graph
shows that the normalized score for small methods can even exceed 100. As
an example, consider the method from the Elasticsearch project, shown in
Figure 5. This method is written as a one line method (size = 1), and because
of the conditional operator, the plain McCabe is 2 (1+#predicates). The nor-
malized McCabe is thus 200 (100×(2/1)). Note that this data point with 200
normalized McCabe score represents 56 methods, not just one.

As we show later, most methods in our dataset are small (SLOC ≤22), and
therefore the overall correlation is significantly impacted by the high McCabe
density of this large number of small methods. The problem is, Figure 4(b)
shows that different code metrics suffer differently from this size normalization
approach. Size normalization thus remains an open research problem: we need
to develop an approach that not only eliminates the influence of size, but also
does not normalize in a way that hides the effectiveness of code metrics.

Summary: Previous approaches that supports the usefulness of code met-
rics either did not consider the size influence or normalized it inaccurately.
A new way is required to evaluate the true effectiveness of code metrics by
completely eliminating the effect of size.

5 Results: Evaluating metrics with regression and contexts

The problems of performing a size-decoupled metric evaluation with a tra-
ditional size normalization approach led us to a study by Chen et al. [31].
The authors investigated why different mutation testing studies claimed dif-
ferently [81,85–87] about the relationship between test suite size, test adequacy
criteria (e.g., coverage), and test effectiveness (fault detection). Although the
context of their study is different than ours, the outcome is similar: two differ-
ent studies control for test suite size, while evaluating the relationship between
test adequacy criteria and test effectiveness, producing two different conclu-
sions. For highly correlated variables (code metrics and size in our case), the
authors suggested that regression analysis can be useful. Encouraged by their
hypothesis, we designed our approach as follows.

1. With a bivariate regression analysis between size and a maintenance indica-
tor (e.g., revisions), we calculate the goodness of fit score of the regression
model.

18 Shaiful Chowdhury et al.

2. In the same model, we then add one of the code metrics (e.g., McCabe)
as the second independent variable and asked whether this multivariate
regression model (size+McCabe ∼ #revisions) improves the goodness of
fit score with statistical significance (p-value < 0.05 for the coefficient of
McCabe)?

3. We take the difference between the two fitness scores and convert it to
a percent improvement to show the distribution across the 47 different
projects.

4. We repeat steps 1 to 3 for all the maintenance indicators and code metrics.

We argue that this approach shows the true maintenance impact of code met-
rics because it correctly eliminates the size influence.

5.1 (RQ3) Regression Analysis for Code Metric Evaluation

Figure 6 shows the CDFs of percent of improvement in fitness scores with
the multivariate regression models for three of the maintenance indicators.
We excluded the result for the diff size indicator, because the observation
is the same—all the metrics improve the fitness scores for all of the indicators.
Figure 6(a), for example, shows that the Readability metric improves the fit-
ness accuracy by at least 10% for more than 80% of the projects (and at least
100% for 20% of the projects). This clearly refutes the claim that code metrics
are not useful after size influence is neutralized [10, 22]. The performance of
these metrics, however, are not the same across all maintenance indicators.
Readability is the best metric for estimating the number of revisions. For es-
timating change size (e.g., edit distance), however, NBD and IndentSTD are
the best estimators. Also, results in Figure 6 are dominated by methods that
are small in size, because most of our methods are small. We need to evaluate
if code metrics perform differently when evaluated for large methods only, and
if so, what factors influence their performance. These are the questions we
investigate in RQ4.

5.2 (RQ4) Evaluating Code Metrics with Contexts

To investigate whether the performance of a code metric depends on the
method size, we need to first define a threshold for separating large methods
from small ones. Instead of defining such a threshold from intuition or from
expert opinion, we followed the 6-step systematic approach proposed by Alves
et al. [88]. The main objective of the approach is to find critical values for iden-
tifying low risk (small size), medium risk (medium size), high risk (large size),
and very high risk (very large size) code components in terms of maintenance
from a given set of projects. These critical values are robust, i.e., they are not
impacted by outlier projects or methods. We refer to [88] for more detail. The
first 5 steps of Alves et al.’s approach deliver 3 critical values that are derived
from Figure 7. The first critical value shows that SLOC is ≤ 22 for 70% of the
Y-axis. The second (33) and the third (61) critical values represent 80% and
90% of the Y-axis respectively. In step 6, we can now find the range to define
a method’s size category: small (SLOC ≤ 22), medium (22 < SLOC ≤ 33),
large (33 < SLOC ≤ 61), and very large (SLOC > 61). Clearly, the results

Title Suppressed Due to Excessive Length 19

100 101 102 103 104

Improvement %
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(a) # revisions

10 1 100 101 102

Improvement %

0.2

0.4

0.6

0.8

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(b) New additions

10 1 100 101 102

Improvement %

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(c) Edit distance

Fig. 6: Cumulative distribution functions of percent of improvement in good-
ness of fit scores. All six metrics improve the prediction accuracy of the re-
gression models when they are added with size. The two boxed areas in Figure
(a) show why selecting only a few projects can be inaccurate for providing a
generalizable observation about code metric usefulness. By selecting one boxed
group only, we can underestimate (or overestimate) the effectiveness of code
metrics.

20 Shaiful Chowdhury et al.

20 40 60 80 100
SLOC

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Fig. 7: Finding the critical values to determine small, medium, large, and very
large methods, as proposed by Alves et al. [88].

in Figure 6 are dominated by methods with SLOC ≤ 33 (80% of the Y-axis),
limiting our understanding of metric performance for large methods. Here, we
evaluate metrics for large and very large methods only (SLOC > 33)—we refer
to both groups as “large” for simplicity.

Figure 8 shows that code metrics can be used to understand maintenance
effort for large methods. However, their ranks in performance are not the
same when compared with methods from all sizes (Figure 6, dominated by
small SLOCs). We make the following observations while comparing Figure 6
and Figure 8: 1) Code metrics are useful for estimating maintenance effort for
both large and small methods. 2) FanOut becomes one of the best maintenance
predictors for large methods, although it was not among the best when all the
methods were considered. This indicates that developers should be more care-
ful about coupling (i.e., dependency on other methods) for large methods. 3)
Readability effectiveness drops significantly (e.g., Figure 8(b), and 8(c)) when
considering for large methods only. For edit distance for example (Figure 8(c)),
Readability was able to improve the maintenance effort prediction accuracy
only for 3 projects. 4) For edit distance, NBD and IndentSTD outperform all
other metrics when the evaluation was dominated by small methods (Figure
6(c)). Surprisingly, their performance drops significantly for large methods.
For example, NBD performs poorly for large methods with edit distance as
the indicator, although it is the best for the same maintenance indicator when
all methods are used. Although one may initially assume these observations
as random noise, next we show that most of these performance variations are
indeed explicable. We, therefore, need to consider the evaluation contexts to
truly understand the usefulness of code metrics in estimating software main-
tenance effort.

Insight into the inconsistency of code metric performance: Source
code metrics will never model maintenance effort with 100% accuracy, because

Title Suppressed Due to Excessive Length 21

101 102 103 104 105 106 107

Improvement %

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(a) # revisions

101 102 103 104 105

Improvement %

0.6

0.7

0.8

0.9

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(b) New additions

101 102 103 104 105

Improvement %

0.6

0.7

0.8

0.9

1.0

CD
F

McCabe
McClure
NBD
IndentSTD
totalFanOut
Readability

(c) Edit distance

Fig. 8: Percent of improvement in goodness of fit scores for large and very
large methods only. Notice that all the metrics fail to improve the fitness score
for a fraction of the projects. This is because many of these projects do not
have enough large methods to produce regression coefficients with statistical
significance (p-values are >= 0.05).

22 Shaiful Chowdhury et al.

there are other factors that influence how a code component evolves over
time: developer habits [89], application domain and platforms [50, 90], code
clones [74], software architecture [91], and test code quality [18, 92]. Despite
this difficulty, we take a deeper look into the following questions: i) Why is
Readability’s performance so poor for large methods although it is excellent for
all methods (i.e., dominated by small methods)? ii) Why does NBD perform
the best for estimating edit distance when considered for all methods? And can
we deduce a common phenomenon that explains the inconsistent performance
of source code metrics?

i) Readability: Figure 6(a) shows that Readability is the best metric for
estimating the number of revisions when the evaluation is dominated by a
large number of small methods. According to the Wilcoxon rank-sum test, the
performance distribution of Readability is statistically different from others.
According to the Cliff’s Delta test, Readability’s performance has negligible
effect size with IndentSTD, small effect size with NBD, and large effect size
with all the others. Although its performance drops and becomes similar to
the others when other maintenance indicators are used, Readability performs
extremely poorly when evaluated for large methods only. For example, for edit
distance and large methods, Readability is outperformed by all with large to
small effect sizes. The scatter diagram in Figure 9 indicates that the Read-
ability metric by Buse et al. [37] can only distinguish between how readable
two methods are if the methods are small in size; to this model, all the large
methods are similarly less readable. Interestingly, we find that the readability
model was based on small code snippets only (maximum SLOC was 11 [93]).
Evidently, the model does not scale for large methods. The graph shows that
the variability in the readability measurements starts dwindling after SLOC
11 (first box), and almost diminishes after SLOC 33 (second bar). This clearly
explains why the Readability metric performs poorly for the large methods.

ii) Nested Block Depth: Figure 6(c) suggests that NBD (and IndentSTD),
outperforms all other metrics, when edit distance is the maintenance indicator
(with statistically different performance distribution, and non-negligible effect
sizes). Levenshtein edit distance [76] counts even the number of white spaces
when it captures how many characters have been added, deleted, or edited to
convert one method version into another. Although initially it seems like unim-
portant information to capture, it can actually indicate if a modification was
done inside a nested block (by capturing the leading spaces) or outside. This
is a strength of edit distance as a maintenance indicator, because modification
inside nested blocks are considered more bug prone [53, 63]. This observation
explains the superior performance of NBD and IndentSTD for this mainte-
nance indicator; among the six code metrics, only these two capture nesting
information of a method.

But why does NBD become the second worst metric for estimating the
same edit distance when evaluated for large methods only? We observe that
NBD lacks variability in large methods. Let us consider two large methods.
One method has 2 nested loops, each with depth 3. The other one has one

Title Suppressed Due to Excessive Length 23

Fig. 9: Readability score against SLOC for all the methods in our dataset,
based on the approach by Buse et al. [37]. SLOCs>100 are discarded for graph
readability.

nested loop only, but with the same depth. NBD as a metric fails to distinguish
between these two methods— NBD is 3 for both. Some metrics such as FanOut,
McCabe, and McClure do not have this limitation. Their value can increase
monotonically with the increase in SLOC. These three metrics, in contrast
to the others, never perform worse for large methods. In fact, they improved
significantly for large methods. FanOut is the best predictor for edit distance
(Figure 8(c)), whereas McCabe and McClure are the best predictor for new
addition (Figure 8(b)).

To verify if our observation about measurement variability generalizes to
all the metrics, let us consider Figure 10. Each metric measurement is repre-
sented by two box plots. The first shows the measurement distributions for all
methods, and the second only for large methods. Except for the outliers, the
second boxplot is always taller than the first one, because the measurements
are naturally higher in large methods. When we compare the first boxplots for
all metrics, they are not extremely different. However, the second boxplots are
noticeably different from each other, and show that some metrics (FanOut,
McCabe, and McClure) have much higher variability than others (e.g., NBD,
and IndentSTD) when only the large methods are considered. Interestingly, a
1988 study by Weyuker [36] emphasized variability in measurements to be a
desired property of a code metric, stating “a measure which rates all programs
as equally complex is not really a measure”.

24 Shaiful Chowdhury et al.

Fig. 10: Comparing variability in measurements between all methods and large
methods for all the code metrics.

Summary: Code metrics are useful maintenance predictors, even after the
size influence is completely neutralized. Their usefulness, however, depends
greatly on the context in which they are applied. Some metrics are only good
for particular maintenance indicators, and some only for small methods,
because they reach a threshold and cannot discriminate further after the
threshold measurement is reached.

6 Discussion

In this paper, we studied and reproduced the early contradictory claims
about the relationship between maintenance impact and code metrics. We
first focused on the methodological aspects that have influenced the outcomes
of many previous studies. This investigation outlines some fundamental chal-
lenges that must be understood for accurately understanding a code metric’s
validity. For example, if we can not neutralize the project’s difference in change
evolution (Figure 1(b)), we should not rely on aggregated analysis. At the same
time, enough projects should be considered to characterize outlying observa-
tions. While answering RQ1, and RQ2 (the confounding effect of size on the
relationships between code metrics and maintenance effort) we have estab-
lished that the commonly used size normalization approach fails to neutralize
the influence of size and should not be used in practice.

Using regression analysis for the size neutralized metrics evaluation (RQ3),
we showed that we can use code metrics to prioritize our effort for reduc-
ing maintenance effort. This is encouraging for the research and development
communities, because it refutes the claim that size is the only valid code met-
ric [10,22,24], and it suggests that as a community we can continue researching
new source code metrics that can provide greater insight into our software sys-
tems. The utility of a code metric, however, greatly depends on the evaluation

Title Suppressed Due to Excessive Length 25

context in which it is applied. A metric, due to the lack of variability in the
measurements, may become less useful when applied to large methods (RQ4).
Additionally, a metric’s performance is impacted by the underlying mainte-
nance indicators used.

The varying performance of code metrics suggests that building context-
aware maintenance models would be more effective than trying to derive a
single generic model applicable to all systems. Software maintenance models
have been studied for the last forty years [25], but considering their accuracy,
there remains room for improvement [46]. Along with other existing recommen-
dations, such as parameter optimization [94], we provide convincing evidence
that the community should also focus on building ensemble [95] maintenance
models instead of generic models that are commonly built (e.g., [46, 96, 97]).
The envisioned approach is not to blindly apply a mixture of different machine
learning algorithms (a form of ensemble modeling [98]), but to focus more on
a mixture of models where each model is trained on a selected set of code
metrics, a bounded method size, and a particular maintenance indicator. For
example, while NBD and IndentSTD should be used for small methods and
edit distance-based models, they should be excluded for other models that are
better able to forecast maintenance indicators for large methods. This way we
can build multiple base models based on the contextual code metrics evalua-
tion, and can then aggregate the prediction of each base model that produces
one final maintenance prediction for a given method [95].

6.1 Threats to Validity

Several threats may impact the observations in this study.

Construct validity is hampered by the maintenance indicators we used.
Change proneness is not the only indicator of maintenance effort. Also, the
indicators we used may not be sufficient to understand the true change prone-
ness. Number of revisions, for example, can be impacted by the commit habits
of contributors [5]. Some may commit more frequently than others. A less re-
vised code, which is difficult to understand, and structurally complex to make
a change, may require more effort than a more revised code. We mitigated this
threat, at least to some extent, by using all the four change proneness indica-
tors that we commonly found from the literature. The accuracy of collecting
the complete change history in our measurements can be criticized, because
we solely relied on CodeShovel [56]. Considering the run-time performance and
accuracy, however, CodeShovel is the state-of-the-art tool for tracing method
history.

External validity can be limited by the representativeness of the Java
open source projects we used. Our results might not generalize to closed source
projects. Also, we only focused on six selected code metrics. Although these six
metrics were sufficient to demonstrate the problems and a potential solution
for reliable evaluation of code metric performance, more code metrics should
be investigated in the future.

26 Shaiful Chowdhury et al.

Internal validity can be criticized by the statistical tests we used; how-
ever, these tests are well-established and well-recognized that seem appropriate
for our context.

Conclusion validity can be hampered because of our dependence on re-
gression analysis. We mitigated this threat by relying on regression coefficients
that were statistically significant (i.e., p-value <= 0.05).

7 Conclusion & Future work

In this paper we set out to investigate whether code metrics can help us
gain insight into maintenance effort, considering four code churn measures
as maintenance effort indicators. While this question has been investigated
before—and contradictory results have been presented—our approach was to
reduce the level of granularity of our analysis to that of methods, and investi-
gate the influence of size.

The key take away of our study is that context is king. Code metrics are
useful predictors of maintenance effort, even after normalizing for size. How-
ever, their utility for predicting maintenance effort depends greatly on the
context of how they are applied based on the type of maintenance indicators
that are used and the size of the methods being examined.

This study presents a call-to-arms to the research community to investigate
maintenance models that are context-aware, both in terms of method sizes and
maintenance indicators. Implicitly, this is also a stringent warning for software
engineering practitioners to not blindly follow metrics without taking context
into account.

As our focus was on the previously unexplored method level granularity,
we could not investigate the usefulness of some widely used class level code
metrics (e.g., depth of inheritance). It would be interesting future work to see if
the famous class level code metrics indeed help estimating future maintenance
effort. We also plan to study the relationship between code metrics and bug-
proneness with dedicated dataset reporting manually curated bugs.

References

1. J. Börstler and B. Paech, “The role of method chains and comments in software readabil-
ity and comprehension—an experiment,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 886–898, 2016.

2. D. Kafura and G. R. Reddy, “The use of software complexity metrics in software main-
tenance,” IEEE Transactions on Software Engineering, vol. SE-13, no. 3, pp. 335–343,
1987.

3. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities,” IEEE
Transactions on Software Engineering, vol. 37, no. 6, pp. 772–787, 2011.

4. Y. Zhou, B. Xu, and H. Leung, “On the ability of complexity metrics to predict fault-
prone classes in object-oriented systems,” Journal of Systems and Software, vol. 83,
no. 4, pp. 660 – 674, 2010.

5. D. St̊ahl, A. Martini, and T. Mårtensson, “Big bangs and small pops: On critical cy-
clomatic complexity and developer integration behavior,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: (ICSE-SEIP), 2019, pp. 81–90.

6. L. Cruz, R. Abreu, J. Grundy, L. Li, and X. Xia, “Do energy-oriented changes hinder
maintainability?” in 2019 IEEE International Conference on Software Maintenance

Title Suppressed Due to Excessive Length 27

and Evolution, 2019, pp. 29–40.
7. M. Kondo, D. M. German, O. Mizuno, and E.-H. Choi, “The impact of context metrics

on just-in-time defect prediction,” Empirical software engineering, vol. 25, no. 1, pp.
890–939, 2020.

8. C. L. McClure, “A model for program complexity analysis,” in Proceedings of the 3rd
International Conference on Software Engineering, 1978, p. 149–157.

9. A. Tosun, A. Bener, B. Turhan, and T. Menzies, “Practical considerations in deploying
statistical methods for defect prediction: A case study within the turkish telecommu-
nications industry,” Information and Software Technology, vol. 52, no. 11, pp. 1242 –
1257, 2010.

10. Y. Gil and G. Lalouche, “On the correlation between size and metric validity,” Empirical
Software Engineering, vol. 22, no. 5, p. 2585–2611, Oct. 2017.

11. T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering,
vol. SE-2, no. 4, pp. 308–320, 1976.

12. S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994.

13. A. Lake and C. R. Cook, “Use of factor analysis to develop oop software complexity
metrics,” USA, Tech. Rep., 1994.

14. M. Shepperd, “A critique of cyclomatic complexity as a software metric,” Software
Engineering Journal, vol. 3, no. 2, pp. 30–36, 1988.

15. Y. Gil and G. Lalouche, “When do software complexity metrics mean nothing? – when
examined out of context,” Journal of Object Technology, vol. 15, no. 1, pp. 2:1–25, Feb.
2016.

16. J. Johnson, S. Lubo, N. Yedla, J. Aponte, and B. Sharif, “An empirical study assessing
source code readability in comprehension,” in 2019 IEEE International Conference on
Software Maintenance and Evolution, 2019, pp. 513–523.

17. D. Landman, A. Serebrenik, and J. Vinju, “Empirical analysis of the relationship be-
tween cc and sloc in a large corpus of java methods,” in IEEE International Conference
on Software Maintenance and Evolution, 2014, pp. 221–230.

18. D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli, “On the relation
of test smells to software code quality,” in 2018 IEEE International Conference on
Software Maintenance and Evolution, 2018, pp. 1–12.

19. R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, “Predicting maintenance performance
using object-oriented design complexity metrics,” IEEE Transactions on Software En-
gineering, vol. 29, no. 1, pp. 77–87, 2003.

20. V. Antinyan, M. Staron, W. Meding, P. Österström, E. Wikstrom, J. Wranker, A. Hen-
riksson, and J. Hansson, “Identifying risky areas of software code in agile/lean software
development: An industrial experience report,” in IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering, 2014, pp. 154–163.

21. S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and
R. Oliveto, “Automatically assessing code understandability: How far are we?” in 32nd
IEEE/ACM International Conference on Automated Software Engineering, 2017, pp.
417–427.

22. K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confounding effect of class size on
the validity of object-oriented metrics,” IEEE Transactions on Software Engineering,
vol. 27, no. 7, pp. 630–650, 2001.

23. D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyb̊a, “Quantify-
ing the effect of code smells on maintenance effort,” IEEE Transactions on Software
Engineering, vol. 39, no. 8, pp. 1144–1156, 2013.

24. I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Towards a theoretical model for
software growth,” in Fourth International Workshop on Mining Software Repositories,
2007, pp. 21–21.

25. V. Lenarduzzi, A. Sillitti, and D. Taibi, “Analyzing forty years of software maintenance
models,” in International Conference on Software Engineering Companion (ICSE-C),
2017, pp. 146–148.

26. U. Tiwari and S. Kumar, “Cyclomatic complexity metric for component based software,”
SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, p. 1–6, Feb. 2014.

28 Shaiful Chowdhury et al.

27. M. A. Subandri and R. Sarno, “Cyclomatic complexity for determining product com-
plexity level in cocomo ii,” Procedia Computer Science, vol. 124, pp. 478 – 486, 2017, 4th
Information Systems International Conference 2017, ISICO 2017, 6-8 November 2017,
Bali, Indonesia.

28. D. Romano and M. Pinzger, “Using source code metrics to predict change-prone java
interfaces,” in 2011 27th IEEE International Conference on Software Maintenance,
2011, pp. 303–312.

29. S. D. Suh and I. Neamtiu, “Studying software evolution for taming software complexity,”
in 21st Australian Software Engineering Conference, 2010, pp. 3–12.

30. B. Robert, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality bench-
marking for improving software maintainability,” Software Quality Journal, vol. 20, pp.
287–307, 2012.

31. Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes, G. Fraser, P. Am-
mann, and R. Just, “Revisiting the relationship between fault detection, test adequacy
criteria, and test set size,” in 2020 35th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), 2020, pp. 237–249.

32. C. Ebert, J. Cain, G. Antoniol, S. Counsell, and P. Laplante, “Cyclomatic complexity,”
IEEE Software, vol. 33, no. 6, pp. 27–29, 2016.

33. J. Pantiuchina, M. Lanza, and G. Bavota, “Improving code: The (mis) perception of
quality metrics,” in IEEE International Conference on Software Maintenance and Evo-
lution, 2018, pp. 80–91.

34. B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, “Measuring the
psychological complexity of software maintenance tasks with the halstead and mccabe
metrics,” IEEE Transactions on Software Engineering, vol. SE-5, no. 2, pp. 96–104,
1979.

35. M. Alfadel, A. Kobilica, and J. Hassine, “Evaluation of halstead and cyclomatic com-
plexity metrics in measuring defect density,” in 2017 9th IEEE-GCC Conference and
Exhibition, 2017, pp. 1–9.

36. E. J. Weyuker, “Evaluating software complexity measures,” IEEE Transactions on Soft-
ware Engineering, vol. 14, no. 9, pp. 1357–1365, 1988.

37. R. P. L. Buse and W. R. Weimer, “Learning a metric for code readability,” IEEE Trans.
Softw. Eng., vol. 36, no. 4, p. 546–558, Jul. 2010.

38. N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I. Maletic, “Developer reading
behavior while summarizing java methods: Size and context matters,” in Proceedings of
the 41st International Conference on Software Engineering, 2019, p. 384–395.

39. J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names take longer to
comprehend,” in IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering, 2017, pp. 217–227.

40. S. Scalabrino, M. Linares-Vásquez, D. Poshyvanyk, and R. Oliveto, “Improving code
readability models with textual features,” in IEEE 24th International Conference on
Program Comprehension, 2016, pp. 1–10.

41. V. Antinyan, M. Staron, and A. Sandberg, “Evaluating code complexity triggers, use
of complexity measures and the influence of code complexity on maintenance time,”
Empirical Softw. Engg., vol. 22, no. 6, p. 3057–3087, Dec. 2017.

42. J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel, “Indentation: simply
a matter of style or support for program comprehension?” in IEEE/ACM 27th Inter-
national Conference on Program Comprehension, 2019, pp. 154–164.

43. D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko, “The structural com-
plexity of software an experimental test,” IEEE Transactions on Software Engineering,
vol. 31, no. 11, pp. 982–995, 2005.

44. J. M. Brittain, “Pitfalls of user research, and some neglected areas,” Social Science
Information Studies, vol. 2, no. 3, pp. 139–148, 1982.

45. L. Yu and A. Mishra, “An empirical study of lehman’s law on software quality evolu-
tion,” 2013.

46. L. Pascarella, F. Palomba, and A. Bacchelli, “On the performance of method-level bug
prediction: A negative result,” Journal of Systems and Software, vol. 161, 2020.

47. Q. Wang, X. Xia, D. Lo, and S. Li, “Why is my code change abandoned?” Information
and Software Technology, vol. 110, pp. 108 – 120, 2019.

Title Suppressed Due to Excessive Length 29

48. K. Herzig and A. Zeller, “The impact of tangled code changes,” in 2013 10th Working
Conference on Mining Software Repositories, 2013, pp. 121–130.

49. D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-based
expertise model of developers,” in 2009 6th IEEE International Working Conference
on Mining Software Repositories, 2009, pp. 131–140.

50. F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan, “How does context affect
the distribution of software maintainability metrics?” in IEEE International Conference
on Software Maintenance, 2013, pp. 350–359.

51. D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault prediction met-
rics: A systematic literature review,” Information and Software Technology, vol. 55,
no. 8, pp. 1397 – 1418, 2013.

52. F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia, “An exploratory study on the
relationship between changes and refactoring,” in Proceedings of the 25th International
Conference on Program Comprehension, 2017, p. 176–185.

53. A. Hindle, M. W. Godfrey, and R. C. Holt, “Reading beside the lines: Indentation as
a proxy for complexity metric,” in 16th IEEE International Conference on Program
Comprehension, 2008, pp. 133–142.

54. A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting source code
changes by mining change history,” IEEE transactions on Software Engineering, vol. 30,
no. 9, pp. 574–586, 2004.

55. Y. Higo, S. Hayashi, and S. Kusumoto, “On tracking java methods with git mecha-
nisms,” Journal of Systems and Software, vol. 165, p. 110571, 2020.

56. F. Grund, S. Chowdhury, N. C. Bradley, B. Hall, and R. Holmes, “Codeshovel: Con-
structing method-level source code histories,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 1510–1522.

57. T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn
defect predictors,” IEEE Transactions on Software Engineering, vol. 33, no. 1, pp. 2–13,
2007.

58. E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial study on the risk of
software changes,” in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, 2012.

59. E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug prediction,” in
Proceedings of the 2012 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, 2012, pp. 171–180.

60. P. Ralph and E. Tempero, “Construct validity in software engineering research and
software metrics,” in Proceedings of the 22nd International Conference on Evaluation
and Assessment in Software Engineering 2018, 2018, p. 13–23.

61. G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards au-
tomatically generating summary comments for java methods,” in Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, 2010, p.
43–52.

62. T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in Proceed-
ings of the Third International Workshop on Predictor Models in Software Engineering,
2007, p. 9.

63. M. R. Islam and M. F. Zibran, “How bugs are fixed: Exposing bug-fix patterns with
edits and nesting levels,” in Proceedings of the 35th Annual ACM Symposium on Applied
Computing, 2020, pp. 1523–1531.

64. V. Antinyan, M. Staron, J. Derehag, M. Runsten, E. Wikström, W. Meding, A. Henriks-
son, and J. Hansson, “Identifying complex functions: By investigating various aspects
of code complexity,” in 2015 Science and Information Conference (SAI), 2015, pp.
879–888.

65. R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: A new metric for
architectural maintenance complexity,” in 2016 IEEE/ACM 38th International Con-
ference on Software Engineering, 2016, pp. 499–510.

66. M. S. Rahman and C. K. Roy, “On the relationships between stability and bug-proneness
of code clones: An empirical study,” in 2017 IEEE 17th International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM), 2017, pp. 131–140.

30 Shaiful Chowdhury et al.

67. G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A. Zaidman, “Enhancing change
prediction models using developer-related factors,” Journal of Systems and Software,
vol. 143, pp. 14–28, 2018.

68. A. Mocku and L. G. Votta, “Identifying reasons for software changes using historic
databases,” in Proceedings 2000 International Conference on Software Maintenance,
2000, pp. 120–130.

69. F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory study of
the impact of antipatterns on class change- and fault-proneness,” Empirical software
engineering : an international journal, vol. 17, no. 3, pp. 243–275, 2012.

70. B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu, “On the
”naturalness” of buggy code,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE ’16, 2016, p. 428–439.

71. R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of a subset of change
metrics for defect prediction,” in Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ser. ESEM ’08, 2008,
p. 309–311.

72. R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring code change improve
fault prediction?” in Proceedings of the 7th International Conference on Predictive
Models in Software Engineering, ser. Promise ’11, 2011.

73. G. Bavota, M. Linares-Vásquez, C. E. Bernal-Cárdenas, M. Di Penta, R. Oliveto, and
D. Poshyvanyk, “The impact of api change- and fault-proneness on the user ratings of
android apps,” IEEE Transactions on Software Engineering, vol. 41, no. 4, pp. 384–407,
2015.

74. A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Software quality anal-
ysis by code clones in industrial legacy software,” in Proceedings IEEE Symposium on
Software Metrics, 2002, pp. 87–94.

75. I. Scholtes, P. Mavrodiev, and F. Schweitzer, “From aristotle to ringelmann: a large-
scale analysis of team productivity and coordination in open source software projects,”
Empirical software engineering : an international journal, vol. 21, no. 2, pp. 642–683,
2016.

76. V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and rever-
sals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707–710.

77. H. Hata, O. Mizuno, and T. Kikuno, “Historage: Fine-grained version control system
for java,” in Proc. International Workshop on Principles of Software Evolution and
ERCIM Workshop on Software Evolution, 2011, pp. 96–100.

78. F. Grund, S. Chowdhury, N. C. Bradley, B. Hall, and R. Holmes, “Codeshovel: A
reusable and available tool for extracting source code histories,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), 2021, pp. 221–222.

79. M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, “Metrics
and laws of software evolution-the nineties view,” in International Software Metrics
Symposium, 1997, pp. 20–32.

80. H. C. Thode, Testing for normality. CRC press, 2002, vol. 164.
81. L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite effec-

tiveness,” in Proceedings of the 36th International Conference on Software Engineering,
2014, p. 435–445.

82. S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler: training software
energy models with automatic test generation,” Empirical software engineering : an
international journal, vol. 24, no. 4, pp. 1649–1692, 2019.

83. D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures. CRC
Press, 2020.

84. J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate statistics for
ordinal level data: Should we really be using t-test and cohen’sd for evaluating group
differences on the nsse and other surveys,” in annual meeting of the Florida Association
of Institutional Research, 2006, pp. 1–33.

85. R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by devel-
opers,” in Proceedings of the 36th International Conference on Software Engineering,
2014, pp. 72–82.

Title Suppressed Due to Excessive Length 31

86. R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser, “Are mutants
a valid substitute for real faults in software testing?” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2014, p.
654–665.

87. M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores correlated with
real fault detection? a large scale empirical study on the relationship between mutants
and real faults,” in Proceedings of the 40th International Conference on Software En-
gineering, 2018, p. 537–548.

88. T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark data,”
in IEEE International Conference on Software Maintenance, 2010, pp. 1–10.

89. A. Terceiro, L. R. Rios, and C. Chavez, “An empirical study on the structural complexity
introduced by core and peripheral developers in free software projects,” in Brazilian
Symposium on Software Engineering, 2010, pp. 21–29.

90. M. Viggiato, J. Oliveira, E. Figueiredo, P. Jamshidi, and C. Kästner, “How do code
changes evolve in different platforms? a mining-based investigation,” in 2019 IEEE
International Conference on Software Maintenance and Evolution, 2019, pp. 218–222.

91. M. F. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. A. Gerosa, “SATT:
tailoring code metric thresholds for different software architectures,” in 16th IEEE
International Working Conference on Source Code Analysis and Manipulation,2016,
Raleigh, NC, USA, October 2-3, 2016, 2016, pp. 41–50.

92. D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code quality and its
relation to issue handling performance,” IEEE Trans. Software Eng., vol. 40, no. 11,
pp. 1100–1125, 2014.

93. D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software readability,” in
Proceedings of the 8th Working Conference on Mining Software Repositories, 2011, pp.
73–82.

94. C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “Automated
parameter optimization of classification techniques for defect prediction models,” in
IEEE/ACM 38th International Conference on Software Engineering, 2016, pp. 321–
332.

95. V. Kotu and B. Deshpande, “Chapter 2 - data mining process,” in Predictive Analytics
and Data Mining, V. Kotu and B. Deshpande, Eds. Boston: Morgan Kaufmann, 2015,
pp. 17 – 36.

96. D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate software
system maintainability,” Computer, vol. 27, no. 8, pp. 44–49, 1994.

97. N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect
density,” in Proceedings. 27th International Conference on Software Engineering, 2005,
pp. 284–292.

98. H. Alsolai, M. Roper, and D. Nassar, “Predicting software maintainability in object-
oriented systems using ensemble techniques,” in 2018 IEEE International Conference
on Software Maintenance and Evolution, 2018, pp. 716–721.

