
Trace Visualization for Program Comprehension:

A Controlled Experiment

Bas Cornelissen, Andy Zaidman, Arie van Deursen

Delft University of Technology

The Netherlands

{s.g.m.cornelissen, a.e.zaidman, arie.vandeursen}@tudelft.nl

Bart van Rompaey

University of Antwerp

Belgium

bart.vanrompaey2@ua.ac.be

Abstract

Understanding software through dynamic analysis has been

a popular activity in the past decades. One of the most com-

mon approaches in this respect is execution trace analysis:

among our own efforts in this context is EXTRAVIS, a tool

for the visualization of large traces. Similar to other trace

visualization techniques, our tool has been validated through

anecdotal evidence, but should also be quantitatively evalu-

ated to assess its usefulness for program comprehension.

This paper reports on a first controlled experiment con-

cerning trace visualization for program comprehension. We

designed eight typical tasks aimed at gaining an understand-

ing of a representative subject system, and measured how

a control group (using the Eclipse IDE) and an experimen-

tal group (using both Eclipse and EXTRAVIS) performed in

terms of correctness and time spent. The results are statisti-

cally significant in both regards, showing a 21% decrease in

time and a 43% increase in correctness for the latter group.

1. Introduction

A major challenge in software maintenance is to understand

the software at hand. As software is often not properly docu-

mented, up to 60% of themaintenance effort is spent on gain-

ing a sufficient understanding of the program [3, 1]. Thus,

the development of techniques and tools that support the

comprehension process can make a significant contribution

to the overall efficiency of software development.

Common approaches in the literature roughly break

down into static and dynamic approaches (and combinations

thereof). Whereas static analysis relies on such artifacts as

source code and documentation, dynamic analysis focuses

on a system’s execution. An important advantage of dynamic

analysis is its preciseness, as it captures the system’s actual

behavior. Among the drawbacks are its incompleteness, as

the gathered data pertains solely to the scenario that was exe-

cuted; and the well-known scalability issues, due to the often

excessive amounts of trace data.

To cope with the issue of scalability, a significant portion

of the literature on program comprehension has been ded-

icated to the reduction [16, 7] and visualization [13, 9] of

execution traces. Among our share of these techniques and

tools is EXTRAVIS, a tool that offers two interactive views

of large execution traces [5]. Through a series of case stud-

ies we illustrated how EXTRAVIS can support different types

of common program comprehension activities. However, in

spite of these efforts, there is no quantitative evidence of the

tool’s usefulness in practice: to the best of our knowledge,

no such evidence is offered for any of the trace visualization

techniques in the program comprehension literature.

The purpose of this paper is the design of a controlled ex-

periment to assess the usefulness of trace visualization for

program comprehension, and the execution of this experi-

ment to validate EXTRAVIS. Furthermore, to gain insight

into the nature of its added value, we attempt to identify

which types of tasks benefit most from trace visualization

and from EXTRAVIS. To fulfill these goals, we perform a

controlled experiment in which we measure how the tool af-

fects (1) the time that is needed for typical comprehension

tasks, and (2) the correctness of the answers given during

those tasks.

The remainder of this paper is structured as follows. Sec-

tion 2 provides a background on dynamic analysis and trace

visualization, and motivates our intent to conduct controlled

experiments. Section 3 offers a detailed description of the

experimental design. Section 4 discusses the results, and

threats to validity are treated in Section 5. Section 6 outlines

related work, and Section 7 offers conclusions and future di-

rections.

2. Background

Execution trace analysis. The use of dynamic analysis for

program comprehension has been a popular research activity

in the last decades. In a large survey that we recently per-

formed [6], we identified a total of 172 articles on this topic

that were published between 1972 and June 2008. More than

30 of these papers concern execution trace analysis, which



Figure 1. EXTRAVIS’ massive sequence view.

has often shown to be beneficial to such activities as feature

location, behavioral analysis, and architecture recovery.

Understanding a program through its execution traces is

not an easy task because traces are typically too large to be

comprehended directly. Reiss and Renieris, for example, re-

port [16] on an experiment in which one gigabyte of trace

data was generated for every two seconds of executed C/C++

code or every ten seconds of Java code. For this reason,

there has been significant effort in the automatic reduction

of traces to make them more tractable (e.g., [16, 21, 7]).

Another common approach is the visualization of execu-

tion traces: key contributions on this subject include Jin-

sight by De Pauw et al. [13], Scene from Koskimies &

Mössenböck [10], ISVis by Jerding et al. [9], and Shimba

from Systä et al. [19].

Extravis. Our own contributions to the field of trace under-

standing include EXTRAVIS, a publicly available1 tool for the

visualization of large execution traces. EXTRAVIS provides

two linked, interactive views. The massive sequence view is

essentially a large-scale UML sequence diagram (similar to

Jerding’s Information Mural [8]), and offers an overview of

the trace and the means to navigate it (Figure 1). The circu-

lar bundle view hierarchically projects the program’s struc-

tural entities on a circle and shows their interrelationships in

a bundled fashion (Figure 2). We qualitatively evaluated the

tool in various program comprehension contexts, including

trace exploration, feature location, and top-down program

comprehension [5]. The results confirmed EXTRAVIS’ ben-

efits in these contexts, the main advantages being its opti-

mal use of screen real estate and the improved insight into

1EXTRAVIS,http://swerl.tudelft.nl/extravis

Figure 2. EXTRAVIS’ circular bundle view.

a program’s structure. However, we hypothesized that the

relationships in the circular view may be difficult to grasp.

Validating trace visualizations. Trace visualization tech-

niques in the literature have been almost exclusively evalu-

ated using anecdotal evidence: there has been no effort to

quantitatively measure the usefulness of trace visualization

techniques in practice, e.g., through controlled experiments.

Moreover, most existing approaches involve traditional vi-

sualizations [6], i.e., they rely on UML, graph, or tree nota-

tions, to which presumably most software engineers are ac-

customed. By contrast, EXTRAVIS uses non-traditional vi-

sualization techniques, and Storey argues [18] that advanced

visual interfaces are not often used in development environ-

ments because they tend to require complex user interac-

tions. These reasons have motivated us to empirically val-

idate EXTRAVIS through a controlled experiment: we seek

to assess its added value in concrete maintenance contexts.

3. Experimental Design

The primary purpose of this experiment is a first quantitative

evaluation of trace visualization for program comprehension.

To this end, we define a series of typical comprehension tasks

and measure EXTRAVIS’ added value to a traditional pro-

gramming environment: in this case, the Eclipse IDE2. Sim-

ilar to related efforts (e.g., [11, 15]) we maintain a distinction

between time spent and correctness.

Furthermore, we seek to identify the types of tasks to

which the use of EXTRAVIS, and trace visualization in gen-

eral, is the most beneficial.

3.1. Research questions & Hypotheses

Based on our motivation in the previous section, we distin-

guish the following research questions:

2Eclipse IDE, http://www.eclipse.org



Activity Description

A1 Investigating the functionality of (a part of) the system

A2 Adding to or changing the system’s functionality

A3 Investigating the internal structure of an artifact

A4 Investigating dependencies between artifacts

A5 Investigating runtime interactions in the system

A6 Investigating how much an artifact is used

A7 Investigating patterns in the system’s execution

A8 Assessing the quality of the system’s design

A9 Understanding the domain of the system

Table 1. Pacione’s nine principal activities.

1. Does the availability of EXTRAVIS reduce the time that

is needed to complete typical comprehension tasks?

2. Does the availability of EXTRAVIS increase the correct-

ness of the answers given during those tasks?

3. Based on the results, which types of tasks can we iden-

tify that benefit most from the use of EXTRAVIS?

Associated with the first two research questions are two null

hypotheses, which we formulate as follows:

• H10: The availability of EXTRAVIS does not impact the

time needed to complete typical comprehension tasks.

• H20: The availability of EXTRAVIS does not impact the

correctness of answers given during those tasks.

The alternative hypotheses that we use in the experiment are

the following:

• H1: The availability of EXTRAVIS reduces the time

needed to complete typical comprehension tasks.

• H2: The availability of EXTRAVIS increases the cor-

rectness of answers given during those tasks.

The rationale behind the first alternative hypothesis is the fact

that EXTRAVIS provides a broad overview of the subject sys-

tem on one single screen, which may guide the user to his or

her goal more easily.

The second alternative hypothesis is motivated by the in-

herent preciseness of dynamic analysis with respect to actual

program behavior: For example, the resolution of late bind-

ing may result in more accurate answers.

To test hypotheses H10 and H20, we define a series of

comprehension tasks that are to be addressed by both a con-

trol group and an experimental group. The difference in

treatment between these groups is that the former group

uses a traditional development environment (the “Eclipse”

group), whereas the latter group also has access to EX-

TRAVIS (the “Ecl+Ext” group). We maintain a between-

subjects design, meaning that each subject is either in the

control or in the experimental group.

Sections 3.2 through 3.6 provide a detailed description of

the experiment.

3.2. Object & Task design

The system that is to be comprehended by the subject groups

is CHECKSTYLE, an open source tool that employs “checks”

to verify if source code adheres to specific coding standards.

Task Activities Description

T1 A{1,7,9} globally understanding the main stages in a typ-

ical CHECKSTYLE scenario

T2.1 A{4,8} identifying three classes with a high fanin and a

low fanout

T2.2 A{4,8} identifying a class in package X with a strong

coupling to package Y

T3.1 A{1,2,5,6} describing the life cycle of check X during exe-

cution

T3.2 A{3,4,5} listing the identifiers of all interactions between

check X and class Y
T3.3 A{3,4,5,9} listing the identifiers of additional interactions

in case of check Z

T4.1 A{1,3} providing a detailed description of the violation

handling process

T4.2 A{1,5} determining whether check X reports violations

Table 2. Descriptions of the comprehension tasks.

Our choice for CHECKSTYLE as the object of this experi-

ment was motivated by the following factors:

• CHECKSTYLE comprises 310 classes distributed across

21 packages, containing a total of 57 KLOC.3 This

makes it tractable for an experimental session, yet rep-

resentative of real life programs.

• It is written in Java, with which many potential subjects

are sufficiently familiar.

• The authors of this paper are familiar with its internals

as a result of earlier experiments [22, 17, 5]. Further-

more, the lead developer was available for feedback.

To obtain the necessary trace data for EXTRAVIS, we instru-

ment CHECKSTYLE and execute it according to two scenar-

ios. Both involve typical runs with a small input source file,

and only differ in terms of the input configuration, which

in one case specifies 64 types of checks whereas the other

specifies only six. The resulting traces contain 31,260 and

17,126 calls, respectively, and are too large to be compre-

hended without tool support.

With respect to the comprehension tasks that are to be

tackled during the experiment, the main criteria are for them

to be (1) representative of real maintenance contexts, and (2)

not biased towards any of the tools being used. To this end,

we use the framework by Pacione et al. [12], who argue that

“a set of typical software comprehension tasks should seek to

encapsulate the principal activities typically performed dur-

ing real world software comprehension”. They distinguish

between nine principal activities that focus on both general

and specific reverse engineering tasks and that cover both

static and dynamic information (Table 1). The latter aspect

significantly reduces any bias towards either of the two tools

used in this experiment.

Guided by these criteria, we created four representative

tasks (subdivided into eight subtasks) that highlight many

of CHECKSTYLE’s aspects at both high and low abstraction

level. Table 2 provides outlines of the tasks and shows how

3Measured using sloccount by David A. Wheeler, http://

sourceforge.net/projects/sloccount/.



2.92

2.33

2.58

3.25

2 25 2 25
2.5

3

3.5

4

(0
 4
)

Eclipse group Eclipse+Extravis group

1.92

0.67

2.08

2.25

1.92

0.33

2.25

2.00

0

0.5

1

1.5

2

Java Eclipse Rev.eng. Checkstyle Lang. tech. Average

A
v
g
.!
e
x
p
e
rt
is
e
!(

Expertise!type

Figure 3. Average expertises of the subject groups.

each of the nine activities from Pacione et al. is covered by

at least one task: for example, activity A1, “Investigating the

functionality of (part of) the system”, is covered by tasks T1,

T4.1, and T4.2; and activity A4, “Investigating dependen-

cies between artifacts“, is covered by tasks T2.1, T2.2, T3.2,

and T3.3.

To render the tasks even more representative of real main-

tenance situations, we have opted for open questions rather

than multiple choice. The authors of this paper can award up

to four points for each task to accurately reflect the (partial)

correctness of the subjects’ answers. While at the same time

open questions prevent the subjects from guessing, it should

be noted that the answers are more difficult to judge, espe-

cially because the authors of this paper were not involved in

CHECKSTYLE’s design or development. For this reason, we

called upon CHECKSTYLE’s lead developer, who was will-

ing to review and refine our concept answers. The resulting

answer model is provided in the technical report [4]. Follow-

ing the experiment, the first two authors of this paper select

the answers of five random subjects, review them using the

answer model, and compare the scores to verify the sound-

ness of the reviewing process.

3.3. Subjects

The subjects in this experiment are 14 Ph.D. candidates, five

M.Sc. students, three postdocs, one associate professor, and

one participant from industry. The resulting group thus con-

sists of 24 subjects, and is quite heterogeneous in that it rep-

resents eight different nationalities, and M.Sc. degrees from

thirteen universities. The M.Sc. students are in the final

stage of their study, and the Ph.D. candidates represent dif-

ferent areas of software engineering, ranging from software

inspection to fault diagnosis. Our choice of subjects largely

mitigates concerns from Di Penta et al., who argue that “a

subject group made up entirely of students might not ade-

quately represent the intended user population” [14]. All

subjects participate on a voluntary basis and can therefore

be assumed to be properly motivated. None of them have

experience with EXTRAVIS.

In advance, we distinguished five fields of expertise that

could strongly influence the individual performances. They

represent variables that are to be controlled during the ex-

periment, and concern knowledge of Java, Eclipse, reverse

engineering, CHECKSTYLE, and language technology (i.e.,

CHECKSTYLE’s domain). The subjects’ levels of expertise

in each of these fields were measured through a (subjective)

a priori assessment: we used a five-point Likert scale, from

0 (“no knowledge”) to 4 (“expert”). In particular, we re-

quired minimum scores of 1 for Java and Eclipse (“begin-

ner”), and a maximum score of 3 for CHECKSTYLE (“ad-

vanced”). The technical report provides a characterization

of the subjects [4].

The assignments to the control and experimental group

were conducted manually to evenly distribute the available

knowledge. This is illustrated by Figure 3: in each group,

the expertises are chosen to be as equal as possible, resulting

in average expertises of 2.08 for the Eclipse group and 2.00

for the Ecl+Ext group.

3.4. Experimental procedure

The experiment is performed through eight sessions, most of

which take place at Delft University of Technology. The ses-

sions are conducted on workstations that have similar char-

acteristics, i.e., at least Pentium 4 processors and more or

less equal screen resolutions (1280x1024 or 1600x900).

Each session involves three subjects and features a short

tutorial on Eclipse, highlighting the most common features.

The experimental group is also given a 10 minute EXTRAVIS

tutorial that involves a JHOTDRAW execution trace used in

earlier experiments [5]. All sessions are supervised, enabling

the subjects to pose clarification questions, and preventing

them from consulting others and from using alternative tools.

The subjects are not familiar with the experimental goal.

The subjects are presented with a fully configured Eclipse

that is readily usable, and are given access to the example in-

put source file and CHECKSTYLE configurations described

in Section 3.2. The Ecl+Ext group is also provided with

two EXTRAVIS instances, each visualizing one of the exe-

cution traces mentioned earlier. All subjects receive hand-

outs that provide an introduction, CHECKSTYLE outputs for

the two aforementioned scenarios, the assignment, a debrief-

ing questionnaire, and reference charts for both Eclipse and

EXTRAVIS. The assignment is to complete the eight compre-

hension tasks within 90 minutes. The subjects are required

to motivate their answers at all times. We purposely refrain

from influencing how exactly the subjects should cope with

the time limit: only when a subject exceeds the time limit

is he or she told that finishing up is, in fact, allowed. The

questionnaire asks for the subjects’ opinions on such aspects

as time pressure and task difficulty.



one-tailed Student’s t-test

Group Mean Diff. Min Max Median Stdev. K.-S. Z Levene F df t p-value

Time

Eclipse 74.75 38 102 78 18.34 0.512

Eclipse+Extravis 59.42 -20.51% 36 72 67 14.19 0.908 0.467 22 2.291 0.016

Correctness

Eclipse 12.75 5 19 14 4.18 0.984

Eclipse+Extravis 18.25 +43.14% 11 22 19 3.25 1.049 1.044 22 3.598 0.001

Table 3. Descriptive statistics of the experimental results.

3.5. Variables & Analysis

The independent variable in our experiment is the availability

of EXTRAVIS during the tasks.

The first dependent variable is the time spent on each task,

and is measured by having the subjects write down the cur-

rent time when starting a new task. Since going back to ear-

lier tasks is not allowed and the sessions are supervised, the

time spent on each task is easily determined.

The second dependent variable is the correctness of the

given answers. This is measured by applying our answer

model on the subjects’ answers, which specifies the required

elements and the associated scores (between 0 and 4).

To test our hypotheses, we can choose between parametric

and non-parametric tests. Whereas the former are more re-

liable, the latter are more robust: common examples include

Student’s t-test and the Mann-Whitney test, respectively. For

the t-test to yield reliable results, two requirements must be

met: the sample distributions must (1) be normal, and (2)

have equal variances. These conditions can be tested using,

e.g., the Kolmogorov-Smirnov test and Levene’s test, respec-

tively. These requirements are tested during our results anal-

ysis, upon which we decide whether to use the t-test or the

more robust Mann-Whitney test.

Following our alternative hypotheses, we employ the one-

tailed variant of each statistical test. For the time as well

as the correctness variable we maintain a typical confidence

level of 95% (α=0.05), which means that statistical signifi-

cance is attained in cases where the p-value is found to be

lower than 0.05. The statistical package that we use for our

calculations is SPSS.

3.6. Pilot studies

Prior to the experimental sessions, we conducted two pilots

to optimize several experimental parameters. These param-

eters included the number of tasks, their clarity, feasibility,

and the time limit. The pilot for the control group was per-

formed by one of the authors of this paper, who had initially

not been involved in the experimental design; the pilot for

the experimental group was conducted by a colleague. Both

would not take part in the actual experiment later on.

The results of the pilots have led to the removal of two

tasks because the time limit was too strict. The removed

tasks were already taken into account in Section 3.2. Fur-

thermore, the studies led to the refinement of several tasks

in order to make the questions clearer. Other than these am-

biguities, the tasks were found to be sufficiently feasible in

both the Eclipse and the Ecl+Ext pilot.

4. Results & Discussion

This section describes our interpretation of the results. We

first discuss the time and correctness aspects in Section 4.1

and 4.2, and then take a closer look at the scores from a task

perspective in Section 4.3.

Table 3 shows descriptive statistics of the measurements,

aggregated over all tasks.4

Wohlin et al. [20] suggest the removal of outliers in case

of extraordinary situations, such as external events that are

unlikely to reoccur. We found two outliers in our correctness

data, but could identify no such circumstances.

As an important factor for both time and correctness, we

note that one of the subjects gave up when his 90 minutes

had elapsed with one more task to go, resulting in two miss-

ing data points in this experiment (i.e., the time spent by

this subject on task T4.2 and the correctness of his answer).

Seven others did finish, but only after the 90 minutes had

expired: i.e., six subjects from the Eclipse group and one

subject from the Ecl+Ext group spent between 97 and 124

minutes to complete all tasks.

For this reason, we shall disregard the last two tasks in our

quantitative analyses: not taking tasks T4.1 and T4.2 into ac-

count, only two out of the 24 subjects still exceeded the time

limit (by 7 and 12 minutes, respectively), which is accept-

able. At the same time, this strongly reduces any ceiling ef-

fects in our data that may have resulted from the increasing

time pressure near the end of the assignment. The remaining

six tasks still cover all of Pacione’s nine activities (Table 2).

4.1. Time results

We start off by testing null hypothesis H10, which states that

the availability of EXTRAVIS does not impact the time that is

needed to complete typical comprehension tasks.

Figure 4(a) shows a box plot for the total time that the

subjects spent on the first six tasks. Table 3 indicates that on

average the Ecl+Ext group required 20.51% less time.

4The measurements themselves are left to the technical report [4].



Eclipse 
+Extravis

Eclipse

T
im

e
 s

p
e

n
t 

(m
in

u
te

s
)

120

100

80

60

40

(a)

Eclipse 
+Extravis

Eclipse

C
o

rr
e

c
tn

e
s

s
 (

p
o

in
ts

)

30

25

20

15

10

5

(b)

Figure 4. Box plots for time spent and correctness.

TheKolmogorov-Smirnovand Levene tests succeeded for

the timing data, which means that Student’s t-test may be

used to test H10. As shown in Table 3, the t-test yields a

statistically significant result. The average time spent by the

Ecl+Ext group was clearly lower and the p-value 0.016 is

smaller than 0.05, which means that H10 can be rejected in

favor of the alternative hypothesis H1, which states that the

availability of EXTRAVIS reduces the time that is needed to

complete typical comprehension tasks. The non-parametric

Mann-Whitney test confirms these findings [4].

The lower time requirements for the EXTRAVIS users

could be attributed to several factors. First, all information

offered by EXTRAVIS is shown on a single screen, which

negates the need for scrolling. In particular, the overview

of the entire system’s structure saves much time in compar-

ison to conventional environments, in which typically mul-

tiple files have to be studied at once. Second, the need to

imagine how certain functionalities or interactions work at

runtime represents a substantial cognitive load on the part of

the user. This is alleviated by trace analysis and visualization

tools, which show the actual runtime behavior. Examples of

these assumptions are discussed in Section 4.3.

On the other hand, several factors may have had a nega-

tive impact on the the time requirements of EXTRAVIS users.

For example, the fact that EXTRAVIS is a standalone tool

means that context switching is necessary, which may in-

duce overhead on the part of the user. This could be solved

by integrating the trace visualization into Eclipse (or other

IDEs), with the additional benefit that the tool could provide

direct links to Eclipse’s source code browser. However, it

should be noted that EXTRAVIS would still require a sub-

stantial amount of screen real estate to be used effectively.

Another potential factor that hindered the time perfor-

mance of the Ecl+Ext group is that these subjects may not

have been sufficiently familiar with EXTRAVIS’ features,

and were therefore faced with a time-consuming learning

curve. This is partly supported by the debriefing question-

naire, which indicates that four out of the 12 subjects found

the tutorial too short. A more elaborate tutorial on the use of

the tool could help alleviate this issue.

4.2. Correctness results

We now test null hypothesis H20, which states that the avail-

ability of EXTRAVIS does not impact the correctness of an-

swers given during typical comprehension tasks.

Figure 4(b) shows a box plot for the scores that were ob-

tained by the subjects on the first six tasks. Note that we

consider overall scores rather than scores per task (which are

left to Section 4.3). The box plot shows that the difference

in terms of correctness is even more explicit than for the tim-

ing aspect. The answers given by the Ecl+Ext subjects were

43.14% more accurate (Table 3), averaging 18.25 out of 24

points compared to 12.75 points for the Eclipse group.

Similar to the timing data, the requirements for the use

of the parametric t-test were met. Table 3 therefore shows

the results for Student’s t-test. At 0.001, the p-value is very

low and implies statistical significance. Since the difference

is clearly in favor of the Ecl+Ext group, it follows that hy-

pothesis H20 can be easily rejected in favor of our alterna-

tive hypothesis H2, which states that the availability of EX-

TRAVIS increases the correctness of answers given during

typical comprehension tasks. The Mann-Whitney test con-

firms our findings [4].

We attribute the added value of EXTRAVIS to correctness

to several factors. First, the inherent preciseness of dynamic

analysis could have played a crucial role: the fact that EX-

TRAVIS shows the actual objects involved in each call makes

the interactions easier to understand. Section 4.3 discusses

this in more detail through an example task.

Second, the results of the debriefing questionnaire (Ta-

ble 4) show that the Ecl+Ext group used EXTRAVIS quite of-

ten: the subjects estimate the percentage of time they spent in

EXTRAVIS at 60% on average. While in itself this is mean-

ingless, we also observe through the questionnaire that on

average, EXTRAVIS was used on 6.8 of the 8 tasks, and that

on average the tool proved useful in 5.1 of those tasks (75%).

This is a strong indication that the Ecl+Ext subjects generally

did not experience a resistance to using EXTRAVIS (resulting

from, e.g., a poor understanding of the tool) and were quite

successful in their attempts.

The latter assumption is further reinforced by the Ecl+Ext

subjects’ opinions on the speed and responsiveness of the

tool, which averaged a score of 1.4 on a scale of 0-2, which

is between “pretty OK: occasionally had to wait for infor-

mation” and “very quickly: the information was shown in-

stantly”. Furthermore, all 24 subjects turned out to be quite

familiar with dynamic analysis: in the questionnaire they in-

dicated an average knowledge level of 2.4 on a scale of 0-4



Eclipse Eclipse+Extravis

Mean Stdev. Mean Stdev.

Misc.

Time pressure (0-4) 2.17 1.27 2.08 0.51

Dynamic analysis (0-4) 2.33 1.15 2.50 1.24

Task difficulty (0-4)

T1 1.00 0.74 1.58 0.67

T2.1 2.67 1.23 1.08 0.67

T2.2 2.50 1.24 1.50 0.90

T3.1 2.08 0.90 2.25 0.75

T3.2 2.08 0.90 1.50 0.80

T3.3 1.92 0.90 1.50 1.00

T4.1 2.50 0.67 2.83 0.83

T4.2 1.58 1.00 1.64 1.12

Average 2.04 1.74

Use of EXTRAVIS

No. of features used 6.42 2.68

No. of tasks used (0-8) 6.75 1.14

No. of tasks success (0-8) 5.08 1.31

% of time spent (est.) 60.00 26.71

Speed (0-2) 1.42 0.51

Table 4. Results of the debriefing questionnaire.

on this topic, which is between “I’m familiar with it and can

name one or two benefits” and “I know it quite well and per-

formed it once or twice”.

Note that similar to a related study [15], we could not

identify a correlation between the subjects’ performances

and their (subjective) expertise levels.

4.3. Individual task scores

To determine if there are certain types of comprehension

tasks that benefit most from the use of EXTRAVIS, we ex-

amine the performances per task in more detail. Figure 5

shows the average scores and time spent by each group from

a task perspective. While we focus primarily on correctness,

timing data is also considered where appropriate.

The groups scored equally well on tasks T1 and T3.1 and

required similar amounts of time. According to the moti-

vations of their answers, for task T1 the EXTRAVIS users

mostly used the massive sequence view for visual phase

detection, whereas the Eclipse group typically studied the

main()method. The results of the latter approach were gen-

erally a little less accurate, because such important phases as

the building and parsing of an AST are not directly visible

in main(). As for task T3.1, both groups often missed the

explicit destruction of each check at the end of execution,

which is not easily observed in Eclipse nor in EXTRAVIS.

The only task on which the Ecl+Ext group was outper-

formed is T4.1, in terms of time as well as correctness. The

Eclipse group rated the difficulty of this task at 2.5, which is

between “intermediate” and “difficult”, whereas EXTRAVIS

users rated the difficulty of this task at 2.8, leaning toward

“difficult”. An important reason might be that EXTRAVIS

users did not know exactly what to look for in the trace,

whereas most Eclipse users used one of the checks as a

starting point and followed the violation propagation process

2.8

1.7

2.5
2.7

1.8

1.4

3.3

2.5

3 2.9

3.3

2.7

3.3

3.0 2.9

3.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T1 T2.1 T2.2 T3.1 T3.2 T3.3 T4.1 T4.2

A
v
e
ra
g
e

 c
o
rr
e
ct
n
e
ss

 (
p
o
in
ts
)

Task

Eclipse Eclipse+Extravis

15 4 15.6

17.1

16 0

18.0
Eclipse Eclipse+Extravis

12.0

15.4

9.0

15.6

13.8

9.0

12.3

6.2

11.6

8.1

9.5

14.5

7.8 7.9 8.3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

T1 T2.1 T2.2 T3.1 T3.2 T3.3 T4.1 T4.2

A
v
e
ra
g
e

 t
im

e
 (
m
in
u
te
s)

Task

Figure 5. Averages per task.

from there. The latter approach is typically faster: the avail-

ability of EXTRAVIS may have been a distraction rather than

an added value in this case.

The EXTRAVIS users scored significantly higher on five

tasks: the differences for tasks T2.1, T2.2, T3.2, T3.3, and

T4.2 ranked between 0.8 and 1.6 points.

The rather decent results from the Ecl+Ext group on tasks

T2.1 and T2.2 are presumably explained by EXTRAVIS’ cir-

cular view, fromwhich all classes and their interrelationships

can be directly interpreted. In T2.1, the Eclipse group mostly

went looking for utility-like classes, while in T2.2 a common

approach was to search for specific imports. The former task

required quite some exploration for Eclipse users and was

therefore time-consuming, and the approach does not neces-

sarily yield optimal results. The latter task required less time,

presumably because a more specific search was possible.

Task T3.2 involved inheritance: the fact that the check at

hand is an extension of a superclass that is an extension in it-

self, forced the Eclipse group to distribute its focus across

each and every class in the check’s type hierarchy. EX-

TRAVIS users often selected check X and class Y in the tool,

which highlights all mutual interactions. As evidenced by

Figure 5, the latter approach is both faster and more accu-

rate. In task T3.3, the EXTRAVIS users could follow the

same routine whereas in Eclipse the required elements are

easily missed.

In task T4.2, the Ecl+Ext group therefore mostly searched

the execution traces for communication between check X and

the violation container class. The Eclipse group had sev-

eral choices. A few subjects tried to understand the check

and apply this knowledge on the given input source file; oth-

ers tried to relate the check’s typical warning message (once

it was determined) to the given example outputs; yet oth-



ers used the debugger, e.g., by inserting breakpoints or print

statements. With the exception of debugging, most of the lat-

ter approaches are quite time-consuming, if successful at all.

Still, we observe no large difference in time spent: the fact

that six members of the Eclipse group had already exceeded

the time limit at this point may have reduced the amount of

effort invested in this task.

5. Threats to Validity

This section discusses the validity threats in our experiment

and the manners in which we have addressed them. We

maintain the common distinction between internal validity,

which refers to the cause-effect inferences made during the

analysis, and external validity, which concerns the generaliz-

ability of the results to different contexts.

5.1. Internal validity

Subjects. There exist several internal validity threats that

relate to the subjects used in this experiment. First of all, the

subjects may not have been sufficiently competent. We have

reduced this threat through the a priori assessment of the

subjects’ competence in five relevant fields, which pointed

out that all subjects had at least an elementary knowledge of

Eclipse and no expert knowledge of CHECKSTYLE.

Second, their knowledge may not have been fairly dis-

tributed across the control group and experimental group.

This threat was alleviated by grouping the subjects such that

their expertise was evenly distributed across the groups.

Third, the subjects may not have been properlymotivated,

or may have had too much knowledge of the experimental

goal. The former threat is mitigated by the fact that they all

participated on a voluntary basis; as for the latter, the sub-

jects were not familiar with the actual research questions or

hypotheses (although they may have guessed).

Tasks. The comprehension tasks were designed by the au-

thors of this paper, and therefore may have been biased to-

wards EXTRAVIS (as this tool was also designed by several

of the authors). To avoid this threat, we have involved an

established task framework [12] to ensure that many aspects

of typical comprehension contexts are covered: as a result,

the tasks concerned both global and detailed knowledge, and

both static and dynamic aspects.

Another threat related to the tasks is that they may have

been too difficult. We refute this possibility on the basis

of the correctness results, which show that maximum scores

were occasionally awarded in both groups for all but one task

(T3.1), which in the Eclipse group often yielded 3 points but

never 4. However, the average score for this task was a de-

cent 2.67 (stdev. 0.7) in both groups. Our point of view

is further reinforced by the debriefing questionnaire: the task

they found hardest (T4.1) yielded good average scores, being

3.25 for the Eclipse group and 2.92 for the Ecl+Ext group.

Also related to the tasks is the possibility that the sub-

jects’ answers were graded incorrectly. This threat is often

overlooked in the literature, but was reduced in our experi-

ment by creating concept answers in advance and by having

CHECKSTYLE’s lead developer review and refine them. This

resulted in an answer model that clearly states the required

elements (and corresponding points) for each task. Further-

more, to verify the soundness of the reviewing process, the

first two authors of this paper independently reviewed the

answers of five random subjects: on each of the five occa-

sions the difference was no higher than one point (out of the

maximum of 32 points).

Miscellaneous. The results may have been influenced by

time constraints that were too loose or too strict. We have

attempted to circumvent this threat by performing two pi-

lot studies, which led to the removal of two tasks. Still, not

all subjects finished the tasks in time; however, the average

time pressure (as indicated by the subjects in the debriefing

questionnaire) was found to be 2.17 in the Eclipse group and

2.08 in the Ecl+Ext group on a scale of 0-5, which roughly

corresponds to only a “fair amount of time pressure”. Fur-

thermore, in our results analysis we have disregarded the last

two tasks, upon which only two out of the 24 subjects still

exceeded the time limit.

Furthermore, our statistical analysis may not be com-

pletely accurate due to the missing data points that we men-

tioned in Section 4. This concerned only one subject, who

did not finish task T4.2. Fortunately, the effect of the two

missing timing and correctness data points on our calcula-

tions is negligible: had the subject finished the task, his total

time spent and average score could have been higher, but

this would only have affected the analysis of all eight tasks

whereas our focus has been on the first six.

Lastly, it could be suggested that Eclipse is more pow-

erful if additional plugins are used. However, as evidenced

by the results of the debriefing questionnaire, only two sub-

jects named specific plugins that would have made the tasks

easier, and these related to only two of the eight tasks. We

therefore expect that additional plugins would not have had

a significant impact.

5.2. External validity

The generalizability of our results could be hampered by

the limited representativeness of the subjects, the tasks, and

CHECKSTYLE as a subject system.

Concerning the subjects, the use of professional develop-

ers rather than (mainly) Ph.D. candidates and M.Sc. students

could have yielded different results. Unfortunately, motivat-

ing people from industry to sacrifice two hours of their pre-

cious time is quite difficult. Nevertheless, against the back-

ground of related studies that often employ students, we as-

sume the expertise levels of our 24 subjects to be relatively

high. This assumption is reinforced by the (subjective) a pri-



ori assessment, in which the subjects rated themselves as be-

ing “advanced” with Java (avg. 3.08, stdev. 0.6), and “reg-

ular” at using Eclipse (avg. 2.29, stdev. 0.8). We acknowl-

edge that our subjects’ knowledge of dynamic analysis may

have been greater than in industry, averaging 2.42 (Table 4).

Another external validity threat concerns the comprehen-

sion tasks, which may not reflect real maintenance situa-

tions. This threat is largely neutralized by our reliance on

Pacione’s framework [12], that is based on activities often

found in software visualization and comprehension evalua-

tion literature. Furthermore, the tasks concerned open ques-

tions, which obviously approximate real life contexts better

than do multiple choice questions.

Finally, the use of a different subject system (or additional

runs) may have yielded different or more reliable results.

CHECKSTYLE was chosen on the basis of several important

criteria; finding an additional system of appropriate size and

of which the experimenters have sufficient knowledge is not

trivial. Moreover, an additional case (or additional run) im-

poses twice the burden on the subjects or requires more of

them. While this may be feasible in case the groups consist

exclusively of students, it is not realistic in case of Ph.D. can-

didates (or professional developers) because they often have

little time to spare, if they are available at all.

6. Related Work

To the best of our knowledge, there exist no earlier studies

in the literature that offer quantitative evidence of the added

value of trace visualization techniques for program compre-

hension. We therefore describe the experiments that are most

closely related to our topic.

In a recent article, Bennett et al. [2] summarized the state

of the art in tool features for dynamic sequence diagram re-

construction. Based on this survey, they proposed a new tool

that implemented these features. Rather than measuring its

added value, they sought to characterize themanner in which

the tool is used in practice. To this end, they had six sub-

jects perform a series of comprehension tasks, and measured

when and how the tool features were used. Among their find-

ings was that tool features are not often formally evaluated

in literature, and that heavily used tool features may indicate

confusion among the users. Another important observation

was that much time was spent on scrolling, which supports

our hypothesis that EXTRAVIS saves time as it shows all in-

formation on a single screen.

Quante [15] performed a controlled experiment to assess

the benefits of Dynamic Object Process Graphs (DOPGs) for

program comprehension. While these graphs are built from

execution traces, they do not actually visualize entire traces.

The experiment involved a series of feature location5 tasks,

5Feature location is a reverse engineering activity that concerns the es-

tablishment of relations between concepts and source code.

performed by 25 students on two subject systems. The use

of DOPGs led to a significant decrease in time and a signifi-

cant increase in correctness in case of the first system; how-

ever, the differences in case of the second system were not

statistically significant. This suggests that evaluations on ad-

ditional systems are also desirable for EXTRAVIS and should

be considered as future work. Also of interest is that the lat-

ter subject system was four times smaller than the former,

but had three DOPGs associated with it instead of one. This

may have resulted in an information overload on the part of

the user, once more suggesting that users are best served by

as little information as possible.

Hamou-Lhadj and Lethbridge [7] proposed the notion of

summarized traces, which provide an abstraction of large

traces to grasp a program’s main behavioral aspects. The

paper presents quantitative results with regard to the effec-

tiveness of the algorithm. The traces were also qualitatively

evaluated through a questionnaire among software develop-

ers. The actual usefulness in practice, i.e., its added value

to conventional techniques in actual program comprehension

contexts, was not measured.

7. Conclusion

In this paper, we have reported on a controlled experiment

that was aimed at the quantitative evaluation of EXTRAVIS,

our tool for execution trace visualization. We designed eight

typical tasks aimed at gaining an understanding of a well-

known code validation program, and measured the perfor-

mances of a control group (using the Eclipse IDE) and an

experimental group (using both Eclipse and EXTRAVIS) in

terms of correctness and time spent.

The results clearly illustrate EXTRAVIS’ usefulness for

program comprehension. With respect to time, the added

value of EXTRAVIS was found to be statistically significant:

on average, the EXTRAVIS users spent 21% less time on the

given tasks. In terms of correctness, the results turned out

even more convincing: EXTRAVIS’ added value was again

statistically significant, with the EXTRAVIS users scoring

43% more points on average. These results testify to EX-

TRAVIS’ benefits compared to conventional tools: in this

case, the Eclipse IDE.

To find out which types of tasks are best suited for EX-

TRAVIS or for trace visualization in general, we looked in

more detail at the group performances per task. While infer-

ences drawn from one experiment and only eight tasks can-

not be conclusive, the experimental results do provide a first

indication as to EXTRAVIS’ strengths. First, questions that

require insight into a system’s structural relations are solved

relatively easily due to EXTRAVIS’ circular view, as it shows

all of the system’s structural entities and their call relation-

ships on one single screen. Second, tasks that involve inher-

itance seem to benefit greatly from the fact that EXTRAVIS



shows the actual objects involved in each interaction. Third,

questions that require a user to envision a system’s runtime

behavior are clearly easier to tackle when traces are provided

(in a comprehensible manner). The latter two observations

presumably hold for most trace visualization techniques.

This paper demonstrates the potential of trace visualiza-

tion for program comprehension, and paves the way for other

researchers to conduct similar experiments. The work in this

paper makes the following contributions:

• The reusable design of a controlled experiment for the

quantitative evaluation of trace visualization techniques

for program comprehension.

• The execution of this experiment on a group of 24 rep-

resentative subjects, demonstrating a 21% decrease in

time effort and a 43% increase in correctness.

• A first indication as to the types of tasks to which EX-

TRAVIS, and trace visualization in general, are best

suited.

Directions for future work include replications of the experi-

ment on different subject systems. Furthermore, we seek col-

laborations with researchers to evaluate other existing trace

visualization techniques, i.e., to assess and compare their

added values for program comprehension.

Acknowledgments

This research is sponsored by NWO via the Jacquard Recon-

structor project; Further support came from the Interuniver-

sity Attraction Poles Programme - Belgian State - Belgian

Science Policy, project MoVES. We thank the 24 subjects

for their participation, Danny Holten for his implementation

of EXTRAVIS, and Cathal Boogerd for performing one of the

pilot studies and for proofreading this paper. Also, many

thanks to CHECKSTYLE’s lead developer, Oliver Burn, who

assisted in the design of our task review protocol.

References
[1] V. R. Basili. Evolving and packaging reading technologies. J.

Syst. Softw., 38(1):3–12, 1997.

[2] C. Bennett, D. Myers, D. Ouellet, M.-A. Storey, M. Salois,

D. German, and P. Charland. A survey and evaluation of tool

features for understanding reverse engineered sequence dia-

grams. J. Softw. Maint. Evol., 20(4):291–315, 2008.

[3] T. A. Corbi. Program understanding: Challenge for the 1990s.

IBM Systems Journal, 28(2):294–306, 1989.

[4] B. Cornelissen, A. Zaidman, A. van Deursen, and B. Van

Rompaey. Trace visualization for program comprehension: A

controlled experiment. Technical Report TUD-SERG-2009-

001, Delft University of Technology, 2009.

[5] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van

Deursen, and J. J. van Wijk. Execution trace analysis through

massive sequence and circular bundle views. J. Syst. Softw.,

81(11):2252–2268, 2008.

[6] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,

and R. Koschke. A systematic survey of program compre-

hension through dynamic analysis. Technical Report TUD-

SERG-2008-033, Delft University of Technology, 2008.

[7] A. Hamou-Lhadj and T. C. Lethbridge. Summarizing the con-

tent of large traces to facilitate the understanding of the be-

haviour of a software system. In Proc. Int. Conf. on Program

Compr. (ICPC), pages 181–190. IEEE CS, 2006.

[8] D. F. Jerding and J. T. Stasko. The information mural: A tech-

nique for displaying and navigating large information spaces.

IEEE Trans. Vis. Comput. Graph., 4(3):257–271, 1998.

[9] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing interac-

tions in program executions. In Proc. Int. Conf. on Softw. Eng.

(ICSE), pages 360–370. ACM, 1997.

[10] K. Koskimies and H. Mössenböck. Scene: Using scenario

diagrams and active text for illustrating object-oriented pro-

grams. In Proc. Int. Conf. on Softw. Eng. (ICSE), pages 366–

375. IEEE CS, 1996.

[11] C. F. J. Lange and M. R. V. Chaudron. Interactive views to

improve the comprehension of UML models - an experimen-

tal validation. In Proc. Int. Conf. on Program Compr. (ICPC),

pages 221–230. IEEE CS, 2007.

[12] M. J. Pacione, M. Roper, and M. Wood. A novel software

visualisation model to support software comprehension. In

Proc. Working Conf. on Reverse Eng. (WCRE), pages 70–79.

IEEE CS, 2004.

[13] W. De Pauw, R. Helm, D. Kimelman, and J. M. Vlissides.

Visualizing the behavior of object-oriented systems. In Proc.

Conf. on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA), pages 326–337. ACM, 1993.

[14] M. Di Penta, R. E. K. Stirewalt, and E. Kraemer. Design-

ing your next empirical study on program comprehension. In

Proc. Int. Conf. on Program Compr. (ICPC), pages 281–285.

IEEE CS, 2007.

[15] J. Quante. Do dynamic object process graphs support program

understanding? – a controlled experiment. In Proc. Int. Conf.

on Program Compr. (ICPC), pages 73–82. IEEE CS, 2008.

[16] S. P. Reiss and M. Renieris. Encoding program executions. In

Proc. Int. Conf. on Softw. Eng. (ICSE), pages 221–230. IEEE

CS, 2001.

[17] B. Van Rompaey and S. Demeyer. Estimation of test code

changes using historical release data. In Proc. Working Conf.

on Reverse Eng. (WCRE), pages 269–278. IEEE CS, 2008.

[18] M.-A. Storey. Theories, methods and tools in program com-

prehension: past, present and future. In Proc. Int. Workshop

on Program Compr. (IWPC), pages 181–191. IEEE CS, 2005.

[19] T. Systä, K. Koskimies, and H. A. Müller. Shimba: an

environment for reverse engineering Java software systems.

Softw., Pract. Exper., 31(4):371–394, 2001.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlesson, B. Regnell,

and A. Wesslen. Experimentation in software engineering -

an introduction. Kluwer Acad. Publ., 2000.

[21] A. Zaidman and S. Demeyer. Managing trace data volume

through a heuristical clustering process based on event execu-

tion frequency. In Proc. European Conf. on Softw. Maint. and

Reeng. (CSMR), pages 329–338. IEEE CS, 2004.

[22] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van

Deursen. Mining software repositories to study co-evolution

of production & test code. In Proc. Int. Conf. on Softw. Testing

(ICST), pages 220–229. IEEE CS, 2008.


