
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 1

A Controlled Experiment for Program
Comprehension through Trace Visualization

Bas Cornelissen, Andy Zaidman, Member, IEEE Computer Society,

and Arie van Deursen, Member, IEEE Computer Society

Abstract—Software maintenance activities require a sufficient level of understanding of the software at hand that unfortunately is

not always readily available. Execution trace visualization is a common approach in gaining this understanding, and among our own

efforts in this context is EXTRAVIS, a tool for the visualization of large traces. While many such tools have been evaluated through

case studies, there have been no quantitative evaluations to the present day. This paper reports on the first controlled experiment

to quantitatively measure the added value of trace visualization for program comprehension. We designed eight typical tasks aimed

at gaining an understanding of a representative subject system, and measured how a control group (using the Eclipse IDE) and an

experimental group (using both Eclipse and EXTRAVIS) performed these tasks in terms of time spent and solution correctness. The

results are statistically significant in both regards, showing a 22% decrease in time requirements and a 43% increase in correctness

for the group using trace visualization.

Index Terms—Program comprehension, dynamic analysis, controlled experiment.

F

1 INTRODUCTION

P ROGRAM comprehension has become an increasingly
important aspect of the software development pro-

cess. As software systems grow larger and their develop-
ment becomes more expensive, they are constantly mod-
ified rather than built from scratch, which means that a
great deal of effort is spent on performing maintenance
activities. However, as up to date documentation is often
lacking, it is estimated that up to 60% of the maintenance
effort is spent on gaining a sufficient understanding of the
program at hand [1], [2]. It is for this reason that the
development of techniques and tools that support the
comprehension process can make a significant contribu-
tion to the overall efficiency of software development.

With respect to such techniques, the literature offers
numerous solutions that can be roughly broken down
into static and dynamic approaches (and combinations
thereof). Whereas static analysis relies on such artifacts
as source code and documentation, dynamic analysis
focuses on a system’s execution. An important advan-
tage of dynamic analysis is its precision, as it captures
the system’s actual behavior. Among the drawbacks are
its incompleteness, as the gathered data pertains solely
to the scenario that was executed; and the well-known
scalability issues, due to the often excessive amounts
of execution trace data. Particularly this latter aspect is

∙ B. Cornelissen is with the Software Improvement Group, A.J. Ernststraat
595-H, 1082LD Amsterdam, The Netherlands.
E-mail: b.cornelissen@sig.eu.

∙ A. Zaidman and A. van Deursen are with the Faculty of Electrical
Engineering, Mathematics and Computer Science, Delft University of
Technology, Mekelweg 4, 2628CD Delft, The Netherlands.
E-mail: {a.e.zaidman, arie.vandeursen}@tudelft.nl.

troublesome because of the cognitive overload on the
part of the maintainer.

To cope with the issue of scalability, a significant
portion of the literature on program comprehension has
been dedicated to the reduction [3], [4] and visualization
[5], [6] of execution traces. One of these techniques and
tools is EXTRAVIS, our tool from prior work [7] that offers
two interactive views of large execution traces. Through
a series of case studies we illustrated how EXTRAVIS

can support different types of common program com-
prehension activities. However, in spite of these efforts,
there is no quantitative evidence of the tool’s usefulness
in practice. As we will show in the next section, no
such evidence is offered for any of the trace visualization
techniques in the program comprehension literature.

The purpose of this paper, therefore, is a first quan-
tification of the usefulness of trace visualization for
program comprehension. Furthermore, to gain a deeper
understanding of the nature of its added value, we
investigate which types of tasks benefit most from trace
visualization and from EXTRAVIS. To fulfill these goals,
we design and execute a controlled experiment in which
we measure how the tool affects (1) the time that is
needed for typical comprehension tasks, and (2) the
correctness of the solutions given during those tasks.

This paper extends our previous work [8] with a
survey of 21 trace visualization techniques, an additional
group of subjects with an industrial background (thus
strengthening the statistical significance as well as the
external validity), and a discussion on the implications
of our EXTRAVIS findings for trace visualization tools in
general.

The remainder of the paper is structured as follows.
Section 2 extensively reviews existing techniques and



2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

tools for trace visualization, and motivates our intent
to conduct a controlled experiment. Section 3 offers a
detailed description of the experimental design. Section 4
presents the results of our experiment, which are then
discussed in Section 5. Section 6 discusses threats to
validity, and Section 7 offers conclusions and future
directions.

2 BACKGROUND

2.1 Execution trace analysis

The use of dynamic analysis for program comprehen-
sion has been a popular research activity in the last
decades. In a large survey that we recently performed,
we identified a total of 176 articles on this topic that
were published between 1972 and June 2008 [9]. More
than 30 of these papers concern execution trace analysis,
which has often shown to be beneficial to such activities
as feature location, behavioral analysis, and architecture
recovery.

Understanding a program through its execution traces
is not an easy task because traces are typically too large
to be comprehended directly. Reiss and Renieris, for
example, report on an experiment in which one gigabyte
of trace data was generated for every two seconds of
executed C/C++ code or every ten seconds of Java code
[3]. For this reason, there has been a significant effort
in the automatic reduction of traces to make them more
tractable (e.g., [3], [10], [4]). The reduced traces can then
be visualized by traditional means: for example, as di-
rected graphs or UML sequence diagrams. On the other
hand, the literature also offers several non-traditional
trace visualizations that have been designed specifically
to address the scalability issues.

In Section 2.2 we present an overview of the current
state of the art in trace visualization. Section 2.3 describes
EXTRAVIS, our own solution, and Section 2.4 motivates
the need for controlled experiments.

2.2 Execution trace visualization

There exist three surveys in the area of execution trace
visualization that provide overviews of existing tech-
niques. The first survey was published in 2003 by
Pacione et al., who compare the performance of five
dynamic visualization tools [42]. Another survey was
published in 2004 by Hamou-Lhadj and Lethbridge,
who describe eight trace visualization tools from the
literature [43]. Unfortunately, these two overviews are
incomplete because (1) the selection procedures were
non-systematic, which means that papers may have
been missed; and (2) many more solutions have been
proposed in the past five years. A third survey was
performed by the authors of this paper in 2008, and was
set up as a large-scale systematic literature survey of all
dynamic analysis-based approaches for program com-
prehension [9]. However, its broad perspective prevents
subtle differences between trace visualization techniques

from being exposed, particularly in terms of evaluation:
for example, it does not distinguish between user studies
and controlled experiments.

To obtain a complete overview of all existing tech-
niques and to reveal the differences in evaluation, we
have used our earlier survey to identify all articles
on trace visualization for program comprehension from
1988 onwards, and then reexamined these papers from
an evaluation perspective. In particular, we have focused
on techniques that visualize (parts of) execution traces. We
identified the types of validation and the areas in which
the techniques were applied. Also of interest is the public
availability of the tools involved, which is crucial for
fellow researchers seeking to study existing solutions or
perform replications of the experiment described in this
paper.

Our study has resulted in the identification and char-
acterization of 21 contributions1 that were published
between 1988 and 2008, shown in Table 1. For each
contribution, the table shows the appropriate references,
associated tools (with asterisks denoting public availabil-
ity), evaluation types, and areas in which the technique
was applied. In what follows, we briefly describe the
contents of each paper.

1988-2000
Kleyn and Gingrich were among the first to point out
the value of visualizing run-time behavior [11]. Their
visualization of execution traces is graph-based and aims
at better understanding software and identifying pro-
gramming errors. In particular, their graph visualization
is animated, in the sense that the user of the tool can step
through the entire execution and observe what part(s) of
the program are currently active. A case study illustrates
how their views can provide more insight into the inner
workings of a system.

De Pauw et al. introduced their interaction diagrams
(similar to UML sequence diagrams) in Jinsight, a
tool that visualizes running Java programs [5]. Jinsight
was later transformed into the publicly available TPTP
Eclipse plugin, which brings execution trace visualiza-
tion to the mainstream Java developer. The authors also
noticed that the standard sequence diagram notation was
difficult to scale up for large software systems, leading
to the development of their “execution pattern” notation,
a much more condensed view of the typical sequence
diagram [12].

Koskimies and Mössenböck proposed Scene, which
combines a sequence diagram visualization with hyper-
text facilities [15]. The hypertext features allow the user
to browse related documents such as source code or
UML class diagrams. The authors are aware of scala-
bility issues when working with sequence diagrams and
therefore proposed a number of abstractions.

Jerding et al. created ISVis, the “Interaction Scenario
Visualizer” [6], [16]. ISVis combines static and dynamic

1. Of the 36 papers found, Table 1 shows only the 21 unique
contributions (i.e., one per first author).



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 3

TABLE 1
Overview of existing trace visualization techniques

References Tool Evaluation type Applications

[11] GRAPHTRACE small case study debugging
[5], [12], [13], [14] JINSIGHT; OVATION;

TPTP*
preliminary; user feedback general understanding

[15] SCENE* preliminary software reuse
[6], [16] ISVIS* case study architecture reconstruction, feature location
[17], [18] SCED; SHIMBA case study debugging; various comprehension tasks
[19] FORM case study detailed understanding; distributed systems
[20] JAVAVIS preliminary; user feedback educational purposes; detailed understanding
[21], [4], [22], [23] SEAT small case studies; user feedback general understanding
[24], [25], [26], [27] SCENARIOGRAPHER multiple case studies detailed understanding; distributed systems; feature

analysis; large-scale software
[28], [29], [30] – small case study quality control; conformance checking
[10] – multiple case studies general understanding
[31] – case study trace comparison; feature analysis
[32] – case study feature analysis
[33] – case study architecture reconstruction; conformance checking; be-

havioral profiles
[34] TRACEGRAPH industrial case study feature analysis
[35], [36] SDR; JRET* multiple case studies detailed understanding through test cases
[37] FIELD; JIVE; JOVE multiple case studies performance monitoring; phase detection
[38] – – API understanding
[39], [7] EXTRAVIS* multiple case studies fan-in/-out analysis; feature analysis; phase detection
[40] OASIS user study various comprehension tasks
[41] – small case studies general understanding; wireless sensor networks

information to accomplish amongst others feature loca-
tion, the establishment of relations between concepts and
source code [44]. ISVis’ dynamic component visualizes
scenario views, which bear some resemblance to sequence
diagrams. Of particular interest is the Information Mural
view, which effectively provides an overview of an entire
execution scenario, comprising hundreds of thousands
of interactions. The authors have applied ISVis to the
Mosaic web browser in an attempt to extend it.

Systä et al. presented an integrated reverse engineer-
ing environment for Java that uses both static and dy-
namic analysis [17], [18]. The dynamic analysis compo-
nent of this environment, SCED, visualizes the execution
trace as a sequence diagram. In order to validate their
approach, a case study was performed on the Fujaba
open source UML tool suite, in which a series of pro-
gram comprehension and reverse engineering tasks were
conducted.

2000-2005
Souder et al. were among the first to recognize the im-
portance of understanding distributed applications with
the help of dynamic analysis [19]. To this purpose, they
use Form, which enables to draw sequence diagrams for
distributed systems. The authors validate their approach
through a case study.

Oeschle and Schmitt built a tool called JAVAVIS
that visualizes running Java software, amongst others
through sequence diagrams [20]. The authors’ main aim
was to use JAVAVIS for educational purposes and their
validation comprises informal feedback from students
using the tool.

Hamou-Lhadj et al. created the Software Exploration
and Analysis Tool (SEAT) that visualizes execution traces

as trees. It is integrated in the IDE to enable easy
navigation between different views [22]. SEAT should
be considered as a research vehicle in which the authors
explored some critical features of trace visualization
tools. Subsequently, they began exploring such solutions,
such as trace compression [4] or removing parts of the
trace without affecting its overall information value [23].
While the degree of compression is measured in several
case studies, the added value for program comprehen-
sion remains unquantified.

Salah and Mancoridis investigate an environment
that supports the comprehension of distributed systems,
which are typically characterized by the use of multiple
programming languages [24]. Their environment visu-
alizes sequence diagrams, with a specific notation for
inter-process communication. The authors also report on
a small case study. Salah et al. later continued their dy-
namic analysis work and created the so-called module-
interaction view, that shows which modules are involved
in the execution of a particular use case [27]. They eval-
uate their visualization in a case study on Mozilla and
report on how their technique enables feature location.

Briand et al. specifically focused on visualizing se-
quence diagrams from distributed applications [28], [30].
Through a small case study with their prototype tool
they have reverse engineered sequence diagrams for
checking design conformance, quality, and implementa-
tion choices.

Zaidman and Demeyer represented traces as signals in
time [10]. More specifically, they count how many times
individual methods are executed and using this metric,
they visualize the execution of a system throughout time.
This allows to identify phases and re-occurring behavior.



4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

They show the benefits of their approach using two case
studies.

2006-2007

Kuhn and Greevy also represented traces as signals in
time with their “dynamic time warping” approach [31].
In contrast to Zaidman and Demeyer, they rely on the
stack depth as the underlying metric. The signals are
compared to one another to locate features, as illustrated
by a case study.

Greevy et al. explored polymetric views to visualize
the behavior of features [32]. Their 3D visualization ren-
ders run-time events of a feature as towers of instances,
in which a tower represents a class and the number
of boxes that compose the tower indicates the number
of live instances. Message sends between instances are
depicted as connectors between the boxes. The authors
perform a case study to test their approach.

Koskinen et al. proposed behavioral profiles to under-
stand and identify extension points for components [33].
Their technique combines information from execution
traces and behavioral rules defined in documentation to
generate these profiles, which contain an architectural
level view on the behavior of a component or applica-
tion. Their ideas are illustrated in a case study.

Simmons et al. used TraceGraph to compare execution
traces with the aim of locating features [34]. Further-
more, they integrate the results of their feature location
technique into a commercial static analysis tool so as to
make feature location more accessible to their industrial
partner. The authors furthermore report on a case study
performed in an industrial context.

2007-2008

Cornelissen et al. looked specifically into generating
sequence diagrams from test cases, arguing that test
scenarios are relatively concise execution scenarios that
reveal a great deal about the system’s inner workings
[35]. They initially applied their SDR tool to a small
case study, and later extended their ideas in the publicly
available JRET eclipse plugin, which was evaluated on
a medium-scale open source application [36].

Over the years, Reiss has developed numerous so-
lutions for visualizing run-time behavior [37]. Among
the most notable examples are FIELD, which visualizes
dynamic call graphs, and JIVE, which visualizes the ex-
ecution behavior in terms of classes or packages. JIVE’s
visualization breaks up time in intervals and for each
interval it portrays information such as the number of
allocations, the number of calls, and so on.

Jiang et al. concentrated on generating sequence di-
agrams specifically for studying API usage [38]. The
rationale of their approach is that it is often difficult to
understand how APIs should be used or can be reused.
An evaluation of their approach is as yet not available.

Bennett et al. engineered the Oasis Sequence Explorer
[40]. Oasis was created based on a focus group ex-
periment that highlighted some of the most desirable

features when exploring execution traces. The authors
then performed a user study to validate whether the
Oasis features were indeed helpful during a series of
typical software maintenance tasks, with quite useful
measurements as a result.

Dalton and Hallstrom designed a dynamic analysis
visualization toolkit specifically aimed at TinyOS, a
component-based operating system mainly used in the
realm of wireless sensor networks [41]. They generate
annotated call graphs and UML sequence diagrams for
studying and understanding TinyOS applications. They
illustrate the benefits of their tool through a case study
on a TinyOS component.

2.3 Extravis

Among our own contributions to the field of trace
visualization is EXTRAVIS. This publicly available2 tool
provides two linked, interactive views, shown in Fig-
ure 1. The massive sequence view is essentially a large-scale
UML sequence diagram (similar to Jerding’s Information
Mural [45]), and offers an overview of the trace and the
means to navigate it. The circular bundle view hierarchi-
cally projects the program’s structural entities on a circle
and shows their interrelationships in a bundled fashion.
A comparison of EXTRAVIS with other tools is provided
in our earlier work [7].

We qualitatively evaluated the tool in various program
comprehension contexts, including trace exploration,
feature location, and top-down program comprehension
[7]. The results provided initial evidence of EXTRAVIS’
benefits in these contexts, the main probable advantages
being its optimal use of screen real estate and the im-
proved insight into a program’s structure. However, we
hypothesized that the relationships in the circular view
may be difficult to grasp.

2.4 Validating trace visualizations

The overview in Table 1 shows that trace visualization
techniques in the literature have been almost exclusively
evaluated using case studies. Indeed, there have been
no efforts to quantitatively measure the usefulness of
trace visualization techniques in practice, e.g., through
controlled experiments. Moreover, the evaluations in
existing work rarely involve broad spectra of compre-
hension tasks, making it difficult to judge whether the
associated solutions are widely applicable in daily prac-
tice. Lastly, most existing approaches involve traditional
visualizations, i.e., they rely on UML, graph, or tree
notations, to which presumably most software engineers
are accustomed [9]. By contrast, EXTRAVIS uses non-
traditional visualization techniques, and Storey argues
[46] that advanced visual interfaces are not often used in
development environments because they tend to require
complex user interactions.

2. EXTRAVIS, http://swerl.tudelft.nl/extravis



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 5

Fig. 1. EXTRAVIS’ circular bundle view and massive sequence view.

These reasons have motivated us to empirically vali-
date EXTRAVIS through a controlled experiment in which
we seek to assess its added value in concrete mainte-
nance contexts.

3 EXPERIMENTAL DESIGN

The purpose of this paper is to provide a quantitative
evaluation of trace visualization for program compre-
hension. To this end, we define a series of typical com-
prehension tasks and measure EXTRAVIS’ added value to
a traditional programming environment: in this case, the
Eclipse IDE3. Similar to related efforts (e.g., [47], [48]) we
maintain a distinction between the time spent on the tasks
and the correctness of the answers given. Furthermore, we
seek to identify the types of tasks to which the use of
EXTRAVIS, and trace visualization in general, is the most
beneficial.

3.1 Research Questions and Hypotheses

Based on our earlier case studies, we distinguish the
following research questions:

1) Does the availability of EXTRAVIS reduce the time
that is needed to complete typical comprehension
tasks?

3. Eclipse IDE, http://www.eclipse.org

2) Does the availability of EXTRAVIS increase the cor-
rectness of the solutions given during those tasks?

3) Based on the answers to these research questions,
which types of tasks can we identify that benefit
most from the use of EXTRAVIS and from trace
visualization in general?

Associated with the first two research questions are two
null hypotheses, which we formulate as follows:

∙ H10: The availability of EXTRAVIS does not impact
the time needed to complete typical comprehension
tasks.

∙ H20: The availability of EXTRAVIS does not impact
the correctness of solutions given during those tasks.

The alternative hypotheses that we use in the experiment
are the following:

∙ H1: The availability of EXTRAVIS reduces the time
needed to complete typical comprehension tasks.

∙ H2: The availability of EXTRAVIS increases the cor-
rectness of solutions given during those tasks.

The rationale behind the first alternative hypothesis is
the fact that EXTRAVIS provides a broad overview of the
subject system on one single screen, which may guide
the user to his or her goal more quickly than if switching
between source files were required.



6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

The second alternative hypothesis is motivated by the
inherent precision of dynamic analysis with respect to
actual program behavior: for example, the resolution of
late binding may result in a more detailed understanding
and therefore produce more accurate solutions.

To test hypotheses H10 and H20, we define a series of
comprehension tasks that are to be addressed by both a
control group and an experimental group. The difference
in treatment between these groups is that the former
group uses a traditional development environment (the
“Eclipse” group), whereas the latter group also has
access to EXTRAVIS (the “Ecl+Ext” group). We maintain
a between-subjects design, meaning that each subject is
either in the control group or in the experimental group.

Sections 3.2 through 3.7 provide a detailed description
of the experiment.

3.2 Object

The system that is to be comprehended by the subject
groups is CHECKSTYLE, a tool that employs “checks”
to verify if source code adheres to specific coding stan-
dards. Our choice for CHECKSTYLE as the object of this
experiment is motivated by the following factors:

∙ CHECKSTYLE is open source, which helps to make
the results of our experiments reproducible.

∙ CHECKSTYLE comprises 310 classes distributed
across 21 packages, containing a total of 57 KLOC.4

This makes it tractable for an experimental session,
yet adequately representative of real life programs.

∙ It is written in Java, with which many potential
subjects are sufficiently familiar.

∙ It addresses an application domain (adherence to
coding standards) that will be understandable for
most potential subjects.

∙ The authors of this paper are familiar with its in-
ternals as a result of earlier experiments [49], [50],
[7]. Furthermore, the lead developer is available for
feedback.

To obtain the necessary trace data for EXTRAVIS, we
instrument CHECKSTYLE and execute it according to
two scenarios. Both involve typical runs with a small
input source file, and only differ in terms of the input
configuration, which in one case specifies 64 types of
checks whereas the other specifies only six. The resulting
traces contain 31,260 and 17,126 calls, respectively, which
makes them too large to be comprehended in limited
time without tool support.

Analyzing the cost of creating these traces is not
included in the experiment, as it is our prime objective
to analyze whether the availability of trace information
is beneficial during the program comprehension process.
In practice, we suspect that execution traces will likely
be obtained from test cases – a route we also explored
in our earlier work [35].

4. Measured using sloccount by David A. Wheeler, http://
sourceforge.net/projects/sloccount/.

TABLE 2
Pacione’s nine principal comprehension activities

Activity Description

A1 Investigating the functionality of (a part of) the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating dependencies between artifacts
A5 Investigating run-time interactions in the system
A6 Investigating how much an artifact is used
A7 Investigating patterns in the system’s execution
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system

3.3 Task design

With respect to the comprehension tasks that are to
be tackled during the experiment, we maintain two
important criteria: (1) they should be representative of
real maintenance contexts, and (2) they should not be
biased towards either Eclipse or EXTRAVIS.

To this end, we apply the comprehension framework
from Pacione et al. [51], who argue that “a set of typical
software comprehension tasks should seek to encapsulate the
principal activities typically performed during real world
software comprehension”. They have studied several sets of
tasks used in software visualization and comprehension
evaluation literature and classified them according to
nine principal activities, representing both general and
specific reverse engineering tasks and covering both
static and dynamic information (Table 2). Particularly the
latter aspect significantly reduces biases towards either
of the two tools used in this experiment.

Using these principal activities as a basis, we propose
eight representative tasks that highlight many of CHECK-
STYLE’s aspects at both high and low abstraction levels.
Table 3 provides descriptions of the tasks and shows
how each of the nine activities from Pacione et al. is
covered by at least one task.5 For example, activity A1,
“Investigating the functionality of (part of) the system”, is
covered by tasks T1, T3.1, T4.1, and T4.2; and activity A4,
“Investigating dependencies between artifacts“, is covered by
tasks T2.1, T2.2, T3.2, and T3.3.

To render the tasks more representative of real main-
tenance situations, tasks are given as open rather than
multiple-choice questions, making it harder for respon-
dents to resort to guessing. Per answer, 0–4 points can be
earned. Points are awarded by the evaluators, in our case
the first two authors. A solution model is available [52],
which was reviewed by CHECKSTYLE’s lead developer.
To ensure uniform grading among the two evaluators,
the answers from five random subjects are first graded
by both evaluators.

3.4 Subjects

The subjects in this experiment are fourteen Ph.D. can-
didates, nine M.Sc. students, three postdocs, two profes-

5. Table 3 only contains the actual questions; the subjects were
also given contextual information (such as definitions of fan-in and
coupling) which can be found in the technical report [52].



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 7

TABLE 3
Descriptions of the comprehension tasks

Task Activities Description

Context: Gaining a general understanding.

T1 A{1,7,9} Having glanced through the available information for several minutes, which do you think are the main stages
in a typical (non-GUI) Checkstyle scenario? Formulate your answer from a high-level perspective: refrain from
using identifier names and stick to a maximum of six main stages.
Context: Identifying refactoring opportunities.

T2.1 A{4,8} Name three classes in Checkstyle that have a high fan-in and (almost) no fan-out.
T2.2 A{4,8} Name a class in the top-level package that could be a candidate for movement to the api package because of

its tight coupling with classes therein.
Context: Understanding the checking process.

T3.1 A{1,2,5,6} In general terms, describe the life cycle of the checks.whitespace.TabCharacterCheck during execution:
when is it created, what does it do and on whose command, and how does it end up?

T3.2 A{3,4,5} List the identifiers of all method/constructor calls that typically occur between TreeWalker and a
TabCharacterCheck instance, and the order in which they are called. Make sure you also take inherited
methods/constructors into account.

T3.3 A{3,4,5,9} In comparison to the calls listed in Task T3.2., which additional calls occur between TreeWalker and
checks.coding.IllegalInstantiationCheck? Can you think of a reason for the difference?
Context: Understanding the violation reporting process.

T4.1 A{1,3} How is the check’s warning handled, i.e., where/how does it originate, how is it internally represented, and
how is it ultimately communicated to the user?

T4.2 A{1,5} Given Simple.java as the input source and many_checks.xml as the configuration, does
checks.whitespace.WhitespaceAfterCheck report warnings? Specify how your answer was obtained.

sors, and six participants from industry. The resulting
group thus consists of 34 subjects, and is quite heteroge-
neous in that it represents 8 different nationalities, and
M.Sc. degrees from 16 universities. The M.Sc. students
are in the final stages of their computer science studies,
and the Ph.D. candidates represent different areas of
software engineering, ranging from software inspection
to model-based fault diagnosis. Our choice of subjects
partly mitigates concerns from Di Penta et al., who argue
that “a subject group made up entirely of students might
not adequately represent the intended user population” [53].
All subjects participate on a voluntary basis and can
therefore be assumed to be properly motivated. None
of them have prior experience with EXTRAVIS.

To partition the subjects, we distinguish five fields
of expertise that can strongly influence the individual
performance. They represent variables that are to be con-
trolled during the experiment, and concern knowledge
of Java, Eclipse, reverse engineering, CHECKSTYLE, and
language technology (i.e., CHECKSTYLE’s domain). The
subjects’ levels of expertise in each of these fields are
measured through a (subjective) a priori assessment: we
use a five-point Likert scale, from 0 (“no knowledge”) to 4
(“expert”). In particular, we require minimum scores of 1
for Java and Eclipse (“beginner”), and a maximum score
of 3 for CHECKSTYLE (“advanced”). The technical report
provides a characterization of the subjects.

The assignments to the control and experimental
group are done by hand to evenly distribute the available
knowledge. The result is illustrated by Figure 2: in each
group, the expertise is chosen to be as similar as possible,
resulting in an average expertise of 2.12 in both groups.

2.88

2.47
2.59

2.12

3.24

2.47

2.24 2.29

2.12

2.5

3

3.5

4

ti
se

 (
0

!4
)

Eclipse group Eclipse+Extravis group

1.94

0.71

2.12

0.35

2.12

0

0.5

1

1.5

2

Java Eclipse Rev.eng. Lang. tech. Checkstyle Average

A
v
e
ra
g
e

 e
x
p
e
rt

Expertise type

Fig. 2. Average expertise of the subject groups.

3.5 Experimental procedure

The experiment is performed through a dozen sessions,
most of which take place at the university. Sessions with
industrial subjects take place at their premises, in our
case the Software Improvement Group,6 the industrial
partner in our project. The sessions are conducted on
workstations with characteristics that were as similar
as possible, i.e., at least Pentium 4 processors and
comparable screen resolutions (1280×1024 or 1600×900).
Given the different locations (university and in-house
at company) fully equivalent setups were impossible to
achieve.

Each session involves at most three subjects and

6. Software Improvement Group, http://www.sig.eu



8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

features a short tutorial on Eclipse, highlighting the
most common features. The experimental group is also
given a ten minute EXTRAVIS tutorial that involves a
JHOTDRAW execution trace used in earlier experiments
[7]. All sessions are supervised, enabling the subjects to
pose clarification questions, and preventing them from
consulting others and from using alternative tools. The
subjects are not familiar with the experimental goal.

The subjects are presented with a fully configured
Eclipse that is readily usable, and are given access to
the example input source file and CHECKSTYLE configu-
rations (see Section 3.2). The Ecl+Ext group is also pro-
vided with EXTRAVIS instances for each of the two execu-
tion traces mentioned earlier. All subjects receive hand-
outs that provide an introduction, CHECKSTYLE outputs
for the two aforementioned scenarios, the assignment,
a debriefing questionnaire, and reference charts for both
Eclipse and EXTRAVIS. The assignment is to complete the
eight comprehension tasks within 90 minutes. The sub-
jects are required to motivate their answers at all times.
We purposely refrain from influencing how exactly the
subjects should cope with the time limit: only when a
subject exceeds the time limit is he or she told that
finishing up is, in fact, allowed. Finally, the questionnaire
asks for the subjects’ opinions on such aspects as time
pressure and task difficulty.

3.6 Variables & Analysis

The independent variable in our experiment is the avail-
ability of EXTRAVIS during the tasks.

The first dependent variable is the time spent on each
task, and is measured by having the subjects write down
the current time when starting a new task. Since going
back to earlier tasks is not allowed and the sessions are
supervised, the time spent on each task can be easily
reconstructed.

The second dependent variable is the correctness of
the given solutions. This is measured by applying our
solution model to the subjects’ solutions, which specifies
the required elements and the associated scores.

To test our hypotheses, we first test whether the sam-
ple distributions are normal (via a Kolmogorov-Smirnov
test) and whether they have equal variances (via Lev-
ene’s test). If these tests pass, we use the parametric
Student’s t-test to evaluate our hypotheses; otherwise
we use the (more robust, but weaker) non-parametric
Mann-Whitney test.

Following our alternative hypotheses, we employ the
one-tailed variant of each statistical test. For the time as
well as the correctness variable we maintain a typical
confidence level of 95% (�=0.05). The statistical package
that we use for our calculations is SPSS.

3.7 Pilot studies

Prior to the experimental sessions, we conduct two pilots
to optimize several experimental parameters, such as
the number of tasks, their clarity, feasibility, and the

TABLE 4
Descriptive statistics of the experimental results

Time Correctness
Eclipse Ecl+Ext Eclipse Ecl+Ext

mean 77.00 59.94 12.47 17.88
difference -22.16% +43.38%
min 38 36 5 11
max 102 72 22 22
median 79 66 14 18
stdev. 18.08 12.78 4.54 3.24
one-tailed Student’s
t-test
Kolmogorov-
Smirnov Z

0.606 0.996 0.665 0.909

Levene F 1.370 2.630
df 32 32
t 3.177 4.000
p-value 0.002 <0.001

time limit. The pilot for the control group is performed
by an author of this paper who had initially not been
involved in the experimental design. The pilot for the
experimental group is conducted by an outsider. Both
would not take part in the actual experiment later on.

The results of the pilots led to the removal of two
tasks because the time limit was too strict. The removed
tasks were already taken into account in Section 3.2.
Furthermore, the studies led to the refinement of several
tasks in order to make the questions clearer. Other than
these unclarities, the tasks were found to be sufficiently
feasible in both the Eclipse and the Ecl+Ext pilot.

4 RESULTS

Table 4 shows descriptive statistics of the measurements,
aggregated over all tasks. The technical report provides
a full listing of the measurements and debriefing ques-
tionnaire results.

Wohlin et al. [54] suggest the removal of outliers in case
of extraordinary situations, such as external events that
are unlikely to reoccur. We found four outliers in our
timing data and one more in the correctness data, but
could identify no such circumstances and have therefore
opted to retain those data points.

As an important factor for both time and correctness,
we note that two subjects decided to stop after 90 min-
utes with two tasks remaining, and one subject stopped
with one task remaining, resulting in ten missing data
points in this experiment (i.e., the time spent by three
subjects on task T4.2 and by two subjects on task T4.1, as
well as the correctness of the solutions involved). Nine
others finished all tasks, but only after the 90 minutes
had expired: eight subjects from the Eclipse group and
one subject from the Ecl+Ext group spent between 95
and 124 minutes. The remaining 22 participants finished
all eight tasks on time.7

In light of the missing data points, we have chosen to
disregard the last two tasks in our quantitative analyses.

7. Related studies point out that it is not uncommon for several tasks
to remain unfinished during the actual experiments (e.g., [48] and [40]).



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 9

Eclipse 
+Extravis

Eclipse

T
im

e
 s

p
e

n
t 

(m
in

u
te

s
)

100

80

60

40

(a)

Eclipse 
+Extravis

Eclipse

C
o

rr
e
c
tn

e
s
s
 (

p
o

in
ts

)

25

20

15

10

5

(b)

Fig. 3. Box plots for time spent and correctness.

Not taking tasks T4.1 and T4.2 into account, only three
out of the 34 subjects still exceeded the time limit (by
6, 7 and 12 minutes, respectively). This approach also
reduces any ceiling effects in our data that may have
resulted from the increasing time pressure near the end
of the assignment. The remaining six tasks still cover all
of Pacione’s nine activities (Table 3).

4.1 Time results

We start off by testing null hypothesis H10, which states
that the availability of EXTRAVIS does not impact the
time needed to complete typical comprehension tasks.

Figure 3(a) shows a box plot for the total time that the
subjects spent on the first six tasks. Table 4 indicates that
on average the Ecl+Ext group required 22.16% less time.

The Kolmogorov-Smirnov and Levene tests succeeded
for the timing data, which means that Student’s t-test
may be used to test H10. As shown in Table 4, the t-test
yields a statistically significant result. The average time
spent by the Ecl+Ext group was clearly lower and the p-
value 0.002 is smaller than 0.05, which means that H10

can be rejected in favor of the alternative hypothesis H1,
stating that the availability of EXTRAVIS reduces the time
that is needed to complete typical comprehension tasks.

4.2 Correctness results

We next test null hypothesis H20, which states that the
availability of EXTRAVIS does not impact the correctness
of solutions given during typical comprehension tasks.

Figure 3(b) shows a box plot for the scores that were
obtained by the subjects on the first six tasks. Note
that we consider overall scores rather than scores per

task (which are left to Section 5.3). The box plot shows
that the difference in terms of correctness is even more
explicit than for the timing aspect. The solutions given
by the Ecl+Ext subjects were 43.38% more accurate (Ta-
ble 4), averaging 17.88 out of 24 points compared to 12.47
points for the Eclipse group.

Similar to the timing data, the requirements for the
use of the parametric t-test were met. Table 4 therefore
shows the results for Student’s t-test. At less than 0.001,
the p-value implies statistical significance, meaning that
H20 can be rejected in favor of our alternative hypothesis
H2, stating that the availability of EXTRAVIS increases the
correctness of solutions given during typical comprehen-
sion tasks.

5 DISCUSSION

5.1 Reasons for different time requirements

The lower time requirements for the EXTRAVIS users
can be attributed to several factors. First, all informa-
tion offered by EXTRAVIS is shown on a single screen,
which eliminates the need for scrolling. In particular, the
overview of the entire system’s structure saves much
time in comparison to conventional environments, in
which typically multiple files have to be studied at once.
Second, the need to imagine how certain functionalities
or interactions work at run-time represents a substantial
cognitive load on the part of the user. This is alleviated
by trace analysis and visualization tools, which show the
actual run-time behavior. Examples of these assumptions
will be discussed in Section 5.3.

On the other hand, several factors may have had a
negative impact on the the time requirements of EX-
TRAVIS users. For example, the fact that EXTRAVIS is a
standalone tool means that context switching is neces-
sary, which may yield a certain amount of overhead on
the part of the user. This could be solved by integrating
the trace visualization technique into Eclipse (or other
IDEs), with the additional benefit that the tool could
provide direct links to Eclipse’s source code browser.
However, it should be noted that EXTRAVIS would still
require a substantial amount of screen real estate to be
used effectively.

Another potential factor that could have hindered the
time performance of the Ecl+Ext group is that these
subjects may not have been sufficiently familiar with
EXTRAVIS’ features, and were therefore faced with a
time-consuming learning curve. This is partly supported
by the debriefing questionnaire, which indicates that five
out of the seventeen subjects found the tutorial too short.
A more elaborate tutorial on the use of the tool could
help alleviate this issue.

5.2 Reasons for correctness differences

We attribute the added value of EXTRAVIS to correctness
to several factors. A first one is the inherent precision of
dynamic analysis: the fact that EXTRAVIS shows the ac-
tual objects involved in each call makes the interactions



10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

TABLE 5
Debriefing questionnaire results

Eclipse Ecl+Ext
mean stdev. mean stdev.

Miscellaneous
Perceived time pressure (0-4) 2.18 1.19 2.06 0.66
Knowledge of dynamic analy-
sis (0-4)

2.26 1.22 2.53 1.12

Perceived task difficulty (0-4)
T1 1.00 0.71 1.65 0.79
T2.1 2.59 1.18 1.18 0.64
T2.2 2.24 1.15 1.53 0.80
T3.1 2.12 0.78 2.12 0.70
T3.2 2.29 0.92 1.53 0.72
T3.3 2.18 0.95 1.47 0.94
T4.1 2.40 0.63 2.65 0.86
T4.2 1.53 0.92 1.63 1.02
Average 2.04 1.72
Use of EXTRAVIS

No. of features used 7.12 2.67
No. of tasks conducted w/
tool

7.00 1.06

No. of tasks successfully con-
ducted w/ tool

6.00 1.55

Est. % of time spent in tool 70.00 24.99
Perceived tool speed (0-2) 1.35 0.49

easier to understand. Section 5.3 discusses this in more
detail through an example task.

Second, the results of the debriefing questionnaire
(Table 5) show that the Ecl+Ext group used EXTRAVIS

quite often: the subjects estimate the percentage of time
they spent in EXTRAVIS at 70% on average. In itself,
this percentage is meaningless: for example, in a related
study it was observed that “heavy use of a feature does
not necessarily mean it (or the tool) helps to solve a task”,
and that “repeated use may actually be a sign of frustration
on the part of the user” [40]. However, the questionnaire
also shows that EXTRAVIS was used on seven of the
eight tasks on average and that the tool was actually
found useful in six of those tasks (86%). This is a strong
indication that the Ecl+Ext subjects generally did not
experience a resistance to using EXTRAVIS (resulting
from, e.g., a poor understanding of the tool) and were
quite successful in their attempts.

The latter assumption is further reinforced by the
Ecl+Ext subjects’ opinions on the speed and responsive-
ness of the tool, averaging a score of 1.35 on a scale
of 0-2, which is between “pretty OK: occasionally had to
wait for information” and “very quickly: the information
was shown instantly”. Furthermore, all 34 subjects turned
out to be quite familiar with dynamic analysis: in the
questionnaire they indicated an average knowledge level
of 2.3 on a scale of 0-4 on this topic, which is between
“I’m familiar with it and can name one or two benefits” and
“I know it quite well and performed it once or twice”.

As a side note, in a related study [48], no correlation
could be identified between the subjects’ experience lev-
els and their performance. While in our experiment the
same holds for the Ecl+Ext group and for correctness in
the Eclipse group, there does exist a negative correlation
between expertise and the time effort in the latter group:

2.6

1.5

2.7
2.5

1.6 1.5

3.1

2.6

2.9

2.6

2.9 2.9

3.5

3.1
2.8

3.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T1 T2.1 T2.2 T3.1 T3.2 T3.3 T4.1 T4.2

A
v
e
ra
g
e

 c
o
rr
e
ct
n
e
ss

 (
p
o
in
ts
)

Task

Eclipse Eclipse+Extravis

16.9 16.5
18.0

Eclipse Eclipse+Extravis

12.1

15.4

9.0

14.8

8.8

11.9

6.2

11.9

7.8

9.9

14.6

8.4
7.4

8.3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

T1 T2.1 T2.2 T3.1 T3.2 T3.3 T4.1 T4.2

A
v
e
ra
g
e

 t
im

e
 (
m
in
u
te
s)

Task

p p

Fig. 4. Averages per task.

a high average expertise yielded lower time require-
ments, and vice versa. This observation partly underlines
the importance of an adequate selection procedure when
recruiting subjects for software engineering experiments.

5.3 Individual task performance

To address our third research question, whether there are
certain types of comprehension tasks that benefit most
from the use of EXTRAVIS (see Section 3.1) we examine
the performance per task in more detail. Figure 4 shows
the average scores and time spent by each group from a
task perspective.

While the experiment concerned only eight tasks, our
data does suggest a negative correlation between time
spent and correctness, in the sense that relatively little
effort and a relatively high score (and vice versa) often
go hand in hand.

Task T1

The goal of the first task was to identify and glob-
ally understand the most prominent stages in a typi-
cal CHECKSTYLE scenario (Table 3). The groups scored
equally well on this task and required similar amounts
of time. According to the motivations of their solutions,
the Eclipse group typically studied the main() method:
however, such important phases as the building and
parsing of an AST were often missing because they
are not directly visible at the main() level. On the
other hand, the EXTRAVIS users mostly studied an actual
execution scenario through the massive sequence view,
which proved quite effective and led to slightly more
accurate solutions.

Task T2.1



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 11

Task T2.1 concerned a fan-in/fan-out analysis that
turned out to be significantly easier for the Ecl+Ext
group, who scored 1.1 more points and needed only half
the time. This is presumably explained by EXTRAVIS’
circular view, from which all classes and their inter-
relationships can be directly interpreted. The Eclipse
group mostly carried out a manual search for utility-like
classes, opening numerous source files in the process,
which is time-consuming and does not necessarily yield
optimal results.

Task T2.2
This task was similar to the previous one, except that
the focus was more on coupling. While there still exists
a performance difference, it is much smaller this time
round. According to the given solutions, the Ecl+Ext
group again resorted to the circular view to look for
high edge concentrations, while the Eclipse group mostly
went searching for specific imports. The fact that a more
specific (and automated) search was possible in this case
may account for the improved performance of the latter
group.

Task T3.1
Task T3.1 asked the participants to study a certain check
to understand its life cycle, from creation to destruc-
tion. The performance difference here was quite subtle,
with the Ecl+Ext group apparently having had a small
advantage. Eclipse users typically studied the check’s
source code and started a more broad investigation from
there. EXTRAVIS users mostly used our tool to highlight
the check in the given execution trace and examine
the interactions that were found. Interestingly, only a
handful of subjects discovered that the checks are in fact
dynamically loaded, and both groups often missed the
explicit destruction of each check at the end of execution,
which is not easily observed in Eclipse nor in EXTRAVIS.

Task T3.2
The goal of this follow-up task was to understand the
protocol between a check and a certain key class, and
asked the subjects to provide a list of interactions be-
tween these classes. The fact that the check at hand is
an extension of a superclass that is an extension in itself,
forced the Eclipse group to distribute its focus across
each and every class in the check’s type hierarchy. EX-
TRAVIS users often highlighted the mutual interactions
of the two classes at hand in the tool. As suggested by
Figure 4, the latter approach is both faster and much
more accurate (as there is a smaller chance of calls being
missed).

Task T3.3
This task was similar to the previous one, except that it
revolved around another type of check. The difference
is that this check is dependent on the AST of the input
source file, whereas the check in task T3.2 operates
directly on the file. Finding the additional interactions
was not too difficult for the EXTRAVIS users, who could

follow a similar routine to last time. On the other hand,
in Eclipse the subtle differences were often overlooked,
especially if it was not understood that (and why) this
check is fundamentally different from the previous one.

Task T4.1

Task T4.1 posed the challenging question of how CHECK-
STYLE’s error handling mechanism is implemented. It is
the only task on which the Ecl+Ext group was clearly
outperformed in terms of both time and correctness.
The Eclipse group rated the difficulty of this task at 2.4,
which is between “intermediate” and “difficult”, whereas
EXTRAVIS users rated the difficulty of this task at 2.65,
leaning toward “difficult”. An important reason might be
that EXTRAVIS users did not know exactly what to look for
in the execution trace, because the question was rather
abstract in the sense that no clear starting point was
given. On the other hand, the Eclipse group mostly used
one of the checks as a baseline and followed the error
propagation process from there. The latter approach is
typically faster: the availability of EXTRAVIS may have
been a distraction rather than an added value in this
case.

Task T4.2

The focus in the final task was on testing the behavior
of a check: given that a new check has been written and
an input source file is available, how can we test if it
works correctly? The Ecl+Ext group often searched the
execution traces for communication between the check
and the violation container class, which is quite effective
once that class has been found. The Eclipse group had
several choices. A few subjects tried to understand the
check and apply this knowledge on the given input
source file, i.e., understand which items the check is
looking for, and then verify if these items occur in the
input source file. Others tried to relate the check’s typical
warning message (once it was determined) to example
outputs given in the handouts; yet others used the
Eclipse debugger, e.g., by inserting breakpoints or print
statements in the error handling mechanism. With the
exception of debugging, most of the latter approaches
are quite time-consuming, if successful at all. Still, we ob-
serve no large difference in time spent: the fact that eight
members of the Eclipse group had already exceeded the
time limit at this point may have caused them to hurry,
thereby reducing not only the time effort but also the
score.

Summary

Following our interpretation of the individual task per-
formance, we now formulate an analytical generalization
[55] based on the quantitative results discussed earlier,
the debriefing questionnaire results, and the four case
studies from our earlier work [7].

Global structural insight. From the results of tasks
T2.1 and T2.2 it has become clear that EXTRAVIS’ cir-
cular view is of great help in grasping the structural



12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

relationships of the subject system. In particular, the
bundling feature ensures that the many relations can all
be shown simultaneously on a single screen. This poses
a great advantage to using a standard IDE, in which it
often involves browsing through multiple files when a
high-level structural insight is required. While any trace
visualization technique could be helpful for such tasks, it
should provide some means of visualizing the system’s
structural decomposition (e.g., UML sequence diagrams
with hierarchically ordered lifelines [56]).

Global behavioral insight. In addition to structural
insight, EXTRAVIS provides a navigable overview of an
entire execution trace through the massive sequence
view. As illustrated in earlier case studies and in task
T1, this view visualizes the trace such that patterns can
be visually distinguished. These patterns correspond to
execution phases, the identification of which can be quite
helpful in decomposing the subject system’s behavior
into smaller, more tractable pieces of functionality. In the
case of CHECKSTYLE, this approach turned out to reveal
more accurate information than could be derived from
examining the main() method. A trace visualization
technique must include some sort of navigable overview
for it to be useful for such tasks.

Detailed behavioral insight. One of the main benefits
of dynamic analysis is that occurrences of late binding
are resolved, i.e., the maintainer can observe the actual
objects involved in an execution scenario. This con-
tributes to a more detailed understanding of a program’s
behavior. This is illustrated by tasks T3.2 and T3.3, which
proved quite difficult for the Eclipse group as these
tasks concerned the identification of inherited methods,
which are difficult to track down unless some form of
run-time analysis is possible. We expect this particular
advantage of dynamic analysis to be exploitable by any
trace visualization technique.

Goal-oriented strategy. Trace visualization is not always
the best solution: the results for task T4.1 showed a clear
advantage for the Eclipse group. We believe that the
reason can be generalized as follows: dynamic analysis
typically involves a goal-oriented strategy, in the sense
that one must know what to look for. (This follows from
the fact that an appropriate execution scenario must be
chosen.) If such a strategy is not feasible, e.g., because
there is no clear starting point (such as the name of a
certain class), then a strong reliance on dynamic analysis
will result in mere confusion, which means that one must
resort to traditional solutions such as the IDE instead.

5.4 Related experiments

There exist no earlier studies in the literature that offer
quantitative evidence of the added value of trace vi-
sualization techniques for program comprehension. We
therefore describe the experiments that are most closely
related to our topic.

The aforementioned article from Bennett et al. con-
cerned a user study involving a sequence diagram recon-

struction tool [40]. Rather than measure its added value
for program comprehension, they sought to characterize
the manner in which the tool is used in practice. To this
end, they had six subjects perform a series of comprehen-
sion tasks, and measured when and how the tool features
were used. Among their findings was that tool features
are not often formally evaluated in literature, and that
heavily used tool features may indicate confusion among
the users. Another important observation was that much
time was spent on scrolling, which supports our hypoth-
esis that EXTRAVIS saves time as it shows all information
on a single screen.

Quante performed a controlled experiment to assess
the benefits of Dynamic Object Process Graphs (DOPGs)
for program comprehension [48]. While these graphs are
built from run-time data, they do not actually visualize
execution traces. The experiment involved 25 students
and a series of feature location tasks for two subject
systems. The use of DOPGs by his experimental group
led to a significant decrease in time and a significant in-
crease in correctness in case of the first system; however,
the differences in case of the second system were not
statistically significant. This suggests that evaluations on
additional systems are also desirable for EXTRAVIS and
should be considered as future work. Also of interest
is that the latter subject system was four times smaller
than the former, but had three DOPGs associated with it
instead of one. This may have resulted in an information
overload on the part of the user, once more suggesting
that users are best served by as little information as
possible.

Among the contributions by Hamou-Lhadj and Leth-
bridge are encouraging quantitative results with respect
to their trace summarization algorithm, effectively re-
ducing large traces to as little as 0.5% of the original size
[4]. However, the measurements performed relate to the
effectiveness of the algorithm in terms of reduction power,
rather than its added value in actual comprehension
tasks.

6 THREATS TO VALIDITY

This section discusses the validity threats in our exper-
iment and the manners in which we have addressed
them. We have identified three types of validity threats:
(1) internal validity, referring to the cause-effect infer-
ences made during the analysis; (2) external validity,
concerning the generalizability of the results to different
contexts; and (3) construct validity, seeking agreement
between a theoretical concept and a specific measuring
procedure.

6.1 Internal validity

Subjects. There exist several internal validity threats
that relate to the subjects used in this experiment. First
of all, the subjects may not have been sufficiently com-
petent. We have reduced this threat through the a priori



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 13

assessment of the subjects’ competence in five relevant
fields, which pointed out that all subjects had at least
an elementary knowledge of Eclipse (2.47 in Figure 2)
and no expert knowledge of CHECKSTYLE. Furthermore,
participants could ask questions on both tools during the
experiments, and a quick reference chart was available.

Second, their knowledge may not have been fairly
distributed across the control group and experimental
group. This threat was alleviated by grouping the sub-
jects such that their expertise was evenly distributed
across the groups (Figure 2).

Third, the subjects may not have been properly mo-
tivated, or may have had too much knowledge of the
experimental goal. The former threat is mitigated by the
fact that they all participated on a voluntary basis; as
for the latter, the subjects were not familiar with the
actual research questions or hypotheses (although they
may have guessed).

Tasks. The comprehension tasks were designed by
the authors of this paper, and therefore may have been
biased toward EXTRAVIS (as this tool was also designed
by the authors). To avoid this threat, we have applied
an established task framework [51] to ensure that many
aspects of typical comprehension contexts are covered.
As a result, the tasks concerned both global and detailed
knowledge, and both static and dynamic aspects.

Another task-related threat is that the tasks may have
been too difficult. We refute this possibility on the basis
of the correctness results, which show that maximum
scores were occasionally awarded in both groups for all
but one task (T3.1), which in the Eclipse group often
yielded 3 points but never 4. However, the average
scores for this task were a decent 2.53 (stdev. 0.51) and
2.88 (stdev. 0.86) in the Eclipse group and Ecl+Ext group,
respectively. This point of view is further reinforced by
the subjects’ opinions on the task difficulties: the task
they found hardest (T4.1) yielded good scores, being 3.07
(stdev. 1.10) for the Eclipse group and 2.82 (stdev. 0.81)
for the Eclipse+Extravis group.

Also related to the tasks is the possibility that the
subjects’ solutions were graded incorrectly. This threat
was reduced in our experiment by creating concept
solutions in advance and by having CHECKSTYLE’s lead
developer review and refine them. This resulted in a
solution model that clearly states the required elements
(and corresponding points) for each task. Furthermore,
to verify the soundness of the reviewing process, the
first two authors of this paper independently reviewed
the solutions of five random subjects: on each of the five
occasions the difference was no higher than one point
(out of the maximum of 32 points), suggesting a high
inter-rater reliability.

Miscellaneous. The results may have been influenced
by time constraints that were too loose or too strict. We
have attempted to circumvent this threat by performing
two pilot studies, which led to the removal of two tasks.

Still, not all subjects finished the tasks in time, but
the average time pressure (as indicated by the subjects
in the debriefing questionnaire) was found to be 2.18
(stdev. 1.19) in the Eclipse group and 2.06 (stdev. 0.66)
in the Ecl+Ext group on a scale of 0-4, which roughly
corresponds to only a “fair amount of time pressure”. Also,
in our results analysis we have disregarded the last two
tasks, upon which only three out of the 34 subjects still
exceeded the time limit.

As several test subjects did not finish tasks T4.1 and
T4.2 (within time), we decided to eliminate these tasks
from the analysis of our results. This removal may have
benefited the EXTRAVIS results because task T4.1 is one
of the few tasks at which the Eclipse group outperformed
the EXTRAVIS users. Fortunately, with EXTRAVIS shown
to be 43% more accurate and 21% less time-consuming,
the conclusion that EXTRAVIS constitutes a significant
added value for program comprehension would likely
still be valid if tasks T4.1 and T4.2 were taken into
account. Future refinements of the experimental design
should examine optimizations of the time limit policy.

The two execution traces that we provided to the
experimental group for use in EXTRAVIS are relatively
small, containing 31,260 and 17,126 calls respectively.
The fact that these traces are relatively small might
influence the usability of EXTRAVIS: in particular, large
traces could render EXTRAVIS a little less responsive and
therefore a bit more time-consuming to use. However,
earlier case studies [7] that we performed with EXTRAVIS

(involving much larger traces) lead us to believe that the
usability impact of using larger traces is probably minor.

Furthermore, our statistical analysis may not be com-
pletely accurate due to the missing data points that we
mentioned in Section 4. This concerned two subjects who
did not finish the last two tasks and one subject who
did not finish the last task. Fortunately, the effect of
the missing timing and correctness data points on our
calculations is negligible: had the subjects finished the
tasks, their total time spent and average score could
have been higher, but this would only have affected the
analysis of all eight tasks whereas our focus has been on
the first six.

Another validity threat could be the fact that the con-
trol group only had access to the Eclipse IDE, whereas
the experimental group also received two execution
traces (next to Eclipse and the EXTRAVIS tool). However,
we believe that the Eclipse group would not have ben-
efited from the availability of execution traces because
they are too large to be navigated without any tool
support.

Lastly, it could be suggested that Eclipse is more
powerful if additional plugins are used. However, as
evidenced by the results of the debriefing questionnaire,
only two subjects named specific plugins that would
have made the tasks easier, and these related to only two
of the eight tasks. We therefore expect that additional
plugins would not have had a significant impact.



14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

6.2 External validity

The generalizability of our results could be hampered by
the limited representativeness of the subjects, the tasks,
and CHECKSTYLE as a subject system.

Concerning the subjects, the use of professional de-
velopers instead of (mainly) Ph.D. candidates and M.Sc.
students could have yielded different results. Unfortu-
nately, motivating people from industry to sacrifice two
hours of their precious time is quite difficult. Never-
theless, against the background of related studies that
often employ undergraduate students, we assume the
expertise levels of our 34 subjects to be relatively high.
This assumption is partly reinforced by the (subjective) a
priori assessment, in which the subjects rated themselves
as being “advanced” with Java (avg. 3.06, stdev. 0.65),
and “regular” at using Eclipse (avg. 2.47, stdev. 0.90). We
acknowledge that our subjects’ knowledge of dynamic
analysis may have been greater than in industry, aver-
aging 2.26 (Table 5).

Another external validity threat concerns the compre-
hension tasks, which may not reflect real maintenance
situations. We tried to neutralize this threat by rely-
ing on Pacione’s framework [51], which is based on
activities often found in software visualization and the
comprehension evaluation literature. The resulting tasks
were reasonably complicated: Both groups encountered
a task of which they rated the difficulty between 2.5
and 3.0, roughly corresponding to “difficult” (See the
debriefing questionnaire results in Table 5). Furthermore,
they also included an element of “surprise”: Task 3.1,
for example, required the subjects to describe the life
cycle of a given object, which made the majority of
subjects enter in a fruitless search for its constructor,
whereas the object was in fact dynamically loaded. Last
but not least, the tasks concerned open questions, which
approximate real life contexts better than multiple choice
questions do. Nevertheless, arriving at a representative
set of tasks that is suitable for use in experiments by
different researchers is a significant challenge, which
warrants further research.

Finally, the use of a different subject system (or addi-
tional runs) may have yielded different or more reliable
results. CHECKSTYLE was chosen on the basis of several
important criteria: in particular, finding another system
of which the experimenters have sufficient knowledge
is not trivial. Moreover, an additional case (or additional
run) imposes twice the burden on the subjects or requires
more of them. While this may be feasible in case the
groups consist exclusively of students, it is not realistic
in case of Ph.D. candidates or professional developers
because they often have little time to spare.

6.3 Construct validity

In our experiment, we assessed the added value of our
EXTRAVIS tool for program comprehension, and sought
to generalize this added value to trace visualization
techniques in general (Section 5.3). However, it should

be noted that the experiment does not enable a distinction
between EXTRAVIS and trace visualization: we cannot
tell whether the performance improvement should be
attributed to trace visualization in general or to specific
aspects of EXTRAVIS (e.g., the circular bundle view). To
characterize the difference, there is a need for similar ex-
periments involving other trace visualization techniques.

As another potential threat to construct validity, the
control group did not have access to the execution
traces. This may have biased the experimental group
because they had more data to work with. The rationale
behind this decision was our intent to mimic real-life
working conditions, in which software engineers often
limit themselves to the use of the IDE. The subjects could
still study the behavior of the application using, e.g., the
built-in debugger in Eclipse (which in the experiment
was available to both groups and was indeed used by
some).

7 CONCLUSIONS

In this paper, we have reported on a controlled exper-
iment that was aimed at the quantitative evaluation of
EXTRAVIS, our tool for execution trace visualization. We
designed eight typical tasks aimed at gaining an un-
derstanding of an open source program, and measured
the performance of a control group (using the Eclipse
IDE) and an experimental group (using both Eclipse and
EXTRAVIS) in terms of time spent and correctness.

The results clearly illustrate EXTRAVIS’ usefulness for
program comprehension. With respect to time, the added
value of EXTRAVIS was found to be statistically sig-
nificant: on average, the EXTRAVIS group spent 22%
less time on the given tasks. In terms of correctness,
the results turned out even more convincing: EXTRAVIS’
added value was again statistically significant, with the
EXTRAVIS users scoring 43% more points on average.
For the tasks that we considered, these results testify to
EXTRAVIS’ benefits compared to conventional tools: in
this case, the Eclipse IDE.

To determine which types of tasks are best suited
for EXTRAVIS or for trace visualization in general, we
studied the group performance per task in more detail.
While inferences drawn from one experiment and eight
tasks cannot be conclusive, the experimental results do
provide a strong indication as to EXTRAVIS’ strengths.
First, questions that require insight into a system’s
structural relations are solved relatively easily due to
EXTRAVIS’ circular view, as it shows all of the system’s
structural entities and their call relationships on a single
screen. Second, tasks that require a user to globally
understand a system’s behavior are easier to tackle
when a visual representation of a trace is provided,
as it decomposes the system’s execution into tractable
parts. Third, questions involving a detailed behavioral
understanding seem to benefit greatly from the fact that
dynamic analysis reveals the actual objects involved in
each interaction, saving the user the effort of browsing
multiple source files.



CORNELISSEN ET AL.: A CONTROLLED EXPERIMENT FOR PROGRAM COMPREHENSION THROUGH TRACE VISUALIZATION 15

This paper demonstrates the potential of trace visual-
ization for program comprehension, and paves the way
for other researchers to conduct similar experiments.
The work described in this paper makes the following
contributions:

∙ A systematic literature survey of existing trace visu-
alization techniques in the literature, and a descrip-
tion of the 21 contributions that were found.

∙ The design of a controlled experiment for the
quantitative evaluation of trace visualization tech-
niques for program comprehension, involving eight
reusable tasks and a validated solution model.

∙ The execution of this experiment on a group of
34 representative subjects, demonstrating a 22% de-
crease in time effort and a 43% increase in correct-
ness.

∙ A discussion on the types of tasks for which EX-
TRAVIS, and trace visualization in general, are best
suited.

7.1 Future work

As mentioned in Section 5.4, a related study has pointed
out that results may differ quite significantly across
different subject systems. It is therefore part of our future
directions to replicate our experiment on another subject
system.

Furthermore, we seek collaborations with fellow re-
searchers to evaluate other trace visualization tech-
niques. By subjecting such techniques to the same ex-
perimental procedure, we might be able to quantify their
added values for program comprehension as well, and
compare their performance to that of EXTRAVIS.

Finally, we believe that strong quantitative results such
as the ones presented in this study could play a crucial
role in making industry realize the potential of dynamic
analysis in their daily work. In particular, they might
be interested to incorporate trace visualization tools in
their development cycle, and be willing to collaborate in
a longitudinal study for us to investigate the long-term
benefits of dynamic analysis in practice. Another aim of
such a longitudinal study could be to shed light on how
software engineers using a dynamic analysis tool define
an execution scenario, how often they do this, and how
much time they spend on it.

ACKNOWLEDGMENTS

This research is sponsored by NWO via the Jacquard
Reconstructor project. We would like to thank the 34
subjects for their participation, Danny Holten for his
implementation of EXTRAVIS, Cathal Boogerd for per-
forming one of the pilot studies, and Bart Van Rompaey
for assisting in the experimental design. Also, many
thanks to CHECKSTYLE’s lead developer, Oliver Burn,
who assisted in the design of our task review protocol.

REFERENCES

[1] T. A. Corbi, “Program understanding: Challenge for the 1990s,”
IBM Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[2] V. R. Basili, “Evolving and packaging reading technologies,” J.
Syst. Software, vol. 38, no. 1, pp. 3–12, 1997.

[3] S. P. Reiss and M. Renieris, “Encoding program executions,”
in Proc. 23rd Int. Conf. Software Engineering, pp. 221–230, IEEE
Computer Society, 2001.

[4] A. Hamou-Lhadj and T. C. Lethbridge, “Summarizing the content
of large traces to facilitate the understanding of the behaviour of
a software system,” in Proc. 14th Int. Conf. Program Comprehension,
pp. 181–190, IEEE Computer Society, 2006.

[5] W. De Pauw, R. Helm, D. Kimelman, and J. M. Vlissides,
“Visualizing the behavior of object-oriented systems,” in Proc.
Eighth Conf. Object-Oriented Programming Systems, Languages, and
Applications, pp. 326–337, ACM Press, 1993.

[6] D. F. Jerding, J. T. Stasko, and T. Ball, “Visualizing interactions in
program executions,” in Proc. 19th Int. Conf. Software Engineering,
pp. 360–370, ACM Press, 1997.

[7] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van
Deursen, and J. J. van Wijk, “Execution trace analysis through
massive sequence and circular bundle views,” J. Syst. Software,
vol. 81, no. 11, pp. 2252–2268, 2008.

[8] B. Cornelissen, A. Zaidman, B. Van Rompaey, and A. van
Deursen, “Trace visualization for program comprehension: A con-
trolled experiment,” in Proc. 17th Int. Conf. Program Comprehension,
pp. 100–109, IEEE Computer Society, 2009.

[9] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Trans. Software Eng., vol. 35,
no. 5, pp. 684–702, 2009.

[10] A. Zaidman and S. Demeyer, “Managing trace data volume
through a heuristical clustering process based on event execution
frequency,” in Proc. Eighth European Conf. Software Maintenance and
Reengineering, pp. 329–338, IEEE Computer Society, 2004.

[11] M. F. Kleyn and P. C. Gingrich, “Graphtrace - understanding
object-oriented systems using concurrently animated views,” in
Proc. Third Conf. Object-Oriented Programming Systems, Languages,
and Applications, pp. 191–205, ACM Press, 1988.

[12] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman, “Exe-
cution patterns in object-oriented visualization,” in Proc. Fourth
USENIX Conf. Object-Oriented Technologies and Systems, pp. 219–
234, USENIX, 1998.

[13] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides,
and J. Yang, “Visualizing the execution of Java programs,” in Proc.
ACM 2001 Symp. Software Visualization, pp. 151–162, ACM Press,
2001.

[14] W. De Pauw, S. Krasikov, and J. F. Morar, “Execution patterns
for visualizing web services,” in Proc. ACM 2006 Symp. Software
Visualization, pp. 37–45, ACM Press, 2006.

[15] K. Koskimies and H. Mössenböck, “Scene: Using scenario dia-
grams and active text for illustrating object-oriented programs,”
in Proc. 18th Int. Conf. Software Engineering, pp. 366–375, IEEE
Computer Society, 1996.

[16] D. F. Jerding and S. Rugaber, “Using visualization for architectural
localization and extraction,” in Proc. Fourth Working Conf. Reverse
Engineering, pp. 56–65, IEEE Computer Society, 1997.

[17] T. Systä, “On the relationships between static and dynamic mod-
els in reverse engineering Java software,” in Proc. 6th Working
Conf. Reverse Engineering, pp. 304–313, IEEE Computer Society,
1999.

[18] T. Systä, K. Koskimies, and H. A. Müller, “Shimba: an environ-
ment for reverse engineering Java software systems,” Software,
Pract. Exper., vol. 31, no. 4, pp. 371–394, 2001.

[19] T. S. Souder, S. Mancoridis, and M. Salah, “Form: A framework
for creating views of program executions,” in Proc. 17th Int. Conf.
Software Maintenance, pp. 612–620, IEEE Computer Society, 2001.

[20] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic program visual-
ization with object and sequence diagrams using the Java Debug
Interface (JDI),” in Proc. ACM 2001 Symp. Software Visualization,
pp. 176–190, ACM Press, 2001.

[21] A. Hamou-Lhadj and T. C. Lethbridge, “Compression techniques
to simplify the analysis of large execution traces,” in Proc. 10th
Int. Workshop Program Comprehension, pp. 159–168, IEEE Computer
Society, 2002.



16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000

[22] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu, “Challenges and
requirements for an effective trace exploration tool,” in Proc. 12th
Int. Workshop Program Comprehension, pp. 70–78, IEEE Computer
Society, 2004.

[23] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. C. Lethbridge,
“Recovering behavioral design models from execution traces,” in
Proc. Ninth European Conf. Software Maintenance and Reengineering,
pp. 112–121, IEEE Computer Society, 2005.

[24] M. Salah and S. Mancoridis, “Toward an environment for compre-
hending distributed systems,” in Proc. 10th Working Conf. Reverse
Engineering, pp. 238–247, IEEE Computer Society, 2003.

[25] M. Salah and S. Mancoridis, “A hierarchy of dynamic software
views: From object-interactions to feature-interactions,” in Proc.
20th Int. Conf. Software Maintenance, pp. 72–81, IEEE Computer
Society, 2004.

[26] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh, and F. I.
Vokolos, “Scenariographer: A tool for reverse engineering class
usage scenarios from method invocation sequences,” in Proc.
21st Int. Conf. Software Maintenance, pp. 155–164, IEEE Computer
Society, 2005.

[27] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta, “Scenario-
driven dynamic analysis for comprehending large software sys-
tems,” in Proc. 10th European Conf. Software Maintenance and
Reengineering, pp. 71–80, IEEE Computer Society, 2006.

[28] L. C. Briand, Y. Labiche, and Y. Miao, “Towards the reverse
engineering of UML sequence diagrams,” in Proc. 10th Working
Conf. Reverse Engineering, pp. 57–66, IEEE Computer Society, 2003.

[29] L. C. Briand, Y. Labiche, and J. Leduc, “Tracing distributed
systems executions using AspectJ,” in Proc. 21st Int. Conf. Software
Maintenance, pp. 81–90, IEEE Computer Society, 2005.

[30] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse
engineering of UML sequence diagrams for distributed Java
software,” IEEE Trans. Software Eng., vol. 32, no. 9, pp. 642–663,
2006.

[31] A. Kuhn and O. Greevy, “Exploiting the analogy between traces
and signal processing,” in Proc. 22nd Int. Conf. Software Mainte-
nance, pp. 320–329, IEEE Computer Society, 2006.

[32] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing live software
systems in 3D,” in Proc. ACM 2006 Symp. Software Visualization,
pp. 47–56, ACM Press, 2006.

[33] J. Koskinen, M. Kettunen, and T. Systä, “Profile-based approach
to support comprehension of software behavior,” in Proc. 14th Int.
Conf. Program Comprehension, pp. 212–224, IEEE Computer Society,
2006.

[34] S. Simmons, D. Edwards, N. Wilde, J. Homan, and M. Groble,
“Industrial tools for the feature location problem: an exploratory
study,” J. Software Maint. Evol.: Res. Pract., vol. 18, no. 6, pp. 457–
474, 2006.

[35] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman,
“Visualizing testsuites to aid in software understanding,” in
Proc. 11th European Conf. Software Maintenance and Reengineering,
pp. 213–222, IEEE Computer Society, 2007.

[36] R. Voets, “JRET: A tool for the reconstruction of sequence dia-
grams from program executions,” Master’s thesis, Delft Univer-
sity of Technology, 2008.

[37] S. P. Reiss, “Visual representations of executing programs,” J. Vis.
Lang. Comput., vol. 18, no. 2, pp. 126–148, 2007.

[38] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, “Constructing
usage scenarios for API redocumentation,” in Proc. 15th Int. Conf.
Program Comprehension, pp. 259–264, IEEE Computer Society, 2007.

[39] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van
Wijk, and A. van Deursen, “Understanding execution traces using
massive sequence and circular bundle views,” in Proc. 15th Int.
Conf. Program Comprehension, pp. 49–58, IEEE Computer Society,
2007.

[40] C. Bennett, D. Myers, D. Ouellet, M.-A. Storey, M. Salois, D. Ger-
man, and P. Charland, “A survey and evaluation of tool features
for understanding reverse engineered sequence diagrams,” J.
Software Maint. Evol.: Res. Pract., vol. 20, no. 4, pp. 291–315, 2008.

[41] A. R. Dalton and J. O. Hallstrom, “A toolkit for visualizing the
runtime behavior of TinyOS applications,” in Proc. 15th Int. Conf.
Program Comprehension, pp. 43–52, IEEE Computer Society, 2008.

[42] M. J. Pacione, M. Roper, and M. Wood, “Comparative evaluation
of dynamic visualisation tools,” in Proc. 10th Working Conf. Reverse
Engineering, pp. 80–89, IEEE Computer Society, 2003.

[43] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace ex-
ploration tools and techniques,” in Proc. Conf. of the Centre for

Advanced Studies on Collaborative Research, pp. 42–55, IBM Press,
2004.

[44] N. Wilde and M. C. Scully, “Software Reconnaissance: Mapping
program features to code,” J. Software Maint.: Res. Pract., vol. 7,
no. 1, pp. 49–62, 1995.

[45] D. F. Jerding and J. T. Stasko, “The information mural: A technique
for displaying and navigating large information spaces,” IEEE
Trans. Vis. Comput. Graph., vol. 4, no. 3, pp. 257–271, 1998.

[46] M.-A. Storey, “Theories, methods and tools in program compre-
hension: past, present and future,” in Proc. 13th Int. Workshop
Program Comprehension, pp. 181–191, IEEE Computer Society, 2005.

[47] C. F. J. Lange and M. R. V. Chaudron, “Interactive views to
improve the comprehension of UML models - an experimen-
tal validation,” in Proc. 15th Int. Conf. Program Comprehension,
pp. 221–230, IEEE Computer Society, 2007.

[48] J. Quante, “Do dynamic object process graphs support program
understanding? – a controlled experiment,” in Proc. 16th Int. Conf.
Program Comprehension, pp. 73–82, IEEE Computer Society, 2008.

[49] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production
& test code,” in Proc. First Int. Conf. Software Testing, pp. 220–229,
IEEE Computer Society, 2008.

[50] B. Van Rompaey and S. Demeyer, “Estimation of test code changes
using historical release data,” in Proc. 15th Working Conf. Reverse
Engineering, pp. 269–278, IEEE Computer Society, 2008.

[51] M. J. Pacione, M. Roper, and M. Wood, “A novel software
visualisation model to support software comprehension,” in Proc.
11th Working Conf. Reverse Engineering, pp. 70–79, IEEE Computer
Society, 2004.

[52] B. Cornelissen, A. Zaidman, B. Van Rompaey, and A. van
Deursen, “Trace visualization for program comprehension: A
controlled experiment,” Tech. Rep. TUD-SERG-2009-001, Delft
University of Technology, 2009.

[53] M. Di Penta, R. E. K. Stirewalt, and E. Kraemer, “Designing your
next empirical study on program comprehension,” in Proc. 15th
Int. Conf. Program Comprehension, pp. 281–285, IEEE Computer
Society, 2007.

[54] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlesson, B. Regnell, and
A. Wesslen, Experimentation in software engineering - an introduction.
Kluwer Acad. Publ., 2000.

[55] R. K. Yin, Case Study Research: Design and Methods. Sage Publica-
tions Inc., 2003.

[56] C. Riva and J. V. Rodriguez, “Combining static and dynamic
views for architecture reconstruction,” in Proc. Sixth European
Conf. Software Maintenance and Reengineering, pp. 47–55, IEEE
Computer Society, 2002.


