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Abstract—Automated unit test generators, particularly search-
based software testing tools like EvoSuite, are capable of generat-
ing tests with high coverage. Although these generators alleviate
the burden of writing unit tests, they often pose challenges for
software engineers in terms of understanding the generated tests.
To address this, we introduce UTGen, which combines search-
based software testing and large language models to enhance
the understandability of automatically generated test cases. We
achieve this enhancement through contextualizing test data,
improving identifier naming, and adding descriptive comments.
Through a controlled experiment with 32 participants from both
academia and industry, we investigate how the understandability
of unit tests affects a software engineer’s ability to perform
bug-fixing tasks. We selected bug-fixing to simulate a real-world
scenario that emphasizes the importance of understandable test
cases. We observe that participants working on assignments with
UTGen test cases fix up to 33% more bugs and use up to 20%
less time when compared to baseline test cases. From the post-test
questionnaire, we gathered that participants found that enhanced
test names, test data, and variable names improved their bug-
fixing process.

Index Terms—Automated Test Generation, Large Language
Models, Unit Testing, Readability, Understandability

I. INTRODUCTION

In today’s software-dominated world, software reliability
and correctness are very important [1]. Consequently, auto-
mated testing in the form of unit tests has become a crucial
element for software engineers in ensuring high-quality soft-
ware [2]–[4]. Despite the widely acknowledged importance of
testing, writing tests is tedious and time-consuming [5]–[8]. To
alleviate this burden on developers and testers, the research
community has devoted considerable effort on investigating
automatic test generation approaches [9]–[14]. Among the
notable test generators are Randoop [15] and EvoSuite [11].
EvoSuite, for example, is a search-based test generator that
employs genetic algorithms to construct a test suite [16] and
has demonstrated good results in terms of coverage [17], [18].

However, based on insights obtained through industrial case
studies, there are limitations in terms of the quality of the
generated test cases [19]–[25]. One critical limitation revolves
around the understandability of generated test cases, which
involves various aspects such as meaningful test data, proper
assertions, well-defined mock objects, descriptive identifiers
and test names, as well as informative comments. Additionally,
the difficulty in following the scenario depicted in the test case

and the ambiguity surrounding test data significantly hamper
clarity [25], [26].

Listing 1 provides an example of an EvoSuite-generated
test case. This test case checks the equals method with
two objects of weaponGameData with different minimum
damage values. Here, we see several comprehension chal-
lenges: 1) the purpose and functionality of a test method
named with five arguments and “callsEquals3” is obscure,
2) the rationale behind the chosen test data remains unclear,
3) the identifiers are not providing any additional information,
and 4) the absence of comments leaves the test case without
essential explanatory context.

To address these issues, we aim to enhance automatically
generated test cases by focusing on contextual test data,
clear test method and identifier names, and adding descrip-
tive comments. In this study, we investigate the synergy
of Search-Based Software Testing (SBST) and Large Lan-
guage Models (LLMs). While Natural Language Processing
(NLP) techniques have shown promise in text generation
and optimization [27], [28], and LLMs have advanced text-
based capabilities [29]–[33], their impact in generating high-
coverage test cases for complex systems remains limited [34],
[35]. Conversely, SBST, while effective in coverage, often falls
short in test case understandability.

Our approach, UTGen, integrates an LLM into the SBST
test generation process. We hypothesize that this combined
approach can leverage the strengths of both techniques to
generate effective and understandable test cases. Our study
is steered by three Research Questions (RQs) that consider
the effectiveness of the UTGen approach, and the understand-
ability of the generated test cases.
RQ1 Does UTGen have the capability to generate effective

unit tests by utilizing a combination of LLMs and SBST?
The investigation into the effectiveness of the approach seeks
to establish whether the non-determinism of both the SBST
and LLM components impact the ability to generate compil-
able and high-coverage unit tests.
RQ2 What is the impact of LLM-improved unit tests’ under-

standability on the efficiency of bug fixing by developers?
When it comes to the understandability of generated test
cases, we intend to measure understandability through the
ease by which software engineers can perform bug-fixing
tasks involving failing test cases, a setup previously used by
Panichella et al. [36].



@Test
public void

testCreatesWeaponGameDataTaking6ArgumentsAndCallsEquals3() {↪→
WeaponGameData jSWeaponData_WeaponGameData0 = new

WeaponGameData(35, 17, 35, "N&zMn$@6gffi<");
WeaponGameData jSWeaponData_WeaponGameData1 = new

WeaponGameData(35, 35, 35, "N&zMn$@6gffi<");
boolean boolean0 = jSWeaponData_WeaponGameData0.

equals(jSWeaponData_WeaponGameData1);
assertFalse(boolean0);

}

Listing 1: Motivating Example

RQ3 Which elements of UTGen affect the understandability
of the generated unit tests?

We frame RQ3 to obtain a deeper understanding about which
elements of the UTGen approach determine the understand-
ability of the generated test cases.

The key contributions of our paper are outlined as follows:
• UTGen, our novel approach that integrates an LLM into

the SBST process to enhance the understandability of
generated unit tests.

• The application of UTGen on 346 classes to examine the
effectiveness of the generated unit tests.

• A controlled experiment and a post-test questionnaire
with 32 participants from industry and academia were
meant to evaluate the impact of LLM-improved test cases
in terms of understandability in a bug-fixing scenario.

• We release a replication package that is publicly available
with our implementation, as well as detailed data and
results from our evaluation [37].

II. BACKGROUND

A. Search-Based Software Testing

Automated test generation approaches have been developed
in order to reduce testing effort. Tools like EvoSuite [11] and
Randoop [15] generate a test suite starting from Java source
code using a search-based or random approach [17], [18].
Several studies have uncovered challenges involving automat-
ically generated tests [20]–[25], an important one being that
generated tests are typically less readable than their human-
written counterparts [38]. In this context, Almasi et al. [25]
have observed that developers 1) find the test case scenario
difficult to follow, 2) find the test data unclear, and 3) have
difficulties with the meaningfulness of generated assertions.

B. Large Language Models

Large Language Models are a subset of AI systems predom-
inantly based upon the transformer architecture [39]. These
LLMs are trained on vast amounts of data, through which,
they learn the underlying patterns inherent in texts, code,
dialogue, etc., and are therefore capable of generating a
(somewhat) relevant response given a prompt by the user [40].
LLMs operate based on predicting the subsequent tokens in
a sequence and reusing the extended sequence by running it
through the model once again to predict the tokens to follow
(referred to as autoregression). This process is continued up
until a point in which either the maximum amount of required
tokens is reached or a termination character is generated.
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Fig. 1. Overview of the UTGen approach

Since their emergence, software engineers have utilized
LLMs to enrich and simplify the development process [41]–
[43]. In alignment with this, various open-source models,
e.g., Code Llama [44] and StarCoder [45], and closed-source
models, e.g., Codex [46], and GPT4 [40], have been trained
and fine-tuned for this very purpose.

The research community has recently investigated incorpo-
rating LLMs into the test-generation process. In particular,
attempts have been made to evaluate the efficacy of utilizing
existing LLMs for unit test generation [29], [35], and train-
ing specialized LLMs for test generation [47]. However, the
understandability and usability of these (hybrid) tests remain
unclear. Additionally, methods such as CodaMosa [48] and
TestPilot [29], respectively, propose the addition of LLMs
to combat stalls in the search-based process and the full
automation of the test generation process, which have proven
to be useful. With all these additions, however, problems
arise regarding the reliability, correctness, and complexity
of incorporation given the non-deterministic nature of the
results [35], [49].

Recent studies have pointed out that engineering good
prompts is crucial for obtaining high-quality results [49]. For
instance, the usage of the Chain of Thought reasoning (CoT)
method has been shown to provide major improvements in
the zero-shot performance of models [50], [51]. Furthermore,
recent guidelines have been proposed that point toward the fact
that including further information about the goal, context, and
even the persona of the model can impact the quality of the
results obtained [52]. While these guidelines provide a good
start to the process of constructing a quality prompt, in most
cases the task remains an empirical process at heart [53].

III. THE UTGEN APPROACH

Figure 1 provides an overview of our approach, named
UTGen. The core of our framework is a search-based ap-
proach in which we integrated an LLM in various stages
of the test generation process (highlighted in green). We use
EvoSuite [11] as the search-based test generation framework of
choice, and we have developed additional functionalities that
facilitate the integration of EvoSuite with LLMs (highlighted
in blue).
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The aim of our approach, UTGen, is to enhance the under-
standability of test cases by improving four key elements of
generated tests: 1) providing context-rich test data, 2) incor-
porating informative comments, 3) using descriptive variable
names, and 4) picking meaningful test names. These goals
define the stages in our approach.

As a first step, after the genetic algorithm has ended and the
test cases mature in the search-based process, our approach
focuses on refining test data ( 1 in Figure 1). UTGen uses
an LLM to generate contextually relevant test data, unlike
traditional search-based methods that often rely on random
values. Following this refinement, the search process ends,
and we transition to post-processing tasks. Here, EvoSuite
minimizes the number of test cases in the test suite, shortens
the length of individual tests, and adds assertions.

Once the test cases are fully formed, at stage 2 , UTGen
leverages an LLM to add descriptive comments and enhance
variable names. In stage 3 , UTGen uses an LLM to suggest
suitable names for the tests, reflecting the assertions and
logic within. Finally, to ensure that test cases are compilable
and stable after these enhancements, UTGen compiles them
(stage 4 ), and in case of compilation issues, the process
iteratively revisits stage 2 for adjustments.

We first explain the prompt engineering component and then
describe our test generation process per stage.

A. Prompt Generation

The prompt component of UTGen uses the
code-llama:7b-instruct model from Meta [44] as
provided by Ollama1. We have designed UTGen in such a
way, that the Code-llama can easily be exchanged for another
LLM. There are three stages within the UTGen approach
uses the prompt component: 1) the refinement of test data,
2) the post-processing of tests, and 3) the naming of tests.
The general prompt component contains two distinct parts,
namely α which is responsible for generating the prompts
provided to the LLM, and β which manages the request
and ensures the correctness of the returned response.

For each stage, we devised specialized prompts following
guidelines from recent prompt engineering research [50]–
[52]. As shown in Listing 2, these guidelines emphasize
the following: writing clear instructions with action words
(as in 2 ), adopting a persona for the model (as in 1 ),
allowing sufficient processing time through techniques like
Chain of Thought (CoT) (as in 3 ), standardizing input and
output formats, and framing requests in a positive manner (as
in 4 ). The starting point for each prompt resembles the one
presented in Listing 2. As each model has its complexities,
pitfalls, and preferred input format, no one-size-fits-all solution
exists to prompt engineering, however, the guidelines set out
above have guided us. We have followed an iterative prompt
engineering process in which each adjustment of the prompt
was deliberated upon, before being accepted or rejected by
the authors based on potential improvements in the results. An

1Ollama: https://ollama.com/

<<SYS>>

You are a (ADJECTIVE) developer focusing on (TASK AT HAND)

<</SYS>>

[INST]

2 Your task is to (TASK)

To achieve this, you should follow these structured steps:

** Detailed steps for analysis or improvement, emphasizing **
1. Careful reading and understanding of the provided code.

2. Identification of key functionalities or aspects requiring

attention.↪→
3. Formulation or modification of specific elements (e.g.,

test names, data, comments) to enhance clarity,

descriptiveness, or functionality.

↪→
↪→
4. Adherence to coding standards and best practices, such as

naming conventions or comment clarity.

The code section requiring your attention is delineated by

[CODE] and [/CODE] tags.↪→
Your response, (whether it be a name, modified code, or

comments), should be placed between the (OPENING TAG) and

(CLOSING TAG).↪→
[CODE]

The code segment to be analyzed or improved, dynamically

inserted during execution↪→
[/CODE]

Listing 2: Prompt template for UTGen

emerging pattern that we initially observed is that LLMs are
incapable of always adhering to the output format described
for them. Therefore, we put guidelines in place to deal with
such mismatches; as an example, we had to deal with cases
where plain text was placed inside the code blocks, or when the
intended delineation was not used by the LLM. Our replication
package contains the final versions of the prompts that we
engineered, in addition to other measures that were taken [37].

1

3

4

B. Stage 1: Test Data Refinement

In this stage, we focus on requesting contextualized test data
from the LLM to increase the domain relevance of test data for
a test scenario. We designed a parser that converts the LLM’s
responses into the structured format required by EvoSuite.

The test data refinement stage should be considered as
another iteration in the search process in which both new and
original test cases coexist in the test population. The refined
test cases are capable of changing the logic of the original
test, and they cover different parts of the method under test.

An example of the refinement stage can be seen in stage 1
of Figure 2, with the original and enhanced test data shown
side by side. Based on the context, the LLM changes the
fourth argument of the WeaponGameData constructor call
from "N&zMn$@6gffi<" into "Ninja Sword", which is
more meaningful in the context of WeaponGameData.

However, it is important to acknowledge certain limitations
in the LLM’s responses. Occasionally, the LLM may
hallucinate [54], e.g., generate lines that deviate from the
original test case, or alter the number of parameters in
method invocations. To mitigate these inconsistencies, we
designed our parser to substitute the erroneous line with
the corresponding line from the original test case if a
corresponding line exists for it in the original test case.
In the absence of a corresponding line in the original
test case, the parser will skip parsing these erroneous
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@Test

public void testEqualsWithDifferentMinDmgValues() 3 {

// Given: We have two instances of WeaponGameData with
different values for minDmg↪→

WeaponGameData defaultWeapon =
new WeaponGameData(35, 35, 35, "Ninja Sword");

WeaponGameData customWeapon =
new WeaponGameData(35, 17, 35, "Ninja Sword");

// When: We call equals() method on the two instances
with the default WeaponGameData instance↪→

boolean equals = defaultWeapon.equals(customWeapon);

// Then: The result of equals is false, since the two
instances have different values for minDmg↪→

assertFalse(equals,
"The two instances should not be equal");↪→

}

1

2

1 Test Data Refinement
WeaponGameData weaponGameData0 =
new WeaponGameData(35, 35, 35,

"N&zMn$@6gffi<");↪→

WeaponGameData weaponGameData0 =
new WeaponGameData(35, 35, 35,

"Ninja Sword");↪→

2 Post Processing; Variables + Comments
// Given: We have two instances of JSWeaponData.WeaponGameData with

different values for minDmg↪→
WeaponGameData defaultWeapon = new WeaponGameData(35, 35, 35, "Ninja Sword");
WeaponGameData customWeapon = new WeaponGameData(35, 17, 35, "Ninja Sword");

// When: We call equals() method on the two instances with the default
WeaponGameData instance↪→

boolean equals = defaultWeapon.equals(customWeapon);

// Then: The result of equals is false, since the two instances have
different values for minDmg↪→

assertFalse(equals, "The two instances should not be equal");

3 Suggest a Test Method Name Based on the Test Body
public void testEqualsWithDifferentMinDmgValues() { ... }

1

Fig. 2. A simplified example of a test case enhanced by UTGen per step

lines and continue parsing the remaining portions of the
LLM-generated test cases. This increases the chance that
even test cases with omissions are valid for compilation.
For instance, if the LLM’s response adds a non-existent
statement like weaponGameData0.increaseDmg(10),
the parser skips this line and continues processing.
Similarly, if the LLM alters a method’s parameter count,
like changing weaponGameData0.getDmgBonus() to
weaponGameData0.getDmgBonus(10), the parser uses
the original method call with zero parameters. These
strategies ensure the parser extracts the maximum number of
statements from the LLM responses, minimizing the need for
re-prompting.

In post-refinement, EvoSuite optimizes the test case popu-
lation and adds assertions to them. The optimization includes
shortening test cases, and eliminating duplicated test cases
from the population. The selection of which duplicate test case
to keep and which to eliminate is directed by a secondary ob-
jective, which prioritizes selecting the test case that minimizes
the total length of all test cases within the set of duplicates.

C. Stage 2: Post-Processing

In this stage, we make the final chosen test as understand-
able as possible by making various aspects of the code more
understandable. UTGen achieves this by adding descriptive
comments, and making variable names more clear.

After the post-refinement has finished, assertions are added
to the test cases, and the test cases have reached maturity in

terms of coverage, they are given to the LLM for improvement.
The LLM is instructed to add comments (using the Given,
When, Then convention — seen as more understandable [55])
and to exclusively change the naming of the variables but to
let the data and logic untouched given that this could impact
the intended behavior of a certain test.

To ensure maximal logical similarity between original and
enhanced test cases, we use the CodeBLEU metric which
effectively assesses syntactic and semantic similarities between
two sequences [56]. We choose to control for similarity to
increase the cohesion between generated and improved test
cases as well as minimize the impact of LLM hallucinations.
A CodeBLEU score below 0.5 triggers a re-prompting process.

We cap re-prompting at three iterations, as our findings
suggest that this limit preserves logical coherence and still
facilitates the improvement of tests. If the LLM does not
meet the threshold after three attempts, the prompt simplifies,
removing comment structure constraints, and thus allowing
deviation from the initial format. Should the LLM’s response
still not reach a satisfactory level after a total of six attempts,
the original test case is retained. The value of three attempts
per prompting strategy is also chosen to balance effectiveness
and execution cost.

Additionally, as previous literature has pointed out, results
from LLMs can be non-deterministic given a non-modified
temperature of the model being used, this can in turn lead to
results diverging from the original tests, or tests that do not
have correct syntax. To ensure consistency and reliability in
the returned results, we employ a set of heuristic safeguards
to facilitate the process of controlling for such anomalies.
With each response from the LLM, we 1) try to identify and
remove common mistakes made by the LLM in the code,
e.g., comments placed inside the code as plain text and not as
comments, 2) attempt to correct any missing closing brackets
in a piece of code, 3) validate code using CodeBLEU as
previously described, and 4) check the syntactic correctness of
the returned results with the parser generator tool ANTLR2.

Furthermore, we re-prompt the LLM in the case when any
of the previously described safeguards fail to improve the
response, fail to achieve syntactic correctness, or have lower-
than-threshold values for CodeBLEU. We limit the amount of
recursive calls that are made to not have a single improvement
request stall the entire process. All the processes explained
above relate to the component marked with β in Figure 1.

An example of this step is shown in 2 in Figure 2:
the comments in Given-when-then format are added, and the
variable names are changed from weaponGameData0 and
weaponGameData1 to the defaultWeapon and cus-
tomWeapon, matching the logic of the test case. Also, the
assertion message is added from the LLM response.

D. Stage 3: Test Method Name Suggestion

In this stage, UTGen gives the LLM the completed method
body of the test, and it is asked to deduce a descriptive name.

2ANTLR: https://www.antlr.org/
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TABLE I
DEMOGRAPHICS OF PARTICIPANTS

Attendance Academia Industry Σ

In Person 17 4 21
Remote 3 8 11
Σ 20 12 32

Experience Academia Industry
In Java In Testing In Java In Testing

0-2 years 5 9 0 2
3-6 years 11 9 8 5
7-10 years 2 1 3 2
≥ 10 years 2 1 1 3

Affiliation Academia Industry
Role Number Role Number

PhD Student 9 (45%) Developer 6 (50%)
MSc Student 8 (40%) Senior Researcher 3 (25%)
BSc Student 1 (5%) Scientific Dev. 1 (8%)
Post Doc 1 (5%) Team Lead 2 (17%)
Scientific Dev. 1 (5%)

We chose to put this stage after the post-processing of the test
method body because then the test case includes comments
that increase the context for the LLM to generate a descriptive
test method name. If another test case already has a similar
test name, we re-prompt until it has a unique name.

For instance, in 3 in Figure 2, the LLM suggests
testEqualsWithDifferentMinDmgValues().
This name reflects the test’s functionality of examining
the equals method across varying minimum damage
values. In comparison, EvoSuite named this test
testCreatesWeaponGameDataTaking6ArgumentsAnd-

CallsEquals3.

E. Stage 4: Compile and Verify

After successfully navigating through the safeguards, it is
still possible for a test case to fail to compile. Therefore,
we compile all test cases, and a non-compiling test case
undergoes a repeated cycle of post-processing and test method
name suggestion, with a default post-processing budget of 2
iterations.

Compiling test cases are then assessed for their stability. A
test case is considered unstable if it fails due to an exception
unrelated to a JUnit assertion. All test cases that are both
compilable and stable are saved.

IV. EXPERIMENT SETUP

In this section, we describe the methodology of evaluation
of our approach. We investigate the following RQs:
RQ1 Does UTGen have the capability to generate effective

unit tests by utilizing a combination of LLMs and SBST?
RQ2 What is the impact of LLM-improved unit tests’ under-

standability on the efficiency of bug fixing by developers?
RQ3 Which elements of UTGen affect the understandability

of the generated unit tests?
We now discuss the evaluation strategies for RQ1 to RQ3.

A. Effectiveness Evaluation Setup (RQ1)

We explore the effectiveness of UTGen on two axes: the
compilability rate of LLM-improved test cases, and a compar-
ison in coverage of baseline and UTGen test cases.

TABLE II
JAVA CLASSES USED FOR THE CONTROLLED EXPERIMENT

Project Class LOC Methods Branches

caloriecount Budget 152 21 16
twfbplayer JSWeaponData 177 19 44

1) Dataset: We utilize the DynaMOSA dataset composed
of 346 non-trivial Java classes from 117 open-source projects
for RQ1 [18]. The classes are selected from four different
benchmarks, with the primary source being the 204 non-trivial
classes of SF110 [57].

2) Evaluation: We evaluated UTGen using the EvoSuite
framework as a baseline. We applied UTGen on a dataset and
generated two types of test cases: original EvoSuite test cases
and LLM-improved test cases. We then compare these two
types of test cases by measuring 1) the number of LLM-im-
proved test cases that compiled successfully, 2) branch and
instruction test coverage, and 3) pass/fail rates.

3) Parameter Configuration: We decided to use the default
configuration parameters for EvoSuite, which have been em-
pirically shown to provide good results [58]. We did increase
the test budget (max time) from 60 to 200 seconds, to ensure
that the search algorithm has enough time to generate a test
population that achieves reasonable coverage levels.

B. Controlled Experiment (RQ2)

We conducted a controlled experiment to assess the un-
derstandability of test cases in a real-world scenario, namely
bug fixing [59]. This extends the work of Panichella et al.,
who investigated the impact of generating documentation for
automatically generated tests in the context of bug fixing [36].

The experiment involved 32 participants. The experimental
group worked with UTGen test cases, while the control group
was given EvoSuite test cases. We configured EvoSuite with
coverage-based test naming, which generates more readable
test names than the default setting [60].

We examined two dependent variables in the experiment:
1) the number of fixed bugs, and 2) time efficiency, measured
as the time taken to fix the bugs.

1) Participants: We recruited participants with academic
and industrial backgrounds. Table I presents their demograph-
ics. To engage academic participants, the experiment was
advertised via the university’s communication channels. Ad-
ditionally, developers from an industrial partner were enlisted.
Furthermore, all authors reached out to their professional
networks of software engineers. We made sure to extend the
invitation to individuals with experience in Java and testing.

2) Objects: To design the bug-fixing assignments and com-
pare experimental and control groups, it was essential to
choose two projects that would offer a solid foundation for
understanding the context of bug fixing. To do so, we analyzed
all classes within the SF110 dataset, gathered insights into
the distribution of Lines of Code (LOC), which serves as an
indicator of complexity [61]. Using this data, we calculated the
mean (µ) and standard deviation (σ) for each distribution. We
then identified all classes falling within the range of µ± 0.1σ
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across all specified metrics. This process yielded a total of 15
classes. Upon manual inspection of these classes, we selected
two for consideration: 1) Budget, which includes methods
for calculating calories over intervals, and 2) JSWeaponData,
featuring methods related to Weapon Objects in a Java game.
Table II provides details on the two classes. We inject four
faults in each class, with each fault located in a different
method under test. The injected bugs included replacement
of arithmetic operations (2 bugs), statement deletion (1 bug),
boolean relation replacement (2 bugs), and variable replace-
ment (3 bugs). While the types of faults were similar across
both classes, fixing the faults in the Budget class can be
more challenging due to its detailed time calculations.

3) Experimental Design: Our experiment utilized a 2 × 2
factorial crossover design; it featured two periods and included
a two-level blocking variable based on the object. In each
period, subjects applied a different technique (treatment) to
a different object (assignment). We preferred the crossover
design over a between-subject design due to the latter requiring
a larger number of participants to achieve sufficient statistical
power. The design of the experiment is detailed in Table III,
which outlines the four sequences used. We followed the
experimental design guidelines provided by Vegas et al. [62].

To minimize learning effects, participants were given tasks
involving different objects in each period. Additionally, to
avoid any potential bias from optimal sequencing, we balanced
the participants over the sequences in terms of the number of
participants, and academic versus industry background. For
participants from academia, each sequence was executed 5
times, while for industrial participants it was executed 3 times.

4) Experimental Procedure: The participants were able to
execute the controlled experiment either in-person or remotely
through videoconferencing. Before the actual experiment, we
asked participants to fill in a pre-test questionnaire to gauge
their experience. One day before the experiment session we
sent them 1) a statement of consent, 2) instructions and
materials for performing the experiment, including the two
assignments, 3) a number indicating the sequence (see Ta-
ble III), and 4) a link to the online survey platform. This
advance preparation was necessary, because during the pilot
evaluation we observed that receiving the projects just before
the experiment led to additional preparation time, increasing
the threat of tiredness. It could also lead to stress among
participants if they encountered difficulties.

During the experiment, an examiner was continuously
present to explain expectations and control any external factors
that could affect the experiment, e.g., ensuring that participants
did not use external sources to fix bugs.

In the experiment, we asked the participants to carry out two
tasks; each task consisted of fixing four bugs in 30 minutes.
We assume extending the time or having an unlimited window
box could intensify the learning effect and introduce threats of
tiredness/boredom. If the participant indicated to have fixed all
4 bugs within the 30-minute time frame, the examiner double-
checked this, and the participant could proceed to the next
step. Each participant received two tasks: 1) a task consisting

TABLE III
EXPERIMENTAL DESIGN

#Seq Order Period 1 Period 2
Object Technique Object Technique

I U-E Budget UTGen JSWeaponData EvoSuite
II E-U Budget Evosuite JSWeaponData UTGen

III U-E JSWeaponData UTGen Budget Evosuite
IV E-U JSWeaponData Evosuite Budget UTGen

of one Java class with a corresponding test class generated
with UTGen, and 2) a Java class with a corresponding test
class generated by the baseline approach, i.e., EvoSuite.

5) Pilot: We engaged 4 participants (not part of the 32
participants) to pilot our experiment. After the pilot run, we
changed the tasks from fixing 5 bugs in 20 minutes, to fixing
4 bugs in 30 minutes, and clarified the expected behaviours
through Javadoc documentation. We also narrowed the scope
of the code, segregating it into definitely good and possibly
faulty code sections. Thus ensuring that the assignments were
feasible within the 30-minute time frame. Finally, we improved
the task descriptions, sending detailed instructions and an
overview of the experiment to participants beforehand.

6) Analysis Method: We conducted statistical tests to de-
termine whether there was a significant difference between the
number of bugs found and the time taken to fix bugs in LLM-
improved test cases compared to baseline test cases. Due to our
crossover design, we accounted for potential carryover effects,
which required treating the data as dependent. Therefore,
nonparametric hypothesis tests for independent samples like
the Wilcoxon Rank Sum test were not suitable [62].

Instead, we employed mixed models for our analysis.
Specifically, for each of our dependent variables:

1) the number of fixed bugs: this variable is discrete and
bounded between 0–4, and we treated it as an ordinal
variable. Consequently, we used Cumulative Link Mixed
Models [63], which are appropriate for this type of data.

2) time efficiency: this variable represents the time taken to
fix bugs, and we used Generalized Linear Mixed Models
with a Gamma distribution, which is suitable for time-
related data [64].

We considered Technique, Object, Technique:Object, Order
(confounded with carryover), and Period as fixed effects, and
participants (#id) as a random effect. The sequence effect is
embedded within the variables Order and Technique:Object.
We set the significance level at 0.05 for both models.

Additionally, we examined whether factors such as par-
ticipants’ background, programming experience in Java and
Testing, as well as whether the sessions were attended in-
person or remotely, interacted with the technique on the
number of fixed bugs. In these cases, we extended the mixed
model by adding these factors to assess their interaction with
the technique.

We also used Cohen’s d to measure the effect size ranging
from very small (d < 0.2) to small (0.2 ≤ d < 0.49), medium
(0.5 ≤ d < 0.79), and large (d ≥ 0.8) [65].
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TABLE IV
QUESTIONNAIRE OVERVIEW

# Title Type of Question Aspect

Q1 In your opinion, what factors make finding bugs
easier for you?

Open 1

Q2 Do you think the understandability of the test cases
affects your bug fixing?

Likert 1

Q3 Prioritize the elements in helping understandability Ranking 2
Q4 How important are the following elements in the

understandability of the test case
Likert 2

Q5 How do you judge the understandability of the
provided test case (Task 1 and 2)

Likert, Open 3

Q6 Evaluate how good you think the first task is in
each item

Matrix Table, Open 3

Q7 Evaluate how good you think the second task is in
each item

Matrix Table, Open 3

C. Post-Test Questionnaire (RQ3)

We used the post-test questionnaire to obtain feedback from
the participants of the controlled experiment on which aspects
of UTGen affect the understandability of test cases (see Ta-
ble IV). We focused on gauging three aspects: 1) participants’
views on how the understandability of test cases impacts their
bug-fixing effectiveness, 2) their opinion on what factors in
test code contribute to the understandability of generated test
cases, and 3) their ratings of the quality of these factors in test
cases with and without the LLM-improved enhancements.

1) Questionnaire: In Q1, we ask participants to identify
factors they believe to affect bug fixing effectiveness. Im-
portantly, at this stage, the participants are unaware that the
experiment focuses on the understandability of generated test
cases, ensuring that their responses genuinely reflect their
initial thoughts on bug fixing. In Q2, we query whether the
participants think the clarity of generated test cases influences
bug fixing. Q3 and Q4 gauge which factors impact under-
standability most. In Q5, we ask the participants to rate the
understandability of the two tasks, using a Likert scale along
with open-ended feedback. Finally, in Q6 and Q7, we ask
participants to rate specific elements such as comments, test
data, test names, and variable naming in the test cases of
both tasks in terms of completeness, conciseness, clarity, and
naturalness, thus aiming for a detailed evaluation of different
aspects of test case quality [28], [36], [66].

2) Analysis Method: For the open-ended questions, we
sorted the data into categories using a card-sorting method
and calculated the frequency of each category. Two authors
independently reviewed the card-sorting process and achieved
an 84% agreement. For the Likert-scale questions, we deter-
mined the mean value and percentage of each answer. For
Q6 and Q7, we used the Wilcoxon Rank Sum test with an
α of 0.05 because it did not follow a normal distribution (as
determined by the Shapiro-Wilk test with a p-value << 0.01).
We used Cohen’s d effect size to determine the extent of the
difference.

V. RESULTS

In the following we discuss the results per research question.

TABLE V
EFFICACY RESULTS OF UTGEN -GENERATED TESTS

# 1. Pass/Failed Test Count Pass Rate

1. EvoSuite 8315 79.01%
2. UTGen 8430 73.27%

# 2. Improved Tests Test Count Percentage

1. Improved Tests 6110 72.48%
2. Reverted Tests 992 11.77%
3. Enhancment Stagnation 1328 15.75%

# 3. Coverage Instruction Coverage Branch Coverage

1. EvoSuite 25.03% 18.68%
2. UTGen 24.43% 17.87%

A. RQ1: Effectiveness of Integrating LLMs and Search-Based
Methods for Generating Unit Tests

We define effectiveness as the capability of UTGen to
generate unit tests that are compilable and execute reliably,
along with their ability to cover the classes under test. The
success rate, defined as the proportion of generated tests
that pass upon execution, reflects functional correctness. It is
important to note that while all generated tests compile, the
success rate pertains solely to their execution outcome.

UTGen successfully generates a total of 8430 tests, with a
pass rate of 73.27%, while EvoSuite produces 8315 tests at a
slightly higher pass rate of 79.01%. The heuristic safeguard
described in Section III-C ensures the syntactic correctness
and compilability of test cases, but also leads to 27.52% of
the tests were categorized as “enhancement stagnation”, i.e.,
the LLM could not improve the test case, or “reverted”, i.e.,
we went back to the EvoSuite base test case, as the test case
failed to compile. As such, these 27.52% of test cases compile,
but are not meaningfully affected by UTGen.

The origin of certain test cases not being meaningfully
affected by UTGen lies in the non-deterministic nature of
LLMs. As we have no guarantee that tests given to the
LLM will compile upon improvement due to the possible
hallucinations by the LLM, we employ several safeguards.
While the safeguards explained in Section III-C do manage to
catch a great portion of the tests that would not compile, some
do fall through. Therefore, we perform a compilation check
( 4 in Figure 1). If any (improved) test fails to compile, we
revert back to an EvoSuite-generated test case.

Out of the total 8430 tests generated by UTGen, 11.77%
are non-compiling and are thus reverted to the initial test case
generated by EvoSuite. The remaining 15.75% of tests are due
to the stagnation of the enhancement process and the inability
of the LLM to make a significant contribution.

Finally, from Table V we observe that EvoSuite reaches
slightly higher coverage compared to UTGen: instruction cov-
erage is 25.03% compared to 24.43%, while branch coverage
is 18.68% compared to 17.87%. In a further investigation
into the reason for this delta in coverage, we find that small
changes in the post-processing step, e.g., changes in values of
parameters, affect the overall coverage achieved.
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Fig. 3. (1) Number of bugs and (2) Time taken for each different group: (i) All Participants (ii) Academic Participants (iii) Industry Participants

RQ1 A total of 8430 tests are generated by UTGen, of
which 72.48% are improved, and 27.52% are not due to re-
version or stagnation. The coverage results are marginally
comparable to the baseline.

B. RQ2: The Impact on Bug Fixing

Figure 3 presents the results of the controlled experiment in
terms of two dependent variables: 1) the number of bugs fixed,
and 2) time efficiency, measured by the duration required to
complete the tasks. The results are reported for respectively the
entire population, the academic participants, and the industry
participants.

For both objects, participants fixed more bugs in the task
with the LLM-improved test cases compared to the baseline
test cases. For the Budget class the difference is more
pronounced as the participants fixed a median of 4 bugs
with LLM-improved test cases, compared to a median of 3
bugs fixed for baseline test cases. For the JSWeaponData
class, the difference is marginal, as participants fixed a median
of 4 bugs with either of the test cases. According to the
tests of fixed effects presented in Table VI, we observe in
the fixed bugs column that both technique (p = 0.024) and
object (p = 0.025) significantly influence the number of fixed
bugs. This implies that using the LLM-Improved test cases
significantly increases the likelihood of fixing more bugs.
Similarly, when the object is JSWeaponData, the probability
of fixing more bugs is also significantly higher. The result of
Cohen’s d effect size for the treatment is medium at 0.59.

Regarding time efficiency, participants using LLM-
improved test cases generally took less time to fix all bugs
for both classes.

However, the differences in timing are not statistically
significant for the technique (p = 0.063), with significance
observed only for the object (p = 0.031). The difference

is more apparent in the JSWeaponData class, where the
average time to fix all bugs was 18:22 for LLM-improved
versus 22:06 for baseline test cases (20% less time). For
the Budget class, the averages are closer: 27:06 for LLM-
improved and 27:51 for baseline test cases. This is mainly due
to a 30-minute cutoff, which limited the observable difference.

Additionally, a post hoc analysis of Estimated Marginal
Means involving a pairwise comparison of different technique
levels for each specific object level indicates that in the
Budget class, the treatment (LLM-Improved test cases) is
significant (p = 0.024), whereas it is not significant in the
JSWeaponData class (p = 0.319). The Cohen’s d effect size
is large of 0.92 for the treatment in the Budget class. We
hypothesize that the statistically significant improvement in the
number of bugs fixed in the Budget assignment, compared to
JSWeaponData, is due to the greater complexity of scenarios
and bugs in the Budget class. This complexity likely increases
the demand for clearer and more understandable test cases.

Furthermore, neither the period (p = 0.176 and p = 0.068)
nor the order (p = 0.138 and p = 0.517) significantly impact
the number of fixed bugs and time efficiency. This indicates
that there is no carryover effect between treatments. The
interaction between technique and object is not significant,
suggesting that the effect of the technique on the number of
bugs fixed and time efficiency does not depend on the object.
Additionally, our analysis found no significant interaction
between the technique and co-factors such as participants’
backgrounds, experience in Java and testing, or whether they
attended sessions remotely or in person (p >> 0.05).

Finally, in terms of the influence of the background of our
participants, we observe that both population groups show
better performance when using LLM-improved test cases com-
pared to baseline test cases in terms of both number of bugs
fixed and time taken to fix bugs. We observe that academic

8



TABLE VI
TESTS OF FIXED EFFECTS

Source Fixed Bugs Time Efficiency
Estimate Pr(> |z|) Estimate Pr(> |z|)

Technique 2.997 0.024 -0.116 0.063
Object 2.903 0.025 0.133 0.031
Technique: Object 0.951 0.401 0.088 0.408

Order 1.588 0.138 -0.069 0.517
Period 0.951 0.176 -0.114 0.068

participants seem to benefit more from the LLM-improved test
cases in aiding bug fixing. For industrial participants on the
other hand, the time-saving gain is more pronounced. Figure 3
provides a more detailed overview.

RQ2 In our experiment, using LLM-Improved tests signifi-
cantly increases the likelihood of fixing more bugs.

C. RQ3: The effects of different elements of UTGen on under-
standability

The results of the post-test questionnaire show three aspects:
1) the participants’ views on how the understandability of test
cases impacts their bug-fixing effectiveness, 2) their opinion
on what factors in test code contribute to the understandability
and 3) their ratings of the quality of elements in test cases with
and without the LLM-improved enhancements.

Aspect 1: How understandability of test cases impacts
bug-fixing: We answer the first aspect through the responses
to Questions 1 and 2 in the survey. We have observed that
participants find a well-written test suite important for bug
fixing: they frequently highlighted (14 mentions) the impor-
tance of descriptive and clear test names, appropriate use of
assertions, and well-chosen test data in test suites. This aspect
was prioritized over other factors like high-quality production
code (10 mentions). We also take note of the overall (strong)
agreement that test case understandability is important in in
the context of bug fixing, as indicated by a median score of 4
out 5 (Q2 in Table VII).

Aspect 2: What factors in test code contribute to under-
standability: We have analyzed the participants’ responses
to Questions 3 and 4, where they ranked and scored the
importance of elements. From Table VII we observe that par-
ticipants give more importance to comments and test names,
than to variable naming and test data. Specifically, 34.3% of
the participants ranked comments as most important, while
40.6% gave priority to test names in Question 3.

Aspect 3: The quality of factors in test cases with and
without LLM enhancements: In Q5 of Table VII, we see that
participants rate the understandability of LLM-improved tests
somewhat better when compared to the baseline test cases.

We asked participants in Q6 and Q7 to evaluate an LLM-
improved and baseline test case of the assignments on different
criteria and specifically per test element. These criteria com-
prised completeness, conciseness, clarity, and naturalness.

Figure 4 shows the results of Q6 and Q7. The results
indicate that LLM-improved test cases are consistently rated

TABLE VII
PARTICIPANTS’ RESPONSES TO THE QUESTIONNAIRE

Q2. The effect of
understandability on
bug fixing

Strongly
disagree

Disagree Neither
agree nor
disagree

Agree Strongly
agree

6.2% 9.3% 6.2% 34.4% 43.7%

Q3. Prioritize the elements in
helping understandability

Rank 4 Rank 3 Rank 2 Rank 1

1. Comment 9.3% 25% 31.2% 34.3%
2. Test Name 34.3% 9.3% 15.6% 40.6%
3. Variable Naming 21% 34.3% 34.3% 9.3%
4. Test Data 34.3% 31.2% 18.7% 15.6%

Q4. How important
are the elements in
the understandability

Not
important

Slightly
important

Moderately
important

Very im-
portant

Extremely
important

1. Comment 6.2% 15.6% 21.8% 34.3% 21.8%
2. Test Name 6.2% 21.8% 21.8% 12.5% 34.3%
3. Variable Naming 3.1% 12.5% 34.3% 31.2% 18.7%
4. Test Data 0% 12.5% 28.1% 43.7% 15.6%

Q5. The quality of
test cases

Very low Low Moderate High Very high

LLM-improved 3.13% 6.25% 25.0% 50.0% 15.63%
Baseline 6.25% 18.75% 25.0% 43.75% 6.25%

higher compared to baseline test cases for each of the cri-
teria (first row). The Wilcoxon test confirms this statistically
significant difference (p-value < 0.05) for all criteria. The
effect size for conciseness was small, while it was large
for completeness, naturalness, and clarity. Notably, in the
open-ended responses, some participants mentioned that some
comments in LLM-improved test cases were too general and
added little value. The respondents did appreciate the Given-
When-Then-structured comments.

When we zoom into the test elements, we see improvements
in all areas for LLM-improved test cases: comments, test data,
test name, and variable naming. The Wilcoxon test for all of
these elements is statistically significant with a p-value <<
0.05. The effect size for comments, test data, and test names
is medium, while very large for variable naming (d > 1.2).

Through the analysis of the open-ended responses to Ques-
tions 5–7, we found that the complexity of a test case has an
impact on the necessity of comments. For simpler test cases,
using a Given-When-Then (Arrange/Act/Assert) structure is
often sufficient. However, for more complex cases, more de-
tailed comments are needed to ensure optimal comprehension.
Overall, participants mentioned this point 18 times, with one
participant stating “The test code lines are straightforward,
so comments are unnecessary.” Similarly, for simpler test
cases, the quality of variable naming was less of a concern:
participants mentioned this factor only 4 times when rating a
short baseline test case.

RQ3 Comments, test names, variable names, and test
data are improved compared to the baseline. Specifically,
participants highlighted improved conciseness, clarity, and
naturalness in these test elements.

VI. DISCUSSION

In this section, we discuss our results, their implications,
and threats to the validity of our study.
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Fig. 4. The results of Q6 and Q7 which test cases were rated in terms of criteria (first row) and test elements (second row)

A. Revisiting the Research Questions
RQ1: Does UTGen have the capability to generate effective
unit tests by utilizing a combination of LLMs and SBST? When
we compare the effectiveness of our LLM-inspired UTGen
approach and EvoSuite, we observe that UTGen generates test
cases that have relatively similar structural coverage. However,
we also noticed a phenomenon that we term enhancement
stagnation, which occurs when the LLM is not able to im-
prove the test case, even when re-prompting multiple times.
We analyzed this situation and found indications that this
stagnation is correlated with high complexity. In this context,
we define complexity at the level of the class under test to
be: 1) methods having a high number of parameters, and
2) methods being tightly coupled, i.e., many method calls
between objects or within an object. While generally adding
more relevant context can help an LLM, highly complex
projects can overwhelm LLMs due to lengthy input codes
and insufficient contextual information, thus hindering the en-
hancement process during post-processing. To overcome this,
we propose to incorporate Retrieval Augmented Generation
(RAG) techniques. We hypothesize that these enhancements
can reduce occurrences of Enhancement Stagnation as it has
resolved similar stagnation issues in other domains [67], [68].
RAG involves enhancing LLMs by dynamically integrating
knowledge from databases, knowledge graphs, or the internet
in real time into the generation process to provide contextually
richer and more accurate responses.
RQ2: What is the impact of LLM-improved unit tests’ under-
standability on the efficiency of bug fixing by developers? From
the results of the controlled experiment, we see indications that
the LLM-based enhancements brought to the generated unit
tests improve their understandability in the bug-fixing scenario.
Specifically, the experimental group outperformed the control
group by fixing up to 33% more bugs and completing tasks up
to 20% faster. Our experiment consisted of two assignments in-
volving respectively the Budget and JSWeaponData classes.

While we observed statistically significant improvements for
the Budget assignment, the other assignment did not reach
statistical significance. Since the Budget class is comprised
of more complex scenarios and bugs, we hypothesize that
the complexity of a test scenario increases the need for
understandable test cases. This hypothesis was anecdotally
confirmed by participants in the post-test questionnaire.
RQ3: Which elements of UTGen affect the understandability of
the generated unit tests? Through the post-test questionnaire,
we captured that participants think that LLM-improved test
cases are showing improvements in terms of comments, test
names, test data, and variable names when compared to
baseline test cases. At a higher level, participants also rated
completeness, conciseness, clarity, and naturalness as better.
However, feedback from open-ended questions highlights that
comments should be more precise and informative. Similarly,
some participants also highlighted that simple test methods
might not require (extensive) comments. Upon reflecting on
this feedback, we hypothesize that generically trained LLMs,
while generally robust, might lack task-specific data to effec-
tively assist in creating comments.

B. Implications
Our study’s results have an important implication for re-

searchers and tool builders. In particular, our study indicates
that a generally trained LLM can already instigate a consid-
erable improvement in the understandability of search-based
generated test cases. However, our results also show that test
case comments should be more detailed in some cases, while
seeming superfluous in other situations. Therefore, we see
potential in creating specifically-trained LLMs for particular
software engineering tasks, but equally in customizing LLM
responses to individual software engineers.

C. Threats to Validity
Construct Validity. Threats to construct validity relate to

the setup of our study. We conducted the study either in
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person or remotely, with an examiner present. To control for
factors other than the codebase, we ensured a consistent setup
for all participants and limited the choice of IDE to IntelliJ,
providing uniform capabilities. However, this approach may
disadvantage participants having experience with other IDEs,
potentially affecting their performance.

Internal Validity. To mitigate threats to internal validity,
we did not reveal the tool names in our experiment and
questionnaire. To prevent bias in selecting classes for the
assignments, we followed a systematic selection process to
strengthen the methodological integrity. To compensate for a
learning effect, we created four different sequences of the
experimental design. Using mixed models, we found that
period and carryover effects were not statistically significant,
indicating they do not pose major threats to the study’s validity.

External Validity. The classes that we use to determine the
efficacy of test generation in RQ1 are a potential threat to the
generalization of our results. To address this, we used a dataset
of 346 classes from 117 open-source Java projects that form
a representative sample and were previously used in software
testing studies [18], [69]. We limited the controlled experiment
in RQ2 to two Java classes. To ensure their representativeness,
we carefully selected them from the SF110 dataset containing
real-world classes, and taking the average LOC of that entire
dataset into consideration to select “average classes”. Future
work will explore more complex classes. In order to mitigate
potential imbalance between the experimental and control
groups, we carefully balanced participants over both groups
in terms of experience and background.

VII. RELATED WORK

A. Improving the Understandability of Test Cases

Panichella et al. [36] introduced TestDescriber, which gener-
ates test case summaries that describe the intent of a generated
unit test; they established that these summaries enable software
engineers to resolve bugs more quickly. Similarly, Roy et
al. [28] developed DeepTC-Enhancer, leveraging deep learning
to produce method-level summaries for test cases. Both efforts
highlight the value of summarizing test cases. In contrast,
UTGen generates detailed comments within the test cases
themselves and provides a narrative of the test scenario.

Zhang et al. [27] introduced an NLP technique for automat-
ically generating descriptive unit test names. Daka et al. [60]
applied coverage criteria for naming automatically generated
unit tests, while Roy et al. [28] created DeepTC-Enhancer by
employing deep learning to rename identifiers in test cases
to improve readability. Unlike these methods that rely on
traditional NLP techniques, UTGen utilizes LLMs to suggest
identifiers that fit the test scenario’s context.

Afshan et al. [70] enhanced the readability of inputs by
combining natural language models with search-based test
generation. Deljouyi et al. [66] proposed an approach that gen-
erates understandable test cases with meaningful data through
end-to-end test scenario carving. Baudry et al. [71] developed
a test data generator using LLMs to produce realistic, domain-

specific constraints. Our method is similar to Baudry et al.’s,
but we focus on search-based unit test generation.

B. Generating Test Cases by LLM

Despite the progress in LLM-based test generation, to the
best of our knowledge, no study has focused on enhancing
unit test case understandability through the integration of
search-based methods and LLMs. Research in this field shows
considerable variability in methods and outcomes. Siddiq et al.
generated tests using LLMs and reported 2% coverage on the
SF110 dataset [35]. In contrast, Schäfer et al.’s [29] TestPi-
lot for JavaScript achieved 70% statement-level coverage on
relatively small systems. Alshahwan et al. aimed to improve
human-written tests by LLMs and submit them for human
review [72]. Meanwhile, Lemieux et al. explored overcoming
coverage stalls in SBST with LLMs [48], and Moradi et al.
investigated mutation testing with LLMs [73]. Steenhoek et
al. improved test generation by minimizing test smells through
reinforcement learning [74]. Unlike the aforementioned stud-
ies, UTGen focuses on enhancing understandability through
integrating LLMs in the SBST process. Notably, UTGen
achieved 17.87% branch coverage, surpassing the pure LLM
approach by Siddiq et al. [35].

VIII. CONCLUSION

Recent research has suggested that the understandability
of test cases is a key factor to optimize in the context of
automated test generation [25]. Therefore, in this paper, we
introduce the UTGen approach that incorporates a Large Lan-
guage Model (LLM) into the Search-Based Software Testing
(SBST) process. In doing so, UTGen aims to improve the un-
derstandability by providing context-rich test data, informative
comments, descriptive variables, and meaningful test names.

We first evaluated UTGen’s test generation effectiveness on
346 non-trivial Java classes, observing that UTGen success-
fully enhanced 72.48% of the test cases, and slightly decreased
coverage compared to EvoSuite-generated tests (RQ1). We
then performed a controlled experiment with 32 participants
from industry and academia; we observed that test cases
generated by UTGen facilitated easier bug-fixing with par-
ticipants fixing up to 33% more bugs and doing so up to
20% faster (RQ2). Feedback from participants in the post-test
questionnaire indicated a significant improvement in test case
completeness, conciseness, clarity, and naturalness (RQ3).

In future work, we aim to explore optimization strategies,
such as Retrieval Augmented Generation (RAG), to enhance
prompt efficiency and minimize the need for re-prompting.
Furthermore, we plan to refine our approach by creating
customized fine-tuned LLMs specifically for test generation.
These customized LLMs would replace the publicly-available
pre-trained LLM that we currently use.
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programming with large language models,” in Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO). ACM,
2023, pp. 1146–1155.

[33] J. Wang, Y. Huang, C. Chen, Z. Liu et al., “Software testing with large
language model: Survey, landscape, and vision,” arXiv, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2307.07221

[34] K. El Haji, C. Brandt, and A. Zaidman, “Using github copilot for
test generation in python: An empirical study,” in Proceedings of the
International Conference on Automation of Software Test (AST). ACM,
2024.

[35] M. L. Siddiq, J. C. S. Santos, R. H. Tanvir, N. Ulfat et al., “Using
large language models to generate junit tests: An empirical study,” in
International Conference on Evaluation and Assessment in Software
Engineering (EASE). ACM, 2024.

[36] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: An em-
pirical investigation,” in Proc. Int’l Conference on Software Engineering
(ICSE), 2016, pp. 547–558.

[37] “Replication package of UTGen,” 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.13329464

[38] G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical
investigation on the readability of manual and generated test cases,” in
International Conference on Program Comprehension (ICPC). IEEE,
2018, pp. 348–351.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit et al.,
“Attention is all you need,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.1706.03762

[40] OpenAI:, J. Achiam, S. Adler, S. Agarwal et al.,
“Gpt-4 technical report,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.08774

[41] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code
completion by jointly learning from structure and naming sequences,”
in Proceedings of the 44th International Conference on Software Engi-
neering, 2022, pp. 401–412.

[42] M. Izadi, J. Katzy, T. Van Dam, M. Otten et al., “Language models
for code completion: A practical evaluation,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[43] A. Al-Kaswan, T. Ahmed, M. Izadi, A. A. Sawant et al., “Extending
source code pre-trained language models to summarise decompiled

12



binaries,” in 2023 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2023, pp. 260–271.

[44] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla et al., “Code llama:
Open foundation models for code,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2308.12950

[45] R. Li, L. B. Allal, Y. Zi, N. Muennighoff et al., “Starcoder:
may the source be with you!” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2305.06161

[46] M. Chen, J. Tworek, H. Jun, Q. Yuan et al., “Evaluating large
language models trained on code,” Arxiv, 2021. [Online]. Available:
https://doi.org/10.48550/arXiv.2107.03374

[47] N. Rao, K. Jain, U. Alon, C. Le Goues, and V. J. Hellendoorn, “Cat-lm
training language models on aligned code and tests,” in 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2023, pp. 409–420.

[48] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 919–931.

[49] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang,
“LLM is like a box of chocolates: the non-determinism of
ChatGPT in code generation,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2308.02828

[50] J. Wei, X. Wang, D. Schuurmans, M. Bosma et al., “Chain-of-thought
prompting elicits reasoning in large language models,” arXiv, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2201.11903

[51] J. Li, G. Li, Y. Li, and Z. Jin, “Structured chain-of-thought
prompting for code generation,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2305.06599

[52] G. Marvin, N. Hellen, D. Jjingo, and J. Nakatumba-Nabende, “Prompt
engineering in large language models,” in International Conference on
Data Intelligence and Cognitive Informatics. Springer, 2023, pp. 387–
402.

[53] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
Johnny can’t prompt: how non-AI experts try (and fail) to design LLM
prompts,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 2023, pp. 1–21.

[54] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy et al., “Large language
models for software engineering: Survey and open problems,” arXiv,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.03533

[55] V. Khorikov, Unit Testing Principles, Practices, and Patterns. Manning,
2019.

[56] S. Ren, D. Guo, S. Lu, L. Zhou et al., “Codebleu: a method
for automatic evaluation of code synthesis,” arXiv, 2020. [Online].
Available: https://doi.org/10.48550/arXiv.2009.10297

[57] G. Fraser and A. Arcuri, “A large scale evaluation of automated unit test
generation using evosuite,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 2, p. 8, 2014.

[58] A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, pp. 594–623, 2013.

[59] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., 2005.

[60] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2017, pp. 57–67.

[61] J. Graylin, J. E. Hale, R. K. Smith, H. David et al., “Cyclomatic
complexity and lines of code: empirical evidence of a stable linear
relationship,” Journal of Software Engineering and Applications, vol. 2,
no. 03, p. 137, 2009.

[62] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software
engineering experiments: Benefits and perils,” IEEE Transactions on
Software Engineering, vol. 42, no. 2, pp. 120–135, 2016.

[63] R. H. B. Christensen, “Cumulative link models for ordinal regression
with the r package ordinal,” Submitted in J. Stat. Software, vol. 35, 2018.

[64] S. Lo and S. Andrews, “To transform or not to transform: using
generalized linear mixed models to analyse reaction time data,” Frontiers
in Psychology, vol. 6, 2015.

[65] G. M. Sullivan and R. Feinn, “Using effect size—or why the p value is
not enough,” Journal of graduate medical education, vol. 4, no. 3, pp.
279–282, 2012.

[66] A. Deljouyi and A. Zaidman, “Generating understandable unit tests
through end-to-end test scenario carving,” in Proceedings of the 23rd

IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2023, pp. 107–118.

[67] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Retrieval augmented code generation and summarization,” arXiv,
2021. [Online]. Available: https://doi.org/10.48550/arXiv.2108.11601

[68] S. Liu, Y. Chen, X. Xie, J. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid gnn,” 2021.

[69] J. Campos, Y. Ge, N. Albunian, G. Fraser et al., “An empirical evaluation
of evolutionary algorithms for unit test suite generation,” Information
and Software Technology, vol. 104, pp. 207–235, 2018.

[70] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle
cost,” in International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2013, pp. 352–361.

[71] B. Baudry, K. Etemadi, S. Fang, Y. Gamage et al., “Generative ai
to generate test data generators,” arXiv, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2401.17626

[72] N. Alshahwan, J. Chheda, A. Finegenova, B. Gokkaya et al., “Automated
unit test improvement using large language models at Meta,” arXiv,
2024. [Online]. Available: https://doi.org/10.48550/ArXiv.2402.09171

[73] A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C.
Desmarais, “Effective test generation using pre-trained large language
models and mutation testing,” 2023.

[74] B. Steenhoek, M. Tufano, N. Sundaresan, and A. Svyatkovskiy,
“Reinforcement learning from automatic feedback for high-
quality unit test generation,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/ArXiv.2310.02368

13


