
Springer Nature 2021 LATEX template

OIL: an Industrial Case Study in Language Engineering with

Spoofax

Olav Bunte1*†, Jasper Denkers2*†, Louis C.M. van Gool3, Jurgen J. Vinju4,1, Eelco
Visser2, Tim A.C. Willemse1 and Andy Zaidman2

1Eindhoven University of Technology, Eindhoven, the Netherlands.
2Delft University of Technology, Delft, the Netherlands.
3Canon Production Printing, Venlo, the Netherlands.

4CWI, Amsterdam, the Netherlands.

*Corresponding author(s). E-mail(s): o.bunte@tue.nl; j.denkers@tudelft.nl;
Contributing authors: louis.vangool@cpp.canon; jurgen.vinju@cwi.nl; e.visser@tudelft.nl;

t.a.c.willemse@tue.nl; a.e.zaidman@tudelft.nl;
†These authors contributed equally to this work.

Abstract

Domain-Specific Languages (DSLs) promise to improve the software engineering process, e.g., by
reducing software development and maintenance effort and by improving communication, and are
therefore seeing increased use in industry. To support the creation and deployment of DSLs, language
workbenches have been developed. However, little is published about the actual added value of a lan-
guage workbench in an industrial setting, compared to not using a language workbench. In this paper,
we evaluate the productivity of using the Spoofax language workbench by comparing two implemen-
tations of an industrial DSL, one in Spoofax and one in Python, that already existed before the evalu-
ation. The subject is the Open Interaction Language (OIL): a complex DSL for implementing control
software with requirements imposed by its industrial context at Canon Production Printing. Our find-
ings indicate that it is more productive to implement OIL using Spoofax compared to using Python,
especially if editor services are desired. Although Spoofax was sufficient to implement OIL, we find
that Spoofax should especially improve on practical aspects to increase its adoptability in industry.

Keywords: Language workbench, Language engineering, Case study

1 Introduction

Every piece of software is written in one or
more software languages. The most common soft-
ware languages are General Purpose Languages
(GPLs), such as C++, Java, and Python. For
specific purposes, it can be beneficial to design
a tailored language. Such a language is called

a Domain-Specific Language [25] (DSL). Com-
pared to GPLs, DSLs promise to improve the
software engineering process, e.g., by reducing
development and maintenance effort when imple-
menting (domain-specific) software. They are also
considered to be more suitable for communi-
cation between software engineers and domain
experts [9].

1

Springer Nature 2021 LATEX template

2 title

To support the creation and deployment of
DSLs, language workbenches have been devel-
oped [24, 28, 30]. Language workbenches are
specifically designed for the development of a
DSL. This includes the DSL’s syntax, from which
parsers can be derived automatically, as well as its
semantics, e.g., by means of a translation to other
languages. Language workbenches typically also
generate IDEs for the DSLs implemented in them.
Examples of language workbenches are MPS [51],
Xtext [29], Rascal [42], and Spoofax [40].

Although there already is ample literature on
the underlying theory of language workbenches
(e.g., [5, 28]), little is documented about the
actual added value of language workbenches com-
pared to not using language workbenches in an
industrial setting when designing and engineer-
ing DSLs. This is relevant for two main reasons.
On the one hand there is opportunity: there exist
DSL implementations in industry which have not
been developed with the potential benefit of lan-
guage workbenches. On the other hand there are
still unknowns: most language workbenches spawn
from academic environments which can have dif-
ferent views on software engineering effectiveness
compared to a pure industrial setting. How rele-
vant are the benefits of language workbenches in
an industrial setting?

One of the first works that evaluates the added
value of a specific language workbench in an indus-
trial context is the work by Van den Brand et
al. [10]. In this work the authors present some
experiences with using ASF+SDF for railway and
financial domains. A more recent and extensive
industrial case study is described in the work
of Voelter et al. [65]. The authors evaluate the
MPS language workbench with as case the mbeddr
collection of languages under non-trivial require-
ments. The work by Voelter et al. resulted in
meaningful lessons learned for the particular case
study from an industrial perspective. Still, the
authors call for more studies on language work-
bench evaluation to expand our knowledge of the
usefulness of language workbenches for language
engineering in general. This will help industrial
language engineers decide when and how to use
language workbenches.

We present such an evaluation of the Spoofax
language workbench in an industrial setting. In
the original work on Spoofax [40], the authors

claim that Spoofax “enables efficient, agile devel-
opment of software languages with state-of-the-art
IDE support based on concise, declarative specifi-
cations”. From this can be derived that it should
be more productive to implement a DSL with
Spoofax compared to when not using a language
workbench. Although it has been demonstrated
that Spoofax is able to deliver on its original
promises for non-industrial greenfield situations,
e.g., in the area of web programming [34, 35], or
declarative data modeling [38, 39], it is unclear
to what extent the original claims of Spoofax still
hold for our industrial case. This leads to the
following research question:

RQ: How does the productivity of implement-
ing an industrial language in Spoofax compare
to the productivity when using a GPL and
available libraries?

Productivity is about the amount of effort
needed to implement some functionality. As a
proxy for effort we measure code volume, as it
is the only information available to us in this
study that relates to effort and can be measured
objectively.

The industrial case with which we evaluate
Spoofax is the Open Interaction Language (OIL),
a textual language for modeling control software,
developed at Canon Production Printing1. Before
the implementation of OIL in Spoofax was cre-
ated, a design of OIL already existed based on
XML, along with an implementation in Python.
This makes OIL a typical industrial case, in the
sense that the new implementation must fit into
an existing software ecosystem which is used to
create commercial products.

The industrial context requires a number of
features for the implementation of OIL. In partic-
ular, with the migration to Spoofax, the original
XML syntax should be supported alongside a new
more user friendly syntax. OIL’s syntax allows the
user to leave out boilerplate information, which
the implementation needs to make explicit. The
well-formedness, name binding, and typing of an
OIL specification should be statically checked and
errors should be reported to the user. OIL specifi-
cations depend on modules and interfaces defined
in another language called Interface Definition

1https://cpp.canon

https://cpp.canon

Springer Nature 2021 LATEX template

title 3

Language (IDL). Finally, the Spoofax implemen-
tation of OIL should be able to generate code,
both for the execution and the verification of OIL
specifications.

Based on the aforementioned requirements and
earlier non-industrial evaluations of Spoofax, in
this paper we evaluate how well Spoofax can
cope with the complexity and scale of the indus-
trial OIL case study. The development of OIL
in Spoofax, executed by five developers over
more than four years, allows us to make inter-
esting observations on language engineering, dis-
till strengths and weaknesses of Spoofax, derive
lessons learned for future language engineering
efforts, and propose areas of future work to
improve the language workbench.

Outline

This paper is structured as follows. First we pro-
vide background on Spoofax in Section 2 and on
OIL in Section 3. We dive into the context and
setup of the case study and we elaborate on our
research question in Section 4. Next, we discuss
the language engineering aspects of OIL’s imple-
mentation in Spoofax in separate sections, and we
evaluate our research question for each aspect at
the end of those sections. We discuss the imple-
mentation of OIL’s concrete syntax in Section 5. In
Section 6 we discuss the abstract syntax represen-
tation of OIL. Then in Sections 7 and 8 we discuss
the implementation of the static and dynamic
semantics of OIL, respectively. In Section 9 we
summarize our findings regarding the research
question and discuss threats to validity. We dis-
cuss experiences that are not directly related to
the research question in Section 10, as well as list
our lessons learned and provide a research agenda
for Spoofax. We position our work with that of
others in Section 11. We conclude in Section 12.

2 Spoofax

In this section, we provide background informa-
tion on Spoofax, which is useful for understanding
the way that OIL is implemented in Spoofax in
later sections. Spoofax2 is an open source language
workbench that promises to support the devel-
opment of textual DSLs by offering meta-DSLs

2https://spoofax.dev

(DSLs for specifying DSLs) for concise, declarative
specifications of languages and IDE services [64].
The idea of declarative language definition is that
language developers focus on the high-level spec-
ification of their languages rather than focusing
on the low-level implementation of, e.g., parsing
or type checking algorithms. Based on language
aspects specifications in the meta-DSLs, Spoofax
automatically generates an IDE.

Spoofax is developed at the Delft University
of Technology since 2007 [40], building on pre-
vious work on syntax definition with SDF2 [61]
and program transformation with the Stratego XT
toolset [14]. Besides SDF2 and Stratego, the first
version of Spoofax offered meta-DSLs for static
semantics (NaBL2 [2]), editor services (ESV), and
testing (SPT). Spoofax Core [45], implemented in
Java, integrates the meta-DSLs and provides a
build system to automatically transform language
specifications into implementations. Spoofax is
primarily deployed as a plugin for the Eclipse
IDE3.

Developments on Spoofax since the introduc-
tion of the language workbench include:

• Syntax. The syntax definition formalism
SDF3 [59] with support for template-based syn-
tax definition.

• Transformation. The program transformation
language Stratego 2 with support for gradual
typing [56] and incremental builds [57].

• Static Semantics. Static semantics specifica-
tion (NaBL2 and its successor Statix [54], both
based on a scope graph model [50]) and support
for incremental type checking [74].

• Data-Flow. The data-flow analysis specifica-
tion language FlowSpec [58].

• Incremental Builds. Interactive software
development pipelines with PIE [46].

• IDE support. Static semantic code comple-
tion [52].

• Testing Language test suites with the Spoofax
Testing language (SPT).

The case study in this paper has been per-
formed with Spoofax version 2 [45], making use
of the SDF3, NaBL2, Stratego, ESV, and SPT
meta-DSLs. Spoofax version 3 (including Stratego
2, Statix, and PIE) was under development during
the execution of this study, and could therefore

3https://www.eclipse.org/ide/

https://spoofax.dev
https://www.eclipse.org/ide/

Springer Nature 2021 LATEX template

4 title

let x = 20 + 1 in 2 * x

Exp(

Let(

"x"

, Add(Int("20"), Int("1"))

, Mul(Int("2"), Ref("x"))

)

)

Fig. 1: An example program in EXP and its
corresponding abstract syntax in ATerm.

not yet be considered. In Section 10, we discuss
how our findings relate to Spoofax 3.

In the remainder of this section, we discuss
both conceptual and practical aspects of language
engineering with Spoofax, which are important
for understanding the Spoofax implementation of
OIL. Also, we will further introduce the meta-
DSLs for the language aspects that are relevant in
our case study. We use a simple expressions lan-
guage EXP as a running example, which supports
integers, addition, multiplication, let bindings and
references. Fig. 1 depicts an example EXP pro-
gram and its corresponding abstract syntax.

2.1 Anatomy of Spoofax Projects

A Spoofax project consists of source files and con-
figuration files. The source files primarily consist
of specifications in the meta-DSLs. For integrating
a language implementation with external libraries,
Java source files can be included as well. The lan-
guage build and dependencies are configured in
the configuration files. All sources files are tex-
tual and are therefore typically stored in a version
control system.

Based on the source files and configuration
files, Spoofax generates language artifacts such as
parse tables, AST schemas, and ultimately the
complete language implementation in the form
of an Eclipse plugin. During a language build,
besides the sources that the language developer
writes, additional sources are generated which can
be referenced by other specifications or form an
input for a further build step. For example, signa-
tures are generated automatically from the SDF3
grammar and can be used in Stratego to define
transformation rules on. These generated sources

are stored separately from the main source files
and are typically ignored in version control.

Projects can define a complete language, define
(library) sources intended for reuse by other lan-
guage projects, or only define a transformation
for an existing language. Through dependencies
between projects, different forms of language com-
position can be realized. For example, a language
project can re-use definitions of another language
by adding that project as a dependency. Also,
a project can contribute a transformation to an
existing language, such that more functionalities
become available for a language, independent from
its original implementation.

2.2 Data Representation with
ATerms

The language ATerm (Annotated Terms) [11]
defines the representation of abstract syntax trees
(ASTs) and data used by most other meta-DSLs.
These ASTs and data consist of terms (often
referred to as “ATerms”) that can be annotated
with additional data. A term can either be a num-
ber, a string, a list of terms, or a constructor
with zero or more subterms. The annotations on
terms are typically used to store metadata, such as
static analysis results. ATerm serves as the “glue”
between the meta-DSLs. For example, the out-
put of an SDF3-based parser is an AST expressed
in ATerm. ATerm is the object language for the
Stratego transformation meta-DSL, i.e., Stratego
defines transformation rules for terms expressed
in ATerm. Also, name binding and typing speci-
fications in NaBL2 consist of rules that apply to
ATerm patterns.

Terms must adhere to many-sorted algebraic
signature [44] definitions which are defined in
Stratego. The signatures define sorts and con-
structors. Sorts represent syntactic categories
(also known as non-terminals, e.g., Exp) and con-
structors specify instances of these sorts (e.g.,
Add). The snippet in Fig. 2 contains signature def-
initions for EXP. It defines unary Int and Ref

constructors for the sort Exp, binary Add and Mul

constructors for the sort Exp, and a ternary Let

constructor. Fig. 1 contains an example term that
conforms to the signatures.

Springer Nature 2021 LATEX template

title 5

signature

constructors

Int : INT -> Exp

Add : Exp * Exp -> Exp

Mul : Exp * Exp -> Exp

Let : ID * Exp * Exp -> Exp

Ref : ID -> Exp

Fig. 2: A Stratego code snippet that defines an
AST schema for EXP.

2.3 Syntax Definition with SDF3

SDF3 [59] is a syntax definition language that
covers more than realizing a parser implementa-
tion based on a grammar specification. From an
SDF3 grammar, the following language implemen-
tation artifacts are generated automatically: an
AST schema, a parser with error recovery, a pretty
printer, a parenthesizer, syntax highlighting, and
syntactic code completion. The SDF3 formalism
extends context-free grammars [20] with high-
level syntax definition features such as constructor
declarations (used for AST schema generation in
the form of ATerm signatures), disambiguation
constructs (for disambiguation and generating a
parenthesizer), and templates (for deriving pretty
printers) [66].

See Fig. 3 for two modules of SDF3 that define
the syntax of EXP. The second module (exp)
imports the first module (lex). For example, in
exp, the rule on line 7 defines a rule for integers,
using the lexical syntax for INT defined in lex. The
rules on lines 8-9 are defined to be left-associative
using the {left} disambiguation construct. The
left-hand sides of grammar rules consist of a sort
(e.g., Exp) and optionally a constructor declara-
tion (e.g., .Add). The signatures of Fig. 2 are
generated automatically based on the constructor
declarations in this grammar.

In addition to associativity declarations for
disambiguation of an operator with itself, the
context-free priorities section defines disam-
biguation through priorities between operators.
In the example, Exp.Mul has higher priority
than Exp.Add which has higher priority than
Exp.Let (line 16). Priority declarations are tran-
sitive. When importing modules in SDF3, their
disambiguation rules are imported with them as
well. Note that this may create new ambiguities

1 module lex

2

3 lexical syntax

4

5 INT = "-"? [0-9]+

6 ID = [a-zA-Z] [a-zA-Z0-9\]*

7 LAYOUT = [\ \t\n\r]

1 module exp

2

3 imports lex

4

5 context-free syntax

6

7 Exp.Int = INT

8 Exp.Add = [[Exp] + [Exp]] {left}

9 Exp.Mul = [[Exp] * [Exp]] {left}

10 Exp.Let =

11 [let [ID] = [Exp] in [Exp]] {non-assoc}

12 Exp.Ref = ID

13

14 context-free priorities

15

16 Exp.Mul > Exp.Add > Exp.Let

Fig. 3: Two SDF3 code snippets that define the
syntax for EXP.

between grammar elements of different modules,
so additional disambiguation rules may need to be
defined.

SDF3-based parsing involves the process of
imploding, i.e., transforming parse trees into
ASTs. Only the nodes in the parse tree that are
parsed based on grammar rules for which a con-
structor has been declared end up in the AST,
which filters out irrelevant details of the con-
crete syntax such as white space and comments.
This filtering is necessary because SDF3 uses a
scannerless parsing approach [12, 61], a founda-
tional characteristic which makes SDF3 grammars
composable.

During parsing and imploding, the created
AST terms are annotated with the origin loca-
tion of the parsed syntactic element in the input
program, which is the first step of origin track-
ing [23]. These origins can be maintained during
transformations, which is useful for, e.g., error
reporting.

To adapt the formatting of the text produced
by the pretty printer that is generated from the

Springer Nature 2021 LATEX template

6 title

s1

s2

x

x

Fig. 4: The scope graph that corresponds to the
example EXP program of Fig. 1. Scope s1 is the
root scope node and corresponds to the while pro-
gram. Scope s2 is the scope introduced for the
body of the let operator, consisting of the expres-
sion x = 20+1. The declaration of x is represented
by the outgoing edge from scope s1. The reference
of x is represented by the incoming edge to scope
s2. This name binding in this program is valid, as
there exists a path from the reference of x to its
declaration.

SDF3 grammar, one can enhance the SDF3 gram-
mar with templates. The example of Fig. 3 uses
such templates for Add, Mul and Let, which is
indicated by the square brackets that are placed
around the right-hand sides of the grammar rules.
Any formatting between these square brackets,
including spaces, tabs, and newlines, will be used
by the pretty printer. In case square brackets are
part of the grammar definition, angular brackets
can be used instead.

2.4 Static Semantics with NaBL2

NaBL2 [2, 3], pronounced as “enable two”, is a
static semantics definition language which covers
name binding and type systems based on the scope
graph model [50]. Given an NaBL2 specification,
programs are transformed into constraints and a
scope graph which captures the binding structure
and typing of the program. Name resolution cor-
responds to finding a path in the graph from a
reference to its declaration. An NaBL2 specifica-
tion contains constraint generation rules for every
term in the AST schema of the language, with con-
ditions that specify how the term contributes to
scope graph generation, name binding, and typing.

Fig. 4 depicts the scope graph that corresponds
to the example EXP program of Fig. 1. Each term
is made part of a scope, which is a node in the
scope graph. Declarations and references (e.g., of
variables) are also added as nodes in the scope
graph. For declarations in a scope, we add a node
for the declaration with an edge from the scope
to the declaration. For language constructs that

introduce a deeper level in the overall scoping
structure, the scope is added to the graph as a
new node with an edge to the parent scope. For a
reference, a node is added with an edge from the
reference node to the node of the scope the ref-
erence is made from. Name resolution then boils
down to finding a path in the scope graph from
the reference to the corresponding declaration.

By assigning types to terms, type analysis can
check or infer types. Conditions in constraint rules
can be extended with an error message applied
to a term. Whenever a condition fails, the error
message can be displayed on the origin of the term
using origin tracking.

See Fig. 5 for an NaBL2 snippet that speci-
fies name and typing rules for EXP. Four rules
are defined, identified in double square brackets
(lines 2, 4, 9 and 17). The rule for term Int (line
2) assigns the type TInt to the term. The rule
for Add recursively specifies the semantics for its
sub-expressions by calling constraint rules on exp1

and exp2 using double square brackets (lines 5-
6). Note that no rule references are used: the rule
that needs to be applied depends on the outermost
constructor of the sub-expressions. Afterwards it
is defined that their types should be the same (line
7). For more complex type systems, it is possible
to define relations between types. This enables, for
instance, the addition of an integer with a float
and the computation of the resulting type. The
rule for Mul has been omitted as it is similar to
the rule for Add.

The rule for let bindings (line 9) introduces a
new scope s’ (line 10), sets s as the parent scope
of s’ (line 11) and attaches a declaration node
Var{x} for name x in the namespace Var to scope
s’ using an arrow pointing towards the declara-
tion node (<-, line 12). It then analyses the first
expression within scope s (line 13) and assigns
the derived type ty1 to the declaration node (line
14). Lastly, it continues the analysis with the sec-
ond expression within scope s’ (line 15). The rule
for variable references (line 17) first attaches a
reference node Var{v} for name v in the names-
pace Var on scope s using an arrow pointing away
from the reference node (->, line 18). Afterwards
it is checked whether some declaration d exists
for reference Var{v} using operator |-> (line 19),
effectively checking whether there exists a path
through the scope graph from the reference node
to a declaration node with the same name and

Springer Nature 2021 LATEX template

title 7

1 rules

2 [[Int() ^ (s) : TInt()]].

3

4 [[Add(exp1, exp2) ^ (s) : ty1]] :=

5 [[exp1 ^ (s) : ty1]],

6 [[exp2 ^ (s) : ty2]],

7 ty1 == ty2 | error $[Type mismatch:

cannot add [ty2] to [ty1]].

8

9 [[Let(x, exp1, exp2) ^ (s) : ty2]] :=

10 new s',
11 s' ---> s,

12 Var{x} <- s',
13 [[exp1 ^ (s) : ty1]],

14 Var{x} : ty1,

15 [[exp2 ^ (s') : ty2]].

16

17 [[Ref(v) ^ (s) : ty]] :=

18 Var{v} -> s,

19 Var{v} |-> d | error $[Cannot resolve

[v]] @ v,

20 d : ty.

Fig. 5: An NaBL2 code snippet that declares
name binding and typing for EXP.

strategies

simplify0 = bottomup(try(simplify0-term))

rules

simplify0-term: Add(Integer("0"), x) -> x

simplify0-term: Add(x, Integer("0")) -> x

simplify0-term: Mul(_, Integer("0")) ->

Integer("0")

simplify0-term: Mul(Integer("0"), _) ->

Integer("0")

Fig. 6: A Stratego code snippet that defines trans-
formations on EXP for simplifying expressions.

namespace. We then require that this declaration
d has type ty (line 20), which is the same type as
the Ref term that the rule is defined on (line 17).

2.5 Transformation with Stratego

Stratego [14, 63] is a transformation lan-
guage based on term rewriting and programmable
rewriting strategies. Rewrite rules specify how a
single input term transforms into an output term.

strategies

print-exp = bottomup(print-term)

rules

print-term: Int(x) -> x

print-term: Ref(v) -> v

print-term: Add(x, y) -> $[[x] + [y]]

print-term: Mul(x, y) -> $[[x] * [y]]

print-term: Let(v, x, y) -> $[let [v] =

[x] in [y]]

Fig. 7: A Stratego code snippet that defines a
printer for EXP.

These rules can be combined by putting them in
sequence (e.g., r1 ; r2), by non-deterministically
choosing between them (e.g., r1 + r2), or they
can be passed to pre- or self-defined AST traversal
strategies such as topdown(r1) or bottomup(r1).

See Fig. 6 for an example Stratego transfor-
mation for EXP. Strategy simplify0 simplifies
expressions that contain zeroes by performing a
bottom up traversal through the AST and try-
ing to apply rule simplify0-term on every AST
node. The rule simplify0-term is defined four
times, each for a different type of expression that
can be simplified. Each simplify0-term rule is
tried until the AST node matches with the left
hand side of the rule, after which the transforma-
tion is applied. The order in which the rules are
tried is chosen non-deterministically during run-
time. The try rule allows each simplify0-term

rule to fail, which can happen for instance when
the AST node is an Int term, after which it simply
continues with the traversal.

Transformations with Stratego are generally
model-to-model, which can be both endogenous
(source and target are the same language) and
exogenous (source and target are different lan-
guages) [21]. Fig. 6 is an example of an endogenous
model-to-model transformation. It is also possible
with Stratego to define model-to-text transforma-
tions, since a string is a valid term too. Strat-
ego supports such transformations with templates,
denoted with $[..]. A template defines a string
in which variables and transformation rules can be
used to create substrings. See Fig. 7 for a transfor-
mation that prints an EXP AST. Note that given

Springer Nature 2021 LATEX template

8 title

menus

menu: "Simplifications" (openeditor)

action: "Simplify zeroes" =

editor-simplify0

Fig. 8: An ESV code snippet that adds an editor
action to simplify expressions with zeroes in an
EXP specification.

1 language EXP

2

3 test simplify addition with zero [[

4 3 * x + 0

5]] transform "Simplifications / Simplify

zeroes" to EXP [[

6 3 * x

7]]

Fig. 9: An SPT code snippet that defines a test
for simplify0.

the syntax definition of EXP, such a pretty printer
is generated automatically.

2.6 Editor Services with ESV

ESV is a language for defining editor services. An
ESV specification can, e.g., customize syntax high-
lighting coloring and configure editor actions. See
Fig. 8 for an ESV snippet that adds an editor
action for EXP. This snippet defines a new menu
called Simplifications, consisting of an action
Simplify zeroes. This action is mapped to the
transformation editor-simplify0 (definition not
explicitly shown), which applies simplify0 to an
EXP specification. These actions can be invoked
in the IDE via the menu Simplifications /

Simplify zeroes whenever an EXP file is in
focus.

2.7 Testing with SPT

SPT [41] is a language testing framework for
languages implemented in Spoofax. In SPT, test
programs can be written and tested for errors
and expected outputs. For testing static analysis,
one can, e.g., provide an incorrect program where
some elements have been marked. Then in the
test expectation one can specify at which of these

markers an error should occur. For testing trans-
formations, one can provide an input program,
an editor action to execute, and an expected out-
put program. Such a test compares the AST that
results from the editor action to the AST that
results from parsing the expected specification, so
the formatting of the provided specifications does
not influence the test.

See Fig. 9 for an SPT snippet that defines
a test for the simplify0 transformation. Line
4 defines the input specification, line 5 defines
the editor action to apply, and line 6 defines the
expected output specification.

3 OIL

We first give an overview of OIL. Afterwards, we
define a number of features that should be realized
by the implementation of OIL in Spoofax.

3.1 History of OIL

OIL, which stands for Open Interaction Language,
is a language developed by Van Gool (co-author)
to model the behavior of control-software systems.
In its early stages, OIL was designed to model
the intended communication behavior between a
group of components, known as a protocol. Later,
OIL was adapted to also enable the modeling of
individual components. Although OIL is devel-
oped at Canon Production Printing, it is not
limited to modeling systems within the printing
domain. The original syntax of OIL is XML based,
but a more user friendly DSL variant was cre-
ated using Spoofax [22]. Though OIL is a textual
language, it was designed to allow for an unam-
biguous visualization, as this is indispensable for
communication between engineers.

With the development of OIL also came
dedicated tooling. This tooling, implemented in
Python, is able to parse and validate OIL speci-
fications. It is a web-based environment in which
OIL specifications can be inspected but not edited;
editing happens inside a separate IDE, typi-
cally Visual Studio. The tooling also supports
the visualization of OIL specifications, as well
as simulation of traces over this visualization.
For OIL component specifications it can generate
executable code, which has been used to imple-
ment several complex software components for

Springer Nature 2021 LATEX template

title 9

printers developed at Canon Production Print-
ing. In this web-based tooling, OIL specifications
can be pretty printed and editor services such
as syntax highlighting and error reporting are
available. In the rest of this document, we refer
to this implementation of OIL as “the Python
implementation”.

3.2 Overview of OIL

OIL is a state machine language that uses vari-
ables to store the current state. These variables
and their values can be represented by areas,
which are connected with transitions that can
specify updates of variables, triggered by the
occurrence of events. In this section, we give an
informal description of the concepts of an OIL
component specification and their semantics that
are relevant for this paper. For a more in depth
description of OIL and a definition of its formal
semantics, see [18].

We use the OIL component specification in
Fig. 10 as running example. This OIL specification
models a printer that, after a client has registered,
can be turned on and off. When it is on, jobs of at
most three sheets can be sent to the printer that
are immediately processed. The printer also keeps
track of its temperature and must be cooled down
if it becomes too hot. See Fig. 11 for a visualization
of the running example.

Each OIL component specification defines a
number of instance variables (lines 9-12), which
store the state that the modeled component is in.
Four types of instance variables are supported:
boolean, enum, integer and component instance
reference. Enum types can be defined within the
specification itself (line 7).

There are three types of areas: regions, states
and zones (lines 14-33). A region always refers to
an enum variable and contains a number of states.
These states each represent a value that the vari-
able of its region can have. A zone has a boolean
expression over variables and is used to restrict
behavior.

The change of values for instance variables is
triggered by the occurrence of events. Each event
has an operation, which refers to the function
being called. This operation may have param-
eters, which make it possible to transfer data
between components. In the context of a compo-
nent, the cause of an event can be either reactive

1 component heat2c
2 {
3 import heat2ci
4 provides heat2ci.server
5 requires heat2ci.client
6

7 enum power {off, on}
8

9 var power : power
10 var client : heat2ci.client
11 var tmp : int32 = 20
12 var sheets : int32 = 0
13

14 state init
15 state active
16 {
17 region power [this.power]
18 {
19 state off ['off']
20 state on ['on']
21 }
22

23 zone power_on [this.power == 'on']
24 {
25 region job
26 {
27 state idle
28 state busy
29 }
30 }
31

32 zone heat [this.tmp < 45]
33 }
34

35 concern REGISTRATION
36 {
37 in init on register_client() assign this.client :=

client go active end
38 }
39

40 concern POWER
41 {
42 in off on turn_on() go on end
43 in on on turn_off() go off end
44 }
45

46 concern JOB
47 {
48 in idle on add_job(nrsheets) if nrsheets > 0 and

nrsheets <= 3 assign this.sheets := nrsheets go busy
end

49 in busy if this.sheets == 0 do [silent] job_printed()
go idle end

50 in busy if this.sheets > 0 at this.client do
sheet_printed(sheetnr = this.sheets) assign
this.sheets := this.sheets - 1 go busy end

51 }
52

53 concern HEAT
54 {
55 in heat on turn_on() assign this.tmp := this.tmp + 5

go heat end
56 in heat if this.tmp > 20 on cool_down() assign

this.tmp := 20 go heat end
57 }
58 }

Fig. 10: The OIL specification for an overheating
printer (in the newer DSL notation).

Springer Nature 2021 LATEX template

10 title

Fig. 11: A visualisation of the example OIL specification of Fig. 10. States that are filled with a color
correspond to the initial state.

or proactive. Reactive events are initiated by the
environment, whereas proactive events are pro-
duced by the component itself, either sent to the
environment or kept internally, the latter are also
known as silent events.

Operations are declared in separate specifica-
tions in a language called IDL, short for Interface
Definition Language (very similar to, but not to
be confused with Microsoft’s IDL4). Each IDL
specification defines a number of modules, which
contain interfaces, which in turn contain declara-
tions of operations, possibly with parameters. A
module may also contain enum type definitions,

4https://learn.microsoft.com/en-us/windows/win32/midl/
midl-start-page

which can be used to define the type of a param-
eter. If one wants to refer to operations within an
OIL component specification, the IDL modules in
which they are defined must be imported (line 3,
Fig. 10). Interfaces in the imported module can
then be provided or required by the component
(lines 4-5). The operation of a reactive event must
be part of a provided interface and the operation
of a proactive event must be part of a required
interface.

The occurrence of an event corresponds to the
firing of transitions labeled with that event (lines
35-57). Each transition has a source area (in),
an event label (on/do), a target state (go) and a
concern (concern), and optionally a guard (if),
assignments (assign), an assertion (assert, not

https://learn.microsoft.com/en-us/windows/win32/midl/midl-start-page
https://learn.microsoft.com/en-us/windows/win32/midl/midl-start-page

Springer Nature 2021 LATEX template

title 11

1 module heat2ci

2 {

3 interface server

4 {

5 register_client(client: heat2ci.client)

6 turn_on()

7 turn_off()

8 add_job(nrsheets: int32)

9 cool_down()

10 }

11

12 interface client

13 {

14 sheet_printed(sheetnr: int32)

15 }

16 }

Fig. 12: The IDL specification on which the OIL
specification of Fig. 10 depends.

in example) and arguments for parameters (line
50, within parentheses).

3.3 Implementation Features

The desired implementation of OIL in Spoofax is
required to realize a number of features. Though
these features may not be complex to implement
individually, the realization of the combination of
these features can be. Below, we elaborate on each
OIL feature (OF).

OF1: Multiple Syntaxes. OIL and IDL both
offer an XML-based and a custom DSL syntax.
Both syntaxes should be implemented; the XML
syntax for backwards compatibility and because it
is easier to parse for external tools, and the DSL
syntax for a better user experience. It should be
possible to transform a specification in one syn-
tax into the other and all transformations to other
targets should be available for both syntaxes.

OF2: Desugaring.OIL specifications allow some
syntactic sugar, mainly in the form of leaving OIL
concepts implicit, which reduces how much a user
needs to write. For instance, in the running exam-
ple, for region job (line 25) the variable reference
is left implicit and for states init, active, idle
and busy (lines 14, 15, 27 and 28) the values are
left implicit, as well as corresponding enum types
definitions. Also, the region for states init and

1 component heat2c
2 {
3 import heat2ci
4 provides heat2ci.server
5 requires heat2ci.client
6

7 enum power {off, on}
8 enum t_root_region {init, active}
9 enum t_job {idle, busy}

10

11 var power : power = 'off'
12 var client : heat2ci.client
13 var tmp : int32 = 20
14 var sheets : int32 = 0
15 var v_root_region : t_root_region = 'init'
16 var v_job : t_job = 'idle'
17

18 region root_region [this.v_root_region]
19 {
20 state init ['init']
21 state active ['active']
22 {
23 region power [this.power]
24 {
25 state off ['off']
26 state on ['on']
27 }
28

29 zone power_on [this.power == 'on']
30 {
31 region job [this.v_job]
32 {
33 state idle ['idle']
34 state busy ['busy']
35 }
36 }
37

38 zone heat [this.tmp < 45]
39 }
40 }
41 ...
42 }

Fig. 13: The first half of the OIL specification of
Fig. 10 after desugaring.

active is left out. See Fig. 13 for how the first
half of the running example would look like after
desugaring. The implementation should be able to
automatically desugar this and make the implicit
information explicit.

OF3: Input Correctness. Not every specifica-
tion is a correct OIL specification in terms of
syntax or static semantics. Checking the static
semantics of an OIL specification involves three
types of analysis: structural checks, name res-
olution and type checking. The implementation
should be able to check whether a specification
meets all syntax and static semantics requirements
and report useful errors to the user if it does not.

Springer Nature 2021 LATEX template

12 title

OF4: Language Interaction. IDL is a stan-
dalone language that can be used for other
purposes than the context of OIL. OIL on the
other hand should depend on IDL, both syn-
tactically and semantically. Syntactically, because
both languages use expressions and we want to
minimize duplicate grammar definitions. Seman-
tically, because module, interface, operation and
parameter names in OIL specifications should
refer to declarations in IDL specifications. The
implementation should reflect this: IDL should be
implemented separately and the implementation
of OIL should depend on the implementation of
IDL. This involves several forms of language com-
position [27] and language modularity [68, Sec.
4.6].

OF5: Multiple Targets. To represent the
dynamic semantics of an OIL specification, it
should be possible to translate OIL into other lan-
guages for which such semantics exists. For the
formal verification of an OIL specification, the
implementation should support a translation to
mCRL2 [36]. For the execution of an OIL spec-
ification, the implementation should support a
translation to GPL code.

4 Case Study Context and
Method

In this section, we first describe the context of
our case study. Next, we elaborate on our method
for investigating the research question. Lastly, we
describe the setup of our case study.

4.1 Context

Our evaluation focuses on two implementations of
OIL, the Python implementation and the Spoofax
implementation. The Python implementation was
initially developed around 2011 by the third
author and is still maintained by the third author
to this day. The first author also worked on the
Python implementation for a few months in 2016
as part of an internship within Canon Production
Printing. The second author initiated the Spoofax
implementation in 2018. A few months later, the
first author also joined on the Spoofax implemen-
tation and both first and second author have been
maintaining this implementation ever since. Dur-
ing this time, the third author was involved in

the design decisions for the Spoofax implementa-
tion and some master students have contributed
as well [19, 32, 67].

Before the Spoofax implementation was cre-
ated, the second author was already familiar with
language development in Spoofax. The second
author has also been a contributor to Spoofax
since before this study. The first author had lim-
ited experience in language development and no
experience with Spoofax, but had some previ-
ous experience on rewriting and formal semantics.
During the development of the Spoofax implemen-
tation, the developers had a close connection to
the Spoofax development team for any questions
and advice. All involved master students had no
experience with Spoofax before they joined.

The third author is the creator of OIL, inspired
by his prior research in the field of the specification
of behavior [33]. The first author got experience
with OIL during the internship, in which the
goal was to understand and formalize the seman-
tics of OIL by means of a(n) (initial) translation
to mCRL2, on which the current translation to
mCRL2 in Spoofax is based [17]. Prior to that, the
first author had experience with behavior specifi-
cation languages, specifically mCRL2. The second
author had little experience with behavior speci-
fication languages before the development of OIL.
All involved master students had no experience
with OIL before they joined, but most had some
experience with behavior specification languages.

4.2 Research Method

Productivity is about the amount of effort needed
to implement some functionality. As proxy for
effort we use code volume, as it is the only infor-
mation available to us in this study that relates
to effort. To represent functionality, we collect
software artifacts relevant to language engineering
that an implementation produces, such as parsers
or transformations.

We compare the implementation of OIL in
Spoofax with the implementation of OIL in
Python. We do this by first gathering all arti-
facts relevant to language engineering. Then, for
each artifact implemented in both implementa-
tions with similar functionality, we measure the
code volume that is used to implement it and
compare the measured code volume between the
two implementations. In case parts of the code

Springer Nature 2021 LATEX template

title 13

volume are reused for multiple artifacts or other
projects, we measure it separately. Any dissim-
ilarities between implementations of a language
engineering artifact are discussed.

We use the Source Lines of Code [49] (SLOC)
metric for measuring code volume, which excludes
blank lines, comments, and lines only contain-
ing brackets from counting. In particular, we use
the Physical SLOC metric [49], which considers
each non-excluded line as a single line. This is in
contrast to the Logical SLOC metric [49], which
counts executable statements of which there could
be multiple on a single physical line. Since the
Spoofax meta-DSLs are declarative and the code
written in these meta-DSLs do not necessarily
correspond directly to statements or units of exe-
cution, we cannot measure Logical SLOC for both
implementations. In the rest of this paper, we use
“SLOC” to refer to Physical SLOC.

We are aware that using code volume, quanti-
fied using a variant of the Lines of Code metric, is
controversial and comes with advantages and dis-
advantages [4, 8, 49, 69]. However, an important
motivation for using code volume per artifact as
proxy for productivity is that it is an objective
and repeatable measure and that it is applicable to
both the Python and the Spoofax implementation.

Comparing code volume of the two implemen-
tations is only sensible when the volumes corre-
spond to code that implements the same function-
ality. Since the two implementations do not always
implement the exact same functionality, we first
identify commonalities and differences before mea-
suring volume. Then, in each implementation’s
code volume measurement, we subtract lines for
features or language constructs that are not in the
other implementation to end up with a comparison
of code that implements the same functionality.
We do these measurements separately for artifacts
in both implementations. We analyze where differ-
ences in code volumes originate from and to what
extent parts of the implementations are reusable.
We consider code to be reusable if it is generic
enough such that it can be reused for other pur-
poses, such as other language implementation, or
for purposes outside of OIL altogether.

Depending on the artifact that is being com-
pared, the relevant code consists of whole files or
parts of files. When measuring code volume of

whole files, we use the cloc tool5 for the mea-
surements, which counts SLOC and has builtin
support for Python. To use this tool on measuring
code written in Spoofax meta-DSLs, we manu-
ally add language definitions to cloc such that the
tool can properly detect which lines need to be
excluded from counting, such as lines with a sin-
gle square bracket. When measuring code volume
in parts of files, we count lines of code by hand.
With the code measurements that we give, we
also go into more detail on how we came to these
measurements.

4.3 Setup

We answer the research question for the imple-
mentation aspects of language engineering sepa-
rately. These are concrete syntax, abstract syntax,
static semantics, dynamic semantics and design
environment [71]. Since the design environment,
which is about tool support for the language, is
claimed to be (mostly) automatically derived by
Spoofax, we do not consider this aspect separately,
but as part of the other four aspects instead.
Since the Python implementation does not have a
dedicated text editor, this will only concern edi-
tor services such as syntax highlighting. Thus, we
consider the following four aspects:

• Concrete syntax (Section 5): the textual rep-
resentation of a language.

• Abstract syntax (Section 6): the internal rep-
resentation of a language, including desugaring
transformations defined on it.

• Static semantics (Section 7): the validity of
specifications in a language.

• Dynamic semantics (Section 8): the execu-
tion of specifications in a language.

In each of these four sections we first highlight
parts of the implementation that are relevant to
the aspect. Afterwards, we evaluate Spoofax by
answering the research question in the context of
the aspect on a number of parts of the implemen-
tation, which we call evaluation points. For each
evaluation point we structure the evaluation in the
following parts:

• Question: what do we want to evaluate?
• Method: how are we going to evaluate this?

5https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

Springer Nature 2021 LATEX template

14 title

• Results: what is the information from the
implementation(s) that is relevant for this eval-
uation point?

• Analysis: what does this information mean and
how does it answer our question?

• Conclusion: what does the analysis give as
answer to the question?

• Discussion: What else is relevant for this eval-
uation point?

We combine and summarize the findings of the
evaluation points in Section 9.1. Since code volume
per artifact does not exactly correspond to pro-
ductivity [4, 8, 49, 69], our measurements are not
directly representative for the research question.
Therefore, in Section 9.2, we discuss the threats to
the validity of our findings and how we have tried
to counter them.

While our evaluation is mostly based on draw-
ing conclusions from a quantitative analysis, we
also make various observations on qualitative
aspects. In Section 10 we discuss those obser-
vations on qualitative aspects. We discuss the
strengths and weaknesses of Spoofax that we expe-
rienced and list the lessons we learned. We also
propose an agenda of future work for Spoofax
and discuss how some of the limitations that we
encounter are already fixed in the next version of
Spoofax.

5 Concrete Syntax

The Spoofax implementation of OIL comprises
multiple syntactical (sub)languages for which the
grammar is defined with SDF3. It supports the
original XML syntax of OIL and IDL as supported
by the Python implementation, as well as a newly
designed custom syntax, resulting in a total of
four input languages and realizing OF1 (Multiple
Syntaxes). These input languages share common
grammar rules for expressions, which touches on
OF4 (Language Interaction).

In this section, we describe the design of the
existing and new syntaxes in Spoofax, their mod-
ular implementation, and the reuse of shared
expression grammar rules and its implications on
disambiguation. Also, we describe concrete syntax
in the Python implementation and indicate how
it differs from the Spoofax implementation. These
descriptions form the sources of information for
the evaluation that follows, where we answer the

1 context-free syntax

2

3 Transition.XMLTransitionSimple = [

4 <transition[{TransitionAttr ""}+]/>

5]

6

7 Transition.XMLTransitionComplex = [

8 <transition[{TransitionAttr ""}*]>

9 [TransitionSelf?]

10 [{TransitionParameter "\n"}*]

11 [TransitionReturn?]

12 [TransitionGuard?]

13 [TransitionAssignments?]

14 [TransitionAssert?]

15 </transition>

16]

17

18 TransitionAttr.XMLMessageCauseAttr =

[cause="[Cause]"]

19 TransitionAttr.XMLMessageOperationAttr =

[operation="[ID]"]

20 TransitionAttr.XMLSourceAttr =

[source="[AreaReference]"]

21 TransitionAttr.XMLTargetAttr =

[target="[AreaReference]"]

Fig. 14: An SDF3 code snippet of the grammar
of transitions in OILXML.

research question on productivity for the concrete
syntax aspect of OIL’s implementation in Spoofax.

5.1 From XML to Custom Syntax

Implementing a language with concrete syn-
tax in Spoofax requires a grammar written in
SDF3. The grammar specific for the OILXML sub-
set of XML consists of a grammar rule for each
XML element, with, if applicable, a list of spe-
cific attributes of the element and, if applicable,
a list of child elements. Fig. 14 shows an excerpt
of the SDF3 grammar of OILXML for the transi-
tion concept (see Section 3.2). Fig. 16a contains an
example transition in OILXML and Fig. 16c con-
tains the corresponding abstract syntax, expressed
in ATerm (see Section 2.2).

The original Python implementation uses
XML as its syntax because of two reasons. First,
other projects at Canon Production Printing
already used XML and thus engineers are familiar
with it. Second, for XML an off-the-shelf parser

Springer Nature 2021 LATEX template

title 15

1 context-free syntax // Transitions

2

3 Transition.DSLTransition =

4 [[{TransitionElement " "}+] end]

5

6 TransitionElement.DSLMessage =

7 [[MessageCause] [MessageEventType?]

[MessageOperation?]]

8

9 MessageCause.DSLMessageCause = Cause

10 Cause.DSLReactive = [on]

11 Cause.DSLProactive = [do]

12

13 TransitionElement.DSLSource =

14 [in [AreaReference]]

15 TransitionElement.DSLTarget =

16 [go [AreaReference]]

Fig. 15: An SDF3 code snippet of the grammar
of transitions in OILDSL.

could easily be used. However, writing XML spec-
ifications by hand is not user friendly [31, p. 101].
Although a custom syntax was desired already in
the Python implementation to improve usability,
implementing it was considered too much work.
With Spoofax’s language-oriented programming
view [70], re-implementing OIL in Spoofax made
it much more feasible to design a custom syntax
for OIL, dubbed “OILDSL”.

The most prominent problem of XML syn-
tax is the syntactic noise of XML elements and
attributes. Still, the same high-level structure of
OIL’s concepts from OILXML was used as a
basis for designing the new syntax. By doing so,
the abstract syntax of both syntaxes are simi-
lar, which eases forward and backward migration
between both syntaxes. Without the noise of XML
elements in OILDSL, the syntax for transitions
becomes simpler; XML open and closing elements
are replaced with simple keywords and brackets.
Fig. 15 shows an excerpt of the SDF3 grammar for
transitions in OILDSL. Fig. 16b shows the con-
crete syntax in OILDSL that corresponds to the
OILXML variant in Fig. 16a, and Fig. 16d depicts
the corresponding AST.

<transition cause="reactive"

operation="turn_on"

source="off" target="on"/>

(a) Example transition in OILXML.

in off on turn_on() go on end

(b) The transition of (a) translated to OILDSL.

XMLTransitionSimple(

[XMLMessageCauseAttr(XMLReactive())

, XMLMessageOperationAttr("turn_on")

, XMLSourceAttr(AreaReference(["off"]))

, XMLTargetAttr(AreaReference(["on"]))

]

)

(c) The OILXML AST that corresponds to (a).

DSLTransition(

[DSLSource(AreaReference(["off"]))

, DSLMessage(

DSLMessageCause(DSLReactive())

, None()

, Some(DSLMessageOperation("turn_on",

[], None()))

)

, DSLTarget(AreaReference(["on"]))

]

)

(d) The OILDSL AST that corresponds to (b).

Fig. 16: An example transition in OILXML and
OILDSL with the corresponding ASTs.

5.2 Composed Grammars and
Disambiguation

The four input languages (IDLXML, IDLDSL,
OILXML and OILDSL) share parts of their gram-
mars, especially in the context of expressions: the
expression grammar of OIL extends the expression
grammar of IDL, and the XML and DSL expres-
sion grammars only differ in a few operators. To
prevent the definition of duplicate grammar rules
across the SDF3 grammar definitions of the input
languages, the grammar definitions are split up
into several reusable modules.

See Fig. 17 for all SDF3 modules that
define grammar rules for expressions. Mod-
ules idl/xml/exp, idl/dsl/exp, oil/xml/exp

and oil/dsl/exp define the expression grammar
for IDLXML, IDLDSL, OILXML and OILDSL

Springer Nature 2021 LATEX template

16 title

idl/shared/exp

idl/shared/lexical

oil/shared/exp

idl/xml/exp idl/dsl/exp

oil/xml/exp oil/dsl/exp

Fig. 17: A (simplified) import graph of IDL’s
and OIL’s expression grammars, that depicts how
modules are reused. Node labels correspond the
SDF3 module names. Arrows mean “imports”.

respectively. Shared grammar is defined in sepa-
rate modules and reused for multiple grammars
by means of import statements. As an example,
Fig. 18 shows the composition of the IDLXML
expression grammar with the shared OIL expres-
sion grammar (module oil/shared/exp) to
obtain the OILDSL expression grammar in SDF3.
The XML specific grammar rules are defined once
for IDLXML in module idl/xml/exp and are
reused for OILXML by importing them in mod-
ule oil/xml/exp. Also, the OIL-specific gram-
mar rules, used for both OILDSL and OILXML,
are imported from module oil/shared/exp.
Together, both imported modules form the expres-
sion grammar of OILXML.

Module idl/xml/exp has emerging ambigui-
ties between the XML-specific operators and other
operators. Syntactical ambiguity is when a single
input program can be parsed to multiple differ-
ent trees using the same grammar. For example,
1 + 2 >= 3 could be parsed in two ways:
(1 + 2) >= 3 and 1 + (2 >= 3). With
priorities in SDF3, one can define the relative
precedence of expression operators. Since prior-
ities are transitive, only priorities with respect
to direct neighbors in the priority order (opera-
tors Plus/Minus and Eq/Neq) are required for the
new operators. Because Plus gets a higher priority
than XMLGeq, the previous example will be parsed
as (1 + 2) >= 3. In module oil/xml/exp, no

1 module idl/xml/exp

2

3 imports idl/shared/exp

4

5 context-free syntax

6 Exp.XMLLt = [[Exp] < [Exp]] {left}

7 Exp.XMLLeq = [[Exp] <= [Exp]] {left}

8 Exp.XMLGt = [[Exp] > [Exp]] {left}

9 Exp.XMLGeq = [[Exp] >= [Exp]] {left}

10

11 context-free priorities

12 { left: Exp.Plus Exp.Minus } >

13 { left: Exp.XMLLt Exp.XMLLeq Exp.XMLGt

Exp.XMLGeq } >

14 { left: Exp.Eq Exp.Neq }

1 module oil/shared/exp

2

3 imports idl/shared/Lexical

4 imports idl/shared/exp

5

6 context-free syntax

7 // OIL-specific expressions

8 Exp.Reference = ID

9 Exp.Old = [[Exp]']
10

11 context-free priorities

12 Exp.Has >

13 Exp.Old >

14 { left: Exp.Not Exp.Length }

1 module oil/xml/exp

2

3 imports idl/xml/exp

4 imports oil/shared/exp

Fig. 18: SDF3 modules that define the expres-
sions syntax for OILXML (simplified). The
Exp.Reference constructor defines a variable ref-
erence using the lexical ID sort. The Exp.Old

constructor defines a suffix operator for referenc-
ing old values of a variable, which can be used in
assertions.

additional disambiguation is required, as no more
new combinations of expression operators arise
and no other syntactical ambiguities emerge.

5.3 The Python Implementation

Springer Nature 2021 LATEX template

title 17

1 <metamodel name="oil">

2 <regexp name="identifier" pattern="[_A-Za-z][_0-9A-Za-z]*">

3 <documentation>A standard programming identifier.</documentation>

4 </regexp>

5 ...

6 <parexp name="expression">

7 <level>

8 <operator symbol="number" pattern="0[1-9][0-9]*"/>

9 <operator symbol="new" pattern="new {qualified_identifier}"/>

10 <operator symbol="identifier" pattern="{identifier}"/>

11 ...

12 </level>

13 ...

14 <level>

15 <operator symbol="_+_"/>

16 <operator symbol="_-_"/>

17 </level>

18 <level>

19 <operator symbol="_==_"/>

20 <operator symbol="_!=_"/>

21 <operator symbol="_<=_"/>

22 <operator symbol="_>=_"/>

23 <operator symbol="_<_"/>

24 <operator symbol="_>_"/>

25 </level>

26 <level>

27 <operator symbol="_and_"/>

28 </level>

29 <level>

30 <operator symbol="_or_"/>

31 </level>

32 ...

33 </parexp>

34 ...

35 <entity name="transition">

36 <documentation>A transition specifies a rule that indicates for a certain action when

37 and how variables change.</documentation>

38 <generalization entity="actionable"/>

39 <generalization entity="compositional"/>

40 <generalization entity="concernable"/>

41 <child entity="self" lower="0" upper="1"/>

42 <child entity="argument" lower="0" upper="inf"/>

43 <child entity="result" lower="0" upper="1"/>

44 <child entity="guard" lower="0" upper="1"/>

45 <child entity="assignment" lower="0" upper="inf"/>

46 <child entity="assertion" lower="0" upper="1"/>

47 </entity>

48 ...

49 </metamodel>

Fig. 19: An excerpt of the Python implementation’s metamodel for OIL, expressed in a custom chosen
subset of XML. OIL specifications are checked to conform with this metamodel using a handwritten but
generic Python script.

Springer Nature 2021 LATEX template

18 title

The Python implementation only supports
IDLXML and OILXML. The parser for these lan-
guages consists of two stages. First, the XML
structure is parsed using the Minidom library6.
Second, the expressions inside XML elements are
parsed using the Pyparsing library7. For both
stages, the implementation uses a custom layer on
top of the libraries to support grammar specifi-
cation and parser implementation. For example,
the Python implementation uses a metamodel
expressed in a custom XML subset that defines the
restrictions of OILXML with respect to generic
XML.

Fig. 19 shows an excerpt of this metamodel.
Lines 2–4 defines a regular expression for identi-
fiers that can be referred to in other parts (see,
e.g., line 10). Lines 6–33 define expressions, in
which the order of levels of operators indicate the
precedence between operators. Lines 35–47 defines
the transition concept. A Python script parses this
metamodel and checks for an input OIL program,
parsed using Minidom, whether it conforms to the
metamodel. Helper functions on top of Pyparsing
ease the definition of expression grammar rules,
e.g., by automatically allowing whitespace around
operators. The levels of operators are used to
define precedence in Pyparsing. The custom layer
is not specific to OIL and can be reused for other
XML languages with embedded expressions.

In Section 3.1 we have described the Python
implementation’s environment for viewing and
editing OIL specifications. Several editor services
related to viewing and editing concrete syntax
similar to those in regular IDEs are available,
which we detail below. For viewing OIL specifica-
tions, the Python implementation supports pretty
printing and origin tracking (for error reporting;
see Section 2.3), which are implemented manually.
Both pretty printing and origin tracking are imple-
mented in Python based on the data structures
that result from the parsers.

For editing OIL specifications, the Python
implementation has limited custom support.
The web-based Python implementation does not
include an editor, so external tools are used
instead for editing OIL specifications, typically the
Visual Studio IDE. To support the editing of OIL

6https://docs.python.org/3/library/xml.dom.minidom.
html

7https://pypi.org/project/pyparsing/

specifications, an XSD (XML Schema Definition
Language8) file is generated from the metamodel
using a handwritten script. XSD schemas define a
subset of the XML language. A generic IDE plugin
for XML uses this XSD file to provide syntac-
tic code completion and error recovery. Although
XSD could also be used for realizing a parser,
it was only used for realizing limited editor sup-
port because XSD was found not to be expressive
enough to cover all syntactical aspects of OIL.

5.4 Evaluation

To evaluate the productivity of implementing con-
crete syntax, we look at a single evaluation point:
the complete implementation of concrete syn-
tax in OIL’s implementations in Spoofax and in
Python. We consider seven concrete syntax arti-
facts: the grammar, the parser, and the editor
services pretty printing, origin tracking, syntax
highlighting, error recovery and syntactic code
completion.

Question. Does it cost less code volume to
implement the artifacts for OIL’s concrete syntax
in Spoofax compared to Python?

Method. First we identify for each of the
seven artifacts related to concrete syntax to what
extent they are realized in the SDF3 and Python
implementations of OIL. Then, per artifact, we
measure and compare the code volume (in terms
of SLOC [49]) related to the artifact in each
implementation.

For the sake of comparability, we want to
compare the lines of code of the implementa-
tions where they implement the exact same syn-
tax. The Python implementation only contains
OILXML and not OILDSL. Thus, in the Spoofax
implementation we consider the grammar except
those parts specific to OILDSL, i.e., we con-
sider the OILXML-specific parts and the parts
shared between OILXML and OILDSL. Since the
syntactic languages of both implementations are
not exactly the same, we subtract lines from
our measurements that concern syntactical ele-
ments not present in the other implementation.
In the Python implementation’s metamodel, we
manually exclude tags that are specific for docu-
mentation from the counting, as we consider them
as comments in the definition of SLOC. Since

8https://www.w3.org/XML/Schema

https://docs.python.org/3/library/xml.dom.minidom.html
https://docs.python.org/3/library/xml.dom.minidom.html
https://pypi.org/project/pyparsing/
https://www.w3.org/XML/Schema

Springer Nature 2021 LATEX template

title 19

XML and expression parsing are separately imple-
mented in Python, we measure and analyze those
separately.

Both the Python as well as the Spoofax imple-
mentation of OIL could be seen as consisting of
OIL-specific code and more generic, reusable code.
We consider code to be reusable if it is generic
enough such that it can be reused in the imple-
mentation of a language other than OIL. In the
Spoofax implementation, we reuse code from the
standard library of Spoofax, and we do not include
it or the implementation of the language work-
bench itself in the measurements. In the Python
implementation, both OIL-specific and reusable
code are implemented manually, which we there-
fore both measure. We count OIL-specific code
separately from reusable code. For the reusable
code, we analyze to what extent it can be reused.

Results. Table 1 gives an overview of which
syntax artifacts are available in each implemen-
tation and states the SLOC per artifact. The
Spoofax syntax implementation of OILXML com-
prises 365 SLOC of SDF3 grammar and the
Python implementation comprises 1260 SLOC.
Spoofax realizes all artifacts in full from this gram-
mar: a parser, a pretty printer, origin tracking, and
editor services such as syntax highlighting, error
recovery, and code completion. The Python imple-
mentation contains a parser and origin tracking for
the full language. Other artifacts are only imple-
mented for XML and not for the expressions inside
XML: pretty printing, syntax highlighting, error
recovery, and code completion. To ensure that our
comparison is on two implementations that cover
the same syntactic language, in the Spoofax source
we have withheld the syntactical elements that
are not in Python from counting (31 out of 396
SLOC deducted from original source; 7.8%) and
in the Python source we have withheld elements
that are not in the Spoofax implementation from
counting (46 out of 1306 SLOC deducted from
original source; 3.5%). Of the Python implemen-
tation, only the grammar (202 out of 1260 SLOC)
is specific to OIL, which relates to the metamodel.

Analysis. We analyze our results by first
comparing the total code volumes of both imple-
mentations and then compare per syntax imple-
mentation artifact.

The results show that the syntax implementa-
tion artifacts of OIL are realized in the Spoofax

implementation with a factor of 0.29 SLOC com-
pared to the Python implementation. All 365
Spoofax SLOC are OIL-specific. In the Python
implementation, only 202 SLOC is specific to OIL,
namely for defining the metamodel; the rest is
reusable for XML-based languages with embedded
expressions. The Spoofax implementation real-
izes all syntax artifacts for the full language,
whereas the Python implementation only realizes
the parser and origin tracking for the full lan-
guage; the other artifacts produced by the Python
implementation do not provide support for expres-
sions. The Spoofax implementation consists of
SDF3 only, i.e., the grammar, from which all other
six artifacts are derived. In the Python implemen-
tation, most code is attributed to realizing the
parser. For the other artifacts, additional code was
needed (90 + 205 + 121 = 416 SLOC). In the
Python implementation, syntax highlighting for
XML was the only editor service that was avail-
able without manual implementation by using an
existing XML plugin in Visual Studio.

The Python implementation uses a custom
layer on top of existing libraries for XML pars-
ing (Minidom) and expressions parsing (Pypars-
ing). First, the Python implementation uses a
metamodel (202 SLOC) and a script that checks
whether OIL models conform to the metamodel
(344 SLOC). Second, the Python implementa-
tion adds helpers on top of Pyparsing that pre-
vent repeating low-level grammar patterns (298
SLOC). Although the custom layer for expressions
is reusable, it is more restrictive than SDF3 as,
e.g., it only supports left associativity. The SDF3
implementation did not use code in addition to
the grammar, which is the main reason why the
Spoofax implementation contains fewer SLOC.

In Spoofax, the OILXML grammar is defined
with a total of 21 SDF3 modules. Out of the 365
SLOC used to define these modules, about 28%
exists purely to compose these modules. This con-
sists almost only of module name definitions and
import statements. For some grammar modules,
such as those that define the expression grammar,
the split up into smaller modules is beneficial,
because it enables reuse of grammar rules for the
other input languages as described in Section 5.2.
A third of the grammar modules however are only
used once. These modules could have been merged
with the modules that use them instead, which

Springer Nature 2021 LATEX template

20 title

Syntax impl. artifact Spoofax Python

Grammar (excl. expressions)∗ 274 161

Grammar (expressions)∗ 91 41

Parser generator (excl. expressions) 0 344

Parser generator (expressions) 0 298

Pretty printing 0 90

Origin tracking 0 205

Syntax highlighting 0 0
Error recovery

Syntactic code completion 0 121

Total (OIL-specific)∗ 365 202
Total (All) 365 1260

Table 1: Code volume (in SLOC) for the Spoofax and Python implementations of OILXML’s concrete
syntax, counted per implementation artifact. ∗ indicates OIL-specific artifacts. = implemented; =
partially implemented (only for XML, not for expressions).

would have saved a few SLOC. We see this dif-
ference as negligible, as this only saves on import
statements, which do not directly define the gram-
mar of the language. In Python, the grammar is
defined in a single metamodel, so no SLOC is used
for composition.

Pretty printing is implemented manually in
the Python implementation (90 SLOC). This is
a generic XML pretty printer, not specific to
OILXML. For expressions, it simply copies the
textual representations of expressions to output
programs. In the Spoofax implementation, pretty
printing is automatically derived based on the
formatting of the grammar rules in SDF3. For
example, lines 7–16 of Figure 14 define the pretty
printing of transitions to be spread over multi-
ple lines and with indented child elements. These
templates increase the number of SLOC used for
defining the grammar rule, as without formatting
the complete rule could be at a single line.

Origin tracking (see Section 2.3), is generated
automatically from the SDF3 grammar. In the
Python implementation, origin tracking is only
provided without requiring additional implemen-
tation by the Pyparsing library used for parsing
expressions. For parsing XML, a manual imple-
mentation was needed to realize origin tracking
(196 SLOC). The origins returned by the Pypars-
ing library used for expressions are relative. Abso-
lute source locations for expressions are calculated
by adding the relative offsets of expressions to
the parent XML tag content’s source location

(9 SLOC, reported under “Origin tracking” in
Table 1).

Syntax highlighting is the only editor ser-
vice in Python that is realized without additional
effort, using Visual Studio’s default XML plu-
gin. Note, however, that this only supports syntax
highlighting for the XML part of OIL. For the
expressions inside XML tags, it does not support
syntax highlighting. The Spoofax implementation
does support syntax highlighting for the complete
language.

The Python implementation realizes error
recovery and code completion for the XML part of
the language by generating an XSD schema from
the metamodel. The script that generates the XSD
schema (121 SLOC) is reusable, not specific to
OIL. Given the XSD schema, the editor’s default
XML plugin provides error reporting on invalid
XML tags and it provides code completion. The
Spoofax implementation supports error recovery
and code completion for the complete language
without additional implementation, by automati-
cally generating the editor services based on the
SDF3 grammar.

Conclusion. The Python implementation
uses less OIL-specific code to implement OIL’s
concrete syntax (metamodel of 202 SLOC) than
Spoofax (SDF3 grammar of 365 SLOC). However,
whereas Spoofax does not require code in addition
to the grammar to fully implement a range of edi-
tor services, the Python implementation requires
additional code for implementing a parser and
other editor services. This is in spite of the Python

Springer Nature 2021 LATEX template

title 21

implementation making use of existing libraries
for XML parsing and expression parsing and the
Python implementation realizing some editor ser-
vices not for the full OIL language. The code in
the Python implementation, apart from the meta-
model, is reusable in the sense that it is not specific
to OIL. The reusable parts of the Python imple-
mentation can be reused for implementing other
languages with XML syntax with a restricted form
of embedded expressions.

Comparing the implementations, including the
reusable parts, the Spoofax implementation real-
izes all editor services for the full OIL language
using less than one third of SLOC. Therefore,
the results show that it costs less code volume to
implement the artifacts for OIL’s concrete syntax
compared to Python. This is especially the case
when, in addition to only a parser, editor services
are required for interactive use in IDEs.

Discussion. The Python implementation
uses, on top of the existing parsing libraries, a
custom layer to support the implementation of
OILXML’s syntax. This custom layer enables the
use of the metamodel and prevents repeating low-
level grammar patterns. Alternatively, OILXML’s
syntax could also have been implemented directly
using the existing libraries. On one hand, the cus-
tom layer is reusable and costs extra code. On
the other hand, the custom layer saves code by
preventing the need to repeat low-level imple-
mentation patterns. Although we cannot make a
comparison with a Python implementation that
does not include the custom layer, we expect that
such an implementation could be smaller than
the current Python implementation. An imple-
mentation without reusable parts could be more
specific to OIL and therefore possibly smaller. In
the Spoofax implementation, SDF3 was sufficient
to implement OILXML and OILDSL.

Implementing the parser for OILXML in
Python takes about twice the SLOC as using
SDF3. When editor support is not relevant, one
could argue whether the factor two fewer SLOC
is reason enough to start using a language work-
bench. However, we expect that the factor is
relatively low because XML syntax is used. By
using XML, the existing Minidom library could be
used, but this also imposes the restriction of only
supporting subsets of XML. For custom syntax,
e.g., for OILDSL, we expect that a Python imple-
mentation using Pyparsing would cost relatively

more SLOC than in SDF3, as a complete grammar
needs to be implemented in more detail. The use of
another parser generator library in Python could
bring this closer to SDF3. In Spoofax, the code
volume specific to the OILDSL grammar is actu-
ally smaller than the code volume specific to the
OILXML grammar due to OILDSL being more
concise: the Spoofax implementation contains 219
OILXML specific SDF3 SLOC and 168 OILDSL
specific SDF3 SLOC.

The grammar of OILXML imposes a few
restrictions on the order of attributes or child ele-
ments of an XML element. This was originally
done so that the structure of the derived AST can
be made slightly simpler, resulting in slightly sim-
pler transformations from this AST. To lift these
restrictions, we believe that about 10 SDF3 SLOC
would be necessary. The Python implementation
does not have such restrictions.

Part of the Python implementation’s editor
services, e.g., origin tracking, are implemented
only for the web-based tooling which only stati-
cally displays specifications and errors and does
not support editing specifications. Therefore, the
editor services are only used in a static way, in
contrast to the interactive way in IDEs. We expect
that extending the editor services in the Python
implementation to have support for interactive use
would cost more code.

6 Abstract Syntax

The abstract syntax of a language defines how a
language is represented internally. For textual lan-
guages, such as OIL, this is done by means of AST
schemas. Given an SDF3 grammar definition, a
corresponding AST schema is generated automat-
ically. To structure the Spoofax implementation
of OIL, additional intermediate representations
have been defined, which we discuss here. We also
describe the transformation architecture that is
shaped around these intermediate representations,
specifically focusing on desugaring transforma-
tions and on the resilient staging framework that
serves as the basis of this architecture, which
realize OF2 (Desugaring). Afterwards, we discuss
how OIL is internally represented in the Python
implementation. Lastly, we evaluate Spoofax on
productivity in the context of abstract syntax.

Springer Nature 2021 LATEX template

22 title

6.1 Intermediate Representations

In addition to the AST schemas that are
automatically generated by SDF3 for OILDSL
and OILXML, three intermediate representations
(IRs) are defined for OIL:

• Normalized IR A representation that acts as a
middle ground between OILDSL and OILXML
while still containing as many syntactic details
from both languages as possible.

• Desugared IR A simplified representation
where syntactical details are removed and
implicit details are made explicit to enable
concise specification of static semantics.

• Semantic IR A representation that restruc-
tures an OIL specification to ease the implemen-
tation of dynamic semantics (code generation)
of OIL.

The use of IRs provides separation of concerns:
each IR is related to a different language imple-
mentation aspect. See Fig. 20 for how the IRs fit in
the transformation architecture. Transformations
are defined between the normalized IR and both
the OILXML and OILDSL AST schemas in both
directions so that one can easily switch between
OILXML and OILDSL [22]. Any transformations
that follow are independent of the concrete syntax
used.

To illustrate some differences between IRs, we
use the same transition as the example in Fig. 16.
See Fig. 21 for this transition in the normalized,
desugared and semantic IR. One notable change
from OILDSL and OILXML to the normalized IR
is that the transition term in the normalized IR
now has fixed subterms instead of a list of terms,
which was done to make it easier to define trans-
formations on it. When moving to the desugared
IR, some optionality is removed by removing Some
wrapper terms and by replacing None terms with
information made explicit, such as Call. When
moving to the semantic IR, transitions are now
grouped per event. This is useful for code genera-
tion, as an OIL specification is executed by means
of sending or receiving events. Also, the source and
target are used to define the transition pre- and
postconditions (with ConditionReference) and
the transition update (with UpdateReference).

6.2 Desugaring

Before the normalized IR can be transformed to
the desugared IR, a number of desugaring trans-
formations are applied first. There are a total of 14
desugaring transformations defined which all use
the normalized IR both as input and output. Most
of the desugaring transformations are explications,
which make implicit information explicit. These
are necessary to be able to remove the optionality
of terms when transforming to the desugared IR.

See Fig. 22 for the implementation of one of
the (simpler) explication transformations defined
in the Stratego implementation. This transforma-
tion, called auto-value, gives every state a value if
it does not (explicitly) have one. The rule defined
on line 1 traverses top-down over the AST to
try and apply the rule oil-auto-value-term on
every node. This rule, defined on lines 3-5, does
the actual explication: if a state without a value is
found (line 4), the value is added (line 5). It uses
the rule defined on line 7, which creates a fresh
name for the state value given the name of the
state.

6.3 Resilient Staging

To keep the desugaring transformations sim-
ple, they each have expectations on the input.
For instance, desugaring transformation auto-type
that derives new types from the areas of an OIL
specification expects that each state has a value.
Most of these expectations are ensured by other
desugaring transformations. For instance, auto-
value ensures that every state has a value, which
matches the expectation of auto-type.

To help us structure the desugaring transfor-
mations, as well as the transformation architecture
as a whole, a framework that we call resilient stag-
ing is used. This framework is based on stages,
which are equipped with a precondition, a trans-
formation, and a postcondition. Each stage should
only have one specific transformation purpose to
keep them well maintainable and reusable. Stages
can be concatenated to create larger transforma-
tions, which we call pipelines.

The precondition represents requirements on
the input of the stage, such as the presence or
absence of specific terms or term patterns. When
executing a stage, the precondition is checked first.
If the precondition is met, the actual transfor-
mation will be executed. Otherwise, the pipelines

Springer Nature 2021 LATEX template

title 23

OILXML

OILDSL

normalized IR desugared IR semantic IR

mCRL2

GPL

well-formedness
and desugaring name and type analysis

Fig. 20: An overview of the transformation architecture of the implementation of OIL in Spoofax. Boxes
correspond to AST schemas and arrows correspond to transformations.

Transition(

Some(

Message(

Some(MessageCause(Reactive()))

, None()

, Some(MessageMethod("turn_on", []))

)

)

, Some(Source(AreaReference(["off"])))

, Some(Target(AreaReference(["on"])))

, ...

)

DESTransition(

DESMessage(

Some(Reactive())

, Call()

, DESMessageMethod("turn_on", [])

)

, "off"

, "on"

, ...

)

SEMEvent(

"heat2ci_server_turn_on_call_reactive"

, Reactive()

, Call()

, "heat2ci"

, "server"

, SEMMethod("turn_on", [])

, [SEMTransition(

...

, ConditionReference("off")

, [UpdateReference("on")]

, ConditionReference("on")

)

, ...

]

)

Fig. 21: The transition of Fig. 16 in the nor-
malised, desugared and semantic IR respectively.

1 oil-auto-value =

topdown(try(oil-auto-value-term))

2

3 oil-auto-value-term:

4 State(name, None(), supers, areas) ->

5 State(name, <oil-auto-value-new> name,

supers, areas)

6

7 oil-auto-value-new = newname ;

!Some(StateValue(EnumLiteral(<id>)))

Fig. 22: The Stratego implementation of the auto-
value desugaring transformation.

stops and reports the errors from the precondi-
tion. For some stages, checking the precondition
may require work that is useful for the transforma-
tion itself too, such as collecting specific terms. To
prevent duplicate work, the precondition may also
pass data to the transformation if the precondition
is met.

After the transformation has been executed,
the postcondition is checked. This postcondition
represents requirements on the output of the
stage, effectively testing whether the transforma-
tion was successful. If the postcondition is not met,
the pipeline is aborted and errors are returned.
Ideally, postconditions checking should only be
enabled during development, since stages should
be correct when used in production.

In a sense, the pre- and postcondition provide
a contract over the transformation: they define
what is required by the transformation and what
can be expected from the transformation. A clear
contract and transformation purpose indicate how
and where transformations should be embedded
into pipelines, also promoting reusability. When a
transformation is used or defined incorrectly, the
stage conditions will show what and where the
issue is, hence “resilient” in resilient staging.

Springer Nature 2021 LATEX template

24 title

stage(pre, trans, post):

StageSuccess(ast) -> result

where

//check preconditions

(pc-data, errors) := <pre> ast;

if (<?[]> errors) then

//do the transformation

ast' := <trans> (pc-data, ast);

//check postconditions

errors' := <post> ast';
if (<?[]> errors') then

result := StageSuccess(ast')
else

result := StageFailure(ast', errors')
end

else

result := StageFailure(ast, errors)

end

Fig. 23: The Stratego transformation rule to
define a stage (simplified).

1 oil-auto-value-stage =

2 stage(

3 stage-preconditions-true,

4 oil-auto-value,

5 all-states-value

6)

Fig. 24: The creation of the stage for
auto-value in Stratego, using a generic rule
stage-preconditions-true, the transforma-
tion from Fig. 22 and a postcondition rule
all-states-value.

In Stratego, stages are defined using the trans-
formation rule stage shown in Fig. 23. The three
parameters pre, trans and post are the precon-
dition, transformation and postcondition respec-
tively. The precondition and postcondition are
transformations too, which return a list of errors,
given an input AST. More on this in Section 7.1.
Whenever a condition returns errors, the pipeline
is abandoned and the errors are returned. See
Fig. 24 for the instantiation of the stage of auto-
value.

OILXML mCRL2/GPL code

well-formedness, desugaring,
name and type analysis

Fig. 25: An overview of the transformation archi-
tecture of the implementation of OIL in Python.
The rectangular box is an AST schema, the wavy
box is text, and the arrows are transformations.

1 def addAutoStateValues(spec):
2 dom = spec.getDom()
3 for state in spec.getElements('state'):
4 if len(Children(state, ['value'])) == 0:
5 stateName = state.getAttribute('name')
6 autoValue = dom.createElement('value')
7 literalName =

spec.createUniqueLiteralName(stateName)
8 _setExpressionText(spec, autoValue,

f"'{literalName}'")
9 state.insertBefore(autoValue,

state.firstChild)
10 state.hasAutoTerm = True
11 spec.initElementCache()

Fig. 26: The Python implementation of the auto-
value desugaring transformation.

6.4 The Python Implementation

In the Python implementation no intermediate
representations are used. The representation that
results from parsing OILXML is used directly for
checks and transformations. See Fig. 25 for the
general transformation architecture. This repre-
sentation consists of two parts: the AST repre-
sentation generated by the Minidom parser and
the AST representation generated by the expres-
sion parser. For the Minidom AST representation,
many helper functions have been defined that
hide the use of Minidom, mainly for the access
or derivation of information from it. Many of
such information is cached so that the Minidom
AST does not need to be accessed too frequently.
For the expression AST representation, a cus-
tom Expression class is defined that is used to
represent any expression term.

Desugaring transformations are defined as
Python functions that traverse the AST and apply
the changes where necessary. See Fig. 26 for the
implementation of auto-value in Python. It tra-
verses the AST to find all states (line 3). Then if
this state does not have a value (line 4), a new
value name is created based on the name of the

Springer Nature 2021 LATEX template

title 25

state (lines 5 and 7), a new AST element is cre-
ated that holds this value (lines 6 and 8), which is
then added to the state (line 9).

The Python implementation does not explic-
itly define pre- and postconditions per transforma-
tion like resilient staging does, but it does define
transformations and conditions on the AST as
separate functions, which are called in a specific
(interleaving) order.

6.5 Evaluation

To evaluate the productivity of implementing
abstract syntax, we look at two evaluation points:
AST representations and desugaring transforma-
tions.

AST representations

Question. Does it cost less code volume to
define AST representations for OIL in Spoofax
compared to Python?

Method. We collect all AST representations
that are used in the transformation architecture of
an OIL specification in both the Spoofax and the
Python implementation and measure the SLOC
used to define them.

Results. As was shown in Fig. 20, the Spoofax
implementation defines seven AST schemas for
OIL: OILXML AST, OILDSL AST, the three IRs,
mCRL2 AST and GPL AST. As was shown in
Fig. 25, the Python implementation defines one
AST representation. This AST representation is
split into two parts: a Minidom AST representa-
tion and an expression AST representation.

In the Spoofax implementation, all AST
schemas, apart from the normalized and desug-
ared IR, are automatically derived from their
grammar defined in SDF3. The normalized and
desugared IR do not have their own grammar
and have their constructors defined in Stratego
instead. Their AST schemas are defined with 43
SLOC and 23 SLOC respectively, with a shared
expression AST schema defined with 33 Stratego
SLOC. In the Python implementation, the con-
structors for the Minidom AST representation are
automatically derived from the Minidom parser.
The Expression class used for the expression AST
representation is defined with 9 Python SLOC.

Analysis. If a grammar already exists, the
Spoofax implementation does not need any SLOC
to define the AST schemas as they are generated

automatically. This is also the case in the Python
implementation for the Minidom AST represen-
tation. If the grammar is not available, an AST
schema can be defined in Spoofax with 1 Strat-
ego SLOC per constructor, as is the case for the
normalized and desugared IRs. In Python, the
expression AST representation only consists of one
constructor, namely a general Expression con-
structor with 7 children, defined with 9 SLOC.
Due to this constructor, the expression AST rep-
resentation in Python is more general than the
expression AST schema in Spoofax, as the latter
explicitly defines a constructor for each type of
expression. This is also the reason why the expres-
sion AST schema in Spoofax uses more SLOC
than the expression AST representation in the
Python implementation.

Conclusion. Due to the differences in avail-
able AST representations, we cannot give a con-
clusion on the definition of AST representations.
For the AST representation that is available in
both implementations, namely that for expres-
sions, we cannot draw a conclusion either, due to
the different approach for constructors and the
small size.

Discussion. The difference between the
Spoofax and Python implementations in the use
of IRs is partially due to the mutability of
ASTs. ATerm terms are immutable, so any desired
change to the definition of an AST requires the
definition of new constructors. In the Python
implementation, the AST is mutable, so the AST
can be changed dynamically. This does have the
downside that it is more difficult to know exactly
what information is available at any point in the
transformation architecture. Due to the mutabil-
ity of the AST in the Python implementation, it
was found during its development that the defini-
tion of explicit IRs would not be worth the effort
for the benefits it could bring over using the single
mutable AST.

An interesting observation is the difference
in the approach of defining the expression AST
schema between Spoofax and Python. In Spoofax
each type of expression is defined with an explicit
constructor, while the Python implementation
uses one generic constructor. This is related to
the transformation language available that oper-
ates on the ASTs. In Spoofax, Stratego is used for
transformations, where the terms and their con-
structors are part of the data language. Having

Springer Nature 2021 LATEX template

26 title

concisely represented terms therefore also helps
keeping transformations concise. In Python, it
is more common to reason in terms of classes
with attributes. Since all expression types have
similar attributes, such as a list of subexpres-
sions, it makes more sense to define one generic
constructor.

Though the Minidom AST representation
in the Python implementation is automatically
generated, thanks to the Minidom library, this
library can only be used for XML-based lan-
guages. It can be expected that for non-XML
languages much more effort is needed to define
an AST representation, which is also the reason
why the implementation does not define IRs. In
Spoofax, AST schemas can be defined for any
textual language in an equally productive way.

Desugaring transformations

Question. Does it cost less code volume to
define the desugaring transformations for OIL in
Stratego compared to Python?

Method. We collect all desugaring transfor-
mations that are implemented in both the Spoofax
and Python implementation and measure the
SLOC used to implement them. Any SLOC called
by the desugaring transformations, such as helper
functions, are counted too.

Results. Table 2 shows the SLOC used to
implement the desugaring transformations in both
implementations. Any SLOC that are used for
more purposes than one desugaring transforma-
tion are captured in the “Reused” row. The body
of reused code in the Python implementation
mainly consists of helper functions for traver-
sal through the Minidom AST representation or
for general simple transformations. The Stratego
implementation has less reused code, because most
of such traversals or simple transformations can be
compactly expressed with the Stratego language
and its standard library.

Not every desugaring transformation in this
table corresponds to one transformation in Strat-
ego and one function in Python. Desugaring
transformation distribute groups corresponds to
two Stratego transformations and one Python
function, auto-region, auto-variable, auto-type and
auto-init correspond to one Stratego transforma-
tion and two Python functions, and auto-state

Artifact Stratego Python

distribute-groups 41 41
auto-region 16 31
auto-super 31 37
auto-state 127 94
auto-value 5 34
auto-variable 39 52
auto-type 26 31
auto-init 15 38
auto-silent 9 18
Reused 42 251

Total (Without reused) 309 376
Total (All) 351 627

Table 2: SLOC for the implementation of desug-
aring transformations that are defined in both the
Spoofax and Python implementation of OIL.

corresponds to two Stratego transformations and
three Python functions.

Analysis. In total, the desugaring transforma-
tions are implemented with Stratego with a factor
of 0.56 SLOC compared to Python. On average,
not counting reused SLOC, a desugaring transfor-
mation is implemented with Stratego with a factor
of 0.82 SLOC compared to Python. This differ-
ence is mainly due to the fact that Stratego is
specifically tailored for transformations, it allows
one to define transformations in a more compact
way. Stratego does this with ATerm as the main
data format and with the core support for pattern
matching.

We take the implementation of auto-value as
an example. Due to ATerm as data format, one
can create the resulting state node by writing the
resulting term as the right-hand side of a transfor-
mation rule (Fig. 22 line 5), instead of creating the
new node and text fields step by step (Fig. 26 lines
6-9). Due to the core support for pattern match-
ing, checking whether the state has no value and
assigning the name of the state to a variable can be
done by just writing the State term with required
subterms (such as None()) and variables (such as
name) as the left-hand side of a transformation
(Fig. 22 line 4), whereas in the Python imple-
mentation this is done in separate steps (Fig. 26
lines 4-5). For this example, the default support
in Stratego for creating a fresh name (newname in
Fig. 22 line 7) also helps significantly, as this is
implemented explicitly in the Python implemen-
tation with a (not reused) function of 23 SLOC
(called in Fig. 26 line 7).

Springer Nature 2021 LATEX template

title 27

Deviations from the average SLOC ratio that
are more in favor of the Python implementa-
tion are typically in case of transformations that
require less local changes, such as auto-region,
auto-super, auto-state and auto-variable, which
introduce regions, zones, states and variables
respectively, based on multiple sources of informa-
tion in the AST. This is for a few reasons. First of
all, it is not possible in Stratego to access the par-
ent of a term directly. To access such information,
a top-down traversal is needed that keeps track of
previously encountered terms. Secondly, it is not
straightforward in Stratego to store information
globally to reuse later, which is for instance nec-
essary to make sure that all names created are
distinct. It is possible to use dynamic rules [13]
for this, but the dynamic transformation behav-
ior that these rules add makes it more difficult
to understand how Stratego code executes when
reading it. Lastly, the immutability of ATerm
makes it impossible to store references to parts
of the AST. First collecting information and then
transforming this information does not have an
effect on the resulting AST; instead, the informa-
tion needs to be mapped back to the AST to then
transform it, or information collection and trans-
formation should be intertwined. In Python, these
three restrictions of Stratego are less of a concern
due to the freedom one has in a general purpose
programming language.

An example type of operation used in desugar-
ing that is affected by the restrictions of Stratego
above is finding the least common ancestor (LCA)
of two areas. In the Python implementation, this
is done by walking up the AST from the two
areas using parent pointers until both paths cross.
In Stratego, such a walk along parent pointers is
not possible. Instead, the complete AST is tra-
versed bottom-up in a recursive fashion, where for
each area in the tree all descendant areas are col-
lected. If the two areas for which the LCA needs
to be found are in this collection for the first time,
the LCA is found. An implementation for find-
ing the LCA has similar SLOC between Stratego
and Python, but the implementation in Python
is reused between multiple transformations, while
the implementation in Stratego is not as it is part
of the basis of the desugaring transformation.

The only difference in functionality between
the two implementations are some naming conven-
tions for newly introduced elements. For instance,

in auto-value, the Stratego implementation cre-
ates a name that is different from any name in the
OIL specification, whereas the Python implemen-
tation creates a name that is different only from
all literals in the OIL specification. This choice
is sufficient, but requires one to specifically col-
lect all literals, which contributes to 21 SLOC of
auto-value in the Python implementation.

Conclusion. Although there are some restric-
tions to Stratego that hinder the conciseness of
transformations defined in it compared to Python,
on average Stratego requires less code volume
compared to Python to define the desugaring
transformations.

Discussion. As mentioned in the analysis,
there are some restrictions to Stratego due to lim-
itations on what it supports when compared to
Python, such as not being able to directly access
the parent of a term. We do not necessarily see
these restrictions as points of improvement how-
ever. For instance, while the immutability of the
AST may make it impossible to store references
to terms in the AST, which restricts the design
of transformations, this does make sure that an
AST cannot be transformed indirectly, which is
beneficial for the understanding of Stratego code.

The measurements only consider the SLOC
used to implement the functionality of the desug-
aring transformations, not the composition of
them. In the Spoofax implementation, they are
composed using the resilient staging framework.
This framework is defined with 63 SLOC, which
can be reused for any language and any trans-
formation architecture. Creating a stage from a
desugaring transformation then costs one stage

transformation rule call, as shown in Fig. 23.
The stages are then sequentially composed. Since
the Python implementation does not implement
resilient staging explicitly, it does not have this
overhead.

7 Static Semantics

In this section, we discuss the implementation
of static semantics of OIL in Spoofax, which
we consider to consist of name binding, typing
and other well-formedness aspects, which together
realize OF3 (Input Correctness). Name binding
and typing are implemented using NaBL2. Well-
formedness is mostly implemented with a col-
lection of Stratego transformations that produce

Springer Nature 2021 LATEX template

28 title

1 all-states-value =

2 collect-all(\

3 s @ State(_, None(), _, _) ->

4 (s, "State does not have a value")

5 \)

Fig. 27: A Stratego code snippet that checks
whether all states have a value.

errors if the constraints are violated. In the trans-
formation architecture of OIL, well-formedness
checking occurs on the normalized IR, while name
binding and typing occur on the desugared IR (see
Fig. 20).

We describe how transformations and origin
tracking are used to realize well-formedness check-
ing and how cross-file and cross-language analysis
over a collection of IDL and OIL files is real-
ized, which relates to OF4 (Language Interaction).
Afterwards, we discuss how static semantics is
realized in the Python implementation. We then
evaluate Spoofax on productivity in the context of
static semantics.

7.1 Well-formedness Checking

OIL specifications need to conform to well-
formedness constraints. For example, each region
should have at least one state. Although this
particular example could have been enforced in
the grammar, not all well-formedness constraints
can be enforced in a grammar, or they lead to
messy grammars. Also, by implementing these
constraints manually, it is possible to generate bet-
ter error messages than generic errors generated
by the parser.

For some well-formedness constraints, such as
illegal variable names and name distinctness, there
is core support in SDF3 and NaBL2 respectively.
Other constraints are checked by means of Strat-
ego transformations, which transform an AST to
a list of errors. Fig. 27 depicts a Stratego rule that
implements a well-formedness constraint that says
that every state must have a value. This check is
used as the postcondition of the stage of desugar-
ing transformation auto-value, see Fig. 24. If the
check fails, the rule returns a list of errors, one for
each state for which the check fails. Each error is
a tuple that contains both the state term as well
as the error message.

1 init ^ (s) :=

2 ...

3 new s,

4 distinct/name D(s)/Module | error

"Duplicate module" @NAMES.

5

6 [[IDLModule(m, imps, defs) ^ (s)]] :=

7 Module{m} <- s,

8 ...

Fig. 28: A NaBL2 code snippet that checks
duplication of module names.

Although the constraint is defined on an IR
— and thus not on the original parsed AST —
Spoofax can associate the error with the original
input syntax. This is thanks to origin tracking.
The origin information of a term, that is created
when a specification is parsed, is passed on when
this term is transformed into another term. This
makes the origin information directly accessible
from the term within an error tuple. Spoofax can
then use these error tuples to show the error to
the user on the correct syntactical element in the
editor.

7.2 Cross-file and Cross-language
Analysis

The implementation of OIL and IDL in Spoofax
involves static analysis that spans both multiple
files and multiple languages. For instance, for a
collection of multiple IDL files it should be checked
whether there are no modules defined with the
same name (cross-file analysis, within the same
language). As mentioned in Section 3.2, transi-
tions in OIL refer to operations defined in IDL files
(cross-language analysis). We discuss how both
forms of analysis are implemented using NaBL2.

Fig. 28 depicts an NaBL2 code snippet that
enforces the cross-file constraint that no modules
with duplicate names may exist across IDL files.
Line 1 defines the init rule, which is where the
analysis starts. NaBL2 is configured such that the
scope s that is created in the init rule (line 3)
is used as the initial scope for each IDL file. For
IDL files, this scope is supplied to the rule for
IDLModule (line 6), which adds a declaration of
the module to this scope. By attaching the scopes
of all IDL files to the single root node, all IDL
modules are part of a single scope graph. The

Springer Nature 2021 LATEX template

title 29

1 [[DESImportModule(m) ^ (s)]] :=

2 Module{m} -> s,

3 Module{m} |-> decl | error "Module not

found" @ m,

4 Module{m} <=== s.

Fig. 29: A NaBL2 code snippet that imports IDL
modules into OIL.

sR sO

IM1 IM2 O

Fig. 30: An abstract representation of a merged
scope graph of an OIL specification (O) and two
IDL modules (IMi). Rectangles indicate declara-
tions, circles indicate scopes. SR is the root scope.
The scope associated with the OIL specification
(SO), indicated with the dotted arrow, has the
root scope as its parent scope, thereby making the
IDL modules visible from the OIL specification.

restriction that all module names are distinct is
defined on line 4, where D(s)/Module defines the
collection of all Module elements reachable from
scope s and distinct/name defines that no two
elements in this set may have the same name.

Fig. 29 depicts an NaBL2 code snippet that
specifies the cross-language importing of IDL
modules into OIL specifications. First a reference
to the module is added to the scope (line 2), after
which it is checked whether the referenced mod-
ule can be found (line 3), that is, whether a path
from the reference to the declaration exists in the
scope graph. Then in line 4 all declarations in the
module are imported. More precisely, Module{m}
<=== s makes all declarations that are visible in
the scope on which Module{m} was declared visible
in s.

Similar to how multiple IDL files share a single
scope graph, the scope graphs of OIL files could
conceptually be connected with those of IDL files
to import the analysis for importing of Fig. 29.
Fig. 30 depicts this. However, in Spoofax it is not
possible to implement this directly. Spoofax only
supports configuring NaBL2 to have analysis span
multiple files of a single language, but not the
files of multiple languages. This has been worked

1 def extractModules(spec):
2 idlInfo = spec.generator.getIDLInfo()
3

4 rootModules = OrderedSet()
5 for _import in spec.getElements('import'):
6 moduleName = _import.getAttribute('module')
7 if moduleName in idlInfo:
8 rootModules.add(moduleName)
9 else:

10 spec.addAttributeValueError(_import,
'module', None, 'Module not found in "idl_specs.txt"
nor in the additional IDL include directory.')

11 spec.rootModules = rootModules

Fig. 31: A Python code snippet that imports IDL
modules into OIL.

around by instantiating a single language artifact
that accepts both IDL and OIL files. Although
the implementation sources of IDL and OIL are
organized in separate projects, there is no distinc-
tion anymore between an IDL and OIL language
artifact; for IDL modules to be usable in OIL spec-
ifications, they have to be in files with the same
.oil extension.

7.3 The Python Implementation

In the Python implementation, typing of expres-
sions is implemented with a bottom-up recursive
algorithm with a case distinction on the type of
operator. For some operators, such as equality, the
process is repeated but with an expected type.
Name resolution is partly done by the type checker
and partly by separate functions. Well-formedness
constraints are defined with separate functions.

See Fig. 31 for how name resolution of import
statements is done in the Python implementa-
tion. On line 2, information on the IDL files is
retrieved. This loads the relevant IDL files and cre-
ates a dictionary representing them, if this was not
done already. Then on lines 5-7 the function iter-
ates over all module names that appear in import
statements. It checks on line 7 if this module name
exists and if not, it reports an error (line 10). On
line 11, the list of imported modules is stored in
the OIL specification object for easy access.

Whereas the Spoofax implementation aborts
the pipeline for any stage pre- and postcondi-
tion that fails, the Python implementation can
do multiple steps before aborting. When to abort
in case of errors is decided manually, by means
of conditional return statements throughout the

Springer Nature 2021 LATEX template

30 title

sequence of desugaring transformations and well-
formedness checks. Errors can be shown in the web
interface of the Python implementation on a tex-
tual representation of the OIL specification thanks
to origin tracking. Syntactical elements with errors
are highlighted in red and hovering over them
shows an error message.

7.4 Evaluation

To evaluate the productivity of implementing
static semantics, we look at a single evaluation
point: the implementation of static semantics in
OIL’s implementations in Spoofax and in Python.
We consider five static semantics artifacts: name
binding, typing, well-formedness, error handling
and error reporting.

Question. Does it cost less code volume to
define the static semantics artifacts for OIL in
Spoofax compared to Python?

Method. For the name binding, typing and
well-formedness artifacts that are implemented in
both Spoofax and Python, we measure how many
SLOC were used to implement them. We also
measure the SLOC used to abort when errors
are found (error handling) and the SLOC used
to show the errors to the user (error reporting).
Any code called by name binding, typing and well-
formedness definitions, such as helper functions,
are counted too.

Results. Table 3 shows the SLOC used to
implement name binding, typing and other well-
formedness, as well as error handling and error
reporting in both Spoofax and Python. Only name
binding and typing over syntactic elements that
are defined in both the Spoofax and the Python
implementation are considered. Any SLOC that
are relevant for more artifacts than just one out
of name binding, typing and well-formedness are
captured in the “Reused” row. All SLOC under
Spoofax name binding, typing and reused are writ-
ten in NaBL2. More specifically, NaBL2 code that
only relates to creating and querying the scope
graph corresponds to name binding and NaBL2
code that only relates to type definitions and type
checking corresponds to typing; the rest is corre-
sponds to “Reused”. Well-formedness in Spoofax
is a combination of SDF3, NaBL2 and Stratego.
Error handling and error reporting are defined in
Stratego.

Artifact Spoofax Python

Name binding 128 233
Typing 81 257
Well-formedness 24 57
Error handling 15 29
Error reporting 19 37
Reused 208 298

Total (Without reused) 267 613
Total (All) 475 911

Table 3: SLOC for the implementation of name
binding, typing and other well-formedness over the
syntactic constructs that are defined in both the
OIL and Python implementation.

To create a fair comparison, we have not
counted any SLOC that produces functionality
that is not in the other implementation. For the
name binding and typing in Spoofax written in
NaBL2 this meant that 88 SLOC was not counted.
This 88 SLOC includes analysis of syntactic ele-
ments not implemented in Python and typing of
elements that is not done in Python, such as areas
and operations. For the name binding and typing
by the type checker of the Python implementa-
tion 101 SLOC was not counted, which consists
of analysis of syntactic elements and other checks
not done in the Spoofax implementation. Since the
well-formedness constraints are implemented as
separate rules in Spoofax or functions in Python,
we can measure them separately. Only a few well-
formedness constraints have been measured, since
many do not correspond well to any constraint in
the other implementation.

Analysis. As Table 3 shows, name binding,
typing and other well-formedness are implemented
in Python in about double the SLOC compared to
Spoofax. In general, the lower SLOC for Spoofax
can be explained by the fact that the meta-DSLs
that are used, especially NaBL2, are specifically
made for the implementation of these aspects.

Only looking at SLOC specific to name bind-
ing, the Spoofax implementation uses a factor of
0.55 SLOC compared to the Python implementa-
tion. In NaBL2, SLOC specific to name binding
consist of creating and querying the scope graph.
In Python, this involves reading in IDL files, cre-
ating classes for easy access to information in
IDL files, checking name binding by querying
this information and that of the OIL specifica-
tion, and adding name binding information to
the AST. The last two cause the main difference

Springer Nature 2021 LATEX template

title 31

in SLOC between NaBL2 and Python. Checking
name binding in NaBL2 is done by adding the
reference to the scope graph and then checking
for a path to the declaration as shown in lines 2-
3 in Fig. 29. How this declaration is found does
not need to be implemented explicitly, while in
Python all declarations are retrieved manually to
explicitly check whether the relevant declaration
exists. Adding name binding information to the
AST also needs to be explicitly implemented in
Python, while this implicitly happens in NaBL2
by having a constraint rule for every term.

Looking only at typing-specific SLOC, the
Spoofax implementation uses a factor of 0.32
SLOC compared to the Python implementation.
For both implementations, most of the SLOC are
in the typing of expressions. One of the main rea-
sons that the Python SLOC is higher than the
NaBL2 SLOC is that in Python there are some
binary operators, such as equality and assignment,
for which many case distinctions are defined based
on the types of operands they can have. In NaBL2
these case distinctions are not necessary as they
happen implicitly.

Looking only at well-formedness-specific
SLOC, the Spoofax implementation uses a factor
of 0.42 SLOC compared to the Python implemen-
tation. This is partly due to core support for some
specific forms of well-formedness in Spoofax, such
as rejecting specific variable names and checking
for distinctness of names within a scope. Such
checks only take 1 SLOC in SDF3 and NaBL2
respectively, see Fig. 28 for an example, whereas
in Python these require explicit traversal of
the AST. Other well-formedness constraints in
Spoofax are implemented in Stratego, for which
the same productivity conclusions hold as for
desugaring transformations (Section 6.5).

For error reporting and error handling, the
Spoofax implementation uses about half the
SLOC compared to the Python implementation.
The difference in error handling SLOC is because
the Spoofax implementation has a generic way of
aborting pipelines built into the resilient staging
framework, while in the Python implementation
abort points are places manually, which produces
code duplication.

Both implementations support two types of
error reporting: by means of highlights on the orig-
inal specification or by means of a list of errors. For
the first, the Spoofax implementation only needs

minor general configuration, while the Python
implementation explicitly locates and colors the
syntactical elements in an HTML generator spe-
cific for XML-based languages. For the second,
both implementations support a generic way of
displaying the list of errors.

For both implementations, a large portion
of the SLOC are reused. The reused SLOC in
Spoofax is only relevant for static analysis: 174
SLOC consists of constraint rule declarations that
define how name binding and typing information
is related between a term and its subterms, and 34
SLOC is related to naming and importing mod-
ules. The reused SLOC in Python consists mainly
of parts of the type checker that also involve
variable reference resolution, as well as helper
functions that retrieve information from the OIL
and IDL specifications, which are also used for
more purposes than only static semantics.

Conclusion. For static semantics, the Python
implementation uses about twice the amount of
SLOC compared to the Spoofax implementation,
for the same functionality, with or without con-
sidering reused SLOC. This is mostly due to the
fact that NaBL2 is specialized for name binding
and typing and because of core support for spe-
cific types of well-formedness. Error handling and
reporting can also be defined in a more concise
and generic way. This shows that it costs less code
volume to implement the static semantics artifacts
for OIL in Spoofax compared to Python.

Discussion. Like with the concrete syntax
definition, the name binding and type checking
of IDL and OIL in the Spoofax implementation
is split up into multiple NaBL2 modules, 21 in
total. Unlike with the concrete syntax definition,
NaBL2 files do not need import statements to
compose them. All NaBL2 files in a project are
deemed relevant and are collected automatically,
so no SLOC is needed to compose NaBL2 modules.
An exception to this is the composition of OIL-
specific analysis with IDL analysis, which costs
about 12 SLOC. This includes project configu-
rations to export the IDL NaBL2 definitions as
well as imports of IDL type signatures and files
generated from the IDL NaBL2 definitions.

The workaround to make it possible to do
name resolution between IDL and OIL files did
not cost any extra NaBL2 SLOC. It did however
cost 26 extra Stratego SLOC (not in Table 3)
to define transformation rules that check whether

Springer Nature 2021 LATEX template

32 title

the given AST is an IDL or OIL specification,
which are needed at the beginning of end-to-end
transformations.

A big reason for the conciseness of NaBL2 is
that it is a declarative language, which means that
one does not implement how the program exe-
cutes. This can however also make it unpredictable
how the NaBL2 analysis is executed. For exam-
ple, when a reference of an integer type is used at
a location where a boolean is expected, the type
error could be reported on the declaration of the
integer variable, while the error is expected on the
reference. Although NaBL2 specifications can be
annotated to indicate a preference for reporting
the error on the declaration, this does not cover
all cases.

The implementation of name binding and typ-
ing in Spoofax also automatically provides some
editor services. When hovering over a syntacti-
cal element in the editor, its type is shown in a
small text box. Also, navigating through a ref-
erence moves the cursor to the corresponding
declaration, even if both are in different files. The
Python implementation does not provide these
editor services.

8 Dynamic Semantics

OIL is a language for defining the behavior of
control software. What the actual behavior is of
an OIL specification is described by its dynamic
semantics, which is formally defined in [17]. This
semantics is implemented in Spoofax using Strat-
ego with two code generators: one for verification
(mCRL2) and one for execution (C++). These
together realize OF5 (Multiple Targets).

Like OIL, mCRL2 is a language for describing
system behavior, except that it is based on process
algebra [36]. It also comes with a toolset [16], con-
taining all kinds of model checking functionalities,
such as checking properties and checking behav-
ioral equivalence, as well as tools to simulate and
visualize the behavior of an mCRL2 specification.
With this translation from OIL to mCRL2, the
functionality of the mCRL2 toolset can be indi-
rectly used for OIL specifications as well. Some
early results of this were already presented in [17].

To actually use an OIL specification to imple-
ment a software system, executable code needs to
be generated. For that reason, a translation from
OIL to C++ was implemented. This translation

OIL

SEM OIL2SEM

GPL

mCRL2

OIL2GPL

OIL2mCRL2

Fig. 32: A project extension graph of projects
used for code generation in the Spoofax imple-
mentation. Boxes correspond to projects. Arrows
mean “extends”.

is inspired by the C++ generator in the Python
implementation, which was already used for some
systems in development at Canon Production
Printing.

We highlight three parts of the implementa-
tion of these two translations in Spoofax: how
the implementation of dynamic semantics is split
into many projects, how static analysis results are
queried for use in transformations and how config-
urability of a translation is handled. Afterwards,
we discuss the implementation of these transla-
tions in the Python implementation. We then
evaluate Spoofax on productivity in the context of
dynamic semantics.

8.1 Division into Projects

As was already discussed in Section 6 and shown
in Fig. 20, an OIL specification is first transformed
to the semantic IR in the Spoofax implementa-
tion before it is transformed into mCRL2 or GPL
code. For the sake of extensibility, the semantic
IR, mCRL2 and GPL are all defined in sep-
arate projects, as well as the transformations
between them. See Fig. 32 for the hierarchy of
these projects, where the SEM project defines the
semantic IR. All projects in this hierarchy are
part of the Spoofax implementation except for the
mCRL2 project, which already existed for other
purposes.

The translation to GPL defined in OIL2GPL
does not translate directly to C++, but to an inter-
mediate representation called the GPL IR first
instead. The GPL IR is a pseudo code representa-
tion defined in the GPL project with basic object
oriented imperative programming language con-
structs such as classes, methods, basic statements

Springer Nature 2021 LATEX template

title 33

oil-sem2gpl-spec-enumdef(|specName):

SEMEnumDef(type, items) ->

GPLEnumDef(<SCOPEDTYPE(|specName, type)>,

items)

Fig. 33: The Stratego transformation of enum
declarations from the semantic IR to the GPL IR.

1 gpl2h: GPLProgram(_, ..., enumDefs, ...) ->

2 $[...
3 [<join-strings(|"\n\n")>

<map(gpl2h-enumDef)> enumDefs]

4 ...

5]

6

7 gpl2h-enumDef: GPLEnumDef(name, items) ->

8 $[enum class [name] {

9 [<indent-text(|2)> <join-strings(|",\n")>

items]

10 };]

Fig. 34: The Stratego transformation of enum
declarations from the GPL IR to C++.

and expressions. The GPL project then defines a
translation from the GPL IR to C++ files. The
reasoning behind the creation of the GPL IR is
to make it relatively simple to add translations
to other general purpose programming languages:
only a transformation from the GPL IR to that
programming language needs to be implemented.

See Fig. 33 and 34 for how the GPL IR splits
up the transformation of an enum declaration to
C++. In Fig. 33, an enum type declaration of the
semantic IR is transformed to an enum type dec-
laration of the GPL IR, which changes the type
name using the name of the OIL specification and
the original type name. In Fig. 34, for every enum
type declaration (line 3), a C++ enum class is cre-
ated (line 8-10). While most transformations in
the Spoofax implementation of OIL are model-to-
model transformations, the transformation from
the GPL IR to C++ is a model-to-text transforma-
tion, as can be seen by the use of templates. This
way, it is not necessary to define the C++ syntax
in Spoofax.

8.2 Using Static Analysis Results

When NaBL2 name binding and typing have
been applied on an AST, all terms in the AST

oil2mcrl2-type =

nabl2-get-ast-type ; oil2mcrl2-map-type

oil2mcrl2-map-type : TInteger -> Int()

oil2mcrl2-map-type : TBool -> Bool()

Fig. 35: A Stratego transformation rule that
transforms a term to one that represents its type
in mCRL2.

are annotated with information that stores the
results of the analysis. This information can then
be used in Stratego transformations by means
of specific transformation rules. For instance, the
type of a term can be extracted with the rule
nabl2-get-ast-type. See Fig. 35 for a (partial)
definition of a transformation rule that uses this
rule. Given a term with type information, such as
a variable reference term, it returns a term that
represents its type in the mCRL2 AST schema.
The terms starting with T correspond to the type
as annotated by NaBL2.

It is possible in NaBL2 to annotate the AST
with more information than the default name
binding and typing results. Scope graph nodes can
be given properties, which can store any term. We
use this for instance for retrieving the declaration
of an enum type, defined in an IDL specification,
when we generate code for an OIL specification
that has a reference to this enum type. See Fig. 36
for an example, where the declaration of an enum
type in an IDL specification is stored in its scope
graph declaration node Type{name} with a prop-
erty decl (line 3). This declaration node is then
stored within the TEnum type enum ty of the enum
(line 4). Whenever a reference to this enum type
in the OIL specification is encountered (line 8),
we add a reference node to the scope graph (line
9) and try to resolve it (line 10) like discussed in
Section 7.2. If successful, the TEnum type ty of
the enum type reference (line 8) is inferred from
the enum type declaration d by requiring that d

also has type ty (line 11). Since property decl

is stored within this TEnum type, the property
becomes available in the context of the enum type
reference in the OIL specification.

See Fig. 37 for a Stratego transformation in
which the property is retrieved from an enum type
reference, which is part of the translation from an
OIL specification to mCRL2. First the type of the
type reference is extracted (line 5), after which the

Springer Nature 2021 LATEX template

34 title

1 [[e@EnumDef(name, literals, ...) ^ (s)]] :=

2 Type{name} <- s,

3 Type{name}.decl := e,

4 enum ty == TEnum(Type{name}),

5 Type{name} : enum ty !,

6 ...]]

7

8 TypeRef [[TypeReference(x) ^ (s) : ty]] :=

9 Type{x} -> s,

10 Type{x} |-> d | error $[Type [x] not

found] @ x,

11 d : ty.

Fig. 36: Two NaBL2 code snippets: one that
stores the declaration of an enum type inside
its type (simplified) and one that defines type
inference for type references.

1 sem2mcrl2-imported-enum-typedef:

2 ref -> ...

3 where

4 a := <nabl2-get-ast-analysis> ref;

5 TEnum(occ) := <nabl2-get-ast-type> ref;

6 EnumDef(type, items, _) :=

<nabl2-get-property(|a, "decl")> occ;

Fig. 37: A Stratego transformation rule that uses
the scope graph node stored in the type of an enum
variable reference to obtain the declaration of the
corresponding enum type.

decl property is queried on the node within the
type, which provides the enum type declaration
(line 6). This enum type declaration can then be
translated to one in mCRL2 (line 2, details not
shown).

8.3 Configurability of the mCRL2
Generator

The translation to mCRL2 has a number of con-
figuration options. Some of these options are
mainly useful for debugging the translation dur-
ing development, but other options result in a
significantly different output. For instance, one
option mainly used for debugging is whether to use
auxiliary variables in the generated mCRL2 spec-
ification that help enhance its readability. Since
these options change how the mCRL2 specifica-
tion should look like, they configure the trans-
formation that generates mCRL2. One way to

oil2mcrl2-dyn-options(aux-vars) =

(aux-vars < rules(mcrl2-aux-vars : t -> t)

+ rules(mcrl2-aux-vars : _ -> <false>))

Fig. 38: The creation of dynamic rules in Stratego
for the auxiliary variables configuration.

sem2mcrl2-process-trans-pre =

if mcrl2-aux-vars then sem2mcrl2-firedvar

else sem2mcrl2-trans-pre end

Fig. 39: An example Stratego transformation rule
where the dynamic rule mcrl2-aux-vars is used.

implement this in Stratego is by passing the
configuration information on as parameters of
transformation rules. However, the more complex
a transformation becomes and the more deeply
nested this information is used, the more cluttered
with such configuration parameters the transfor-
mation becomes. A solution in many languages
would be to define global variables that hold this
information, but Stratego does not support global
variables.

Instead, dynamic rules [13] are used. A
dynamic rule is a transformation rule that is cre-
ated during transformation time, whose behavior
can depend on the status of the transformation at
that time. Such rules are used for configuration by
creating a dynamic rule for each value of a config-
uration option, which always succeeds if the value
was chosen, otherwise it always fails. For boolean
configuration options one dynamic rule suffices.
These rules can then be used wherever the dif-
ferences between configurations have effect on the
transformation, without having to pass anything
on explicitly.

See Fig. 38 for a Stratego rule that creates
the dynamic rule mcrl2-aux-vars for the aux-
iliary variables configuration, which is done just
before the transformation from the semantic IR
to mCRL2 is applied. The parameter aux-vars

stores whether the user has chosen to introduce
auxiliary variables. This parameter is then used
in a ternary operator of the shape s1 < s2 + s3,
which acts similarly to an if-then-else. If aux-vars
is true, the dynamic rule mcrl2-aux-vars is
defined as a rule that always succeeds (t -> t),
else as one that always fails (-> <false>). See
Fig. 39 for an example where this dynamic rule

Springer Nature 2021 LATEX template

title 35

1 localEnumTypes = spec.getLocalEnumTypes()
2 for tName in localEnumTypes:
3 tgt.nl()
4 tgt <<= f'enum class {Camel(tName)}'
5 tgt <<= '{'
6 tgt.indent()
7 tgt <<=

(f',{tgt.eol}{tgt.ind}').join(localEnumTypes[tName])
8 tgt.dedent()
9 tgt <<= '};'

Fig. 40: The Python transformation for enum
declarations.

is used during the transformation to mCRL2.
If the user chose for the introduction of auxil-
iary variables, the precondition of a transition in
the mCRL2 process should be represented with
an auxiliary variable (sem2mcrl2-firedvar), oth-
erwise the full transition precondition is used
(sem2mcrl2-trans-pre).

8.4 The Python Implementation

The Python implementation also defines a trans-
lation to mCRL2 and a translation to C++. The
translation to mCRL2 in the Python implemen-
tation was created during an exploratory study
on the semantics of OIL and is therefore only
a prototype. Compared to the Spoofax mCRL2
generator, the Python mCRL2 generator supports
slightly fewer OIL language constructs and it can
only generate mCRL2 code for single components,
whereas the Spoofax mCRL2 generator can also
generate mCRL2 for systems of components. On
the other hand, the Python C++ generator has
been maintained and refined for years and has
been used to generate C++ for systems used in
production. Compared to the Spoofax C++ gener-
ator, the Python C++ generator supports slightly
more OIL language constructs and it is built to fit
into Canon Production Printing’s software base.
This includes adherence to coding standards and
a higher level of configurability of the generated
C++ code, such as allowing multiple types of sched-
ulers to execute the specification, which is not
supported in the Spoofax C++ generator.

Both the Python mCRL2 generator and
the Python C++ generator are defined in their
own files in the Python implementation. Since
the Python implementation does not have any
explicit IRs, both generators directly transform
the (desugared) OIL specification to the desired

Artifact Spoofax Python

mCRL2 generator 689 531
C++ generator 705 1321
Reused 508 369

Total (Without reused) 1394 1852
Total (All) 1902 2221

Table 4: SLOC for the implementation of the
mCRL2 and C++ generator in both the Spoofax
and Python implementation of OIL.

target. See Fig. 40 for an excerpt of the Python
C++ generator that transforms an enum declara-
tion to C++. First all declared enum types are
collected from the desugared OIL specification
(line 1), after which a C++ enum class is printed
line by line for each enum type (lines 2-9).

The code generators in Python also support
the use of static analysis results and configura-
bility. Static analysis results and properties are
stored by dynamically adding new fields to the
classes that represent terms. This information can
then be accessed directly when needed. Configu-
ration options are stored globally, which can be
directly accessed from anywhere in the transla-
tion.

8.5 Evaluation

To evaluate the productivity of implementing
dynamic semantics, we look at a single evalua-
tion point: the implementation of code generation.
More specifically, we look at the mCRL2 and C++
generators that are available in the Spoofax and
Python implementation.

Question. Does it cost less code volume to
define code generation for OIL in Spoofax com-
pared to in Python?

Method. We measure the SLOC of the code
generators used to transform a desugared and ana-
lyzed OIL specification to mCRL2 and to C++.
Any SLOC called by the code generators, such as
helper functions, are counted too.

Results. Table 4 shows the SLOC used to
implement the mCRL2 and the C++ generator in
both Stratego and Python. Any SLOC that are
used for more purposes than one code generator
are captured in the “Reused” row.

Because the exact differences in functionality
(of generated code) between the two implementa-
tions and what SLOC attributes to these differ-
ences is very complex to measure, we decided to

Springer Nature 2021 LATEX template

36 title

measure the SLOC of the code generators in full.
This complexity is due to multiple factors. One is
that structure of the code generators is very dif-
ferent: the code generators in Spoofax are split up
into multiple transformations between IRs, while
the code generators in Python do a direct trans-
lation from a (desugared) OIL specification to the
target. Another is that code generators do not
almost only differ in syntactic OIL constructs they
support, as is the case for concrete syntax and
static semantics, but also what they support in
the functionality of the generated code, which is
much more difficult to compare accurately.

The Spoofax implementation of the mCRL2
generator consists mainly of Stratego code from
the OIL2mCRL2 project (689 SLOC). This code
generator also uses the mCRL2 project (373 SDF3
SLOC), but since this project already existed out-
side the scope of our project, we do not include
the SLOC measurements of this project in our
results. The Spoofax implementation of the C++
generator consists mainly of Stratego code from
the OIL2GPL and GPL projects (389+151 SLOC)
and SDF3 code for defining the grammar of the
semantic IR from the GPL project (165 SLOC).
The reused code in the Spoofax implementation
consists mainly of SDF3 code for defining the
grammar of the semantic IR from the SEM project
(164 SLOC) and Stratego code for various helper
transformations used by more than one code gen-
erator. The mCRL2 and C++ generators in the
Python implementation are both implemented in
separate files. The shared Python code consists
of helper functions that are used for both code
generators.

Analysis. The Spoofax mCRL2 generator
uses a factor of 1.3 SLOC compared to the Python
mCRL2 generator. The Spoofax C++ generator
uses a factor of 0.39 SLOC compared to the
Python C++ generator. A big reason for the dif-
ference in SLOC ratio of the two code generators
is the difference in maturity. The Python mCRL2
generator and the Stratego C++ generator are
prototypes that only implement basic code gen-
eration. The Stratego mCRL2 generator and the
Python C++ generator have more functionality
and have been maintained extensively compared
to their prototype counterpart.

Diving deeper into the code generators shows
that a big difference between the Stratego and the
Python implementation is in the use of IRs. In

the Spoofax implementation the code generator
consists mainly of model-to-model transforma-
tions. The actual target syntax is created using
the pretty printer that is automatically generated
from the syntax in case of the mCRL2 generator,
and using a model-to-text transformation from
GPL in case of the C++ generator (see Fig. 34).
In Python, no IRs are used: the target code is
printed line by line while using the (desugared)
Minidom AST of the OIL specification to collect
information (see Fig. 40).

The use of IRs does come with the overhead
of defining the IRs. Both IRs have been defined
by means of SDF3 grammars; the semantic IR
uses 164 SLOC and the GPL IR uses 165 SLOC.
These could have been implemented with fewer
SLOC if implemented with signatures in Strat-
ego like with the normalized and desugared IR, as
only these signatures are necessary for the trans-
formation. With 52 constructors for the semantic
IR and 44 constructors for the GPL IR, the sig-
natures could be implemented with 1 SLOC per
constructor. The difference in SLOC compared to
SDF3 is mainly due to the syntax needing lexical
elements, needing priority definitions and the def-
inition of some constructors in SDF3 being spread
over multiple lines for better pretty printing. How-
ever, using SDF3 for this does give the benefit of
having a readable syntax and the automatic gen-
eration of a pretty printer, which has been proven
useful when debugging transformations.

Concerning the comparison of using Strat-
ego over Python for the actual transformation,
the same benefits and downsides as for desugar-
ing transformations hold here. Stratego’s use of
ATerm as data format and its core support for
pattern matching helps writing transformations
in a concise way, but its not possible to directly
access the parent of a term and the immutability
of ASTs makes it impossible to create (global) ref-
erences to parts of an AST. Given the structure of
the transformations for the code generators, where
the input AST is only used to collect informa-
tion and the target AST is built up from scratch,
these downsides have less of an effect here com-
pared to desugaring, where information collection
and transformation is done in the same AST.
Specifically for code generators, there is another
small downside of using Stratego over Python in
the form of the use of properties. In the Python
implementation, due to the mutability of the AST,

Springer Nature 2021 LATEX template

title 37

properties can be added and extracted with a sin-
gle operation. In the Spoofax implementation, as
shown in Section 8.2, Fig. 37, multiple operations
are necessary to retrieve the declaration of an
enum type.

The reused Python code mainly consists of
general helpers for information collection, AST
traversal and code generation. The reused Strat-
ego code mainly consists of transformations to
and on the semantic IR, which include calcula-
tion steps necessary for the semantics of OIL,
such as computing transition pre/postconditions.
In the Python implementation, these calculation
steps are done separately in both code genera-
tors, resulting in some code duplication. This code
duplication could have been avoided by creating
more shared helper functions, reducing the total
amount of SLOC.

The modularity that comes with splitting up
the code generators in the Spoofax implementa-
tion into multiple projects, as shown in Fig. 32,
also comes with a cost in SLOC. To configure
the projects such that they extend each other, 31
SLOC is used. Since the code generators in the
Python implementation are defined in a single file,
no SLOC is needed for anything similar.

Conclusion. To implement an mCRL2 and
a C++ generator, the Spoofax implementation
uses a factor of 0.86 SLOC compared to the
Python implementation (a factor of 0.75 when
not counting reused SLOC). With the differences
in functionality between the Spoofax and Python
code generators in mind, we cannot not draw a
conclusion on the definition of code generators.

Discussion. The use of annotated informa-
tion was one of the things that was most difficult
to get working correctly. Because the informa-
tion is stored on scope graph nodes instead of the
terms itself, the information is not easily retriev-
able. With the NaBL2 interface for Stratego, it
was not possible to extract the scope graph nodes
that belong to a term directly from this term.
Some ideas for NaBL2 properties, such as whether
a variable reference refers to one declared in an
OIL specification or an operation parameter, were
never implemented due to this. The idea to put
the scope graph node inside a type as described
in Section 8.2 is actually more of a workaround,
as the type of a term is easily retrievable with
the NaBL2 interface. We are not sure whether
this is an issue of the NaBL2 interface or of the

lack of documentation on it. In Statix, the succes-
sor of NaBL2, properties are directly associated
with terms instead of scope graph nodes, which
alleviates this issue.

A benefit of the model-to-model approach with
IRs is reusability of transformations. A good
example of this is the definition of C++ methods.
In the Stratego implementation, C++ methods are
created by defining GPL methods first. Only a
single transformation rule needs to be defined to
translate a GPL method to a C++ method. In the
Python implementation, the syntactical details
of each method are repeated every time a new
method is defined.

Another benefit of using IRs is that it is
good for the extensibility of the implementation.
Adding a Java generator to the Stratego imple-
mentation only requires a translation from GPL
to Java in the GPL IR project, which reuses the
transformation to the semantic IR and the trans-
formation from the semantic IR to the GPL IR
(389 out of 540 SLOC of the C++ generator in
Table 4). In the Python implementation, a new
transformation from a desugared OIL specification
would need to be defined. This is assuming that
the GPL IR is capable of representing all Java
constructs that are necessary for the resulting out-
put. If that is not the case, adjustments need to
be made to the GPL IR and any transformation
to and on it.

9 Evaluation

In this section we summarize the main findings for
our research question and we discuss their threats
to validity.

9.1 Summary

RQ: How does the productivity of implement-
ing an industrial language in Spoofax compare
to the productivity when using a GPL and
available libraries?

To answer this, we have measured and com-
pared the code volume used to implement lan-
guage engineering artifacts in the Spoofax and
Python implementations of OIL. Both evaluated
implementations are complete, in the sense that
all five desired OIL features as described in
Section 3.3 are realized, except for OF1 (Multiple

Springer Nature 2021 LATEX template

38 title

Syntaxes). OF1 is not implemented in the Python
implementation, which is why we only compared
SLOC for OILXML. For concrete syntax, abstract
syntax, and static semantics we compared arti-
facts produced by both implementations with
similar functionality. For dynamic semantics we
could not make a clear comparison between the
Spoofax and the Python implementation due to
the large difference of maturity of the mCRL2 and
C++ generators of the two implementations.

For concrete syntax the Spoofax implemen-
tation uses a factor of 0.29 SLOC compared to
the Python implementation. This difference is
mainly caused by the fact that most concrete syn-
tax artifacts are automatically generated from the
SDF3 grammar definition in Spoofax, while in
Python they are manually implemented, though
reusable for other XML-based languages. When
not counting these reusable parts, the Spoofax
implementation uses a factor of 1.81 SLOC instead
compared to the Python implementation.

For abstract syntax we considered AST repre-
sentations and desugaring transformations. Since
the ASTs are represented very differently in both
implementations, we could not derive an insight.
Comparing the code volume for desugaring trans-
formations, we found that the Spoofax imple-
mentation using Stratego uses a factor of 0.56
SLOC compared to the Python implementation
(a factor of 0.82 SLOC when not counting reused
SLOC). The difference is mainly due to Strat-
ego’s core support for pattern matching on ASTs,
although the immutability of ASTs in Spoofax can
be inconvenient when specifying transformations.

For static semantics the Spoofax implemen-
tation uses a factor of 0.49 SLOC compared to
the Python implementation. Especially NaBL2’s
declarative nature, where name binding and typ-
ing are defined by means of scope graph and
constraint generation rules, helps with keeping the
implementation concise.

In summary, for concrete syntax, desugaring
transformations and static semantics, the code
volume used in Spoofax was about a factor 0.5 or
less compared to Python. This is mainly due to
the availability of meta-DSLs that are tailored to
implementing language development aspects and
to generating editor services. When not count-
ing reused SLOC, the results are somewhat more
favorable for the Python implementation. Since

the comparison is on two implementations cover-
ing similar functionality, the results are an indica-
tion that it is more productive to implement OIL
in Spoofax than in Python.

9.2 Threats to Validity

We discuss threats to our study’s construct,
internal, and external validity. We discuss using
code volume as proxy for productivity both as
construct- and internal validity.

9.2.1 Construct Validity

Construct validity concerns to which extent our
code volume measurements actually assess pro-
ductivity. As threats to construct validity, we
discuss using code volume per artifact as proxy for
productivity and bias in artifact selection.

Code volume per artifact as proxy for
productivity

Using code volume per artifact as a proxy for
measuring productivity is a controversial mea-
sure [4, 8, 49, 69] and a threat to construct validity.
Especially for measuring absolute productivity the
measure is controversial, as many other factors
could have influenced the effort it took to cre-
ate an implementation. For example, developers
can spend the majority of their time on program
comprehension and only a small portion on writ-
ing code [48]. In general, to mitigate the threat
of using code volume per artifact as a proxy, we
use the code volume measurements to compare
two implementations, not to derive absolute pro-
ductivity numbers. Second, both implementations
already existed before the evaluation, which coun-
ters the threat that one implementation could
have been optimized in terms of code volume
to get better evaluation results. Third, in each
evaluation we aim to compare parts of both imple-
mentations that cover the same functionality.

A threat that remains is that implementing
a DSL is not just about writing lines of code,
but also about the time needed to understand
how to do so with the implementation language(s)
available. The average time per SLOC is influ-
enced by the experience of the developer and the
language that is used, e.g., Python is more com-
monly known than Spoofax and its meta-DSLs.
Also, earlier experience with language engineer-
ing or compiler construction is beneficial. From

Springer Nature 2021 LATEX template

title 39

our experience, especially NaBL2 requires consid-
erable time to learn. The Master students that
contributed to the project seemed to pick up
Stratego rather quickly.

We will now discuss using code volume as
proxy for productivity in more detail for specific
language aspect evaluations. In the concrete syn-
tax evaluation, the original Spoofax and Python
implementations did not cover the exact same syn-
tactic languages. For example, this is due to the
Spoofax implementation still containing some lan-
guage constructs that have been removed from
the Python implementation. To increase the fair-
ness of our comparison, we have subtracted the
lines of code for syntactical elements that are
not present in the other implementation. In the
Spoofax implementation, this was 31 out of 396
SLOC (7.8%). In the Python implementation, this
was 46 out of 1306 SLOC (3.5%). Compared
to the productivity comparison outcomes, these
differences are inconsequential.

From the abstract syntax evaluation we take
Fig. 26 as an example. The desugaring rule auto-
value in the Python implementation could have
been implemented using list comprehension to do
multiple steps on the same line of code. This would
reduce the lines of code but would also make the
code more complex to understand. These threats
are mitigated by the fact that both implemen-
tations have been created without the goal of
evaluating them, let alone optimizing the lines of
code, rather than with the goal of being correct
and well maintainable.

Bias in artifact selection

In our evaluations, we measure code volume for
a selection of artifacts; our selection of artifacts
could be biased. This raises the question how rep-
resentative the selected artifacts are for the whole
implementations and thereby is a threat to con-
struct validity. Since for every language aspect the
selected artifacts cover almost the whole imple-
mentation, we think this threat is negligible.

Next to the implementation of OIL in
Spoofax’s meta-DSLs and in Python, an imple-
mentation of a DSL also contains other code for,
e.g., configuration and the build system. We have
not included these in the measurements, which
could make our measurements less representative

for the whole implementations. From our experi-
ence, the code spent on configuration and build
specification is so little that we do not expect the
outcomes of our study to be different if they were
included.

Both implementations contain code that is spe-
cific to some artifact and code that is reused for
multiple artifacts. Some reusable code can even be
used beyond OIL, which is especially the case for
the implementation of concrete syntax in Python.
Since reusability of code impacts productivity, we
measure reused code separately and discuss how
reusable the code is. When comparing both imple-
mentations, we compare both with and without
reusable code.

9.2.2 Internal validity

Internal validity concerns to which extent our
measurements actually represent the effect on pro-
ductivity, and cannot be caused by other factors.
For internal validity, we discuss using code vol-
ume per artifact as proxy for productivity, design
decisions, confirmation bias, and experience of
developers.

Code volume per artifact as proxy for
productivity

In the static semantics evaluation, not much
SLOC has been measured for well-formedness
compared to name binding and typing, because
not many well-formedness constraints were imple-
mented in Spoofax and most of those that are, do
not correspond well with constraints in the Python
implementation. One of the main reasons for this
is that well-formedness was not a high priority
during the development of OIL in Spoofax. There-
fore, we cannot give a strong indication regarding
the productivity of implementing well-formedness.

Interdependence of implementations

Both implementations were not created entirely
independently from each other. The Python
implementation was already well maintained when
we started with the Spoofax implementation.
When developing the Spoofax implementation,
the Python implementation was used to deter-
mine what should be implemented, for instance,
which desugaring transformations are necessary
and what the code resulting from the C++ code
generator should look like. However, the Python

Springer Nature 2021 LATEX template

40 title

implementation was not used to determine how
things should be implemented in the Spoofax
implementation. The meta-DSLs of Spoofax differ
from Python so much that there is no clear trans-
lation from Python to a meta-DSL, or vice versa.
Therefore, we believe that the SLOC measured in
one implementation are independent of the SLOC
measured in the other implementation.

Design decisions

During the implementation of a DSL, several
design decisions are made that influence the imple-
mentation. Therefore, particular design decisions
can have influenced the outcomes of our study. We
have countered this threat by taking two imple-
mentations of the same language that are realized
independent of our evaluation, i.e., the implemen-
tations already existed before this evaluation was
started.

The question remains whether the conclusions
could have been different given totally different
design decisions. For the Spoofax implementa-
tion, we think different design decisions would
not lead to very different conclusions, as Spoofax
and its meta-DSLs steer design decisions, leaving
little design decisions to the language engineer.
Also, several design decisions that were made in
the Spoofax implementation, such as using lan-
guage composition and many modules for code
organization, came with overhead increasing the
counted SLOC. For the Python implementation,
we think many design decisions could have been
made very different, which can steer the imple-
mentation to use more or less lines of code, which
is a threat to internal validity. Given the nature of
our study, where we focus on a complex industrial
case, we think this threat is justified. Although all
the services of Spoofax could be re-implemented
using Python and offered as reusable code, that is
not what typically happens as it would be over-
design from the perspective of developing a single
language.

Confirmation bias

Some of the authors have contributed to the
Spoofax and Python implementations of OIL,
which raises a concern regarding confirmation
bias. We have mitigated the risk of confirmation
bias in the following ways, which prevents the pos-
sibility for authors to, during the study, change

the implementations or steer evidence in a way
that supports prior beliefs. First, we have cho-
sen a fixed version of the Spoofax and Python
implementations of OIL from a moment before the
SLOC measurements started. Second, while code
measurements are conducted by a single author,
at least one other author has checked these mea-
surements. Third, the authors involved in the
implementations of OIL had many discussions to
ensure that code measurements cover those parts
of the implementation to make comparisons as fair
as possible.

Experience

Not all developers that worked on the Spoofax
implementation were familiar with Spoofax and
its meta-DSLs. Therefore, it could be that the
meta-DSLs were not used optimally, and code is
unnecessarily large at some points in the imple-
mentation. We do not expect this to have large
impact on the outcomes of our study. For the
Python implementation this is not much of an
issue as it is a language (paradigm) that the
developers were more experienced with.

9.2.3 External Validity

External validity concerns to which extent our
findings are generalizable to other language work-
benches, comparison to other GPLs, other DSLs,
and other contexts. Our study focuses on a partic-
ular language workbench (Spoofax), a comparison
with a particular GPL (Python), a particular DSL
(OIL), and a particular context (the industrial
context of Canon Production Printing). Therefore,
it is unclear to what extent our findings also hold
for other language workbenches, comparison to
other GPLs, other DSL cases, and other contexts,
as a specific case study is not easy to general-
ize. OIL’s implementations in Spoofax and Python
cannot be published due to confidentiality reasons,
which hinders the reproducibility of our study.

Generalizability of Python

The Python implementation heavily relies on
object-oriented programming and the availabil-
ity of, e.g., parsing libraries. These aspects are
not uncommon for other GPLs and therefore we
expect that our findings can be similar for com-
parisons to other GPLs. Features that are more

Springer Nature 2021 LATEX template

title 41

specific to Python, such as list comprehension, are
rarely used in the Python implementation.

Generalizability of OIL

We do think our case is representative of indus-
trial DSL development because OIL is a complex
DSL with requirements specific to the industrial
context. Still, OIL has specific characteristics that
could be very different from other DSLs. Many
DSLs only have one syntax, while OF1 required
the support for multiple syntaxes. Also, OIL is
dependent on another language, IDL, following
OF4, while DSLs are often self contained. On
the other hand, relating to OF3, OIL has rather
simple typing and name binding rules. We think
that desugaring transformations (OF2) and code
generation (OF5) are rather common for DSLs,
though the structure of the transformations and
generators may differ, and some DSLs may be
interpreted instead.

10 Discussion

While our evaluation in the previous section is
based on conclusions drawn from our quantita-
tive analyses, in this section we discuss aspects of
our case study that are of a qualitative nature.
First, we discuss the strengths and weaknesses of
Spoofax that we have experienced. Second, we list
the lessons learned from our study. Finally, we
suggest an engineering agenda for Spoofax. In the
engineering agenda for Spoofax, we also discuss
if and how the weaknesses of Spoofax we have
encountered are improved upon in the next version
of Spoofax.

10.1 Spoofax’s Strengths

We list several aspects that worked out well in
using Spoofax.

Meta-languages suitable for OIL

The meta-languages that are used (SDF3, NaBL2
and Stratego) all offered sufficient support for
implementing OIL’s concepts. SDF3 was sufficient
for the implementation of OILXML’s grammar
and enabled rapid prototyping of OILDSL. The
name binding and typing features of OIL and IDL
could be specified in NaBL2 using the scope graph
model. OIL’s transformations and code generators
could be implemented using Stratego.

Modular language implementation

All meta-languages supported modular language
implementation in the sense that implementa-
tions could be split up in modules that could be
composed or reused. This was beneficial to the
Spoofax implementation in many ways. For exam-
ple, reusing SDF3 modules for shared expression
grammar prevented the need to define duplicate
grammar rules for the four input languages (see
Section 5.2). Stratego allows modular and com-
posable definitions of transformations. In particu-
lar, Stratego enabled us to implement additional
AST schemas and the resilient staging framework,
which helped in creating a modular transforma-
tion architecture. Lastly, there is little overhead
in creating new (composed) languages, which
enabled us to easily add an extra language (IDL-
OIL-TEST-DSL) specific for testing scenarios of
multiple IDL and OIL specifications in isolation.

IDE support

Spoofax derives several editor services auto-
matically for language implementations: parsing,
AST inspection, syntax highlighting, syntax error
recovery, showing type information, reference res-
olution, execution of analysis and transformations
on file changes, execution of transformations on
user request, and marking errors on the specifi-
cations. This made it feasible for us to realize an
IDE for OIL. The ability to offer a DSL with a
user-friendly IDE is beneficial for the adoption of
DSLs in an industrial environment such as Canon
Production Printing.

Language testing

SPT was useful for testing the implementations
of IDL and OIL and to maintain implementa-
tion correctness while evolving the languages. SPT
supports testing of several (isolated) aspects of
the languages such as parsing, name resolution,
and typing, as well as end-to-end tests for test-
ing the translations to C++ and mCRL2. Testing
helps in obtaining a reliable language implemen-
tation and validation during language evolution.
For example, when adding or changing functional-
ity to OIL, tests help to ensure other functionality
is maintained.

Springer Nature 2021 LATEX template

42 title

Integration support

Spoofax contains three features for integrating
a language implementation within a software
ecosystem. First, Stratego offers a Java API which
makes it possible to manually implement a trans-
formation rule in the general purpose language
Java, which also enables integration of external
tools. This Java API has been used to integrate
the SAT solver Z3 for static analysis to opti-
mize generated C++ code [19]. This could also
enable automated integration with the mCRL2
toolset, i.e., by automatically calling mCRL2 in
a transformation. Second, Spoofax languages can
be built outside Eclipse using the Maven or Gra-
dle build systems. This should make it possible
to integrate OIL in larger software builds such as
continuous integration (CI) or production builds,
which is relevant for software development at, e.g.,
Canon Production Printing. Third, Spoofax offers
a Java API (named Spoofax Core) which enables
to integrate parts of a Spoofax language imple-
mentation such as the parser or transformations
within the Java ecosystem. Potentially, these fea-
tures in combination can enable the integration
into an existing industrial software ecosystem.

10.2 Spoofax’s Weaknesses

We list several aspects that did not work out well
in using Spoofax.

Limited portability

Portability concerns to what extent software can
be used in different environments. Spoofax cur-
rently only provides full support in Eclipse as the
IDE for language development and limited sup-
port for IntelliJ IDEA. This lack of portability
limits the practical applicability opportunities of
the language workbench. For example, at Canon
Production Printing, software engineers mainly
use the Visual Studio IDE, which is currently
not supported by Spoofax. Although Spoofax does
support integrating parts of a language imple-
mentation outside Eclipse using the Java API,
the meta-DSLs are not available as independent
libraries, hindering integration with other tooling.

Building and runtime performance

The language development experience in Spoofax
is hindered by long build times and long response

times after changes, sometimes blocking you for
minutes. Although it is workable, it does not
conform to the response times expected from
interactive systems. The editing experience is non-
concurrent, e.g., while a build is busy and one
changes a file, the build first has to finish before
the changed file gets reanalyzed. If a project con-
sists of multiple subprojects, all subprojects have
to be built manually one by one in the correct
order, because automatic derivation of the cor-
rect build order is lacking. This especially becomes
cumbersome in a project such as OIL that con-
sists of 14 subprojects, which together take about
16 minutes to build on a company provided lap-
top. When changes are made, the projects that are
affected by the changes need to be rebuilt. Espe-
cially in an industrial context this is a problem,
as costly time of engineers is spent on building
projects rather than actual development.

Cross-language static analysis

Spoofax with NaBL2 does not offer native sup-
port for merging scope graphs of languages to
realize language composition on the static seman-
tics level. Conceptually, language composition on
the static semantics level using scope graphs
boils down to merging the root node of two lan-
guages’ scope graphs. In practice, this required
a workaround by merging the language defini-
tions of IDL and OIL in one language project
which accepts both IDL and OIL specifications
(see Section 7.2). This is a workaround that
could be resolved if Spoofax would offer cou-
pling separately-defined languages by merging
their scope graphs. The languages could then live
next to each other, with their own file extensions,
and only interact on scope graphs during static
analysis.

Lack of static checking and debugging in
NaBL2 and Stratego

The language development experience in NaBL2
and Stratego sometimes was hindered by the lim-
ited static checking of specifications in the meta-
DSLs. As a result, it often occurs that errors made
in a specification are only encountered during exe-
cution. For example, a Stratego strategy can fail
on getting an incompatible type of term as input
which could have been statically checked if strate-
gies were typed. Also, no interactive debugging

Springer Nature 2021 LATEX template

title 43

support for transformations is available. When
transformations fail, stack traces are reported
without references to the source code with line
numbers. This is problematic in an industrial con-
text as it makes engineers spend more time on
debugging.

Using static analysis in transformations

Using the NaBL2 analysis results in transforma-
tions is cumbersome because low-level querying of
the scope graph is required for general operations
such as finding a declaration given a reference
(see Section 8.2). The API is also sparsely doc-
umented, which makes it unclear how the API
should be used. Spoofax could improve here by
offering abstractions for common static analysis
querying patterns.

Language evolution and refactoring

Evolving a language implementation in Spoofax
can lead to cumbersome situations. For exam-
ple, when IDL and OIL change, all specifications
written in IDL and OIL have to be migrated
manually. If the signature of a term changes,
many Stratego transformations may need to be
migrated as well. This has occurred in practice, for
instance when area type “scope” was renamed to
“zone”. Applying the change of a name through-
out the implementation involves intensive search-
ing and replacing. Spoofax could be improved by
adding support for cross-project and cross-meta-
DSL refactorings in language definitions, similar
to how modern IDEs support this.

Fine-grained testing

SPT mostly supports end-to-end testing of lan-
guage implementations, whereas it was often
desired to test individual parts of the implementa-
tion in a more fine-grained manner. For example,
it was only possible to test desugaring transfor-
mations with SPT by defining tests that, given
an OIL specification, generate the normalized IR,
apply the desugaring transformation on it, and
then transform it back to the original syntax. The
success of this test does not only depend on the
desugaring transformation, but also on the trans-
formations between the textual OIL specification
and the normalized IR. It would be useful if, in
SPT, one could write a test for a particular trans-
formation rule or strategy for an input directly

written as ATerm, essentially unit testing a small
part of a transformation.

Editor actions for configurable code
generators

As discussed in Section 8.3, some code gener-
ators have a number of configuration options.
A user can pick values for these configuration
options when selecting a code generator in edi-
tor action menus, which are defined using ESV
(Spoofax’s meta-DSL for defining editor services,
see Section 2.6). However, it is not possible in ESV
to reuse (sub)menus; every (sub)menu and menu
item must be defined explicitly. When adding a
new configuration option with n possible values,
n times more editor actions need to be defined,
which makes the size of the ESV file exponential
in the number of configuration options.

10.3 Lessons Learned

We list our most important lessons learned from
implementing OIL in the industrial context of
Canon Production Printing both using Python
and using Spoofax 2:

1. The meta-DSLs in Spoofax are just like DSLs
limited to a certain domain, and it is not
unheard of that we end up at the edges of this
domain. For us, the meta-DSLs in Spoofax have
been sufficient in the industrial context. Except
for a few practical workarounds, we have expe-
rienced no limitations in implementing concrete
syntax (with SDF3), abstract syntax (with
Stratego), static semantics (with NaBL2 for
typing and name binding and with Stratego
for well-formedness checking), and dynamic
semantics (with Stratego).

2. The biggest limitations of Spoofax 2 are not
in the functional aspects of meta-DSLs, but in
their non-functional characteristics, e.g., slow
build and response times, limited documen-
tation, limited portability, and limited static
checking of meta-DSL specifications.

3. Choosing XML and Python is a viable engi-
neering choice in the absence of a language
workbench. XML is a good choice for an effec-
tive implementation of concrete syntax for a
DSL if dependence on external tools is unde-
sired. Therefore, this is a simple alternative to
using a language workbench with a penalty of

Springer Nature 2021 LATEX template

44 title

roughly twice the code size and half of the edi-
tor features, as well as a penalty in the user
friendliness of the language.

4. A main benefit of DSLs is the multiplicative
factor: from a single specification in a DSL,
multiple backends can be targeted or multiple
artifacts can be generated. This multiplica-
tive factor is essential for the effectiveness of
meta-DSLs used to implement DSLs: a single
specification in a meta-DSL can generate mul-
tiple language processing artifacts and editor
services. For instance, from an SDF3 grammar,
not only a parser is generated, but also an AST
schema, a pretty printer, origin tracking and
editor services.

5. Separate meta-DSLs for separate language
implementation aspects lead to a clear separa-
tion of concerns, making it effective to define
and maintain language aspects within those
concerns. From our experience, the fundamen-
tal design decision of Spoofax to have clearly
separated meta-DSLs seems to be working well.

6. Specifications written in Spoofax’s meta-DSLs
can have high reusability and extensibility, by
decomposition into modules, but this can come
with a considerable cost in terms of code to
compose the modules. However, since this code
almost only consists of declaring and importing
modules, we recommend to use Spoofax’s meta-
DSLs in a modular way.

10.4 Spoofax Engineering Agenda

Based on our experiences from implementing OIL
with Spoofax 2, we suggest the following improve-
ments to make on the language workbench to
increase its adoptability in industry. We have
presented these items to the Spoofax develop-
ment team and incorporated their responses with
respect to if and how these items have improved
upon in Spoofax 3.

Portability

By making Spoofax available to more IDEs, more
developers could make use of it in their IDE of
choice. When companies have a policy on which
IDEs engineers should use, not supporting such
IDEs can block Spoofax from being adopted.
Potentially, adding Language Server Protocol
(LSP) support can help in improving Spoofax’s
portability; in principle the support needs to be

implemented once but will make Spoofax avail-
able to all IDEs that support LSP. Although
Spoofax 3 is not more portable out of the box
(it supports Eclipse, Gradle, and a command line
interface), it features a fundamentally different
architecture than Spoofax 2. By supporting static
rather than dynamic loading of languages, it is
easier to extend Spoofax 3 with support for other
IDEs or LSP. Custom language integrations are
also easier to make, as languages can be pack-
aged as Java libraries. In addition to languages
developed with Spoofax, it would also be useful
to offer the meta-DSLs as libraries, as that would
ease integration with other tooling and allows the
meta-DSLs to reach wider audiences.

Language build system

Several improvements can be made to the lan-
guage build system provided by Spoofax to
improve the development experience: improving
build times (e.g., by further incrementalizing
builds), automatically building a project that con-
sists of multiple subprojects in the right order
based on dependencies, and automatically check-
ing whether exports and imports of files between
projects are valid such that errors are detected
early and do not require trial and error to debug.
Spoofax 3 improves on all these aspects with the
introduction of the PIE (Pipelines for Interactive
Environments) [46] build system which features
fully incremental builds for implementing both
Spoofax 3 itself as well as languages developed
with Spoofax 3. This is also relevant to debugging
Stratego 2 code: with quick enough compilation
round-trip, print debugging becomes much more
viable.

Runtime performance

Improving the response times after changes in
Spoofax would improve the development experi-
ence, such that less time during development is
spent on waiting. In Spoofax in Eclipse, concur-
rent editor actions would improve the develop-
ment experience; currently, e.g., when a build is
busy, changes to other files are only picked up after
the build finishes. Spoofax 3 with incremental-
ization using PIE improves runtime performance
of both language builds as well as responsiveness
of interactions in the IDE. With the introduc-
tion of PIE, runtime performance is not better

Springer Nature 2021 LATEX template

title 45

for all implementation aspects as, e.g., the same
SDF3 parser generation is used which itself is not
incrementalized.

Cross-Language Static Analysis

Spoofax could be improved by supporting cross-
language static analysis by making it possible to
merge the scope graphs of two separately defined
languages, as also described by Zwaan [73]. In
Spoofax 2 this was deemed virtually impossible
to implement. Thanks to the new architecture
of Spoofax 3, it supports the implementation of
cross-language static analysis, which should sup-
port the OIL and IDL case. Cross-meta-language
static analysis was one of the goals of Zwaan [73],
but have not yet been materialized.

Static Checking in meta-DSLs

Improved static checking in Spoofax’s meta-DSLs
would enhance the language development experi-
ence by reducing the need for trial and error. The
next version of Spoofax partly improves on these
aspects, in the meta-DSLs Stratego 2 and Statix
(successor to NaBL2). Stratego 2 introduces grad-
ual typing [56] and Statix comes with static checks
on its specifications.

Stratego Debugging

Spoofax only supports debugging of Stratego
transformations by adding debug transformation
rules that print information to the console. It
would be beneficial for development with Stratego
to be able to step through a transformation inter-
actively, while showing the values of local variables
and the term that the transformation is applied
on. Spoofax 3 and Stratego 2 do not yet support
debugging of transformations.

Integrating Static Analysis with
Transformations

An improved API for using static analysis results
in transformations can make transformation def-
initions more simple. In NaBL2’s successor,
Statix [54], some issues are alleviated already. For
instance, in Statix properties are defined on terms
directly instead of on scope graph nodes, which
makes querying them straightforward.

Documentation

Improved documentation will help engineers new
to Spoofax to learn and adopt the tool, without
having to learn from experiences from others or
by experimentation.

Unit Testing Stratego

It would be desired to have core support for unit-
testing Stratego transformation rules in SPT, by
supplying an input term, a transformation, and
an expected result term. Especially for large and
modular transformation architectures, the restric-
tion of only testing end-to-end transformations
makes it difficult and cumbersome to test individ-
ual parts of the transformation architecture.

ESV-Stratego integration

A better integration between ESV and Strat-
ego could make the definition of editors services
more simple. For example, supporting parame-
terized Stratego transformations in ESV would
avoid redundant definitions. In the current state of
ESV, the size of an ESV specification grows expo-
nentially in the number of configuration options
available for an end-to-end transformation.

11 Related Work

We discuss related work on evaluating language
workbenches (and tools to develop DSLs in gen-
eral) and other process languages such as OIL.

11.1 Language Workbench
Evaluation

We first discuss Spoofax and then other language
workbenches.

Most research on Spoofax focuses on the
language workbench’s fundamentals, with artifi-
cial languages as examples. An exception of this
is Visser’s case study on the development of
WebDSL [62], which discusses language design
and implementation for a DSL in the domain of
web programming. The paper highlights the DSL
development process and how the different aspects
of this process can be covered by the meta-DSLs
of Spoofax. This study uses Spoofax version 1,
the predecessor of the Spoofax version used in
our study. Several discussion sections cover DSL
engineering evaluation criteria focusing on the

Springer Nature 2021 LATEX template

46 title

process and the language that is produced, not
on the tools for developing the language (SDF +
Stratego), language engineering paradigms, or lan-
guage engineering challenges. Therefore, this work
does not evaluate Spoofax itself or how it com-
pares to not using a language workbench. Hamey
and Goldrei [37] reported on their experiences of
using SDF and Stratego compared to using tra-
ditional techniques. They found that the Stratego
toolset enabled easy implementation with oppor-
tunity of enhancing the language and improving
performance of generated code, compared to the
implementation using traditional techniques.

Canon Production Printing uses modeling lan-
guages across various engineering disciplines [55].
Schindler et al. describe how the company envi-
sions the use of models during the complete life
cycle of printers to address the challenges of
efficiently performing continuous innovation with
sustainable quality. The MPS language work-
bench is selected as one of the core technologies
to develop custom DSLs that can interconnect
the models from different engineering disciplines
and tools. The authors find that using model-
ing approaches has advantages: users only have
to learn a single tool, multiple models can be
generated from a single tool, and one point of
maintenance is needed instead of multiple. They
also encountered challenges in using MPS: steep
learning curve, lack of full-fledged DSL models
in MPS for commodity languages such as C++,
existing parsers or grammars are not immediately
reusable, and performance can be undesirably low.

Voelter et al. [65] report on their experiences
on using MPS for the development of mbeddr,
a large set of languages and extensions of the C
language that targets embedded software develop-
ment. This work is, to our knowledge, the largest
evaluation of a language workbench, spanning a
case that involved around 10 person years of devel-
opment effort in an industrial setting. Whereas
our work is centered around evaluating produc-
tivity, the paper by Voelter et al. is centered
around five topics concerning the use of MPS:
language modularity, notational freedom and pro-
jectional editing, mechanisms for managing com-
plexity, performance and scalability issues, and
consequences for the development process. The
authors draw generally positive conclusions and
indicate various places for improvement as well.

Broccia et al. [15] state that although the
quantitative aspects of language workbenches are
often discussed in literature (e.g., the evalua-
tions and comparisons by Erdweg et al. [28]),
the evaluation of comprehensibility of the meta-
languages used in language workbenches are typ-
ically neglected. The authors evaluate the Nev-
erlang [60] language workbench on four aspects.
First, the comprehensibility of programs in Never-
lang in terms of users’ effectiveness and efficiency
in code comprehension tasks. Second, the relation-
ship between comprehensibility and users’ working
memory capacity. Third, to which extent users
consider the language workbench acceptable in
terms of perceived ease of use, usefulness, and
intention to use. Fourth, how comprehensibility
relates to the degree of acceptance of the lan-
guage. The study suggests that users’ working
memory capacity may be related to the ability
to comprehend Neverlang programs. Effectiveness
and efficiency do not appear to be related to an
increase of users’ acceptance variables. We believe
more studies like these can be useful for getting
a better understanding of how language work-
benches are perceived and what influences their
adoption.

Klint et al. [43] found that using DSL tools
(ANTLR, OMeta, Microsoft “M”) improve the
maintainability of language implementations by
comparing several implementations of the same
DSL both with and without the use of DSL tools;
the implementations without DSL tools use GPLs
(Java, JavaScript, C#). The evaluation consid-
ers parsing, static analysis, and transformation.
The results suggest that DSL tools increase main-
tainability of DSL implementation compared to
using GPLs. The work is similar to our work by
comparing implementations of a DSL using GPLs
to implementations using tools specific for DSL
development. The work by Klint et al. differs
from our work in the sense that they compare six
implementations instead of two, the DSL tools do
not cover aspects of language engineering such as
deriving IDEs, and they focus on maintainability
instead of productivity.

Åkesson et al. [1] report on their experiences on
the implementation of a Modelica compiler using
JastAdd [26] compiler tool. In particular, an aim
is to achieve extensibility of the compiler, which
led to the choice of using the declarative attribute
grammar approach provided by JastAdd. They

Springer Nature 2021 LATEX template

title 47

illustrate how existing design strategies for a Java
compiler implemented using JastAdd could be
reused for advanced features of the Modelica com-
piler. The authors show complex semantic rules
can be implemented in a compact and modular
manner. Given the 9 man-months of development
time that was spent on creating the implementa-
tion, they find that JastAdd is very well suited for
rapid compiler development.

Basten et al. present a language engineer-
ing case study on a Rascal implementation of
Oberon-0 [6], focusing on how the language can be
implemented in a modular way. Oberon-0 consists
of four language levels where each succeeding level
is implemented as an extension of the preceding
level, supported by Rascal’s modularity features.
The implementation used less than 1500 SLOC
which includes the implementation of parsing,
name and type analysis, desugaring, transforma-
tion, and compilation to C. Additionally, they
found directions for improvement for Rascal.

Zarrin et al. [72] report on their experiences of
introducing a DSL for material flow analysis using
Microsoft DSL tools. Their motivation for using
the DSL is to enable domain experts to evolve
existing software to fulfill new requirements. The
authors report that the DSL tools were mature
enough to develop a complete DSL. Drawbacks
include redundantly having to define semantics for
simulation and code generation, the visualization
of the metamodel is difficult to understand, and
being limited to graphical notation.

Other implementations exist of DSLs like OIL
for the specification of behavior. For instance,
the language Dezyne developed by the company
Verum9 can be used to define system behaviour
and its implementation in Guile10 includes multi-
ple code generators [7]. The Comma framework11

contains a collection of languages and tools to
define and analyze the signatures and behavior of
interfaces and is implemented using Xtext, which
also supports many code generators [47]. BPMN12

is a UML-like graphical language for modeling
business processes maintained by the Object Man-
agement Group, implemented using MOF (Meta
Object Family), with XSD for static semantics and

9https://www.verum.com/
10https://www.gnu.org/software/guile/
11https://comma.esi.nl/
12https://www.bpmn.org/

XSLT13 for dynamic semantics [53]. SystemC14

is a language for simulating event-driven concur-
rent processes, defined as a subset of C++ with
predefined classes and functions, which makes it
possible to reuse much of the already existing
analysis and editor services for C++.

12 Conclusions

In this paper, we have presented an industrial case
study on language engineering with the Spoofax
language workbench. In summary, the contribu-
tions of this paper are:

• An evaluation of whether Spoofax’s original
claims — on making language development,
compared to not using a language workbench,
more productive — stand when realizing the
implementation of a complex industrial lan-
guage such as OIL.

• Lessons learned on implementing OIL using
Spoofax in the industrial context of Canon
Production Printing.

• Strengths, weaknesses, and an agenda for future
engineering on Spoofax.

We found that Spoofax and its meta-DSLs
SDF3, NaBL2 and Stratego were adequate for
implementing OIL. It was possible to implement
every OIL feature using the meta-DSLs. Several
workarounds were needed, such as the interaction
between IDL and OIL when it comes to static
analysis, but these could still be implemented
within Spoofax.

In our evaluation, we found indications that
it is more productive to implement a complex
DSL with a language workbench compared to
not using a language workbench. We did this by
comparing the code volume (in SLOC) of two
implementations of OIL, one using Spoofax and
one using Python, which both already existed
before the evaluation. The evaluation shows that
the Spoofax implementation used fewer SLOC
compared to the Python implementation, while
offering more editor features. This is relevant in
an industrial setting because it enables to develop
a full-featured IDE with less code.

13https://www.w3.org/TR/xslt-30/
14https://systemc.org/

https://www.verum.com/
https://www.gnu.org/software/guile/
https://comma.esi.nl/
https://www.bpmn.org/
https://www.w3.org/TR/xslt-30/
https://systemc.org/

Springer Nature 2021 LATEX template

48 title

Naturally, our evaluation is not without
threats to its validity. The use of SLOC as met-
ric for productivity is contested. For instance,
there can be much variance in what a line of
code defines. We do feel that the results on code
volume per artifact are an indication for higher
productivity with Spoofax compared to Python,
as the analyses show considerable differences in
SLOC for artifacts with the same functionality
and because both implementations were created
before we had the intent to evaluate them. Since
our evaluation is done for a single use case, it is
difficult to generalize our findings to other work-
benches, languages and contexts. Therefore, we
call for more studies on applications of language
workbenches in practice. This is relevant because
it will help industrial language engineers decide
when and how to use language workbenches.

In our study, we have primarily focused on
evaluating and comparing productivity. Still, we
were able to make several observations for other
concerns such as modularity and maintainability
of language implementations, both positive and
negative. For example, the ability to easily extend
SDF3 definitions and Spoofax projects benefits
modularity and the ability to generate multiple
artifacts from a single source benefits maintain-
ability. On the other hand, the inability to merge
scope graphs of different languages hinders mod-
ularity and the steep learning curve of NaBL2
hinders maintainability. Since concerns such as the
modularity and maintainability of language imple-
mentations are important for developing DSLs in
industry, we encourage more studies that evalu-
ate language workbenches in detail on dimensions
other than productivity.

Although Spoofax was suitable for implement-
ing OIL, we see several areas of improvements.
These are mainly in the practical use of the lan-
guage workbench, such as limited portability, slow
build and response times, and limited documen-
tation. For the meta-DSLs we see the following
opportunities for improvement: supporting cross-
language static analysis, improving the API for
using static analysis results in transformations,
supporting unit testing, and improving the inte-
gration of Stratego in the definition of editor
services. Several of these improvements have been
included in the next version of Spoofax.

Based on our study, we provide the following
advise.

• For industrial language engineers: Use a lan-
guage workbench for developing DSLs especially
if a user-friendly editor for the languages is
desired; not doing so leads to “reinventing the
wheel”, which can cost considerable effort.

• For industrial language engineers: When IDE
support is not required, using, e.g., off-the-shelf
parser generators and a GPL could be a valid
engineering choice for implementing the con-
crete syntax of a DSL, as the drawbacks of a
language workbench may outweigh the benefits.

• For language workbench developers: Focus on
the practical aspects of language workbenches
such as portability, usability, and documenta-
tion to improve adoptability.

Acknowledgments

This study was started under the guidance of
Eelco Visser, who passed away on April 5th, 2022.
The authors decided to posthumously acknowl-
edge his contributions to this work by making him
co-author.

We thank Aron Zwaan, Gabriel Konat, Hen-
drik van Antwerpen, Daniël Pelsmaeker, and
Jeff Smits for their feedback on our findings on
Spoofax 2, especially regarding how they compare
to Spoofax 3. We thank the reviewers for their
useful feedback that helped us improve the paper.

References

[1] Johan Åkesson, Torbjörn Ekman, and Görel
Hedin. Implementation of a Modelica com-
piler using JastAdd attribute grammars. Sci-
ence of Computer Programming, 75(1-2):21–
38, 2010. doi:https://doi.org/10.1016/j.scico.
2009.07.003.

[2] Hendrik van Antwerpen, Pierre Néron,
Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static
semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, edi-
tors, Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Pro-
gram Manipulation, PEPM 2016, St. Peters-
burg, FL, USA, January 20 - 22, 2016,
pages 49–60. ACM, 2016. ISBN 978-1-
4503-4097-7. doi:https://doi.org/10.1145/
2847538.2847543.

10.1016/j.scico.2009.07.003
10.1016/j.scico.2009.07.003
10.1145/2847538.2847543
10.1145/2847538.2847543

Springer Nature 2021 LATEX template

title 49

[3] Hendrik van Antwerpen, Casper Bach
Poulsen, Arjen Rouvoet, and Eelco Visser.
Scopes as types. Proceedings of the ACM on
Programming Languages, 2(OOPSLA), 2018.
doi:https://doi.org/10.1145/3276484.

[4] Phillip G. Armour. Beware of counting LOC.
Communications of the ACM, 47(3):21–24,
2004.

[5] Mikhail Barash. Vision: the next 700 lan-
guage workbenches. In Eelco Visser, Dim-
itris S. Kolovos, and Emma Söderberg, edi-
tors, SLE ’21: 14th ACM SIGPLAN Inter-
national Conference on Software Language
Engineering, Chicago, IL, USA, October 17
- 18, 2021, pages 16–21. ACM, 2021. ISBN
978-1-4503-9111-5. doi:https://doi.org/10.
1145/3486608.3486907.

[6] Bas Basten, Jeroen van den Bos, Mark Hills,
Paul Klint, Arnold Lankamp, Bert Lisser,
Atze van der Ploeg, Tijs van der Storm,
and Jurgen J. Vinju. Modular language
implementation in Rascal - experience report.
Science of Computer Programming, 114:7–
19, 2015. doi:https://doi.org/10.1016/j.scico.
2015.11.003.

[7] Rutger van Beusekom, Jan Friso Groote,
Paul F. Hoogendijk, Robert Howe, Wieger
Wesselink, Rob Wieringa, and Tim A. C.
Willemse. Formalising the Dezyne modelling
language in mCRL2. In Laure Petrucci,
Cristina Seceleanu, and Ana Cavalcanti, edi-
tors, Critical Systems: Formal Methods and
Automated Verification - Joint 22nd Inter-
national Workshop on Formal Methods for
Industrial Critical Systems - and - 17th
International Workshop on Automated Veri-
fication of Critical Systems, FMICS-AVoCS
2017, Turin, Italy, September 18-20, 2017,
Proceedings, volume 10471 of Lecture Notes in
Computer Science, pages 217–233. Springer,
2017. ISBN 978-3-319-67113-0. doi:https:
//doi.org/10.1007/978-3-319-67113-0 14.

[8] Barry W. Boehm. Software engineering eco-
nomics. IEEE Trans. Software Eng., 10(1):
4–21, 1984.

[9] Meinte Boersma. Business-Friendly DSLs.
Manning, To appear early 2024. ISBN
9781617296475.

[10] Mark Van den Brand, Arie van Deursen, Paul
Klint, Steven Klusener, and Emma van der
Meulen. Industrial applications of asf+
sdf. In International Conference on Algebraic
Methodology and Software Technology, pages
9–18. Springer, 1996.

[11] Mark G. J. van den Brand, H. A. de Jong,
Paul Klint, and Pieter A. Olivier. Efficient
annotated terms. Software: Practice and
Experience, 30(3):259–291, 2000. doi:https:
//doi.org/10.1002/(SICI)1097-024X(200003)
30:3%3C259::AID-SPE298%3E3.0.CO;2-Y.

[12] Mark G. J. van den Brand, Jeroen Scheerder,
Jurgen J. Vinju, and Eelco Visser. Disam-
biguation filters for scannerless generalized
LR parsers. In R. Nigel Horspool, editor,
Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the
Joint European Conferences on Theory and
Practice of Software, ETAPS 2002, Greno-
ble, France, April 8-12, 2002, Proceedings,
volume 2304 of Lecture Notes in Computer
Science, pages 143–158. Springer, 2002. ISBN
3-540-43369-4. doi:https://doi.org/10.1007/
3-540-45937-5 12.

[13] Martin Bravenboer, Arthur van Dam, Karina
Olmos, and Eelco Visser. Program transfor-
mation with scoped dynamic rewrite rules.
Fundamenta Informaticae, 69(1-2):123–178,
2006.

[14] Martin Bravenboer, Karl Trygve Kalleberg,
Rob Vermaas, and Eelco Visser. Stratego/XT
0.17. A language and toolset for program
transformation. Science of Computer Pro-
gramming, 72(1-2):52–70, 2008. doi:https:
//doi.org/10.1016/j.scico.2007.11.003.

[15] Giovanna Broccia, Alessio Ferrari, Mau-
rice H. ter Beek, Walter Cazzola, Luca
Favalli, and Francesco Bertolotti. Evalu-
ating a language workbench: from work-
ing memory capacity to comprehension to

10.1145/3276484
10.1145/3486608.3486907
10.1145/3486608.3486907
10.1016/j.scico.2015.11.003
10.1016/j.scico.2015.11.003
10.1007/978-3-319-67113-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}14
10.1007/978-3-319-67113-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}14
10.1002/(SICI)1097-024X(200003)30:3\%3C259::AID-SPE298\%3E3.0.CO;2-Y
10.1002/(SICI)1097-024X(200003)30:3\%3C259::AID-SPE298\%3E3.0.CO;2-Y
10.1002/(SICI)1097-024X(200003)30:3\%3C259::AID-SPE298\%3E3.0.CO;2-Y
10.1007/3-540-45937-5\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}12
10.1007/3-540-45937-5\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}12
10.1016/j.scico.2007.11.003
10.1016/j.scico.2007.11.003

Springer Nature 2021 LATEX template

50 title

acceptance. In 31st IEEE/ACM Interna-
tional Conference on Program Comprehen-
sion, ICPC 2023, Melbourne, Australia, May
15-16, 2023, pages 54–58. IEEE, 2023. ISBN
979-8-3503-3750-1. doi:https://doi.org/10.
1109/ICPC58990.2023.00017.

[16] Olav Bunte, Jan Friso Groote, Jeroen J. A.
Keiren, Maurice Laveaux, Thomas Neele,
Erik P. de Vink, Wieger Wesselink, Anton
Wijs, and Tim A. C. Willemse. The
mCRL2 toolset for analysing concurrent sys-
tems - improvements in expressivity and
usability. In Tomás Vojnar and Lijun
Zhang, editors, Tools and Algorithms for
the Construction and Analysis of Systems -
25th International Conference, TACAS 2019,
Held as Part of the European Joint Confer-
ences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part II, volume
11428 of Lecture Notes in Computer Science,
pages 21–39. Springer, 2019. ISBN 978-
3-030-17465-1. doi:https://doi.org/10.1007/
978-3-030-17465-1 2.

[17] Olav Bunte, Louis C. M. van Gool, and
Tim A. C. Willemse. Formal verification of
OIL component specifications using mCRL2.
In Maurice H. ter Beek and Dejan Nick-
ovic, editors, Formal Methods for Indus-
trial Critical Systems - 25th International
Conference, FMICS 2020, Vienna, Austria,
September 2-3, 2020, Proceedings, volume
12327 of Lecture Notes in Computer Science,
pages 231–251. Springer, 2020. ISBN 978-
3-030-58298-2. doi:https://doi.org/10.1007/
978-3-030-58298-2 10.

[18] Olav Bunte, Louis C. M. van Gool, and
Tim A. C. Willemse. Formal verification of
OIL component specifications using mCRL2.
STTT, 24(3):441–472, 2022. doi:https://doi.
org/10.1007/s10009-022-00658-y.

[19] Tom Buskens. Optimizing the code generator
for OIL, 2021.

[20] Noam Chomsky. Three models for the
description of language. IRE Transac-
tions on Information Theory, 2(3), Septem-
ber 1956. doi:https://doi.org/10.1109/TIT.
1956.1056813.

[21] Krzysztof Czarnecki and Simon Helsen.
Feature-based survey of model transforma-
tion approaches. IBM systems journal, 45(3):
621–645, 2006.

[22] Jasper Denkers, Louis van Gool, and Eelco
Visser. Migrating custom DSL implementa-
tions to a language workbench (tool demo).
In David Pearce 0005, Tanja Mayerhofer, and
Friedrich Steimann, editors, Proceedings of
the 11th ACM SIGPLAN International Con-
ference on Software Language Engineering,
SLE 2018, Boston, MA, USA, November 05-
06, 2018, pages 205–209. ACM, 2018. ISBN
978-1-4503-6029-6. doi:https://doi.org/10.
1145/3276604.3276608.

[23] Arie van Deursen, Paul Klint, and Frank
Tip. Origin tracking. Journal of Symbolic
Computation, 15(5/6):523–545, 1993.

[24] Arie van Deursen, Jan Heering, and Paul
Klint. Language Prototyping: An Algebraic
Specification Approach, volume 5 of AMAST
Series in Computing. World Scientific, 1996.
ISBN 978-981-4498-73-9. doi:https://doi.
org/10.1142/3163.

[25] Arie van Deursen, Paul Klint, and Joost
Visser. Domain-specific languages: An anno-
tated bibliography. SIGPLAN Notices, 35
(6):26–36, 2000. doi:https://doi.org/10.1145/
352029.352035.

[26] Torbjörn Ekman and Görel Hedin. The Jas-
tAdd extensible Java compiler. In Richard P.
Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr., editors, Pro-
ceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Mon-
treal, Quebec, Canada, pages 1–18. ACM,
2007. ISBN 978-1-59593-786-5. doi:https:
//doi.org/10.1145/1297027.1297029.

10.1109/ICPC58990.2023.00017
10.1109/ICPC58990.2023.00017
10.1007/978-3-030-17465-1\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}2
10.1007/978-3-030-17465-1\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}2
10.1007/978-3-030-58298-2\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}10
10.1007/978-3-030-58298-2\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}10
10.1007/s10009-022-00658-y
10.1007/s10009-022-00658-y
10.1109/TIT.1956.1056813
10.1109/TIT.1956.1056813
10.1145/3276604.3276608
10.1145/3276604.3276608
10.1142/3163
10.1142/3163
10.1145/352029.352035
10.1145/352029.352035
10.1145/1297027.1297029
10.1145/1297027.1297029

Springer Nature 2021 LATEX template

title 51

[27] Sebastian Erdweg, Paolo G. Giarrusso, and
Tillmann Rendel. Language composition
untangled. In Anthony Sloane and Suzana
Andova, editors, International Workshop on
Language Descriptions, Tools, and Applica-
tions, LDTA ’12, Tallinn, Estonia, March 31
- April 1, 2012, page 7. ACM, 2012. ISBN
978-1-4503-1536-4. doi:https://doi.org/10.
1145/2427048.2427055.

[28] Sebastian Erdweg, Tijs van der Storm,
Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen,
Angelo Hulshout, Steven Kelly, Alex Loh,
Gabriël Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler,
Klemens Schindler, Riccardo Solmi, Vlad A.
Vergu, Eelco Visser, Kevin van der Vlist,
Guido Wachsmuth, and Jimi van der Won-
ing. Evaluating and comparing language
workbenches: Existing results and bench-
marks for the future. Computer Languages,
Systems & Structures, 44:24–47, 2015.
doi:https://doi.org/10.1016/j.cl.2015.08.007.

[29] Moritz Eysholdt and Heiko Behrens. Xtext:
implement your language faster than the
quick and dirty way. In William R. Cook,
Siobhán Clarke, and Martin C. Rinard,
editors, Companion to the 25th Annual
ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages,
and Applications, SPLASH/OOPSLA 2010,
October 17-21, 2010, Reno/Tahoe, Nevada,
USA, pages 307–309. ACM, 2010. ISBN 978-
1-4503-0240-1. doi:https://doi.org/10.1145/
1869542.1869625.

[30] Martin Fowler. Language workbenches: The
killer-app for domain specific languages?,
2005.

[31] Martin Fowler. Domain-Specific Languages.
Addison Wesley, 2010.

[32] Mark Frenken. Code generation and model-
based testing in context of OIL, 2019.

[33] Louis van Gool. Formalising interface speci-
fications. PhD thesis, Eindhoven University
of Technology, 2006.

[34] Danny M. Groenewegen, Zef Hemel, Lennart
C. L. Kats, and Eelco Visser. WebDSL:
a domain-specific language for dynamic web
applications. In Gail E. Harris, editor,
Companion to the 23rd Annual ACM SIG-
PLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applica-
tions, OOPSLA 2008, October 19-13, 2007,
Nashville, TN, USA, pages 779–780. ACM,
2008. ISBN 978-1-60558-220-7. doi:https:
//doi.org/10.1145/1449814.1449858.

[35] Danny M. Groenewegen, Elmer van
Chastelet, and Eelco Visser. Evolution
of the WebDSL runtime: reliability engi-
neering of the WebDSL web programming
language. In Ademar Aguiar, Shigeru
Chiba, and Elisa Gonzalez Boix, edi-
tors, Programming’20: 4th International
Conference on the Art, Science, and Engi-
neering of Programming, Porto, Portugal,
March 23-26, 2020, pages 77–83. ACM,
2020. ISBN 978-1-4503-7507-8. doi:https:
//doi.org/10.1145/3397537.3397553.

[36] Jan Friso Groote and Mohammad Reza
Mousavi. Modeling and Analysis of Commu-
nicating Systems. MIT Press, 2014. ISBN
9780262321020.

[37] Leonard G. C. Hamey and Shirley Goldrei.
Implementing a domain-specific language
using stratego/xt: An experience paper. Elec-
tronic Notes in Theoretical Computer Sci-
ence, 203(2):37–51, 2008. doi:https://doi.
org/10.1016/j.entcs.2008.03.043.

[38] Daco Harkes and Eelco Visser. Icedust 2:
Derived bidirectional relations and calcula-
tion strategy composition. In Peter Müller,
editor, 31st European Conference on Object-
Oriented Programming, ECOOP 2017, June
19-23, 2017, Barcelona, Spain, volume 74 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. ISBN 978-3-95977-
035-4. doi:https://doi.org/10.4230/LIPIcs.
ECOOP.2017.14.

[39] Daco Harkes, Elmer van Chastelet, and
Eelco Visser. Migrating business logic to
an incremental computing dsl: a case study.

10.1145/2427048.2427055
10.1145/2427048.2427055
10.1016/j.cl.2015.08.007
10.1145/1869542.1869625
10.1145/1869542.1869625
10.1145/1449814.1449858
10.1145/1449814.1449858
10.1145/3397537.3397553
10.1145/3397537.3397553
10.1016/j.entcs.2008.03.043
10.1016/j.entcs.2008.03.043
10.4230/LIPIcs.ECOOP.2017.14
10.4230/LIPIcs.ECOOP.2017.14

Springer Nature 2021 LATEX template

52 title

In David Pearce, Tanja Mayerhofer, and
Friedrich Steimann, editors, Proceedings of
the 11th ACM SIGPLAN International Con-
ference on Software Language Engineering,
SLE 2018, Boston, MA, USA, November 05-
06, 2018, pages 83–96. ACM, 2018. ISBN
978-1-4503-6029-6. doi:https://doi.org/10.
1145/3276604.3276617.

[40] Lennart C. L. Kats and Eelco Visser.
The Spoofax language workbench: rules for
declarative specification of languages and
IDEs. In William R. Cook, Siobhán Clarke,
and Martin C. Rinard, editors, Proceedings of
the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010,
pages 444–463, Reno/Tahoe, Nevada, 2010.
ACM. ISBN 978-1-4503-0203-6. doi:https:
//doi.org/10.1145/1869459.1869497.

[41] Lennart C. L. Kats, Rob Vermaas, and
Eelco Visser. Testing domain-specific lan-
guages. In Cristina Videira Lopes and
Kathleen Fisher, editors, Companion to the
26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2011,
part of SPLASH 2011, Portland, OR, USA,
October 22 - 27, 2011, pages 25–26. ACM,
2011. ISBN 978-1-4503-0942-4. doi:https:
//doi.org/10.1145/2048147.2048160.

[42] Paul Klint, Tijs van der Storm, and Jur-
gen J. Vinju. EASY meta-programming
with Rascal. In Joao M. Fernandes, Ralf
Lämmel, Joost Visser, and João Saraiva, edi-
tors, Generative and Transformational Tech-
niques in Software Engineering III - Interna-
tional Summer School, GTTSE 2009, Braga,
Portugal, July 6-11, 2009. Revised Papers,
volume 6491 of Lecture Notes in Computer
Science, pages 222–289. Springer, 2009. ISBN
978-3-642-18022-4. doi:https://doi.org/10.
1007/978-3-642-18023-1 6.

[43] Paul Klint, Tijs van der Storm, and Jur-
gen J. Vinju. On the impact of DSL tools on
the maintainability of language implementa-
tions. In Claus Brabrand and Pierre-Etienne
Moreau, editors, Proceedings of the of the

Tenth Workshop on Language Descriptions,
Tools and Applications, LDTA 2010, Paphos,
Cyprus, March 28-29, 2010 - satellite event
of ETAPS, page 10. ACM, 2010. ISBN 978-
1-4503-0063-6. doi:https://doi.org/10.1145/
1868281.1868291.

[44] Jan Willem Klop. Term rewriting systems:
From church-rosser to knuth-bendix and
beyond. In Mike Paterson, editor, Automata,
Languages and Programming, 17th Interna-
tional Colloquium, ICALP90, Warwick Uni-
versity, England, July 16-20, 1990, Proceed-
ings, volume 443 of Lecture Notes in Com-
puter Science, pages 350–369. Springer, 1990.
ISBN 3-540-52826-1.

[45] Gabriël Konat. Language-Parametric Meth-
ods for Developing Interactive Programming
Systems. PhD thesis, Delft University of
Technology, Netherlands, 2019.

[46] Gabriël Konat, Michael J. Steindorfer, Sebas-
tian Erdweg, and Eelco Visser. PIE: A
domain-specific language for interactive soft-
ware development pipelines. Programming
Journal, 2(3):9, 2018. doi:https://doi.org/10.
22152/programming-journal.org/2018/2/9.

[47] Ivan Kurtev, Mathijs Schuts, Jozef Hooman,
and Dirk-Jan Swagerman. Integrating inter-
face modeling and analysis in an industrial
setting. In MODELSWARD, pages 345–352.
SciTePress, 2017.

[48] Roberto Minelli, Andrea Mocci, and Michele
Lanza. I know what you did last summer: an
investigation of how developers spend their
time. In Andrea De Lucia, Christian Bird,
and Rocco Oliveto, editors, Proceedings of the
2015 IEEE 23rd International Conference on
Program Comprehension, ICPC 2015, Flo-
rence/Firenze, Italy, May 16-24, 2015, pages
25–35. ACM, 2015.

[49] Vu Nguyen, Sophia Deeds-Rubin, Thomas
Tan, and Barry Boehm. A SLOC counting
standard. In Cocomo ii forum, volume 2007,
pages 1–16. Citeseer, 2007.

[50] Pierre Néron, Andrew P. Tolmach, Eelco
Visser, and Guido Wachsmuth. A theory

10.1145/3276604.3276617
10.1145/3276604.3276617
10.1145/1869459.1869497
10.1145/1869459.1869497
10.1145/2048147.2048160
10.1145/2048147.2048160
10.1007/978-3-642-18023-1\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}6
10.1007/978-3-642-18023-1\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}6
10.1145/1868281.1868291
10.1145/1868281.1868291
10.22152/programming-journal.org/2018/2/9
10.22152/programming-journal.org/2018/2/9

Springer Nature 2021 LATEX template

title 53

of name resolution. In Jan Vitek, edi-
tor, Programming Languages and Systems
- 24th European Symposium on Program-
ming, ESOP 2015, Held as Part of the
European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings, volume
9032 of Lecture Notes in Computer Science,
pages 205–231. Springer, 2015. ISBN 978-
3-662-46668-1. doi:https://doi.org/10.1007/
978-3-662-46669-8 9.

[51] Vaclav Pech. Jetbrains mps: Why modern
language workbenches matter. In Anto-
nio Bucchiarone, Antonio Cicchetti, Federico
Ciccozzi, and Alfonso Pierantonio, editors,
Domain-Specific Languages in Practice: with
JetBrains MPS, pages 1–22. Springer, 2021.
ISBN 978-3-030-73758-0. doi:https://doi.
org/10.1007/978-3-030-73758-0 1.

[52] Daniël A. A. Pelsmaeker, Hendrik van
Antwerpen, Casper Bach Poulsen, and Eelco
Visser. Language-parametric static semantic
code completion. Proceedings of the ACM on
Programming Languages, 6(OOPSLA):1–30,
2022. doi:https://doi.org/10.1145/3527329.

[53] Ivo Raedts, Marija Petkovic, Yaroslav S.
Usenko, Jan Martijn E. M. van der Werf,
Jan Friso Groote, and Lou J. Somers. Trans-
formation of BPMN models for behaviour
analysis. In Juan Carlos Augusto, Joseph
Barjis, and Ulrich Ultes-Nitsche, editors,
Modelling, Simulation, Verification and Val-
idation of Enterprise Information Systems,
Proceedings of the 5th International Work-
shop on Modelling, Simulation, Verification
and Validation of Enterprise Information
Systems, MSVVEIS-2007, In conjunction
with, pages 126–137. INSTICC PRESS, 2007.
ISBN 978-972-8865-95-5.

[54] Arjen Rouvoet, Hendrik van Antwerpen,
Casper Bach Poulsen, Robbert Krebbers, and
Eelco Visser. Knowing when to ask: sound
scheduling of name resolution in type check-
ers derived from declarative specifications.
Proceedings of the ACM on Programming
Languages, 4(OOPSLA), 2020. doi:https://
doi.org/10.1145/3428248.

[55] Eugen Schindler, Hristina Moneva, Joost
van Pinxten, Louis van Gool, Bart van der
Meulen, Niko Stotz, and Bart Theelen.
JetBrains MPS as core DSL technology
for developing professional digital print-
ers. In Antonio Bucchiarone, Antonio
Cicchetti, Federico Ciccozzi, and Alfonso
Pierantonio, editors, Domain-Specific Lan-
guages in Practice: with JetBrains MPS,
pages 53–91. Springer, 2021. ISBN 978-
3-030-73758-0. doi:https://doi.org/10.1007/
978-3-030-73758-0 3.

[56] Jeff Smits and Eelco Visser. Gradually typing
strategies. In Ralf Lämmel, Laurence Tratt,
and Juan de Lara, editors, Proceedings of the
13th ACM SIGPLAN International Confer-
ence on Software Language Engineering, SLE
2020, Virtual Event, USA, November 16-17,
2020, pages 1–15. ACM, 2020. ISBN 978-
1-4503-8176-5. doi:https://doi.org/10.1145/
3426425.3426928.

[57] Jeff Smits, Gabriël Konat, and Eelco Visser.
Constructing hybrid incremental compilers
for cross-module extensibility with an inter-
nal build system. Programming Journal, 4
(3):16, 2020. doi:https://doi.org/10.22152/
programming-journal.org/2020/4/16.

[58] Jeff Smits, Guido Wachsmuth, and Eelco
Visser. Flowspec: A declarative specification
language for intra-procedural flow-sensitive
data-flow analysis. Journal of Computer Lan-
guages, 57:100924, 2020. doi:https://doi.org/
10.1016/j.cola.2019.100924.

[59] Luis Eduardo de Souza Amorim and Eelco
Visser. Multi-purpose syntax definition with
SDF3. In Frank S. de Boer and Antonio
Cerone, editors, Software Engineering and
Formal Methods - 18th International Confer-
ence, SEFM 2020, Amsterdam, The Nether-
lands, September 14-18, 2020, Proceedings,
volume 12310 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2020. ISBN
978-3-030-58768-0. doi:https://doi.org/10.
1007/978-3-030-58768-0 1.

[60] Edoardo Vacchi and Walter Cazzola. Nev-
erlang: A framework for feature-oriented

10.1007/978-3-662-46669-8\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}9
10.1007/978-3-662-46669-8\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}9
10.1007/978-3-030-73758-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}1
10.1007/978-3-030-73758-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}1
10.1145/3527329
10.1145/3428248
10.1145/3428248
10.1007/978-3-030-73758-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}3
10.1007/978-3-030-73758-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}3
10.1145/3426425.3426928
10.1145/3426425.3426928
10.22152/programming-journal.org/2020/4/16
10.22152/programming-journal.org/2020/4/16
10.1016/j.cola.2019.100924
10.1016/j.cola.2019.100924
10.1007/978-3-030-58768-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}1
10.1007/978-3-030-58768-0\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}1

Springer Nature 2021 LATEX template

54 title

language development. Computer Lan-
guages, Systems & Structures, 43:1–40, 2015.
doi:https://doi.org/10.1016/j.cl.2015.02.001.

[61] Eelco Visser. Syntax Definition for Lan-
guage Prototyping. PhD thesis, University of
Amsterdam, September 1997.

[62] Eelco Visser. WebDSL: A case study in
domain-specific language engineering. In Ralf
Lämmel, Joost Visser, and João Saraiva, edi-
tors, Generative and Transformational Tech-
niques in Software Engineering II, Interna-
tional Summer School, GTTSE 2007, volume
5235 of Lecture Notes in Computer Sci-
ence, pages 291–373, Braga, Portugal, 2007.
Springer. ISBN 978-3-540-88642-6. doi:https:
//doi.org/10.1007/978-3-540-88643-3 7.

[63] Eelco Visser, Zine-El-Abidine Benaissa, and
Andrew P. Tolmach. Building program
optimizers with rewriting strategies. In
Matthias Felleisen, Paul Hudak, and Chris-
tian Queinnec, editors, Proceedings of the
third ACM SIGPLAN international con-
ference on Functional programming, pages
13–26, Baltimore, Maryland, United States,
1998. ACM. doi:https://doi.org/10.1145/
289423.289425.

[64] Eelco Visser, Guido Wachsmuth, Andrew P.
Tolmach, Pierre Néron, Vlad A. Vergu,
Augusto Passalaqua, and Gabriël Konat. A
language designer’s workbench: A one-stop-
shop for implementation and verification of
language designs. In Andrew P. Black,
Shriram Krishnamurthi, Bernd Bruegge, and
Joseph N. Ruskiewicz, editors, Onward! 2014,
Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software,
part of SPLASH ’14, Portland, OR, USA,
October 20-24, 2014, pages 95–111. ACM,
2014. ISBN 978-1-4503-3210-1. doi:https:
//doi.org/10.1145/2661136.2661149.

[65] Markus Voelter, Bernd Kolb, Tamás Szabó,
Daniel Ratiu, and Arie van Deursen. Lessons
learned from developing mbeddr: a case
study in language engineering with MPS.

Software and Systems Modeling, 18(1):585–
630, 2019. doi:https://doi.org/10.1007/
s10270-016-0575-4.

[66] Tobi Vollebregt, Lennart C. L. Kats, and
Eelco Visser. Declarative specification of
template-based textual editors. In Anthony
Sloane and Suzana Andova, editors, Inter-
national Workshop on Language Descrip-
tions, Tools, and Applications, LDTA ’12,
Tallinn, Estonia, March 31 - April 1, 2012,
pages 1–7. ACM, 2012. ISBN 978-1-
4503-1536-4. doi:https://doi.org/10.1145/
2427048.2427056.

[67] Samuël Noah Voogd, Kousar Aslam, Louis
van Gool, Bart Theelen, and Ivano Mala-
volta. Real-time collaborative modeling
across language workbenches - a case on
Jetbrains MPS and Eclipse Spoofax. In
ACM/IEEE International Conference on
Model Driven Engineering Languages and
Systems Companion, MODELS 2021 Com-
panion, Fukuoka, Japan, October 10-15,
2021, pages 16–26. IEEE, 2021. ISBN 978-
1-6654-2484-4. doi:https://doi.org/10.1109/
MODELS-C53483.2021.00011.

[68] Markus Völter, Sebastian Benz, Christian
Dietrich, Birgit Engelmann, Mats Helander,
Lennart C. L. Kats, Eelco Visser, and
Guido Wachsmuth. DSL Engineering -
Designing, Implementing and Using Domain-
Specific Languages. dslbook.org, 2013. ISBN
978-1-4812-1858-0.

[69] Claude E. Walston and Charles P. Felix. A
method of programming measurement and
estimation. IBM Systems Journal, 16(1):
54–73, 1977.

[70] Martin P. Ward. Language-oriented program-
ming. Software — Concepts and Tools, 15(4),
1994.

[71] Andrzej Wa̧sowski and Thorsten Berger.
Domain-specific Languages: Effective Mod-
eling, Automation, and Reuse. Springer
Nature, 2023.

[72] Bahram Zarrin and Hubert Baumeister.
Design of a domain-specific language for

10.1016/j.cl.2015.02.001
10.1007/978-3-540-88643-3\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}7
10.1007/978-3-540-88643-3\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}7
10.1145/289423.289425
10.1145/289423.289425
10.1145/2661136.2661149
10.1145/2661136.2661149
10.1007/s10270-016-0575-4
10.1007/s10270-016-0575-4
10.1145/2427048.2427056
10.1145/2427048.2427056
10.1109/MODELS-C53483.2021.00011
10.1109/MODELS-C53483.2021.00011

Springer Nature 2021 LATEX template

title 55

material flow analysis using Microsoft DSL
tools: An experience paper. In Design of
a domain-specific language for material flow
analysis using Microsoft DSL Tools: An expe-
rience paper, 2014.

[73] Aron Zwaan. Composable type system spec-
ification using heterogeneous scope graphs,
2021.

[74] Aron Zwaan, Hendrik van Antwerpen, and
Eelco Visser. Incremental type-checking for
free: using scope graphs to derive incremen-
tal type-checkers. Proceedings of the ACM
on Programming Languages, 6(OOPSLA2):
424–448, 2022. doi:https://doi.org/10.1145/
3563303.

10.1145/3563303
10.1145/3563303

	Introduction
	Outline

	Spoofax
	Anatomy of Spoofax Projects
	Data Representation with ATerms
	Syntax Definition with SDF3
	Static Semantics with NaBL2
	Transformation with Stratego
	Editor Services with ESV
	Testing with SPT

	OIL
	History of OIL
	Overview of OIL
	Implementation Features

	Case Study Context and Method
	Context
	Research Method
	Setup

	Concrete Syntax
	From XML to Custom Syntax
	Composed Grammars and Disambiguation
	The Python Implementation
	Evaluation

	Abstract Syntax
	Intermediate Representations
	Desugaring
	Resilient Staging
	The Python Implementation
	Evaluation
	AST representations
	Desugaring transformations

	Static Semantics
	Well-formedness Checking
	Cross-file and Cross-language Analysis
	The Python Implementation
	Evaluation

	Dynamic Semantics
	Division into Projects
	Using Static Analysis Results
	Configurability of the mCRL2 Generator
	The Python Implementation
	Evaluation

	Evaluation
	Summary
	Threats to Validity
	Construct Validity
	Code volume per artifact as proxy for productivity
	Bias in artifact selection

	Internal validity
	Code volume per artifact as proxy for productivity
	Interdependence of implementations
	Design decisions
	Confirmation bias
	Experience

	External Validity
	Generalizability of Python
	Generalizability of OIL

	Discussion
	Spoofax's Strengths
	Meta-languages suitable for OIL
	Modular language implementation
	IDE support
	Language testing
	Integration support

	Spoofax's Weaknesses
	Limited portability
	Building and runtime performance
	Cross-language static analysis
	Lack of static checking and debugging in NaBL2 and Stratego
	Using static analysis in transformations
	Language evolution and refactoring
	Fine-grained testing
	Editor actions for configurable code generators

	Lessons Learned
	Spoofax Engineering Agenda
	Portability
	Language build system
	Runtime performance
	Cross-Language Static Analysis
	Static Checking in meta-DSLs
	Stratego Debugging
	Integrating Static Analysis with Transformations
	Documentation
	Unit Testing Stratego
	ESV-Stratego integration

	Related Work
	Language Workbench Evaluation

	Conclusions

