Taming Complexity of Industrial Printing Systems
Using a Constraint-Based DSL — An Industrial
Experience Report

Jasper Denkers
j.denkers@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Jurgen J. Vinju
jurgen.vinju@cwi.nl
CWI, Amsterdam/TU Eindhoven
The Netherlands

Abstract

Flexible printing systems are highly complex systems that
consist of printers, that print individual sheets of paper, and
finishing equipment, that processes sheets after printing, e.g.,
assembling a book. Integrating finishing equipment with
printers involves the development of control software that
configures the devices, taking hardware constraints into ac-
count. This control software is highly complex to realize due
to (1) the intertwined nature of printing and finishing, (2) the
large variety of print products and production options for a
given product, and (3) the large range of finishers produced
by different vendors.

We have developed a domain-specific language called CSX
that offers an interface to constraint solving specific to the
printing domain. We use it to model printing and finishing
devices and to automatically derive constraint solver-based
environments for automatic configuration. We evaluate CSX
on its coverage of the printing domain in an industrial con-
text, and we report on lessons learned on using a constraint-
based DSL in an industrial context.

Keywords: digital printing systems, domain-specific languages,

constraint programming, industrial experiences

1 Introduction

What if we could have the worldwide offer in books, deliv-
ered tomorrow, at exceptionally low cost? Keeping all these
books in stock is not an option because of storage prices.
This is where flexible printing systems come in. With a flex-
ible printing system, any book can be printed on demand
and delivered to your home the same day. Such a printing
system can be adjusted to print books with varying sizes
and binding methods. To make this feasible for the operator
of such a system, we need control software that supports
configuring the printing system based on a description of
the end product. This involves the process of configuration
space exploration: finding a valid configuration that specifies

Marvin Brunner
marvin.brunner@cpp.canon
Canon Production Printing

Venlo, The Netherlands

Andy Zaidman
a.e.zaidman@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Louis van Gool
louis.vangool@cpp.canon
Canon Production Printing
Venlo, The Netherlands

Eelco Visser
Delft University of Technology
Delft, The Netherlands

the complete manufacturing process (the input materials,
the device parameters, and the end product).

Developing control software with support for configura-
tion space exploration is complex, because it needs to take
many interdependent hardware details into account. This
leads to handwritten software implementations that handle
many individual cases non-systematically, while still not
covering all possible configurations. The corresponding user
interfaces of devices partially assist operators in finding con-
figurations, but many aspects still require manual configura-
tion. Moreover, such control software implementations are
difficult to maintain, and this problem is further amplified
by the large variety of printing systems.

Canon Production Printing initiated a collaboration with
Delft University of Technology to explore a model-driven
approach for developing control software to tackle two chal-
lenges. First, realizing environments for configuration space
exploration that is automatic and complete (i.e., covers all
possible configurations). Second, coping with the large vari-
ety of printing systems; besides devices that produce books,
there are many others that, e.g., produce magazines, packag-
ing, or decoration.

Constraint solving seems a natural fit for developing con-
trol software with automatic configuration. By modelling
printing systems as constraint models, we can use constraint
solvers to achieve automatic configuration space exploration.
A solution of the constraint model would correspond to a
configuration for the printing system. Solvers can also find
optimal solutions and thus optimal configurations, e.g., for
objectives such as minimizing paper waste or maximizing
print productivity. Therefore, we explore the usage of con-
straint modelling in realizing the next generation control
software.

However, modelling a digital printing system — includ-
ing all details of the mechanics — in a generic constraint
modelling language is tedious, because it involves low-level
modelling. Using a domain-specific language (DSL) for mod-
elling configuration spaces has the potential of tackling this

G W N =

Denkers et al.

type Sheet { width: int, height: int } 1 |var 0..10 : a_sheets_size;
type Stack { sheets: list<Sheet> } 2 |array [1..10] of var int : a_sheets_width;
device D { 3 |constraint forall(i in 1..10) (i > a_sheets_size — a_sheets_width[i] = 0);
location a: Stack 4 |array [1..10] of var int : a_sheets_height;

3 5 |constraint forall(i in 1..10) (i > a_sheets_size — a_sheets_height[i] = @)
(a) CSX model of device D that instantiates the (b) MiniZinc [14] constraint model for device D with variables for the size and properties
user-defined record-type Stack (modelled as of the stack’s sheet list, for an upper bound of 10 sheets. The constraints on lines 3-4
list of Sheets) in location a. frame variables that are not considered in the sheet list to a default value (0 for integers).
a = Stack([1 | a_sheets_size = 2

Sheet (2100, 2970), Sheet(2100, 2970) 2 |a_sheets_width = [2100, 2100, @, 0, @, 0, 0, 0, 0, 0]
D 3 | a_sheets_height = [2970, 2970, @, @, 0, @, 0, 0, 0, 0]

(c) A configuration for device D based on the
SMT solution of (d).

(d) A solution found by an SMT constraint solver that corresponds to two sheets of width
2100 and height 2970.

Figure 1. An artificial CSX model (a), its translation to constraints (b), a solution for the constraint model (d), and the solution

mapped back to a configuration on the CSX level (c).

issue. With a DSL, we can automate the transformation of
more high-level models of printing systems to constraint
models. On these generated constraint models, we use con-
straint solvers to find (optimal) configurations and realize
automatic configuration space exploration. The modelling
of printing systems in the DSL is in terms of the printing do-
main and abstracts over low-level and repetitive constraint
modelling, making the modelling task feasible in practice.

We have additional motivations for using a DSL in our
context, in contrast to using a GPL. First, a DSL can enable
domain experts such as mechanical engineers to contribute
to the modelling process. Second, the use of a DSL promises
to improve productivity by reducing the turnaround time
for developing control software. Third, a DSL can better
handle the variability when modelling many similar devices.
Finally, a DSL can be accompanied by an IDE specific to its
domain, potentially improving usability of the modelling
environment.

In previous work, we have developed CSX (Configuration
Space eXploration) [5], a DSL for modelling digital printing
systems, automatically generating constraint models from
device models, mapping solutions back to the domain of
printing configurations, and deriving environments for con-
figuration space exploration. Figure 1 depicts the translation
of CSX to constraints and the mapping of a solution to a
device configuration for an example model. Our hypothesis
is that CSX is an effective and scalable method in creating
control software for digital printing systems. With suffi-
cient coverage and practical solving performance, it has the
potential to improve the current state of control software
development for printing systems by adding functionality (in-
troducing configuration space exploration that is automatic
and complete) and reducing software engineering complex-
ity.

In addition to validating the concepts of CSX, our objective
is to evaluate CSX’s practical applicability. This has guided

our approach in two ways. First, we design the language from
the perspective of the user, top-down, meaning that we do
not restrict language features before having substantiation
for such restrictions from practice. Second, we use MiniZ-
inc [14] as a facade for different underlying SMT solvers [1],
as we did not want an early design decision for a specific
solver to later hinder our experimentation opportunities.

Although CSX 1.0 was already suitable for modelling de-
vices and realizing configuration space exploration for real-
istic scenarios, empirical results have shown that it does not
yet effectively cover all aspects of the full range of digital
printing systems. In particular, we identify and tackle the
three most prominent problems of CSX 1.0, that if solved,
would bring CSX closer to applicability in practice: (1) CSX
1.0 is limited to modelling a stack of sheets uniformly. To
allow more detail in models, we need to be able to model
sheets in stacks individually. For that, we add support for
generic lists in CSX 2.0. (2) Geometrical concepts such as ori-
entations and transformations are heavily used in printing
systems, but require modelling on a low level of abstraction
in CSX 1.0. To effectively incorporate geometrical aspects
in models, we add geometrical constructs to CSX 2.0 that
abstract over linear algebra. (3) CSX is a constraint-based
language and therefore involves a style of modelling that
can be unintuitive for software engineers that are not famil-
iar with constraint programming. Therefore, in CSX 2.0 we
add support for operators in the style of functional program-
ming that are automatically translated to constraint-based
counterparts.

In summary, our contributions with respect to our previ-
ous work on CSX 1.0 are as follows:

e (CSX 2.0, which adds language support for generic lists,
geometrical constructs, and functional-style operators.
e An evaluation of CSX 2.0 in an industrial context.

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

e Lessons learned on using a constraint-based DSL in
an industrial context.

2 Industrial Printing and Finishing
Systems
2.1 Printing and Finishing

Digital printing systems consist of a printer and finishing
equipment where the printer prints individual sheets and the
finishing equipment handles subsequent processing steps.
Examples of finishing devices are an edge stitcher and a
booklet maker. An edge stitcher takes a stack of sheets and
binds them by stitching one or more stitches at an edge.
A booklet maker takes a set of individual sheets as input
and produces a booklet as output by stitching, folding, and
trimming. Ideally, print system end-users (e.g., operators in
a print shop) can operate the printing system as a whole, in
which printing and finishing are fully integrated.

Although finishing devices are capable of processing large
volumes of printing products at high productivity, they have
mechanical, hardware and software limitations that influ-
ence their configuration possibilities. The challenge of an
operator that uses such devices is: given the available input
materials and printer capabilities, how do I need to configure
the finishers such that I obtain the desired end product? An-
swering this question is an exercise in configuration space
exploration: finding a complete configuration that is possible
with the devices at hand and that leads to the manufactur-
ing of a product that satisfies the client’s wishes. Even for a
seemingly simple device such as an edge stitcher, reasoning
about its configuration space can already become complex.

As an example, we take an edge stitching device such as
depicted in Figure 2. This device takes a stack of sheets of
limited sizes, stitches the stack at the right edge, and option-
ally rotates the stitched stack before outputting it. Table 1
depicts four scenarios of configuration space exploration for
this device.

Scenario A considers as input a stack of A4 sheets in por-
trait orientation without rotation after stitching. We can
compute a complete configuration for this scenario step-
wise from input to output. At the location Stitched, the stack
of sheets is still in A4 in portrait orientation, but with a stitch
at the right edge. Since we do not rotate, the output location
gets the same characteristics.

Scenario B is more complicated, as it requires an output
of A4 sheets in portrait orientation with the stitch at the top
edge. We need to reason from output back to input to find a
configuration for this scenario. The scenario is possible, and
requires to take A4 sheets in landscape orientation as input
with a rotation of 90 degrees after stitching. Similarly, we can
derive a configuration for A3 sheets in portrait orientation
with the stitch at the top edge (scenario C).

Scenario D is not possible. It requires A3 sheets in land-
scape orientation with the stitch at the top edge. The stitch

[120mm < width < 450mm]
[150mm < height < 320mm]

I
A—s Stitch O .
right edge

Input Stitched

Rotate

0° or 90°

Output

Figure 2. Schematic overview of the finishing steps of a
simplified edge stitching device. Dots indicate locations at
which we consider a snapshot of the stack of sheets that is
stitched. The input is limited to the sizes of sheets it can han-
dle. Rectangles represent the actions that are performed on
the objects. The device can only perform a right-edge stitch,
and can subsequently rotate the stack by 0 or 90 degrees.

Table 1. Scenarios of configuration space exploration for
the edge stitching device from Figure 2. Each row (A-D)
represents a scenario. The middle four columns indicate
the values for a configuration corresponding to the scenario.
Question marks (?) indicate unknown values, for information
that needs to be derived by configuration space exploration.
Width (w), height (h), and stitch edge (e) are abbreviated and

the millimeter unit is ommitted.

Sc. || Input | Stitched | Rotation | Output || Possible
w=210]

A h=297 ? 0 ? yes
w=210

B ||? ? ? h=297 || yes
e=top
w=297

Cc | ? ? h=420 || yes
e=top
w=420

D || ? ? ? h=297 || no
e=top

at the top edge requires to rotate 90 degrees after stitching,
because the device is limited to stitching at the right edge.
The rotation implies that the input for this scenario should
be A3 sheets in portrait orientation. However, A3 sheets in
portrait orientation, with a height of 420mm, violates the
device’s input size limitation of maximum height 320mm.
The context of our work is Canon Production Printing.
This company develops and manufactures printers which
need to be integrated with finishers from many external
vendors. Therefore, we are mostly concerned about the con-
figuration spaces of finishing devices, and realizing control
software for integrated systems of printers and finishers.
In principle, we can use a general purpose programming
language to model printing systems, and to implement algo-
rithms for finding configurations for the finishing devices.
However, using a general purpose programming language

has two problems. First, the systems span large configura-
tion spaces, in which configurations for print jobs need to be
found automatically — taking all the features and limitations
of the devices into account. Second, the variety of printing
systems is large, involving many variants that can behave
similarly, but have subtle differences. These problems make
developing and maintaining control software for printing
systems complex.

A natural starting point for modelling a printing system,
or a manufacturing system in general, is to identify locations
through which objects of the manufacturing process pass.
Next, we can define each action with its parameters that
alter the manufacturing objects from one intermediate loca-
tion into the next. By doing so, each location represents a
snapshot of the process that transforms the input step-wise.
These actions and locations correspond to those in Figure 2.

Based on these snapshots of the manufacturing process
and the actions that occur in-between these snapshots, we
can use simulation to find a configuration. Simulation means
that we start with a given input object at the first snapshot
location of the model and calculate consecutive snapshots
by executing actions for their given parameters. Note that
this is an imperative approach: the input and parameters
need to be known up front and we can then calculate the end
result step by step. Also, by calculating the manufacturing
objects at each snapshot location of the device, we can check
whether the (partial) configuration — consisting of the input
objects and action parameters — conforms to the device’s
limitations. If device limitations are violated, the printing
system operator needs to try again with an updated specifi-
cation of the input and the action parameters. If we would
want to go the other way around, e.g., by requesting a desired
end result, the simulation approach falls short in finding the
corresponding input objects and action parameters.

The existing control software at Canon Production Print-
ing is based on the aforementioned simulation approach,
which constructs configurations. To partially overcome the
inherent limitations in configuration space exploration of a
constructive algorithm, heuristics are added that automat-
ically derive partial configurations for particular cases of
output product decriptions. In the software implementations,
these heuristics still not cover the complete configuration
space. There remain configurations that the device can han-
dle but the control software cannot derive. Moreover, the
heuristics are device-specific and not composable, and there-
fore hinder reusability and maintainability. In the rest of this
paper, we refer to this approach as pre-CSX.

We need an analytical approach — different than the con-
structive approach based on simulation and manual heuris-
tics — that automatically derives the complete configuration
space of a device, given only a partial description of a config-
uration. Because the configuration space is large and actions
are inter-dependent, this is hard to achieve with manual
programming effort, especially given the large variety of

Denkers et al.

printing systems. This is where we can leverage the power
of constraint solving, which seems a natural fit for config-
uration space exploration. By specifying the configuration
Sspaces in terms of constraints, we can use constraint solvers
to find configurations. It does not matter anymore for which
scenario — forward, backward, or anything in between such
as finding parameters given an input and output. The prob-
lem with modelling digital printing systems directly in a
generic constraint modelling language, however, is that it is
tedious and repetitive work.

2.2 Requirements

Our objective is to obtain a method for modelling printing
systems and deriving environments for automatic configu-
ration space exploration that satisfies the following require-
ments:

Domain Coverage The modelling language covers the
aspects and features of digital printing systems.

Configuration Accuracy The automatic finding of con-
figurations for said aspects and features is correct (con-
figurations that are found conform to the device’s lim-
itations; there are no false positives) and complete (i.e.,
there are no configurations that are not found but that
are possible on the device; there are no false negatives).

Configuration Performance Configurations are found
in the order of seconds, i.e., in a timespan that is con-
sidered practical by control software engineers for use
in interactive Uls.

2.3 CSX: Configuration Space eXploration

Previously, we have developed CSX [5]: a language and en-
vironment that serves as an interface to constraint program-
ming specific to the printing domain, abstracting over the
complexity of developing control software in two ways. First,
CSX offers domain-specific constructs that abstract over low-
level details. Such details do not need to be rethought each
time a new device is modelled. In CSX, a library of actions
can be built, which can be reused in device models. Second,
by leveraging the power of constraint solvers to find con-
figurations for printing devices, control software engineers
do not have to manually develop algorithms to find con-
figurations. Therefore, CSX promises to tackle two of the
most challenging aspects of developing control software for
printing systems.

In CSX, we model printing systems by modelling interme-
diate locations of the manufacturing process and configu-
ration parametricity. We will now further introduce CSX’s
language concepts using Figure 3, an example CSX model of
an edge stitching device.

User-defined record-types. In CSX, we use user-defined
record-types to model the objects in the manufacturing pro-
cess. This concerns the input, output, and snapshots of the
products at intermediate locations. Instead of specifying

0 NN NV W=

GOl O OOl U1 U g B R B R R R R R B W W W W W W W WD DNDN DN DN e e e e e e e
X TNV RO E O VU R WD RO 00NNV R WN R O 00NV R RN RO OV RWN = O O

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

type Sheet {

width: int, [width > @],

height: int, [height > @]

// Width and height in 1/10mm precision
}

type StitchedStack {
sheets: list<Sheet>,
stitchEdge: edge

}

action Stitcher(input: list<Sheet>,
output: StitchedStack) {
// At least two sheets required for stitching
[size(input) > 2]

parameter stitchEdge: edge

[output.sheets == input]
[output.stitchEdge == stitchEdge]
3

device EdgeStitcher {
location input: list<Sheet>

[size(input) < 10] // Max number of sheets

[input.forall { sheet =>
// Min and max sheet sizes
sheet.width > 1200 and sheet.height > 1500 and
sheet.width < 4500 and sheet.height < 3200

3

stitcher = Stitcher(input, stitched)

// This device can only stitch on the right edge
[stitcher.stitchEdge == right]

location stitched: StitchedStack

parameter rotation: orientation
[rotation == rot@ or rotation == rot90]

[output.sheets.forall { sheet =>

(rotation == rot@ implies sheet == stitched.sheets[index])
and
(rotation == rot90 implies (

// Swap width and height in case of 90 degrees rotation
sheet.width == stitched.sheets[index].height and
sheet.height == stitched.sheets[index].width

))

1]

[size(output.sheets) == size(stitched.sheets)]

[output.stitchEdge ==
orientate(stitched.stitchEdge, rotation)]

location output: StitchedStack

Figure 3. CSX model of an edge stitching device (schemati-
cally depicted in Figure 2) that has a list of sheets as input,
stitches them in the right edge, and optionally rotates the
stitched stack 90 degrees before it leaves the machine as
output. Integer dimensions in this model represent 1/10mm.

all properties individually, CSX users can define record-
like types such as sheets and stacks. In the example, Sheet
and StitchedStack are user-defined types (lines 1-9). User-
defined types are records of properties which can be either
defining properties or derived properties. We can use this ab-
straction to incorporate objects such as sheets and stacks in
a device model to model the snapshots of printing products.
Besides user-defined types, the language supports integers
and booleans as primitives.

Actions. Units of printing behavior are captured in actions.
Actions are defined for one or more locations that can be
inputs or outputs. In the example, the stitching behavior
is captured in an action (lines 12-21). Additionally, actions
can contain parameters that contribute to the configuration
space, such as the stitchEdge parameter (line 17).

Devices & Locations. We can model devices in CSX, which
are representations of systems that instantiate the user-defined
types for snapshot products at locations and instantiate ac-
tions in between those snapshots. The example model con-
siders three snapshot locations of the printing objects: input,
stitched, and output. The configuration space of a device
is defined as the possible values for all locations and action
parameters that conform to the constraints. CSX supports
modular decomposition in the sense that devices are mod-
elled by building on a set of reusable type and action defini-
tions, which can be instantiated in varying ways.

Constraints. In square brackets, we can write expres-
sions to form constraints that limit the configuration space of
a device. Examples of constraints are enforcing that sheets
have a positive width and height (lines 2-3), stitching re-
quires at least two sheets (line 15), and the minimum and
maximum sheet sizes the device can handle (lines 28-32). Ad-
ditionally, constraints express how snapshot printing objects
relate to other snapshot printing objects in the device. For
example, the rotation parameter impacts whether the width
and height of sheets are swapped between the stitched and
output location.

Scenarios & Tests. In CSX models, we can also define
tests for devices. Such tests are used to specifiy configuration
space exploration scenarios with assertions to validate the
models. Figure 4 lists several tests for the example model.
By using scenarios, a restricted configuration space can be
considered for multiple tests nested in the scenario. The
assertions can simply expect there to be a configuration
(succeeds), no configuration (fails), or expect something
more specific using the constraint notation. For example, the
first test expects a rotation of 0 degrees (line 14) and the
second test expects rotation by 90 degrees (line 19).

We have implemented the CSX language and IDE using the
Spoofax language workbench [10]. We express the transla-
tions of CSX models to SMT models in MiniZinc [14]. MiniZ-
inc is a generic and solver-independent constraint modelling
language, which allows us to use various solvers for finding
configurations. Both the translation of CSX models and tests

—_ =
_= O 0 00NNV R W =

R R R R W W W W W W W W W W NN DN DN DN DN DN DN D) e e e e e e e e
B W= O 000U R WN R OOV U WD = O 0T U WD

// All tests are for the EdgeStitcher device and
// with two sheets in the output
scenario device EdgeStitcher

config size(output.sheets) == 2 {

// A4 sheets in portrait orientation

scenario config output.sheets[1].width == 2100
config output.sheets[1].height == 2970
config output.sheets[2].width == 2100

config output.sheets[2].height == 2970 {

// Stitch on right edge requires no rotation
test config output.stitchEdge == right {
[rotation == rot0]

}

// Stitch at top edge requires rotation of 90 degrees
test config output.stitchEdge == top {

[rotation == rot90]
b

}

// A3 sheets in portrait orientation with stitch on
// right edge is not possible

test config output.sheets[1].width == 2970
config output.sheets[1].height == 4200
config output.sheets[2].width == 2970

config output.sheets[2].height == 4200
config output.stitchEdge == right {
fails

3

// A3 sheets in landscape orientation with stitch on
// right edge is possible

test config output.sheets[1].width == 4200
config output.sheets[1].height == 2970
config output.sheets[2].width == 4200

config output.sheets[2].height == 2970
config output.stitchEdge == right {
succeeds

Figure 4. Tests accompanying the CSX model of Figure 3.

to MiniZinc and the mapping of SMT solutions back to the
CSX-level are implemented using the Stratego transforma-
tion language [2]. Tests are evaluated interactively in the
IDE, i.e., a test is re-evaluated automatically if and only if it
or the device under test has changed. Figure 5 depicts how
feedback on tests is presented in the IDE.

Figure 6 depicts an architecture that applies CSX to realize
control software. We have implemented the CSX language
and IDE and all components relevant for automatic configu-
ration space exploration. The deployment of CSX with code
generation for communication with embedded software in
devices and the integration with user interfaces is future
work. For further details about the semantics and implemen-
tation of CSX 1.0, we refer to our previous work [5]. The

Denkers et al.

& edge-stitcher-example.csx 2 S

79 // A3 sheets in portrait orientation with stitch on
8@ // right edge is not possible

81 test config output.sheets[1].width == 2970
82 config output.sheets[1].height == 4200
83 config output.sheets([2].width == 2970
84 config output.sheets[2].height == 4200
85 config output.stitchEdge == right {
©86 succeeds 0-
87)

no configuration found
]

Figure 5. An example of interactive validation in CSX. The
test (a modified version of the third test in Figure 4) incor-
rectly expects CSX to find a configuration. The CSX IDE re-
ports that this expectation is incorrect using an error marker.
While hovering over the incorrect expectation, the popup
indicates that no configuration was found.

technical contribution of the current paper focusses on ex-
tending the coverage of CSX within the existing framework,
which we discuss next.

2.4 Coverage Gaps

For a domain-specific language such as CSX to be successful,
it is crucial that the language’s constructs are adequate in
covering the printing domain. Although CSX 1.0 was found
to be suitable in modelling realistic printing systems and to
realize configuration space exploration with practical per-
formance [5], further application of the language on more
printing systems revealed limitations of the approach. We
discuss three coverage gaps in this section, for which we
extend the language in the following section.

Non-Uniformity. In CSX 1.0 one is limited to modelling
uniform stacks of sheets. In case of a booklet maker, one
would be limited to only modelling booklets with a uniform
stack of sheets. If we would like the cover sheet to be of a
different type, the cover sheet needs to be modelled separate
from the body sheets. Non-uniformity can be dealt with in
a more generic way using lists of sheets. In the example,
we have used the newly introduced generic lists to model
non-uniform stacks. A list is, e.g., also useful for a stitching
device that can stitch with a variable number of stitches.

Geometry. Modelling geometric transformations requires
low-level modelling in CSX 1.0. For example, one could manu-
ally define constraints for each case a rotation parameter can
take, or manually implement linear algebra. In the example,
we have used the newly introduced geometrical construc-
tions (e.g., for edge) and transformations.

Function-Style Operators. Operators in a CSX 1.0 are
expressed using predicates. This predicate-style operators
do not naturally express processing steps of printing pro-
cesses which are directional. Functional-style operators do
express a direction and therefore they are more appropriate
for modelling printing systems. In the example, orientate
is an example of an operator in functional style.

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

Modeller

Operator

CsX
IDE

-« =ije

request

generate Job
translate

GPL wansiate | SMT model 5245 SMT
implementation generate ransiate solution
T o
model
control translate translate
Printing provide parameters Device
Systems configuration

Figure 6. An architecture in which CSX is applied to realize
control software for digital printing systems. GPL stands for
a general purpose programming language such as C#.

3 Increasing Domain Coverage

In this section, we describe how we have engineered CSX
2.0, that features improved coverage of the digital printing
domain.

3.1 Non-Uniform Stacks of Sheets

Although the existing version of CSX was able to cover
useful printing systems, it lacked the ability to model non-
uniform stacks of sheets. To support non-uniform modelling,
we need an additional data structure for generic and ordered
collections. For this purpose, we add support for lists to CSX
2.0.

In the configuration space of devices such as booklet mak-
ers, products with a variable number of sheets can be pro-
duced. Therefore, we need to be able to model devices with
lists that have a variable size. Implementing a list with a vari-
able size is trivial in object-oriented programming. When a
list needs to grow, additional memory can be allocated for
this list at runtime. However, in constraint programming
with modelling languages such as MiniZinc, realizing this is
not trivial. A constraint model needs to define all variables
up front; additional variables cannot be added at runtime.
Lists with a variable size therefore do not naturally map to
the constraint domain.

In CSX 2.0, we add support for the generic 1ist<T> type
for lists with elements of type T. Lists in CSX 2.0 do have a
variable size, and can be instantiated for both primitive and
user-defined types. Figure 1a shows an example that models
a stack as a list of sheets (line 2).

We realize variably sized lists by using fixed size arrays in
the target (MiniZinc) model that are only partially considered
in the actual configuration. The size of the target arrays
(Nmax) determines the range of sizes the list on the CSX
level can have; the CSX list thus has an upper bound on
its dynamic size. When translating the CSX model, a 1,4y
should be chosen that ensures the configuration space is
sufficient for the particular model.

For a CSX list with values of a primitive type, e.g., a list of
integers, a single array is needed in the target model. For a
CSX list of a user-defined type such as a sheet with multiple
properties, the target model gets an array for each property.
Additionally, the target model contains an integer variable
that indicates the size n of the list (0 < n < ny,4y) in the
configuration.

When mapping solutions found in the constraint domain
back to CSX, only the first n elements of the arrays are
considered. On the target level, the elements in the array
for size positions n < i < ey (using 1-based indices) are
ignored and framed to default values to avoiding what is
commonly called “junk” in constraint solving. By doing so,
CSX lists behave as dynamically sized lists. Although this
approach could also work for nested lists by adding extra
dimensions to the arrays in the generated constraint model,
we have not found a need for it in the domain of printing.

Figure 1 shows an example of a stack that is modelled as a
list of sheets and how that translates to constraints, expressed
in MiniZinc. The variable a_sheets_size represents the size
of the list of sheets. The domain for this variable (0. .10, i.e.
an integer value in the range 0 to 10) represents the possible
sizes of the list (given that the upper bound 1,4, is 10). Sheets
have two properties: width and height, both of type int.
The target model contains an array with variables for each
property, denoted in MiniZinc with, e.g., array [1..10] of
var int : a_sheets_width for the width property. Again,
the size of this array is determined by the upper bound on
the size of lists.

The forall constraint makes sure that the elements in the
arrays that are not part of the actual solution (i.e., for indices
larger than the size of the list), are set to a default value. This
enforces that a single CSX configuration corresponds to a
single solution at the constraint level. Otherwise, multiple
solutions at the constraint level could correspond to the
same configuration at the CSX level, making the solution
space unnecessarily large. Note, however, that CSX does not
prevent references to values outside the size of the list.

To make lists in CSX practical, we add operations on lists
such as reverse, append, prepend, and map. Many of such
expressions over lists can be expressed by translation into
a forall construct. The forall and exists quantifiers are
common constructs in (functional) languages that support
lists. The forall operator is used to express whether a pred-
icate holds for all elements in a collection. We implement
the forall construct and use it as a core construct which
other operations translate to, see Figure 7.

Note that the index operator in the examples is implicit
and can only be accessed in the context of a forall. It de-
notes the 1-based index of the element in the list for which
the predicate is declared. By design, the forall operators
cannot be nested, because for a single index operator it
would not be clear to which forall it corresponds. Although a

W N =

G W N =

Denkers et al.

var xs: list<int> 1 | size(ys) == size(xs) 1 |var xs: list<int> 1 | size(ys) == size(xs)
var ys: list<int> 2 |xs.forall { x => 2 |var ys: list<int> 2 |xs.forall { x =>
3 ys[size(xs) + 1 - index] = x 3 3 ys[index] = x + 1

reverse xs into ys 4 |} 4 |map xs with x => x + 1 into ys 4 1}

(a) reverse (b) map
var xs: list<int> 1 |size(ys) == size(xs) + 1 1 |var xs: list<int> 1 |size(ys) == size(xs) + 1
var ys: list<int> 2 | xs.forall { x => 2 |var ys: list<int> 2 | first(ys) == z
var z: int 3 ys[index] = x 3 |var z: int 3 |xs.forall { x =>

4 13} 4 4 ys[index + 1] = x

append z after xs into ys 5 |last(ys) ==z 5 | prepend z before xs into ys 5 13

(c) append (d) prepend

Figure 7. Translation of CSX’s list operations (left-hand sides) into forall (right-hand sides, also CSX). The target models

(right-hand sides) have variable declarations omitted for brevity.

specialized index operator would be possible, we think this
would make the language unnecessarily more complex.

In addition to the forall construct, we add support for
list access using square brackets. The first and last func-
tions are implemented by translating to list access. The size
function translates to the variable on the constraint level
that represents the list size.

We call the operations in Figure 7 to be in predicate-style,
i.e., the operators enforce a predicate over multiple (list)
variables. For example, reverse xs into ys evaluates to
true if xs is the reverse of ys. The type of the predicate-style
reverse, append, prepend, and map operations is therefore
boolean.

Many aspects in printing processes are directional, which
are unnatural to capture in constraint programming or with
predicate-style operators. It would be more natural to be
able to use list operations in functional-style, in which the
result of the operations is also a list. Similar to functional
programming, that would allow chaining of operations, i.e.,
combine operators in such a way that the output of one
operator is directly considered as input to the next operator.
When modelling a printing system, such operators better
capture the actual direction of the manufacturing process.

While a functional language would dynamically allocate
memory for intermediate values of such chains of operations
at runtime, in constraint programming the variables need to
be known up front. In Section 3.3 we describe an algorithm
for introducing intermediate variables where needed. That
will allow writing, e.g., ys == reverse(xs), which will
then first translate into the predicate-style variant (reverse
Xxs into ys), which in turn will translate into a forall
expression.

3.2 Geometrical Constructs

Concepts from the geometrical domain such as orientations,
transformations, and edges are frequently used in the print-
ing domain. For example, finishing devices can have the
possibility to orientate input sheets to be flexible in input
and output formats. A hardware characteristic might limit
the maximum width of a sheet in a location in the manufac-
turing process. By being able to rotate the sheet after such
a location, there are more possibilities for sheet sizes in the
following steps.

Typically, geometrical properties and transformations are
captured numerically, in linear algebra. Transformations of
orientations or edges are then expressed by matrix multi-
plication. Although matrices could be expressed using user-
defined types in CSX with properties for the matrix elements,
it involves modelling on a low level of abstraction. By lifting
a restricted but high-level set of geometrical constructs from
the numerical domain to a symbolic domain in CSX 2.0, in-
corporating geometrical aspects in models can be done at a
high level of abstraction.

Although arbitrary transformations could be expressed
using matrices, many transformations in the printing do-
main are limited to rotation over a multiple of 90 degrees,
either with or without flipping. We reflect this in CSX 2.0 by
including a restricted set of orientations that correspond to
those commonly used transformations: roto, rot99, rot18e,
rot270, f1ip@, f1ip9e, f1ip180, and f1ip270. In the con-
straint model, those orientations correspond to a 2-by-2 ma-
trix. For example, rot9@ corresponds to [% § |.

To effectively use orientations, we introduce high-level
constructs for concepts that can be orientated such as edges.
Again, edges could already be modelled using primitives or
user-defined types, but having dedicated constructs enables
us to implement concise operations for them with orienta-
tions. An edge is one of top, right, bottom, or left, which

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

are represented as two-dimensional vectors in the constraint
domain. For example, top corresponds to [01].

We translate the application of an orientation to an edge in
the constraint model to matrix multiplication. As an example,
we take the rotation of the top edge over 90 degrees. In
CSX 2.0, we can express this using e orientate(top,
rot90), in which variable e of type edge is considered equal
to the result of the rotation. At the constraint level, this would
correspond to the matrix multiplication [0 1] X [_01 3=
[-1 0]. We interpret the resulting vector [-1 0] as the left
edge such that the linear algebra is hidden from the CSX
user.

Figure 8 depicts an artifical CSX model and corresponding
MiniZinc for a device that transforms an edge over an ori-
entation. The translation of geometrical constructs in CSX
to MiniZinc makes use of a prelude. This is MiniZinc code
that represents data types, predicates, and functions over the
geometrical constructs which are referenced in the target
(MiniZinc) model of a specific CSX model.

An edge is represented with a two-dimensional vector
in MiniZinc, using the type array[1..2] of var -1..1;
an array with indices in the range 1. .2 and with values in
the domain of -1..1. Since variables of this type can get
values that do not correspond to one of the four edges we
consider (e.g., [1 1] does not represent one of the four edges),
we need to frame its instances. We do so by applying the
isEdge predicate to each instance. For each instance of an
edge variable in CSX, a two-dimensional array is declared
on which the isEdge predicate is applied. We realize orien-
tations in a similar way.

CSX supports high-level operators for geometrical con-
structs. A CSX user does not need to write out matrix mul-
tiplications, but can directly express operations on the geo-
metric data structures using these operators. For example,
one could write e2 orientate(el, o). Type check-
ing ensures that only valid combinations can be used for
transformations.

Using constraints in the backend of CSX involves a transla-
tion that is bidirectional. The constructs in CSX are translated
to variables and constraints in the constraint domain. Also,
solutions in the constraint domain are mapped back to the
CSX level. Interpreting a solution for a geometrical construct
involves a new mechanism. For example, for orientations
and edges we need to map the individual values that are
found in the solution to one of the possibly restricted values
on the CSX domain. If for an edge in the constraint domain
the value [0 1] is found, that would map to the top value at
the CSX level. Orientations are interpreted analogously.

We also add support for lists of orientations and edges.
The arrays for orientations and edges in the constraint model
then get an extra dimension.

O 00 N N U W=

W W W W W W WDHN DD DN DD DN DN DN DN e e e e e e e e
QU R XN R O 00U RO RO 00NN = O

00 NG W N e

// Artificial device model that transforms an edge (in CSX)
device D {

location el: edge

location e2: edge

location o: orientation

[e2 == orientate(el, 0)]
3
test device D
config el ==
config e2 ==
[o == rot180 or

}

top
bottom {
o == flipo]

% Prelude for target model (in MiniZinc)

% Constants for the eight relevant orientations

array[1..2,1..2] of var -1..1: Rot@ =[] 1, 0| o, 1]1;
array[1..2,1..2] of var -1..1: Rot9@ =[] o, 1|-1, 0|];
array[1..2,1..2] of var -1..1: Rot180 = [|-1, @] 0,-1|];
array[1..2,1..2] of var -1..1: Rot270 =[] 0,-1] 1, 0|];
array[1..2,1..2] of var -1..1: Flipe =[] 1, @] 0,-1|];
array[1..2,1..2] of var -1..1: Flip%9e = []| 0,-1|-1, 0|];
array[1..2,1..2] of var -1..1: Flip180 = [|-1, @| o, 1|];
array[1..2,1..2] of var -1..1: Flip270 = [| o, 1| 1, o|];

% Constants for the four relevant edges

array[1..2] of var -1..1: Top =[] o, 111;
array[1..2] of var -1..1: Right =[] 1, 0|];
array[1..2] of var -1..1: Bottom = [| 0,-1|1;
array[1..2] of var -1..1: Left = [|-1, 0|];

to restrict an orientation's matrix

var -1..1: 0) =
Rot270 Vv
Flip270;

% Predicate
predicate isOrientation(array[1..2,1..2] of
o =Rotd V o =Rot99 V o = Rot180 V o =
o = Flip@ V o = Flip9@ V o = Flip180 V o =

% Predicate to restrict an edges's matrix
predicate isEdge(array[1..2] of var -1..1: e) =
e = Top V e = Right V e = Bottom V e = Left

% Function for orientating an edge
function array[1..2] of var -1..1:
array[1..2] of var -1..1 : e,
array[1..2,1..2] of var -1..1 : o
) =
arrayld(1..2,[
e[1] = o[1,1] + e[2] = o[1,2],
e[1] = o[2,1] + e[2] = o[2,2]
D;

orientateEdge(

% Device-specific target model (in MiniZinc)

array [1..2] of var -1..1 : el;
constraint iskdge(el);
array [1..2] of var -1..1 : e2;

constraint iskEdge(e2);

array [1..2,1..2] of var -1..1 : o;
constraint isOrientation(o);
constraint e2 == orientateEdge(el,0)

Figure 8. Top: An artificial CSX model with an orientation
parameter o that transforms edge el into e2. Middle: The
prelude MiniZinc code for geometrical constructs that is
added to target models. Bottom: The device-specific target
model, making use of the prelude.

3.3 Functional-Style Operators

A printing process is typically directional: input objects are
processed step by step into output objects. The functional
paradigm supports modelling such a directional process natu-
rally. Functional-style operators are composable and thus can
be chained. By doing so, a sequence of chained operations
expresses an order or direction in computation — similar
to the order of manufacturing steps that are involved in a
printing system.

For atomic values such as integers, booleans, and user-
defined enums, chaining of operators is supported by default
in MiniZinc and therefore also in CSX. Such atomic values
are represented by a single variable in the constraint domain.
In contrast, compound values such as user-defined types,
lists, and geometrical constructs, are represented by multiple
variables in the constraint domain. Chaining of operators
on compound values is not supported in MiniZinc. Still, we
want to support chaining of operations in CSX on compound
values, too, as it would make the switch from functional pro-
gramming languages to CSX easier. Therefore, in addition
to the predicate-style operations on, e.g., lists and geomet-
ric constructs, we add functional variants that support the
chaining of such operations.

An expression written in predicate-style such as reverse
X in y could be written in functional notation as y ==
reverse(x). More interestingly, an expression such as reverse
x into y and z == y[2] could be written as z ==
reverse(x)[2]. To achieve such style of modelling — that
allows chaining of operations — we need to the instantiate
constraint variables for the intermediate results.

Imposing the responsibility for declaring the intermediate
variables to the language user would negatively impact CSX’s
usability. To prevent this, CSX derives where intermediate
variables are necessary and introduces them automatically.
CSX 2.0 analyses expressions to detect and unfold chained
operations where necessary. In case of chained operations,
intermediate variables are introduced and the expressions
are rewritten in a form that makes use of the intermediate
variables and that removes the chaining. This happens in
an intermediate translation step in the CSX compilation
pipeline.

Let’s take the following CSX spec:

G W N =

G W

AN G W N

var bs: list<bool>

[reverse(bs)[1]1]

The constraint reverse(bs)[1] has the following ab-
stract syntax tree:
ListAccess

N

Reverse 1

\
bs

10

Denkers et al.

In this tree, the Reverse node represents a compound
value that is derived from the bs variable, and it is an input for
the ListAccess node, which also derives a new compound
value. Therefore, this expression requires an intermediate
variable to be inserted.

It will be translated into:

var bs: list<bool>
var il: list<bool>

[reverse(bs) == i1]
[i1f111

A new variable i1 is introduced which is considered equal
to the reverse of bs. Then, the initial expression gets ex-
pressed in terms of the new variable.

Still, the deriving reverse expression is not in predicate-
style. Since it is on one side of an equals expression with
an instance value on the other side, we can rewrite it into
predicate-style. This results in:

var bs: list<bool>
var il1: list<bool>

[reverse bs into i1]
[i1f111

Finally, the transformation step for predicate-style op-
erations on lists (as defined in Section 3.1) transforms the
expression into a forall construct:

var bs: list<bool>
var i1: list<bool>

[bs.size == il1.size]
[bs.forall { x => il[bs.size + 1 - index] = x }]
[i1011]

Algorithm. The algorithm repeatedly finds and rewrites
expressions from functional-style into predicate-style until
no functional-style operators remain. The algorithm starts
with identifying the types of variables in an expression ab-
stract syntax tree. First, it identifies the references of lo-
cations, parameters, and other variables as instance values.
Instance values are references to explicitly declared variables
in a CSX model. Second, the nodes for operations on com-
pound data types are identified as derived values. Derived
values are the result of an operation on another, possibly
compound, value and might require the introduction of an
intermediate variable.

The algorithm repeatedly tries to find and replace opera-
tions that take a derived value as an input and have a new
derived value as output. For such cases, the derived base
value needs to be replaced by a newly introduced interme-
diate variable. When this process finishes, i.e., there are no
nodes left that need an intermediate variable, we can start
rewriting functional operations to predicate-style operations.
Finally, no functional-style operations are left, and the nor-
mal form with only predicate-style operations remains.

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

4 Industrial Evaluation

Having designed the CSX language and associated environ-
ment for configuration space exploration, we now evaluate
the industrial application of CSX 2.0 at Canon Production
Printing. We explore whether CSX as a constraint-based
language is effective for modelling printing systems and real-
izing automatic configuration space exploration. We evaluate
whether CSX meets our requirements (Section 2.2) on do-
main coverage, configuration accuracy, and configuration
performance. Additionally, we evaluate the relevance of the
approach. In particular, we consider the following evaluation
questions:

Domain Coverage Does CSX provide the constructs
for modelling devices at Canon Production Printing,
without having to resort to low-level constraint pro-
gramming?

Configuration Accuracy Is configuration space explo-
ration with CSX accurate, i.e., is it correct (configura-
tions that are found conform the device’s limitations;
there are no false positives) and complete (there are no
configurations that are not found but that are possible
in the device; there no false negatives)?

Configuration Performance Do the generated constraint

models in MiniZinc find (optimal) solutions in reason-
able time (within seconds) for realistic printing system
models?

Relevance Is it sufficient to use CSX to achieve auto-
matic configuration space exploration and is it neces-
sary to use CSX instead of directly modelling printing
systems in a generic constraint modelling language
such as MiniZinc?

In the remainder of this section, we describe our evaluation
method and discuss results per question. Although this paper
presents an extension of an existing version of CSX, we
evaluate CSX 2.0 as a whole — not only the new features.

4.1 Domain Coverage

Study setup. Two of the authors participate in an ex-
ploratory case study in which a realistic printing device is
modelled in-depth from scratch. The industrial context of
the study is Canon Production Printing and we consider
a case for which the company has also developed control
software in practice. The first participant is the developer of
CSX. The second participant is a domain expert from Canon
Production Printing having 10+ years of experience with
developing control software for printing systems. The first
participant was the main implementer of CSX. The second
participant has been actively involved in the development
of the language and environment.

The subject case of the study is a setup including a printer
with two input trays, an edge stitcher, and a virtual reader.
The input of the device consists of two input trays. Each
input tray contains sheets that are the same. Consequently,

11

the stack that is gathered from those input trays can contain
at most two different types of sheets, which can occur in any
amount and order. Although this seems like a simple case, it
was already difficult to cover in the pre-CSX situation.

In the pre-CSX approach, modelling this device with sup-
port for only simulation — calculating the output based on
the input and parameters — is considered straightforward
by the domain expert. For the simulation implementation,
the input objects are specified up front and the output is
calculated by processing each step, given parameters such
as orientations. However, reasoning backwards, e.g., to cal-
culate the configuration parameters given an input and a
desired end product, is considered complex by the domain
expert. In particular, the freedom on orientation before and
after printing results in many configuration possibilities, for
which it is not clear how to find all of them. Therefore, this
is a relevant case for our study.

The study consists of two parts. In the first part — a think
aloud study — the participants model the device in think
aloud co-design sessions of two hours. In the second part —
reflection analysis — the participants discuss the evaluation
questions in a single two-hour session, reflecting back on the
co-design sessions using the notes gathered in the sessions.

During think aloud co-design sessions [7] the two partici-
pants gather data for evaluating the language design. The
participants model the edge stitching device by gradually
including aspects of increasing complexity, selected by the
domain expert. In particular, these sessions follow the fol-
lowing protocol:

e The participants communicate via a video call. The first
participant has the CSX IDE open and shares the screen
with the other participant, such that both participants
can see the IDE and models.

The participants perform iterations of modelling in
sessions of two hours.

e For each iteration, the domain expert selects an as-
pect of the device to model. Initially, the domain ex-
pert selects the most simple aspect of the device. The
judgement of the domain expert is leading in grad-
ually expanding the level of detail of the model. For
new iterations, the domain expert expands an aspect
with more detail or selects a new aspect. Each iteration
starts in a new CSX file by copying the previous file,
initially starting with an empty file.

The participants engage in a think aloud conversa-
tion [7] on which properties to consider and which
design decisions to make during the process. The first
participant writes the CSX code that corresponds to
the consensus of the participants on how to model the
selected aspect.

The participants document the considerations and de-
sign decisions by taking notes in comments of the

CSX code such that the considerations can be revisited
when discussing the evaluation questions.

o The participants validate the model by writing tests,
and revert to fixing the model if tests reveal flaws in
the model.

o The participants repeat this process until the domain
expert concludes that the device is modelled with a
level of detail that is sufficient for realizing control
software.

In the reflection analysis part of the study, the participants
discuss the evaluation questions. Per question, the partici-
pants reflect on the modelling sessions, revisiting the notes
that were documented with comments in the models.

Results. The participants performed six co-design session
of two hours. In some sessions, the participants worked
on multiple iterations, and some iterations are based on
work from multiple sessions. The sessions resulted in seven
iterations of CSX models, of which the last contained the
final model of the edge stitching device. Table 2 gives an
overview of the aspects that were included in each iteration.

We will now discuss the results of the study in more detail.
First, we report on general observations from the modelling
sessions. Second, we discuss each aspect of the case sepa-
rately. We report both positive and negative observations.
For example, we label the ith observation on the aspect of
domain coverage with DOMAIN-COVERAGE i. We label the
Jjth general observation, not related to, e.g., domain coverage
specifically, with GO j. The models from the session that
are included in this section have undergone light editing in
order to improve presentation.

General Observations. Before starting on the first CSX
model, the participants realized that they should determine
the scope of what they will include in the model. The most
high-level question in that regard is whether the model
should start before or after the printing device. Although
CSX has been originally designed with the intention to model
and integrate finishing equipment, there is also utility in in-
cluding part of the printing device in CSX models (GO 1).

In particular, a printing device typically has multiple input
trays in a component which is called the paper input module
(PIM), which determines the number of different types of
sheets that can be used as input. It is relevant to include this
in the model, as the sheets in input trays are part of the con-
figuration space that is relevant for finishing. Alternatively,
we can leave out this part from the CSX model, and consider
the output of the printer as input to the finishing device that
we model. This output of the printer then potentially can
consist of different types of sheets.

In the evaluation, the participants chose to include the
input trays of the printing device in the model. The actual
printing operation is considered implicit; its effect is not
captured in the model in the study. It could be relevant to

12

Denkers et al.

Table 2. The aspects that were included in each iteration
of the co-design evaluation sessions. The first attempt at
modelling input trays (iteration 3) was incorrect and was
modelled again from scratch (iteration 6).

Iteration | Aspects introduced

1 Uniform stacks of sheets, device, physical
limitations, validation

Non-uniform stacks of sheets

Input trays (incorrect)

Sheets must have equal height

Edge stichting, orientations

Input trays (correct)

Integrate input trays with edge stitching

NN |G Wi

include the printing in a later iteration, e.g., for modelling
the printable area of sheets.

The participants found that a convenient first step in ev-
ery iteration of the modelling sessions was to model the
printing objects (sheets and stacks) by adding or extending
type definitions (GO 2). User-defined types in CSX allowed
the participants to be flexible in how the objects that un-
dergo the finishing actions are modelled, similar as in an
object-oriented language. The participants noticed that this
flexibility is useful for the modelling process that is incre-
mental. They started with simple type definitions and first
completed a device model based on these type definitions.
Later, they expanded the type definitions to incrementally
include more detail (GO 3).

Uniform stacks of sheets. In order to start simple and
gradually expand the level of detail in the model, the par-
ticipants chose to start with modelling stacks of sheets that
are uniform. This has a restrictive implication: all sheets
in a stack are considered equal by design. Although this is
an oversimplification which is not realistic, the participants
considered it a good starting point.

Figure 9 (lines 1-5), from the first modelling iteration, de-
picts the type definition for a uniform stack of sheets. Many
properties could be included in sheets, but the participants
started with a simple representation of sheets with only
a size (width and height). An additional property sheets
indicates how many sheets are in the stack.

Since properties are of type integer, the participants had to
choose a precision (GO 4). The participants chose a precision
of 1/10mm. This precision is common in the printing domain
and considered precise enough. The participants noticed a
downside of this approach: a reader of a CSX model does need
to interpret integer values with a division or multiplication
of 10 when interpreting them in the more intuitive unit of
millimeters (DOMAIN-COVERAGE 1).

The integer type in CSX has a domain of both positive and
negative integer values. Since the size of the sheets and the

0 NN NV W=

W W W W DN DD DN DNDNDNDN DN DN o e e e e e e e
WN = O VOO U W= OO IV RWND = OO0

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

// Precision: 1/10mm

type Stack {
width: int, [width > @],
height: int, [height > 01,
sheets: int, [sheets > 0]

}

device PaperInputModule {
location input: Stack

3200]
1500]

// Max size
// Min size

[input.widt

4500 and input.height
[input.widt 1

h < <
h > 1200 and input.height >
[output == input]

location output: Stack

}
// Check that the configuration conforms to the test setup
test device PaperInputModule config input.width == 2100
config input.height == 2970
config input.sheets == 1 {
[output.width == 2100]
[output.height == 2970]
[output.sheets == 1]
3
// Check that no configuration can be found for 100x100mm
test device PaperInputModule config input.width == 1000
config input.height == 1000 {

fails
3

Figure 9. The CSX model resulting from iteration 1. A simple
device that takes a uniform stack with a size (width and
height) and number of sheets as input and outputs the same
stack. Hardware limitations on the size of the input stack are
captured in constraints. Two tests cover a succeeding and
failing scenario.

number of sheets cannot be negative, the participants added
constraints to the model to restrict the instances (Figure 9,
lines 2-4, between square brackets).

The participants noticed that user-defined types enable
modelling on a level of abstraction that corresponds to do-
main objects, which prevents having to repeatedly model
properties of an object such as a sheet separately (DOMAIN-
COVERAGE 2).

The participants observed that the equality between input
and output (Figure 9, line 13) is in terms of stacks, not in
terms of the individual properties of stacks. Equality can
thus be defined on a level of abstraction that corresponds to
the objects modelled in CSX. This is in contrast to a low-level
constraint modelling language, in which one would need to
define equality with low-level constraints that compare each
property of the stack individually (DOMAIN-COVERAGE 3).

Device. After having defined types that model uniform
stacks, the participants started to actually model the device.

13

This started with identifying the locations in the device
where the stacks of sheets pass, typically just before and
after the places in the process where modifications are made
to the sheets.

The first iteration only contained an input and output
location, both of type Stack (Figure 9). This is an oversim-
plification of the actual device: the model does include the
physical limitations of the device, but it does not contain the
different input trays, the stack cannot consist of different
types of sheet (non-uniformity), and stitching and the possi-
bility to orientate the sheets before and after stitching are
not included.

The participants observed that the simplistic approach
to modelling the device in this first iteration also led to a
simple CSX model (GO 5). In the following iterations, as the
level of detail in the models increased, additional locations
were added by the participants such that more intermediate
snapshots of the stacks could be considered in the model.

The participants observed that the stack of sheets at the
input location of the device could be interpreted in two ways:
they represent the total number of sheets that are in the in-
put trays, or they represent the sheets in the input trays that
will be used in the configuration for a single product. Alter-
natively, the configuration could also be used for multiple
products in one job. In this model, the participants modelled
the configuration space for single products. Therefore, the
input of the device in the model represents the sheets of pa-
per for a single job; there could be more paper in the physical
tray.

The participants noticed that in the design process they did
not use actions (see Section 2.3) yet to factor out common
pieces of behavior, but modelled everything directly in a
device. CSX supports actions for building a library of printing
behavior that can be shared between many device models,
but they were not used in the study (GO 6).

Inherent to the setup of the study, devices were modelled
in separate CSX files. The incremental approach in the study
has led to the insight that an import mechanism — which
would allow re-use of, e.g., type definitions and actions be-
tween files — would be beneficial (GO 7).

Physical Limitations. The participants added physical
limitations of the device in the first iteration (Figure 9, lines
10—11). The constraints in square brackets express the de-
vice’s physical limitations with respect to the minimum and
maximum size of sheets that it can handle. In this iteration,
no maximum on the number of sheets was modelled. Note
that the constant values that indicate the minimum and max-
imum width and height are integer values that represent a
dimension for the precision chosen in this model. For exam-
ple, the constraint input.width <= 4500 indicates that the
maximum width is 450mm.

Validation. Having a first simple model of the device,
the participants wrote two tests to validate the physical con-
straints (Figure 9, lines 18—-31). The first test checks that for a
given input that is accepted within the physical constraints,
the output contains the same stack. The second test checks
that for an input that is too small, no configuration can be
found (indicated with fails).

Also in the other iterations, the participants used tests
to validate the behavior of the models. The tests evaluate
after having changed the file, resulting in an interactive
development experience. The domain expert observed that
the modelling approach - in think aloud co-design sessions,
with interactive validation using the tests — works well and
stimulates experimentation. In particular, the domain expert
noticed that the development and validation loop is quick
(GO 8); updating the model and tests results into feedback
within seconds.

The participants found it useful that CSX reports solu-
tions found by solvers in terms of the CSX model instead of
the generated constraint model. When inspecting a solution
found by the solver, it is hard to map those to configura-
tions of the device. Especially when lists are used, which
are modelled with an array per property, it is difficult to
understand which low-level values correspond to those of
the CSX model. The participants observed that CSX is at a
high level of abstraction when interpreting and presenting
configurations (e.g., in tests): the configuration is reported
in terms of the user-defined types and parameters, not in
terms of low-level values (GO 9).

The participants observed that the modelling of objects
in tests is still at a low level of abstraction (DOMAIN-CO-
VERAGE 4). For example, to specify an input sheet object,
one needs to specify each property of the sheet with individ-
ual constraints. Figure 16a depicts this: the test contains a
config instance per property of the sheet that is relevant for
the test. In this case, the thickness of the sheet is not relevant
for the test, and thus omitted.

Non-uniform stacks of sheets. In iteration 2 (Figure 10),
the participants aimed to increase the level of detail of the
model by allowing stacks to be non-uniform. To do so, the
participants refactored the model to use CSX’s list construct
for stacks of sheets (line 7). This enables to model non-
uniform stacks, i.e., the sheets in the stack can have different
properties (DOMAIN-COVERAGE 5). Since lists can have a
variable size, the stacks can have a variable number of sheets.
The participants noticed that a limitation of CSX is that al-
though the upper bound is configurable, all lists get the same
upper bound (GO 10).

Input trays. In iteration 3 (Figure 11), the participants
first attempted to model input trays by combining the uni-
form stacks and non-uniform stacks. There are two input
tray locations of type UniformStack. The case focuses on
forming a non-uniform stack of sheets from the two input

0 NG W N

DD DD DD M s o e e e e
PR = SO XTI R WN = OO

14

Denkers et al.

type Sheet {
width: int, [width > @],
height: int, [height > @]
}

type Stack {
sheets: list<Sheet>

}

device PaperInputModule {
location input: Stack

[input.sheets.forall {

sheet => sheet.width < 4500 and sheet.height <
1 // Max size
[input.sheets.forall {

sheet => sheet.width > 1200 and sheet.height >
1 // Min size

3200}

1500}

[output == input]

location output: Stack

Figure 10. The CSX model resulting from iteration 2 which
includes the aspect of non-uniform stacks of sheets. The
physical limitations of the device are expressed using a forall
expression on the list of sheets in the input stack.

trays of uniform stacks of sheets. The idea behind the ap-
proach was as follows: the output stack should contain the
sheets defined in tray 1 and those in tray 2, in any order. The
counting is modelled by combining a map to a list of zeros
and ones and then a sum. A count operator would help for
expressing this (see commented part in Figure 11).

While modelling the input trays of the device, the partic-
ipants noticed that the modelling of a non-uniform stack
that contains sheets from two uniform stacks was challeng-
ing. In fact, the initial attempt was incorrect. In general, the
handling of grouping and ordering of sheets and stacks re-
mains difficult; the CSX user needs to incorporate several
constraints that, e.g., enforce the total number of sheets to
be correct (DOMAIN-COVERAGE 6).

In iteration 6, the participants re-modelled the tray assign-
ment. This approach was also included in the final model
(Figure 13). In this new approach, the participants included
an enum with values for each sheet, and added a list that
indicates the tray assignments for each sheet. By doing so,
each sheet is actually from one of the trays - if a sheet gets
tray A assigned, its value in the stack must be equal to the
sheet defining the uniform stack in tray A. Additionally, the
number of assignments per sheet are counted and compared
to the number of sheets in the uniform stacks of the trays.
This ensures that the total number of sheets add up. The par-
ticipants observed that this was challenging to implement
due to the constraint-based paradigm of CSX, as it failed on

0 NN NV W=

G G G Bl B B B B R R R 0000 W W W W WD DN DN DN DN e e e e e e e
N = O 00U W= O WOV U R WN = O VWU WN R OV U WD = OO0

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

type Sheet {
width: int, [width > @],
height: int, [height > @]
}

type UniformStack {
width: int, [width > o],
height: int, [height > @],
sheets: int, [sheets > 0]

}

device PaperInputModule {
location trayl: UniformStack
location tray2: UniformStack

[size(output) == trayl.sheets + tray2.sheets]

[sum(output.map { sheet =>
if (

sheet.width == trayl.width and
sheet.height == trayl.height
)
1
else
0

}) > trayl.sheets]

[sum(output.map { sheet =>
if (
sheet.width == tray2.width and
sheet.height == tray2.height
)
1
else
Q
}) > tray2.sheets]

// A count function

/*

[count(input, { sheet =>
sheet.width == trayl.width and
sheet.height == trayl.height

} >= trayl.sheets)]

could make above more expressive

[count(output, { sheet =>
sheet.width == tray2.width and
sheet.height == tray2.height

} >= tray2.sheets)]

*/

location output: list<Sheet>

Figure 11. The CSX model resulting from iteration 3; the
first attempt at modelling the input trays. In comments, it
depicts how a count operator (which is not yet in CSX) could
improve expressiveness. Note that this approach is incorrect

for the case where the sheets in tray 1 and tray 2 are equal.

Counterexample: both tray 1 and tray 2 contain one sheet
with width 1, height 1, weight 1. The output stack could
contain a sheet with width 1, height 1, weight 1 and a random
second sheet, and still meet the constraints.

0 NG W N

DD D DD DD M s o e e e
RO R =S 0O XTI W = OO

15

type UniformStack {
sheet: Sheet,
count: int, [count > @]

}
enum Tray { AB }

type Sheet {

width: int,

height: int,

isPortrait = height > width
}

type Stack {
sheets: list<Sheet>,
stitches: list<Stitch>
}

type Stitch {
e: edge,
direction:

}

Direction

enum Direction { Upwards Downwards 3}

Figure 12. The type definitions accompanying the final CSX
model (Figure 13).

the first attempt and required additional data structures and
extensive testing to get right (GO 11).

Sheets must have equal height. In iteration 4, the par-
ticipants included the constraint that all sheets must have
the same height, which was also included in the final model
(Figure 13, line 36). This captures a physical limitation of
the device. The participants modelled this limitation using
a forall that enforces all heights of the sheets to equal the
height of the first sheet.

Edge Stitching. In iteration 5, the participants included
the stitching capabilities of the device, which was also in-
cluded in the final model (Figure 13). Again, for modelling
the stitches, the first question that came to mind for the
participants was which level of detail to include. The partic-
ipants started with modelling stitches with an edge and a
direction (Figure 12, lines 20-21). The e property has type
edge, i.e., one of the geometrical contructs in this paper. A
stitch can be applied in the upwards or downwards direction,
which is modelled using an enum.

The model for the device could include the actual posi-
tions on which the stiches are applied on the sheets. In this
model, we did not include the positions of stitches. The par-
ticipants observed here that devices with similar features
(in our case: stitching) can require different models (stitches
with or without positions) (GO 12).

The device can apply multiple stitches to the stack of
sheets, and therefore the participants used a list of stitches
to model this. In addition to the usage of lists for modelling

—_ =
_= O 0 00NNV R W =

[L L R R S S B L e e s i~ - I O L R SL R U R UL R L RO B BT, B I S N A S N N L R R SR SR S R e o el e el e e
S 0O XU R WN P O VTV R WD = O Ve U R WN R OOV U A WN ROV W

., Denkers et al.

device PaperInputModuleAndStitcher {
location entryA: UniformStack [entryA.sheet.width < entryA.sheet.height]
location entryB: UniformStack [entryB.sheet.width < entryB.sheet.height]

parameter oA: orientation [0A == rot@ or oA == rot90]
parameter oB: orientation [oB == rot@ or oB == rot90]

[0A == rot@ implies entryA.sheet.width == trayA.sheet.width and entryA.sheet.height == trayA.sheet.height]

[0A == rot90 implies entryA.sheet.width == trayA.sheet.height and entryA.sheet.height == trayA.sheet.width]
[oB == rot@ implies entryB.sheet.width == trayB.sheet.width and entryB.sheet.height == trayB.sheet.height]
[oB == rot90 implies entryB.sheet.width == trayB.sheet.height and entryB.sheet.height == trayB.sheet.width]

location trayA: UniformStack
location trayB: UniformStack

[entryA.count == trayA.count] [entryB.count == trayB.count] [trayA.count > trayB.count]
location assignment : list<Tray> [size(assignment) == size(input)]
location input: list<Sheet> [size(input) == trayA.count + trayB.count]
[input.forall { sheet =>
if (sheet == trayA.sheet) assignment[index] == A else (sheet == trayB.sheet and assignment[index] == B)
1]

var xA: list<int> var xB: list<int>

[size(xA) == size(assignment) and assignment.forall { x => xA[index] == (if (x == A) 1 else 0)}] [sum(xA) == trayA.count]
[size(xB) == size(assignment) and assignment.forall { x => xB[index] == (if (x == B) 1 else 0)3}] [sum(xB) == trayB.count]

[input.forall { sheet => sheet.width
[input.forall { sheet => sheet.width

4500 and sheet.height
1200 and sheet.height

3300}] // Max size
1500}] // Min size

< <
> >

[size(input) < 501 // Max number of sheets that can be stitched

[input.forall { sheet => sheet.height == first(input).height }]

[gathered.sheets == reverse(input)] // Gathering a sequence of sheets will have the first sheet at the bottom of the stack
location gathered: Stack [size(gathered.stitches) == @] [output.sheets == gathered.sheets]

[size(output.stitches) == @ or size(output.stitches) == 2]
[output.stitches.forall { stitch => stitch.e == right and stitch.direction == Upwards }]

location output: Stack

parameter o02: orientation [02 == rot@ or 02 == rot90]
[(02 == rot@) implies output.sheets.forall {

sheet => sheet.width == reader.sheets[index].width and sheet.height == reader.sheets[index].height
1]
[(02 == rot90) implies output.sheets.forall {

sheet => sheet.width == reader.sheets[index].height and sheet.height == reader.sheets[index].width
]
[reader.stitches.forall { stitch => output.stitches[index].e == orientate(stitch.e, 02) }]
[output.stitches.forall { stitch => stitch.direction == reader.stitches[index].direction }]
[size(output.stitches) == size(reader.stitches)] [size(output.sheets) == size(reader.sheets)]

location reader: Stack

Figure 13. The final CSX model resulting from the co-design sessions. It integrates the key aspects of iteration 6 (properly
modelling the input trays) and iteration 5 (edge stitching and orientations).

16

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL

non-uniform stacks of sheets, the list construct in CSX is
useful for coverage of a variable number of stitches (DO-
MAIN-COVERAGE 7).

The participants observed that both an edge and direction
are geometrical constructs, but only the edge is provided first-
class by CSX. Initially, the difference seems little. However,
in iteration 5 the participants noticed that the support of
edges in CSX is useful when applying orientations to the
sheets with stitches. In this device, transformations of only
0 and 90 degrees are possible, which will not influence the
direction of stitches. Therefore, this mode would not benefit
from first-class support for directions such that they can also
be transformed easily. However, in devices that can apply
transformations that include flipping a stack of sheets with
stitches, it would be useful if directions are supported first
class with builtin transformations with orientations (DO-
MAIN-COVERAGE 8).

The participants noticed that geometrical constructs in
CSX lift the level of abstraction on the modelling of geo-
metric properties and transformations in CSX models. The
geometrical constructs prevent the user from resorting to
low-level linear algebra or handling many individual cases
(DOMAIN-COVERAGE 9). Additionally, simple properties
and transformations such as the modelling of an edge of a
sheet actually becomes simple, e.g., when they need to be
rotated. In CSX, orientations (including simple rotations) are
part of the language and can be used to transform sheet sizes
or edges. In our case, the participants used orientations to
model the freedom of orientating the sheets before and after
stitching, and we used it to model the edge of the stack on
which the stitching occurs.

Orientations. In iteration 5, the participants modelled
the aspect of orientations, which was also included in the
final model (Figure 13). The device has the capability of
orientating the stack of sheets before and after applying the
stitches. This is useful because then a stack of sheets that
is too large for being stitched in portrait orientation (lines
31-32) can be stitched in landscape orientation but still be
presented in portrait orientation to the reader.

The reader location in the model represents a virtual
location in which the operator has picked up the product and
inspects it. In the printing domain it is common to include the
reading in the model, because it enables us to reason about
whether the end product conforms the intent of the operator.
For example, on the reader location we could express the
intent of a landscape orientated product with stitches on the
left edge.

The capability of our device of orientating the stack of
sheets has interaction with the geometrical constructs such
as the edge on which a stitch is applied. The edge construct
in CSX — including builtin transformations with orientations
— makes it easy to express the transformation of an edge on a
sheet (Figure 13, line 55). However, the participants noticed

17

that such transformation on sizes are not built into CSX
(Figure 13, lines 48-53). For example, when rotating a sheet
by 90 degrees, the width and height are swapped. Although
we can still express this in CSX with low-level modelling,
CSX models would benefit from also having transformations
of sizes expressed similar to edges (DOMAIN-COVERAGE 10).

Conclusions. We conclude our outcomes by summariz-
ing the positive and negative observations regarding the
domain coverage of CSX:

Positive observations:

o User-defined types enable modelling on a level of ab-
straction that corresponds to domain objects, which
prevents having to repeatedly model properties of
an object separately (DOMAIN-COVERAGE 2). Simi-
larly, equality can be defined in terms of user-defined
types and does not require comparing individual
properties (DOMAIN-COVERAGE 3).

e The list construct in CSX contributes to covering
the printing domain by enabling to properly model
non-uniform stacks of sheets (DOMAIN-COVERAGE
5) or a variable number of stitches (DOMAIN-CO-
VERAGE 7).

Negative observations:

e CSX does not cover precision and units: the mod-
eller needs to choose a precision, and configurations
that are found need to be interpreted under the cho-
sen precision (DOMAIN-COVERAGE 1).

e Object terms, e.g., in tests, cannot be specified in
terms of the domain, and need to be specified using
low-level properties (DOMAIN-COVERAGE 4).

o Handling grouping and ordering of sheets and stacks
is not specifically covered in CSX and thus remains
cumbersome to model (DOMAIN-COVERAGE 6).

o The set of geometrical constructs in CSX is not com-
plete and should be extended with directions (DO-
MAIN-COVERAGE 8) and sizes (DOMAIN-COVER-
AGE 10), because currently they require low-level
modelling (DOMAIN-COVERAGE 9).

4.2 Configuration Accuracy

Study setup. To validate the accuracy of the CSX imple-
mentation, we test our implementation for correctness and
completeness. For correctness, we test that the configurations
that are found for a device correspond to the device’s lim-
itations. This ensures that there are no false positives. For
completeness, we test that there are no configurations that
are not found but that are possible in a device. This ensures
that there are no false negatives.

To validate correctness and completeness, we test us-
ing artifical CSX models for which we manually determine

whether a configuration should or should not be found. In
particular, we test the CSX language transformations and
configuration space exploration. We approach testing sys-
tematically by covering all features of the language at least
once in each language aspect (syntax, static semantics, desug-
aring, transformation to MiniZinc, integration with MiniZinc
solvers, and interpreting MiniZinc solutions).

In addition to the systematic coverage of all language
features in the tests, we add tests for specific cases of features
that interact with each other. Because testing all feature
interactions would be very time consuming, we test a subset
of feature interactions. For example, the use of lists of edges
in CSX involves a feature interaction between the specific
way of translating lists to MiniZinc and that of translating
edges to MiniZinc, and therefore is tested separately.

Results. Our testing has resulted in 232 handwritten unit
and integration tests, which all pass and with that build
confidence in the accuracy of the CSX implementation by
covering all features at least once, and a subset of feature
interactions, for correctness and completeness (CORRECT-
NESS 1).

Although the test suite covers a subset of the feature inter-
actions of the CSX implementation, still there can be untested
interactions between features that are not correctly handled
by the implementation. While performing the coverage study,
the participants exposed two bugs that were related to fea-
ture interactions. One of these bugs concerned the use of a
list of a user-defined type in which a nested property was of
an enum type. Although lists of user-defined types and lists
of enums were tested, this particular case was not tested and
required the handling of an edge case in the translation to
Minizinc.

Although we made a best effort for testing accuracy also
for feature interactions, based on the current test suite we
cannot guarantee accuracy of all feature interactions (COR-
RECTNESS 2). In practice, specific interactions of features
could lead to incorrect behavior or runtime failures.

Conclusions. We conclude the following on the correct-
ness of CSX 2.0:

A set of 232 unit tests generate confidence that all fea-
tures, and a subset of feature interactions, in CSX con-
tribute to configuration space exploration that is correct
and complete (CORRECTNESS 1), but we cannot guarantee
correctness and completeness for all feature interactions
(CORRECTNESS 2).

4.3 Configuration Performance

Study setup. We consider the configuration space ex-
ploration performance to be practical when the complete
pipeline of parsing, analyzing, and translating models into
MiniZinc, finding a solution for the MiniZinc model, and
translation back to CSX occurs in the order of seconds. This

18

Denkers et al.

Table 3. Scenarios of configuration space exploration for
the final model of the coverage study (Figure 13) that we use
for benchmarkking. The Di scenarios derive a configuration.
The Oj scenarios find an optimal configuration by either
minimizing or maximizing an objective. All scenarios use 10
as the upper bound on list sizes.

ID | Description

D1 | Output landscape A3 with right edge stitch

D2 | Output portrait A3 with stitches (which then need
to be on the top edge)

D3 | Portrait A3 with stitch on right edge (which is not
possible)

O1 | Derive smallest portrait size with right edge stitch

02 | Derive smallest landscape size with right edge stitch

03 | Derive smallest portrait size with top edge stitch

04 | Derive smallest landscape size with top edge stitch

O5 | Derive largest portrait size with right edge stitch

06 | Derive largest landscape size with right edge stitch

O7 | Derive largest portrait size with top edge stitch

08 | Derive largest landscape size with top edge stitch

threshold is considered acceptable by Canon Production
Printing’s control software engineers for usage in interac-
tive scenarios. In such scenarios, an operator interacts with
a device by, e.g., describing an intent for a print job; getting
feedback regarding the feasibility of this intent should not
take longer than seconds in such cases.

Although the performance of constraint solving is hard to
predict in general, we conduct experiments to get an idea of
the typical response times for typical configuration scenarios
at Canon Production Printing. In particular, we take the final
model of the domain coverage study and we define realistic
scenarios of configuration space exploration for it. Table 3
lists the scenarios that we consider, which includes three
scenarios that derive a configuration (including one for which
no configuration can be found) and eight scenarios that find
an optimal solution. All scenarios use an upper bound on
lists of 10 and all consider an output stack with five sheets.

We perform benchmarks to measure the performance for
the different scenarios. Initial experiments and measure-
ments have shown that the time spent on parsing, name
binding, type checking, and translating solutions back to con-
figurations is neglectable (<10ms), Therefore, in the bench-
marks we only measure the time of translating a model and
scenario to constraints and the actual solving time. We set a
timeout of 10 seconds on the benchmarks (the upper bound
of the order of seconds).

To get an impression of the impact of list sizes on per-
formance, we repeatedly benchmark the first scenario for
multiple list upper bounds. For that, we alter scenario D1
such that the output stack size that is considered is half of
the upper bound on lists. This ensures that the lists in the

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

B translation @ solving

i

Figure 14. Benchmarking results for the Gecode solver for
the scenarios from Figure 3. The bars show the translation
and solving time separately. Times are reported in millisec-
onds. The tests D4 and D8 timed out and therefore are not
included in the figure.

800
|

time (ms)
400 600
| |

200
|

7

MiniZinc solution both have relevant values (that are con-
sidered in the configuration) and framed values (which are
ignored). For example, for the test with an upper bound of
list sizes of 300, the scenario considers and output stack of
150 sheets. For these benchmarks, we do not set a timeout.

We use the JMH framework' to implement the bench-
marks, which is a framework for benchmarks in Java. Spoofax
offers a core library that allowed us the integrate the rele-
vant components of CSX in the benchmark such that we can
measure the translation time and solving time separately.
We executed the benchmarks on a laptop with a quad-core
processor with a base frequency of 3.1GHz and 16GB RAM,
running macOS 12.4 and using Java version 1.8.0_275. Fur-
thermore, we used version 2.6.4 of MiniZinc with two com-
mon solvers [17]: Gecode? and ORTools®. For each scenario,
we first run 10 warmup iterations, then run 10 measurement
iterations, and we report the average of the measurement
iterations. We only report the results of the best performing
solvers, based on the least timeouts.

Results. The Gecode solver completed the benchmarks
with the least timeouts, and therefore we only report the
Gecode benchmark results. Figure 14 depicts the benchmark-
ing results for the Gecode solver for all scenarios. The results
show that most of the scenarios succeed within one second,
and thus stay within the order of seconds time limit (PER-
FORMANCE 1). Two of the optimization scenarios (D4 and
D8) — although they seem comparable to the other opti-
mization scenarios — timed out (PERFORMANCE 2). For all
scenarios, the translation times are higher than the solving

Lhttps://openjdk.java.net/projects/code-tools/jmh/
Zhttps://www.gecode.org
3https://developers.google.com/optimization

19

100 — B translation @ solving

_E??EDDH

o
o

80 —

60 —

time (s)

20

D1_100

D1_30
D1_4
D1_5
D1_600
D1_700
D1_800
D1_900

D1_2
D1_1000

Figure 15. Benchmarking results for the Gecode solver for
scenario D1 with list upper bounds varying from 100 to 1000
in which the output stack size is half of the upper bound on
lists.

times. The ORTools solver on average performed better on
the derivation scenarios, but it timed out on all optimization
scenarios.

Figure 15 depicts the benchmarking results for increasing
list upper bounds on scenario D1. The results indicate that
increasing the list upper bounds negatively impacts perfor-
mance (PERFORMANCE 3). This is expected, as increasing
the list upper bound increases the solution space in which
solvers need to find a solution. It is unclear yet for which
cases in practice this could become problematic.

Conclusions. We conclude the following on the perfor-
mance of CSX 2.0:

For several scenarios of configuration space exploration
on a model of a device at Canon Production Printing, the
performance is in the order of seconds and thus acceptable
for interactive configuration space exploration (PERFOR-
MANCE 1). However, performance is unpredictable, be-
cause for seemingly similar scenarios the solving can also
time out (PERFORMANCE 2). Increasing the upper bound
on lists sizes increases the solution space and negatively
impacts performance (PERFORMANCE 3).

4.4 Relevance

Study Setup. To evaluate the relevance of CSX 2.0, we
gather anecdotal evidence by interviewing the domain expert
and by considering general observations from the coverage
study (Section 4.1). In particular, for the relevance of CSX
2.0 for developing control software for printing systems, we
consider sufficiency and necessity:

https://openjdk.java.net/projects/code-tools/jmh/
https://www.gecode.org
https://developers.google.com/optimization

Sufficiency (CSX vs. pre-CSX). Is it sufficient to use
CSX 2.0 to realize automatic configuration space ex-
ploration, resulting into an improvement over the pre-
CSX situation?

Necessity (CSX vs. MiniZinc). Is it necessary to use
CSX 2.0 instead of directly modelling printing systems
in a generic constraint modelling language such as
MiniZinc?

Sufficiency. To compare CSX with the pre-CSX situation,
we look at the features that CSX introduces and the potential
impact of CSX on the development process.

The domain expert mentions that the biggest strength of
CSX is that based on a model, a solution space is derived
automatically and (optimal) configurations can be found au-
tomatically (RELEVANCE 1). The domain expert characterizes
this as levelling up automation. This was the main objective
when starting the development of CSX. In that respect, CSX
is an improvement over the pre-CSX situation.

In the pre-CSX situation, device operators do trial and
error to find a configuration, and are minimally assisted by
the control software. CSX’s ability to realize and automate
configuration space exploration is the biggest advantage over
the pre-CSX situation (RELEVANCE 2). For example, taking
the example of the edge stitching case, deriving automatically
what the maximum end size is that can be stitched left is
something that is possible with CSX but which was not
possible with pre-CSX.

The domain expert reports that a key change in CSX with
respect to pre-CSX is the language’s declarative nature. With
CSX, modelling the printing system only concerns thinking
about the characteristics of devices, and not about how to
compute or find configurations for the devices. Given a CSX
model, the configuration space exploration becomes an inde-
pendent concern that can be fully automated (RELEVANCE 3).

In the pre-CSX situation, control software engineers de-
velop heuristics to automatically find (partial) configurations
in order to improve usability of the devices. Typically, the
heuristics cover many individual cases by branching on par-
ticular input and parameter values, resulting in large deci-
sion tables. Those decision tables typically do not cover the
full configuration space and are not composable. Therefore,
the heuristics are for single devices, hindering reusability
and maintainability. With CSX, no algorithms need to be
developed for realizing the configuration space exploration,
limiting the repeating work when modelling new devices
(RELEVANCE 4).

The domain expert mentions that the development time
of control software for printing systems could be greatly re-
duced if CSX would be deployed in practice (RELEVANCE 5).
The domain expert estimates the currently required devel-
opment time required for integrating a device similar to the
one in our coverage study to be four to eight man weeks.
This development time can be reduced because repeating

20

Denkers et al.

work for new devices is decreased with CSX. The interactive
testing facilities of CSX allow modellers to validate parts
of their models already in the IDE (GO 8), decreasing the
time-costly dependency on physical hardware for validation.

Without claiming to make a fair comparison, we have
asked the domain expert to make an estimation of lines of
C# code in the pre-CSX situation that would cover the same
concerns for a similar case as in our coverage study. The esti-
mation was in the order of thousands lines of code. Our CSX
model consists of less than hundred lines of code. Thereby,
the estimation indicates that the lines of code involved in
modelling a device can be reduced by an order of magnitude.

Necessity. Although CSX could be beneficial with respect
to the pre-CSX situation, the question remains whether it is
worth it to develop a new language instead of using a generic
constraint modelling language such as MiniZinc.

The domain expert reports that using a generic constraint
modelling language for modelling printing systems could
already give benefits. One could write a constraint model
that represents a configuration space, and have solvers find
solutions which correspond to configurations. However, a
problem with this approach is that domain-specific aspects
in print systems need to be modelled repeatedly in low-level
constraints, as they are not available in the language. MiniZ-
inc does support constructs that facilitate reuse such as func-
tions. Recently, MiniZinc also added support for record types.
Still, MiniZinc lacks domain-specific support for, e.g., device
and action modelling. The domain expert thinks that sup-
port for domain-specific aspects in the modelling language
is required to make modelling using the language feasible in
practice (RELEVANCE 6).

The domain expert also mentions the level of abstraction
as a key characteristic that makes CSX more realistic to
use in practice than MiniZinc (RELEVANCE 7). The domain
expert reports that CSX is capable of abstracting over the
complexity of low-level constraint modelling, by offering
high-level language constructs.

In addition to the domain-specifity and level of abstraction
of CSX, the domain expert mentions the benefits of the CSX
IDE (RELEVANCE 8). For example, the CSX IDE provides
inhabitance checking and test feedback. These features are
interactive which speeds up the development process. Also,
the configurations found in tests are reported while hovering
over a test with your mouse, making it accessible to inspect
configurations.

Conclusions. We conclude the following on the relevance
of CSX 2.0:

e CSX is relevant because it realizes configuration
space exploration (RELEVANCE ?2) that is automatic

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

(RELEVANCE 1) by only modelling device charac-
teristics (RELEVANCE 3) and without requiring re-
peating development of algorithms for new devices
(RELEVANCE 4).

e CSX is relevant because it has the potential of in-
creasing control software development productiv-
ity by greatly reducing development and validation
time (RELEVANCE 5).

o CSXisrelevant because, in contrast to a generic con-
straint modelling such as MiniZinc, the language
includes constructs specific to the printing domain
(RELEVANCE 6) which are on a higher level of ab-
straction (RELEVANCE 7), accompanied with an IDE
with useful features such as inhabitance checks and
interactive testing (RELEVANCE §).

5 Discussion

In this section, we discuss CSX’s language design, the impli-
cations of using constraint-based programming, and CSX’s
application in practice more broadly. If relevant, we refer to
observations of the coverage study.

5.1 Language Design

We discuss the implications of CSX’s language design de-
cisions and we discuss ideas for improving the language
design.

User-Defined Types. When modelling with CSX, the level
of detail that is included is an important design question. For
example, when modelling the stitches that get stitched in a
stack of sheets, is it necessary to only model the existence
and number of stitches, or should the exact locations of the
stitches also be included? For some stitching devices, only
the number of stitches needs to be indicated and the device
will position them automatically. For other stitching devices,
the exact position of the stitches needs to be configured. Be-
cause CSX offers user-defined types to model objects, the
modeller retains flexibility in choosing what to include in
the object representations.

We consider that user-defined types should be used to
model the objects of printing and finishing devices as the
most import language design decision of CSX. It influences
the modelling process in such a way that modelling starts
with types (GO 2) and that the modeller remains flexible by
iteratively including more detail in types (GO 3). We think
that this characteristic of CSX is essential in making sure
that a simplistic approach to modelling a device also leads
to a simple model (GO 5), not polluted by irrelevant details.

Alternatively to user-defined types, CSX could offer built-
in constructs for its objects (sheets, stacks, stitches, etc.).
This would make the language more domain-specific, but
also less flexible, which is a typical tradeoff in language
design. Already for a simple device such as a stitcher, it

0 NG W N

_ e e e e
B WD R OO

21

type Sheet { 1 | type Sheet {
width: int, 2 width: int,
heigth: int, 3 heigth: int,
thickness: int 4 thickness: int

} 5%

device MyDevice { 6 | device MyDevice {
location in: Sheet 7 location in: Sheet
8

} 9 |2

test device MyDevice 10 | test device MyDevice

config in.width = 210 11 | config in = Sheet(210, 297, _) {

config in.height = 297 {|12
13

3 14 |3}

(a) CSX 2.0: individually
specified properties.

(b) Hypothetical CSX 3.0: an object
term with a wildcard.

Figure 16. The partial model of a sheet object in a test in
CSX 2.0 and hypothetical CSX 3.0.

would not be obvious to use a single type definition for a
stitch (as it could be necessary with and without position
information). Possibly, CSX could offer both built-in type
and user-defined types to be more domain-specific but also
maintain the flexibility.

From our evaluation, we cannot conclude whether the
freedom in type definitions is also effective when covering a
larger and more diverse range of printing systems. Although
user-defined types give freedom in how printing objects can
be modelled, possibly specific for a particular device, the
anticipated reusability of type definitions could be hindered
when a wider range of devices are modelled.

Units & Precision. CSX 2.0 does not support units in the
language. A modeller is restricted to using integers and has
to choose a precision, which also requires manual interpre-
tation of configurations for that precision (DOMAIN-CO-
VERAGE 1). We could overcome the need of this manual
interpretation by introducing units in the type system of
CSX, such that the values and their types reflect actual mea-
sures. Potentially, this could be used to extend CSX such
that a user can experiment with varying precisions without
having to update the complete model.

Object Constructors. In Figure 16b we depict how the
modelling of objects could be improved in a next version
of CSX. By introducing object constructors, the test object
can be specified in terms of user-defined types. If a property
of the object is not relevant, it can be ignored by using a
wildcard, which means the property could get any value. We
expect extending CSX with support for object constructors
with wildcards to be relatively straightforward.

Sizes. In Figure 17, we compare modelling the transfor-
mation of sheet sizes in CSX 2.0 (similar as in our evaluation
case) with an alternative approach in a hypothetical CSX 3.0.

0 NN NV W=

e e e
[l B R L L =)

0 NN U W =

=R e
B W N = O o

Denkers et al.

enum Color { White Red }
type Sheet {
width: int,
height: int,
color: Color
3
device Rotator {
location input: list<Sheet>

parameter o : orientation [0 == rot@ or o == rot90]

[o == rot@ implies input.forall { sheet => sheet.width == output[index].width and sheet.height == output[index].height }]
[o == rot90 implies input.forall { sheet => sheet.width == output[index].height and sheet.height == output[index].width 3}]

[input.forall { sheet => sheet.color == output[index].color }]

location output: list<Sheet>

(a) CSX 2.0: low-level modelling of orientation the sizes of sheets. More cases such as on line 12 and 13 would be needed if the device would
support more orientations than only 0 and 90 degrees. The color of sheets which is not changed by the rotation, are mapped to the output
(line 16).

enum Color { White Red }
type Sheet {

size: size,

color: Color

3

device Rotator {
location input: list<Sheet>
parameter o : orientation

[output == input.map { sheet => Sheet(orientate(sheet.size, 0), sheet.color) }]

location output: list<Sheet>

(b) Hypothetical CSX 3.0 with two new features. First, by adding first-class support for sizes, the orientate function can also be used for
transforming sizes, removing the need of manually writing out cases for each orientation. Second, by adding object constructors, a single
map operation can be used to express an effect on a list where some properties do change (i.e., size) and some not (i.e., the color of sheets.)

Figure 17. Modelling the transformation of sheet sizes in CSX 2.0 (low-level) and in hypothetical CSX 3.0 (high-level).

By extending the set of geometrical constructs in CSX with sheets with variation in those properties. Additionally, as-
sizes, size transformations can be modelled without having pects such as a variable number of stitches can be modelled
to model independent cases. Additionally, by using object properly with a list.

constructors, a map operator can express a change over a Note that stacks do not necessarily have to be modelled in
list of items by conveniently modelling which properties do a non-uniform way. If it is clear for a model that a particular
and which do not change. stack is uniform, it could be better to model it as such. This

is a more efficient representation, as it requires the modeller
to only needing to model the width and the height of the
stack once, instead of for each sheet in the stack separately.

Lists. The list construct in CSX contributes to the cover- Also, if a uniform stack would be split up in multiple stacks,
age of CSX for the printing domain (DOMAIN-COVERAGE the new stacks could still be considered as uniform stacks.
5), as non-uniform stacks allow to include more detail in the CSX 2.0 supports a single point of configuration for list
model. Realizing a variably sized non-uniform stack of sheets upper bounds (GO 10). If it is known that a list will have a
in principle would be possible without the list construct, but small maximum size, e.g., for a device that can only stitch 6
it is cumbersome. Figure 18 demonstrates this. stitches maximum, it would be a better and more efficient

Lists allow to incorporate properties such as paper type, model of the solution space if the instance of a specific list

color, and width in the sheet model and accept stacks of
22

—_ =

_= O 0 00NNV R W =

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

type Sheet { 1| | type Sheet {
width: int, heigth: int 2 width: int, heigth: int
} 3012
type Stack { 4| | type Stack {
sheet1: Sheet, 5 sheets: list<Sheet>
sheet2: Sheet, 6| |}
- 7
sheet5: Sheet, 8
size: int, 9
[0 < size and size < 5] 10
} 11

(a) CSX 1.0: a sheet instance for
each possible sheet in the stack,
in which the variable size indi-
cates which sheets should actually
be considered in the tack.

(b) CSX 2.0: using lists to rep-
resent a non-uniform stack
of sheets.

Figure 18. Example type definitions for modelling a non-
uniform stack of sheets in CSX 1.0 (with a workaround) and
in CSX 2.0 (using the list construct).

could get its own upper bound. We expect extending CSX
with upper bounds for lists that are configurable per list
instance to be relatively straightforward.

Reuse. In the coverage study, the participants did not
yet make use of the actions language construct (Section 2.3)
(GO 6). We expect the reason for this to be that actions are use-
ful for factoring out common pieces of behavior (for which
they were intended), but that it only becomes useful when a
wider range of devices are modelled. To get a better under-
standing of the usefulness of actions in capturing reusable
parts of printing behavior, we need a study on more devices.
For a library of actions to be useful in practice, we think it
is necessary that CSX also supports importing (GO 7). This
would enable that the library of actions can be defined sepa-
rately and types and actions from the library can be imported
in specific device models.

Challenging Patterns. Although CSX offers various con-
structs that ease the modelling of printing systems, we en-
countered several patterns that remained difficult to model.
Two examples are the input trays and orientation of a stack.

Modelling the input trays in the coverage study was con-
sidered challenging by the study participants (GO 11). In
Figure 13, the code for modelling input trays is duplicate for
trays a and b. Although this part could be factored out in an
action to become reusable, it still would require redundant
modelling for cases with more than two trays.

In the coverage study, the device was limited to rotating
the stacks by 0 or 90 degrees. When the set of possible ori-
entations would be increased, the number of orientations
cases that need to be handled such as in Figure 13 (lines
48-53) grows. Partially, this manual handling of orientations
could be resolved by supporting sizes (DOMAIN-COVERAGE
10) and object constructors (see Figure 17). However, when

23

the orientations with flips are allowed, this still not suffices.
When a stack is flipped, the order of the sheets also becomes
reversed.

To improve support for these patterns, CSX could be ex-
tended by adding domain-specific constructs or generic ex-
pressive power. CSX could be extended with additional ab-
straction mechanisms that support modelling common pat-
terns such as input trays or stack orientation. Alternatively,
CSX could be extended with generic abstraction mechanisms
that facilitate reuse of code.

5.2 Constraint-Based Programming

Paradigm Shift. Although CSX is on a high level of ab-
straction, it still is a constraint-based language. Constraint-
based programming is typically not in the skillset of an av-
erage control software engineer. Our domain expert, who is
an experienced object-oriented and functional programmer,
but who had no experience with constraint-based program-
ming before we started working on CSX, experienced a steep
learning curve when starting with constraint programming
in either CSX or MiniZinc.

The domain expert reports that seemingly simple aspects
require unintuitive modelling in CSX. An example of this is
the modelling of the tray assignment in the case of the cover-
age study. Possibly, CSX could be extended with constructs
that abstract over unintuitive but common modelling pat-
terns. Still, CSX would remain a constraint-based language,
which involves a paradigm not familiar to programmers
working with object-oriented or functional programming
languages, and we consider this as a critical risk for its ap-
plicability in practice.

Another characteristic of constraint-based programming
in CSX is that also properties that do not change between
locations have to be defined as equal in both locations. This
is counterintuitive for a programmer used to functional pro-
gramming, as you do not need to specify things that do not
change in functional programming. In constraint-based pro-
gramming, we could see the need for specification of things
that do not change as modelling overhead. Possibly, CSX
could be extended with constructs that easy the modelling
of non-changing properties.

The domain expert reports that interactive tests and the
possibility to easily inspect configurations for debugging
helps in overcoming unintuitive modelling tasks. In the case
of an unexpectedly failing test, the user can easily inspect
the found configuration under which the test fails. Also, if
the test contains multiple assertions, the IDE indicates which
of the assertions fails for the found configuration.

Level of Detail and Solving Performance. In theory, one
could go as far as modelling a sheet of paper as a set of atoms.
In practice, that would not be feasible with respect to solving
performance, and it also does not have practical utility. In our
work, the question remains what the actual needed level of

detail in a model needs to be. In general, modelling with CSX
involves a tradeoff between including more detail on the one
hand and improving performance on the other hand. Based
on our current experiences, we cannot yet conclude if CSX
would have performance that is good enough for integration
in Uls for all printing devices.

Currently, we have only evaluated CSX with two common
solvers using the default settings and default search strategy.
Possibly, specific settings or search strategies can improve
solving performance for MiniZinc models that correspond to
CSX models. Also, our performance evaluation shows that for
the reported cases, the translation time was higher than the
solving time. Since we have not performed any performance
engineering at all on the transformation implementations,
possibly the translation times can be improved as well.

Although in our evaluation we have focussed on perfor-
mance for interactive usage scenarios which have a strong
demand on performance, longer solving times could be per-
mitted in other scenarios. For example, once it is confirmed
that an operator’s intent can be realized, it would be accept-
able to wait longer for finding an optimal configuration for
the intent that, e.g., minimizes paper waste. In particular, a
longer waiting time is acceptable for large volume jobs, e.g.,
printing hundreds of books. In general, there is a balance
between solving time and job volume and execution time;
the larger the job, the more solving time can be permitted
up front.

It could occur that for a realistic model the solving per-
formance is not sufficient for usage in interactive scenarios.
In such cases, the model would possibly still be useful for
validation of devices, as orders of magnitude slower perfor-
mance are still acceptable if it can be used to derive edge
cases in the configuration space for physical validation of
the device. Alternatively, the level of detail in the model
could be reduced such that it can be used for coarse-grained
configuration space exploration.

CSX 2.0 currently only supports integers for modelling
dimensions, not floating point or real numbers. Although
MiniZinc does support solvers that support floating point
numbers, early experiments indicated that performance quick-
ly drops when using them. Therefore, we have not further
explored the use of floating point numbers for modelling in
CSX.

Currently, we have used SMT constraint solvers for all
our experiments. For many devices, general solvers were
necessary because the configuration spaces correspond to
problem spaces that include a mix of linear, satisfiability, and
logical constraints. In practice, we could encounter printing
devices for which the configuration space corresponds to
a more restricted set of problems, e.g., linear problems. In
such cases, we could employ more specific solvers, e.g., linear
solvers, to improve solving performance for these specific
devices.

Denkers et al.

Browsing Configurations. CSX is currently limited to
presenting a single configuration, although multiple config-
urations could be possible for a scenario. Potentially, it could
be useful to visualize the space of configurations that are
found such that an operator can get insight in what flexibility
in configuration remains for a scenario.

Although CSX does support optimizing for a given objec-
tive, in practice an operator might be interested in choos-
ing between multiple objectives. Possibly, existing multi-
objective optimization approaches could be ported to CSX
and a user interface to assist operators in choosing between
multiple objectives, e.g., to answer questions such as “If I can
afford to waste some more paper, how much productivity
gain does that offer me?”.

Traceability. The current version of CSX only reports a
single configuration for a requested (partial) configuration
or job specification, or it reports that no configuration is
possible for a job. If no configuration can be found, there is
no further indication of why no configuration can be found.
In practice, this would hinder the usability of the system
for operators. Possibly, existing approaches for identifying
minimal unsatisfiable sets [13] could help in tackling this.
Then, characterizations of minimal unsatisfiable sets should
be mapped from the constraint level back to the CSX level
to make them understandable for operators.

5.3 Application in Practice

We discuss aspects related to CSX’s applicability in practice
at Canon Production Printing.

Integration with Control Software and UI CSX cur-
rently solves the problem of modelling devices and realizing
automated configuration space exploration, but requires re-
alization of more of the components in the architecture of
Figure 6 for application in practice. Realizing these compo-
nents requires a substantial investment, but the potential
software engineering productivity gains and added func-
tionalities can compensate that investment. The two most
important components that currently are missing are the
integration with a user interface and code generation for
instructing low-level embedded software.

Although we have realized configuration space explo-
ration for realistic cases and useful scenarios, still, the sce-
narios need to be described in a rather low level format (in
CSX itself). For CSX to be applicable in devices, there should
be an integration with a user interface targeted at end users
(print system operators). Such an interface is typically visual
in which the user can specify a partial configuration and get
feedback on it, rather then describing it in text in an IDE. To
use CSX for finding validation scenarios, the existing IDE
can already be used by control software engineers.

The aim of CSX is to realize configuration space explo-
ration that is automatic and to have an effective and scalable
method for integrating a large range of finishing devices. The

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

integration of a device comprises more than just the mod-
elling of the configuration space. Infrastructure is needed
to — for a given configuration — instruct low-level embed-
ded software components to operate under a configuration.
The pre-CSX software already tackles this concern and thus
CSX can become a layer on top of pre-CSX, generating the
low-level control software components.

If CSX would be integrated in production control software,
this adds dependencies on external software components.
Spoofax would not be required to include in the control soft-
ware, as Spoofax can generate language artifacts for com-
piling CSX models and integrate those with solvers, and
only those artifacts need to be added. A solver does need
to be integrated in the control software, as it is required for
configuration space exploration.

Learning Curve. To successfully apply CSX at Canon
Production Printing, the company would need to train de-
velopers to work with CSX. In particular, control software
engineers need to be introduced to constraint-based pro-
gramming and then to CSX in particular.

Language Engineering. Using a DSL to develop software
in a company introduces a dependency on language engi-
neering. In our work, the use of a language workbench has
done much of the “heavy lifting”; Spoofax provided and au-
tomated a large part of the language infrastructure for free,
by generating parsers, compilers, and an IDE from language
specifications.

Still, experience with language engineering — and in our
case with Spoofax in particular — is required to understand,
maintain, or evolve the language implementation. Since there
are few programmers with such experience available, and
because there is a significant learning curve in language
engineering, there is a risk of using a DSL without having
the resources to maintain the language. However, although
the introduction of language engineering in control software
development adds external dependencies and new skills to
be learned, it has the potential to outweigh those drawbacks
with the productivity gains and complexity reductions that
the approach realizes.

Besides the dependency on language engineering as a
skill, our implementation of CSX in Spoofax also imposes a
dependency on the Spoofax tool. Although we found that
Spoofax was effective for the implementation of CSX, we
think other state of the art language workbenches [6, 8, 12]
could be used as well. If another tool for language develop-
ment becomes preferred, the CSX language implementation
could be ported. CSX has textual syntax, which eases the
migration to another tool as the grammar can be ported,
and existing CSX models can be maintained. With visual
syntax or projectional editing this migration could be less
straightforward.

The CSX implementation uses MiniZinc as the target lan-
guage for expressing constraint models and interfacing with

25

constraint solvers. Because MiniZinc is a solver-independent
language and supports multiple solvers, there is no depen-
dency on one solver in particular. Although we found MiniZ-
inc an effective target language for generating constraint
models, we think that CSX could also be realized with al-
ternative languages for expressing constraint models and
interfacing with solvers.

Domain Specificity. Although we have designed CSX
specifically for the printing domain, the language only has a
few features that are specific to printing. We could see CSX as
consisting of three layers in which the bottom layer contains
standard constraint programming and only the top layer
makes it specific to printing. For example, in the top layer,
CSX supports a restricted set of eight orientations which are
specific to printing and sheets. In the middle layer, CSX’s
device, action, and location concepts make the language
potentially applicable to a broader field of flexible manu-
facturing systems, i.e., manufacturing systems that have no
predefined set of possible products to manufacture. We can
characterize such systems as follows. First, the manufactur-
ing systems do not just assemble input materials, but can also
modify the materials. Second, the modifications are not fixed
but are configurable and thus span a configuration space.
Especially if it is challenging to find valid or optimal config-
urations, then CSX could be useful. Because CSX allows to
define types in the language for modelling materials, it could
cover manufacturing systems that handle other materials
than paper.

5.4 Lessons Learned

We list our most important lessons learned on applying a
constraint-based DSL in an industrial context:

1. The Spoofax language workbench and the MiniZinc
constraint modelling language (and compatible solvers)
took care of much of the “heavy lifting” in realizing
CSX. This enabled us to tackle complexity and improve
functionality in software engineering for a complex
domain by allowing us to mostly focus on the domain
and language design.

2. A systematic approach to DSL evaluation is useful for
communicating about a DSL in an industrial context.
Concrete evaluation criteria for the use of a DSL help
in the discussion to explain to people who have no ex-
perience with DSLs to understand what is required for
a DSL to be applied in practice. Finally, the evaluation
criteria guide decision making regarding adoption of
the technique.

3. Starting to use a DSL in practice has a big impact on
the software engineering process with dependencies
on external tooling and having language engineering
resources available for both language development
and language maintenance. Therefore, the benefits

of adopting a DSL need to be large to outweigh the
corresponding investment.

4. The conceptual power of CSX is amplified by its IDE.
The CSX IDE gives helpful insight in the behavior
of models by featuring interactive validation of tests
and debugging through inspection of configurations.
This helped us to rapidly prototype and try out new
language designs, leading to an iterative language de-
velopment process.

5. It is a crucial language design decision to have types
being defined in a language itself — instead of embed-
ding a fixed set of domain objects in the language —
which enables flexibility in modelling by iteratively
including more detail in models.

6. A high level of abstraction and domain-specific con-
structs such as in CSX are necessary to make constraint-
based modelling accessible. Still, switching to the con-
straint-based programming paradigm can be challeng-
ing for developers that have no experience with con-
straint programming or with declarative programming
at all.

5.5 Threats to Validity

The nature of our study raises threats to validity, which we
discuss below.

External Validity. We have presented an experience re-
port that focusses on a particular industrial context, and
therefore we do not claim that our findings are generalisable.
Still, we think the outcomes of our work can be useful to
others working in an industrial context where a domain-
specific interface to constraint solving is useful. Ultimately,
we need to further apply CSX on a wider range of printing
systems and with more engineers and domain experts to get
a better understanding of the effectiveness and scalability of
the method.

We have described the protocol of our coverage study to
promote replicability. CSX 2.0’s source, tests and benchmarks
cannot be published due to confidentiality reasons, hindering
reproducibility of tests and the benchmark results. In order to
reproduce the results, others would need to manually create
a CSX implementation and set up similar studies.

Internal Validity. Two authors were also the partici-
pants in the coverage study, which raises a concern with
regard to confirmation bias, or the tendency to search for evi-
dence supporting prior beliefs. We have tried to mitigate the
risk of confirmation bias, by openly communicating about
each step of the evaluation, and about each observation made,
with the other authors of the paper.

Construct Validity. The accuracy of the configuration
space exploration that we have studied in this paper is de-
pendent on the CSX language, IDE implementation, and the

26

Denkers et al.

CSX models. We have countered this threat to construct va-
lidity by testing the CSX implementation and by writing
tests for the CSX models that we have written. The accuracy
study relies on the tests itself, which could test for incor-
rect expectations. We have countered this threat by carefully
determining the expectations for all tests manually.

The measurements of benchmarks could be influenced by
many factors. We have countered this threat to construct
validity by running the benchmarks on a computer which
has most other applications disabled and is disconnected
from network access. The benchmark’s first 10 runs were
considered as warmup iterations. We considered the subse-
quent 10 iterations for measurement. We report the average
of these 10 measurements.

6 Related Work

We describe related work in which high-level modelling lan-
guages interface with constraint solvers in the backend. We
focus on more general constraint solving approaches as our
objective made us select SMT constraint solvers for CSX and
because our practical experience showed that applying CSX
involves models with various types of constraints (linear,
logical, satisfiability). Whereas other work focusses on eval-
uating the tools used to create DSLs [12, 20], we focus on
evaluating the DSL itself.

The work of Keshishzadeh et al. applies constraint solving
in the backend of a DSL for the domain of medical imaging
equipment [11]. In particular, they use constraint solving to
validate domain-specific properties for realizing collision pre-
vention in the equipment. If such properties are violated, the
causes of violations can be traced through delta debugging
and reported back on the model-level.

KernelF by Voelter et al. is a reusable functional language
for the modular development of DSLs [19]. KernelF features
advanced error checking and verification based on constraint
solving with the Z3 solver. In a case study on payroll calcu-
lations [21], these techniques are applied to statically check
completeness and overlap of domain-specific switch-like ex-
pressions. These forms of static analysis are similar to the
interactive analysis of CSX.

Although in this paper we have focussed on CSX as a
method to realize automatic configuration space exporation,
the language also has the potential to cope with the large va-
riety of finishers. The use of constraint solving is common in
product line engineering, and, e.g., also used in feature mod-
els of printing systems [15], but constraint solving in that
context has a different utility than in CSX. Feature models
can be used to model systems as compatible compositions
of features or components, and constraint solving can be
used to find or check feature compositions. CSX, in contrast,
is used to find configurations at run time for a particular
device.

Taming Complexity of Industrial Printing Systems Using a Constraint-Based DSL '

De Roo et al. [4] present an architectural framework for
realizing multi-objective optimization for embedded control
software. Additionally, they introduce a toolchain that con-
sists of visual editors, analysis tools, code generators, and
weavers. The approach is based on domain-specific models
from which optimization code is generated automatically.
Both CSX and their work use constraint models for realiz-
ing control software and support solving for optimization
objectives. The authors evaluate their work in the context
of the industrial printing domain as well. Roo’s DSL is tar-
geted at a different sub-domain of printing software, namely
embedded online control. Our domain represents the con-
figuration spaces of a product family of hardware devices,
and the configuration control software that can be derived
from it. Our work on CSX is different in the sense that it
is used before the execution of print jobs (offline) to derive
configurations, whereas de Roo et al. focus on optimization
in embedded control software that runs during the execu-
tion of print jobs (online), imposing different requirements.
Finally, the aim of CSX is to involve domain experts such as
mechanical engineers in the modelling process.

Constraint solving is also used in model checking and re-
lational model finders. For example, Alloy [9] is a high-level
specification language that features finite model finding to
check formal specifications. Alloy uses KodKod [18], which
is a relational model finder on problems expressed in first
order logic, relational algebra, and transitive closures. Kod-
Kod differs from CSX in several ways. In KodKod the nature
of models is relational, where CSX considers fixed manu-
facturing paths and models the objects and parameters in
such paths. KodKod does not support reasoning over data or
optimization, where CSX does support optimization.

Stoel et al. extend relational modeling finding with first-
class data attributes and optimization in AlleAlle [16]. Simi-
lar to CSX, AlleAlle includes data into problem models and
uses SMT constraint solving for modeling finding. CSX and
AlleAlle differ in the sense that AlleAlle is an intermediate
language that targets relational problems, while CSX is a DSL
specific to the printing domain and without first-class sup-
port for relations. AlleAlle and CSX both lack an approach
for mapping reasons for unsatisfiability that are found on
the constraint level back to the model level.

Muli [3] integrates constraint solving with the object ori-
ented programming paradigm by extending the Java pro-
gramming language. Muli adds support for symbolic values
to Java, which translate to constraint variables in the runtime.
Muli features a runtime that integrates constraint solvers in
a Java virtual machine. In contrast to CSX, Muli is a general
purpose programming language, and it does not support lists
or optimization.

Although our work on CSX contains parts that are similar
to other high-level modelling approaches with constraint
solving backends, the distinctiveness of our work is that we
extensively worked out a full stack implementation for a

27

specific domain and evaluated it thoroughly in an industrial
context.

7 Conclusions

We have presented CSX 2.0, an extension of the CSX lan-
guage and environment for the development of control soft-
ware for digital printing systems. We extended the language’s
coverage by adding support for lists and high-level support
for geometrical constructs. To bring the constraint-based
language closer to the functional programming paradigm,
we added functional-style operators that get translated auto-
matically into predicate-style counterparts. If this translation
requires intermediate variables, those variables are automat-
ically added.

We have qualitatively evaluated CSX by having the devel-
oper of CSX and a domain expert model a realistic device in
think aloud co-design sessions. We find that CSX is suitable
for covering a large part of the printing systems domain,
although coverage for some parts can still be improved. A
major hurdle for adoption of CSX is its declarative paradigm;
it is hard — even for experienced developers — to switch from
more traditional programming paradigms to the declarative
programming style. Quantitative evaluation using bencharks
confirms that CSX has reasonable runtime performance for
realistic scenarios.

7.1 Future work.

We plan to apply CSX on a wider range of devices to further
evaluate its effectiveness and scalability. To improve solv-
ing performance, we intend to assist solvers in their search
by providing domain-specific information. Ultimately, we
envision CSX as a language that could also be used by do-
main experts such as mechanical engineers, in which, e.g.,
usability of the language and maintainability of the models
would be of vital importance; we consider evaluation of such
dimensions as future work.

Acknowledgments

This research was partially supported by a grant from the
Top Consortia for Knowledge and Innovation (TKIs) of the
Dutch Ministry of Economic Affairs and by Canon Produc-
tion Printing. This work is related to the European patent
application EP3855304 A1 which is published on 28 July 2021.

This study was started under the guidance of Eelco Visser,
who passed away on April 5th, 2022. The authors decided to
posthumously acknowledge his contributions to this work
by making him co-author.

References

[1] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. 2021. Satisfiability Modulo Theories. In Handbook of Satisfiabil-
ity - Second Edition, Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh (Eds.). Frontiers in Artificial Intelligence and Applications,
Vol. 336. IOS Press, 1267-1329. https://doi.org/10.3233/FAIA201017

https://doi.org/10.3233/FAIA201017

(2]

(3]

(5]

—_
(=)
—

(11]

(13]

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. 2008. Stratego/XT 0.17. A language and toolset for program
transformation. Science of Computer Programming 72, 1-2 (2008), 52-70.
https://doi.org/10.1016/j.scic0.2007.11.003

Jan C. Dageforde and Herbert Kuchen. 2019. A compiler and virtual
machine for constraint-logic object-oriented programming with Muli.
Journal of Computer Languages 53 (2019), 63-78. https://doi.org/10.
1016/j.cola.2019.05.001

Arjan de Roo, Hasan S6zer, Lodewijk Bergmans, and Mehmet Aksit.
2013. MOO: An architectural framework for runtime optimization
of multiple system objectives in embedded control software. Journal
of Systems and Software 86, 10 (2013), 2502-2519. https://doi.org/10.
1016/j.j55.2013.04.002

Jasper Denkers, Marvin Brunner, Louis van Gool, and Eelco Visser.
2021. Configuration Space Exploration for Digital Printing Systems. In
Software Engineering and Formal Methods - 19th International Confer-
ence, SEFM 2021, Virtual Event, December 6-10, 2021, Proceedings (Lecture
Notes in Computer Science, Vol. 13085), Radu Calinescu and Corina S.
Pasareanu (Eds.). Springer, 423-442. https://doi.org/10.1007/978-3-
030-92124-8_24

Sebastian Erdweg, Tijs van der Storm, Markus Vo6lter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriél Konat, Pedro J. Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. 2015. Evaluating and comparing lan-
guage workbenches: Existing results and benchmarks for the fu-
ture. Computer Languages, Systems & Structures 44 (2015), 24-47.
https://doi.org/10.1016/j.cl.2015.08.007

Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol
analysis: Verbal reports as data, Rev. (1993).

Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages?

Daniel Jackson. 2002. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering Methodology 11, 2 (2002),
256-290. https://doi.org/10.1145/505145.505149

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language
workbench: rules for declarative specification of languages and IDEs.
In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, William R. Cook, Siobhan Clarke, and Martin C. Rinard (Eds.).
ACM, Reno/Tahoe, Nevada, 444-463. https://doi.org/10.1145/1869459.
1869497

Sarmen Keshishzadeh, Arjan J. Mooij, and Mohammad Reza Mousavi.
2013. Early Fault Detection in DSLs Using SMT Solving and Automated
Debugging. In Software Engineering and Formal Methods - 11th Inter-
national Conference, SEFM 2013, Madrid, Spain, September 25-27, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8137), Robert M.
Hierons, Mercedes G. Merayo, and Mario Bravetti (Eds.). Springer,
182-196. https://doi.org/10.1007/978-3-642-40561-7_13

Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2010. On the impact
of DSL tools on the maintainability of language implementations. In
Proceedings of the of the Tenth Workshop on Language Descriptions,
Tools and Applications, LDTA 2010, Paphos, Cyprus, March 28-29, 2010 -
satellite event of ETAPS, Claus Brabrand and Pierre-Etienne Moreau
(Eds.). ACM, 10. https://doi.org/10.1145/1868281.1868291

Kevin Leo and Guido Tack. 2017. Debugging Unsatisfiable Constraint
Models. In Integration of Al and OR Techniques in Constraint Program-
ming - 14th International Conference, CPAIOR 2017, Padua, Italy, June
5-8, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10335),
Domenico Salvagnin and Michele Lombardi 0001 (Eds.). Springer, 77—
93. https://doi.org/10.1007/978-3-319-59776-8_7

28

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Denkers et al.

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. 2007. MiniZinc: Towards a Stan-
dard CP Modelling Language. In Principles and Practice of Constraint
Programming - CP 2007, 13th International Conference, CP 2007, Prov-
idence, RI, USA, September 23-27, 2007, Proceedings (Lecture Notes in
Computer Science, Vol. 4741), Christian Bessiére (Ed.). Springer, 529-543.
https://doi.org/10.1007/978-3-540-74970-7_38

Eugen Schindler, Hristina Moneva, Joost van Pinxten, Louis van Gool,
Bart van der Meulen, Niko Stotz, and Bart Theelen. 2021. Jetbrains
mps as core dsl technology for developing professional digital printers.
In Domain-Specific Languages in Practice. Springer, 53-91.

Jouke Stoel, Tijs van der Storm, and Jurgen J. Vinju. 2019. AlleAlle:
bounded relational model finding with unbounded data. In Proceedings
of the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward!
2019, Athens, Greece, October 23-24, 2019, Hidehiko Masuhara and
Tomas Petricek 0001 (Eds.). ACM, 46-61. https://doi.org/10.1145/
3359591.3359726

Peter J. Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien
Fischer. 2014. The MiniZinc Challenge 2008-2013. AI Magazine 35, 2
(2014), 55-60.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model
Finder. In Tools and Algorithms for the Construction and Analysis of
Systems, 13th International Conference, TACAS 2007, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2007 Braga, Portugal, March 24 - April 1, 2007, Proceedi (Lecture Notes in
Computer Science, Vol. 4424), Orna Grumberg and Michael Huth (Eds.).
Springer, 632-647. https://doi.org/10.1007/978-3-540-71209-1_49
Markus Voelter. 2018. The Design, Evolution, and Use of KernelF -
An Extensible and Embeddable Functional Language. In Theory and
Practice of Model Transformation - 11th International Conference, ICMT
2018, Held as Part of STAF 2018, Toulouse, France, June 25-26, 2018,
Proceedings (Lecture Notes in Computer Science, Vol. 10888), Arend
Rensink and Jesus Sanchez Cuadrado (Eds.). Springer, 3-55. https:
//doi.org/10.1007/978-3-319-93317-7_1

Markus Voelter, Bernd Kolb, Taméas Szabd, Daniel Ratiu, and Arie van
Deursen. 2019. Lessons learned from developing mbeddr: a case study
in language engineering with MPS. Software and Systems Modeling 18,
1(2019), 585-630. https://doi.org/10.1007/s10270-016-0575-4
Markus Voelter, Sergej Koscejev, Marcel Riedel, Anna Deitsch, and
Andreas Hinkelmann. 2021. A Domain-Specific Language for Payroll
Calculations: An Experience Report from DATEV. In Domain-Specific
Languages in Practice: with JetBrains MPS, Antonio Bucchiarone, An-
tonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio (Eds.).
Springer, 93-130. https://doi.org/10.1007/978-3-030-73758-0_4

https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1016/j.jss.2013.04.002
https://doi.org/10.1016/j.jss.2013.04.002
https://doi.org/10.1007/978-3-030-92124-8_24
https://doi.org/10.1007/978-3-030-92124-8_24
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-642-40561-7_13
https://doi.org/10.1145/1868281.1868291
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1007/s10270-016-0575-4
https://doi.org/10.1007/978-3-030-73758-0_4

	Abstract
	1 Introduction
	2 Industrial Printing and Finishing Systems
	2.1 Printing and Finishing
	2.2 Requirements
	2.3 CSX: Configuration Space eXploration
	2.4 Coverage Gaps

	3 Increasing Domain Coverage
	3.1 Non-Uniform Stacks of Sheets
	3.2 Geometrical Constructs
	3.3 Functional-Style Operators

	4 Industrial Evaluation
	4.1 Domain Coverage
	4.2 Configuration Accuracy
	4.3 Configuration Performance
	4.4 Relevance

	5 Discussion
	5.1 Language Design
	5.2 Constraint-Based Programming
	5.3 Application in Practice
	5.4 Lessons Learned
	5.5 Threats to Validity

	6 Related Work
	7 Conclusions
	7.1 Future work.

	Acknowledgments
	References

