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Abstract Search-based techniques have been widely used for white-box test gen-
eration. Many of these approaches rely on the approach level and branch distance
heuristics to guide the search process and generate test cases with high line and
branch coverage. Despite the positive results achieved by these two heuristics, they
only use the information related to the coverage of explicit branches (e.g., indi-
cated by conditional and loop statements), but ignore potential implicit branchings
within basic blocks of code. If such implicit branching happens at runtime (e.g., if
an exception is thrown in a branchless-method), the existing fitness functions can-
not guide the search process. To address this issue, we introduce a new secondary
objective, called Basic Block Coverage (BBC ), which takes into account the cover-
age level of relevant basic blocks in the control flow graph. We evaluated the impact
of BBC on search-based unit test generation (using the DynaMOSA algorithm)
and search-based crash reproduction (using the STDistance and WeightedSum fit-
ness functions). Our results show that for unit test generation, BBC improves the
branch coverage of the generated tests. Although small (∼1.5%), this improve-
ment in the branch coverage is systematic and leads to an increase of the output
domain coverage and implicit runtime exception coverage, and of the diversity
of runtime states. In terms of crash reproduction, in the combination of STDis-
tance and WeightedSum, BBC helps in reproducing 3 new crashes for each fitness
function. BBC significantly decreases the time required to reproduce 43.5% and
45.1% of the crashes using STDistance and WeightedSum, respectively. For these
crashes, BBC reduces the consumed time by 71.7% (for STDistance) and 68.7%
(for WeightedSum) on average.
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1 Introduction

Various search-based techniques have been introduced to automate different white-
box test generation activities (e.g., unit testing [20,22], integration testing [13], or
system-level testing [4]). Depending on the testing level, each of these approaches
utilizes dedicated fitness functions to guide the search process and produce a test
suite satisfying given criteria (e.g., line coverage, branch coverage, etc.).

Fitness functions typically rely on control flow graphs (CFGs) to represent the
source code of the software under test [35]. Each node in a CFG is a basic block of
code (i.e., maximal linear sequence of statements with a single entry and exit point
without any internal branch), and each edge represents a possible execution flow
between two blocks. Two well-known heuristics are usually combined to achieve
high line and branch coverage: the approach level and the branch distance [35].
The former measures the distance between the execution path of the generated
test and a target basic block (i.e., a basic block containing a statement to cover)
in the CFG. The latter measures, using a set of rules, the distance between an
execution and the coverage of a true or false branch of a particular predicate in a
branching basic block of the CFG.

Both approach level and branch distance assume that only a limited number of
basic blocks (i.e., control dependent basic blocks [1]) can change the execution path
away from a target statement (e.g., if a target basic block is the true branch of a
conditional statement). However, basic blocks are not atomic due to the presence of
implicit branches [8] (i.e., branches occurring due to the exceptional behavior
of instructions). As a consequence, any basic block between the entry point of
the CFG and the target basic block can impact the execution of the target basic
block. For instance, a generated test case may stop its execution in the middle of
a basic block with a runtime exception thrown by one of the statements of that
basic block. In these cases, the search process does not benefit from any further
guidance from the approach level and branch distance.

Fraser and Arcuri [24] introduced testability transformation for unit testing,
which instruments the code to guide the unit test generation search to cover im-
plicit exceptions happening in the class under test. However, this approach does
not guide the search process in scenarios where an implicit branch happens in an-
other class called by the class under test. This is due to the extra cost added to the
search process stemming from the calculation and monitoring of implicit branches
in all the classes coupled to the class under test. For instance, the class under test
may be heavily coupled with other classes in the project, thereby finding implicit
branches in all of these classes can be expensive.

In contrast, other test case generation scenarios, like crash reproduction,
aim to cover only a limited number of paths, and thereby we only need to analyse
a limited number of basic blocks [10, 38, 47, 52, 55]. Current crash reproduction
approaches rely on information about a reported crash (e.g., a stack trace, a core
dump, etc.) to generate a crash reproducing test case. Among these approaches,
search-based crash reproduction [47, 52] takes as input a stack trace to
guide the generation process. More specifically, the statements pointed to by the
stack trace act as target statements for the approach level and branch distance.
Hence, current search-based crash reproduction techniques suffer from a lack of
guidance in cases where the involved basic blocks contain implicit branches (which
is common when trying to reproduce a crash).
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In our prior work we have introduced a novel secondary objective called Basic
Block Coverage (BBC ) to address the guidance problem in crash reproduc-
tion [17]. The secondary objective guides the search process to differentiate two
generated tests with the same fitness values (here, same approach level and branch
distance). This paper extends our prior work on BBC to the more general unit
test case generation context. BBC helps the search process to compare two gen-
erated test cases with the same distance (according to approach level and branch
distance) to determine which one is closer to the target statement. In this com-
parison, BBC analyzes the coverage level, achieved by each of these test cases, of
the basic blocks in between the closest covered control dependent basic block and
the target statement.

To assess the impact of BBC on search-based unit test generation, we imple-
mented BBC in EvoSuite [20], the state-of-the-art tool for search-based unit test
generation, and evaluate its performance against the classical DynaMOSA [43]
for various activation probabilities of BBC (11 configurations in total). We ap-
plied these eleven configurations to 219 classes under test selected from the last
version of Defects4J v.2.0.0 [29], a collection of existing faults. We compare the
performance in terms of effectiveness for branch coverage, weak mutation score,
output coverage, and real fault detection capabilities.

Our results show that BBC improves the branch coverage of the generated
tests when activating BBC as a secondary objective in DynaMOSA. Utilizing
this secondary objective improves the average branch coverage achieved by Dyna-
MOSA (74.5% average branch coverage with standard deviation 28%) to 76.1%
with standard deviation 27.5%. Despite the slight improvement in the average
branch coverage, this increase in branch coverage is systematic, as indicated by
the static analysis performed in this study: for 59 target classes, BBC improves
the branch coverage achieved by DynaMOSA significantly (p−value < 0.01) with
a large effect size. This improvement in the branch coverage leads to an increase of
coverages and scores achieved by tests generated by the unit test generation pro-
cess in terms of output domain (i.e., the number of pre-defined partitions of the
output values domain) coverage, implicit runtime exception coverage, and the di-
versity of runtime states (denoted by the weak mutation score). BBC increases the
average output domain coverage of the generated tests from 54.2% (with standard
deviation 26.6%) up to 55.5% (with standard deviation 26.2%). The improvement
achieved by this secondary objective is statistically significant and has a large ef-
fect size in 57 classes under test. Moreover, BBC improves the average implicit
runtime exception coverage when using DynaMOSA from 75.1% (with standard
deviation 22.8%) up to 80.3% (with standard deviation 21%). Besides, this sec-
ondary objective significantly improves the implicit runtime exception coverage
with large effect size in 67 classes. Also, BBC improves the weak mutation score
achieved by the tests generated by DynaMOSA from 73.2% (with standard de-
viation 30.1%) up to 74.6% (with standard deviation 29.6%). Finally, our static
analysis shows that activating BBC also significantly improves with a large effect
the fault detection rate for 3 real faults out of 92.

Similarly, to assess the impact of BBC on search-based crash reproduction, we
re-implemented the existing STDistance [47] and WeightedSum [52] fitness func-
tions and empirically compared their performance with and without using BBC
(4 configurations in total). We applied these four crash reproduction configura-
tions to 124 hard-to-reproduce crashes introduced in JCrashPack [50], a crash
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benchmark used by previous crash reproduction studies [16]. We compare the per-
formance in terms of effectiveness in crash reproduction ratio (i.e., percentage of
times that an approach can reproduce a crash) and efficiency (i.e., time required
by for reproducing a crash).

Our results show that BBC significantly improves the crash reproduction ra-
tio over the 30 runs in our experiment for respectively 10 and 4 crashes when
compared to use STDistance and WeightedSum without any secondary objec-
tive. Also, BBC helps these two fitness functions to reproduce 3 (for STDistance)
and 3 (for WeightedSum) crashes that could not be reproduced without the sec-
ondary objective. Besides, on average, BBC increases the crash reproduction ratio
of STDistance and WeightedSum from 70.5% (with standard deviation 38.1%)
to 79.7% (with standard deviation 37.3%) and from 74.8% (with standard devi-
ation 38.1%) to 78.1% (with standard deviation 36.1%), respectively. Applying
BBC also significantly reduces the time consumed for crash reproduction guided
by STDistance and WeightedSum in 56 (45.1% of cases) and 54 (43.5% of cases)
crashes, respectively. In cases where BBC has a significant impact on efficiency, this
secondary objective improves the average efficiency of STDistance and Weighted-
Sum by 71.7% (with standard deviation 36%) and 68.7% (with standard deviation
28.9%), respectively.

The remainder of this paper is organized as follow: Section 2 reports the back-
ground on CFG-based guidance. Section 3 describes our novel BBC secondary
objective and how it can be used for search-based crash reproduction and search-
based unit test generation. Section 4 describes our evaluation to assess the impor-
tance of implicit branches (RQ 0) and the impact of BBC on search-based unit
test generation (RQ 1) and search-based crash reproduction (RQ 2). Section 5
presents our results on 219 classes under test selected from the last version of De-
fects4J and 124 hard-to-reproduce crashes from JCrashPack. Sections 6 and 7
discuss our results and their implications for search-based test case generation,
Section 8 discusses related work, and Section 9 concludes the paper.

2 Background

2.1 Coverage distance heuristics

Many structural-based search-based test generation approaches mix the branch
distance and approach level heuristics to achieve a high line and branch cover-
age [35]. These heuristics measure the distance between a test execution path and
a specific statement or a specific branch in the software under test. For that, they
rely on the coverage information of control dependent basic blocks, i.e., basic blocks
that have at least one outgoing edge leading the execution path toward the tar-
get basic block (containing the targeted statement) and at least another outgoing
edge leading the execution path away from the target basic block. As an exam-
ple, Listing 1 shows the source code of the method fromMap from XWIKI1, and
Figure 1 contains the corresponding CFG. In this graph, the basic block 409 is
control dependent on the basic block 407-408 because the execution of line 409
is dependent on the condition at line 408 (i.e., line 409 will be executed only if
elements of array formvalues are String).

1 https://github.com/xwiki
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Listing 1 Method fromMap from XWIKI version 8.1 [50]

402 public BaseCollection fromMap(Map <[...] > map , BaseCollection object){
403 for (PropertyClass property : (Collection <[...] >) getFieldList ()) {
404 String name = property.getName ();
405 Object formvalues = map.get(name);
406 if (formvalues != null) {
407 BaseProperty objprop;
408 if (formvalues instanceof String []) {
409 [...]
410 } else if (formvalues instanceof String) {
411 objprop = property.fromString(formvalues.toString ());
412 } else {
413 objprop = property.fromValue(formvalues);
414 }
415 [...]
416 }
417 }
418 return object;
419 }

Entry

403

418 404-406

407-408

409
410

411 413

415

Exit

Fig. 1 CFG for method fromMap

The approach level is the number of uncovered control dependent basic blocks
for the target basic block between the closest covered control dependent basic block
and the target basic block. The branch distance is calculated from the predicate
of the closest covered control dependent basic block, based on a set of predefined
rules. Assuming that the test t covers only line 403 and 418, and our target line is
409, the approach level is 2 because two control dependent basic blocks (404-406
and 407-408) are not covered by t. The branch distance for the predicate in line
403 (the closest covered control dependency of node 409) is measured based on
the rules from the establised technique [35].

To the best of our knowledge, there is no related work studying the extra
heuristics helping the combination of approach level and branch distance to im-
prove the coverage. Most related to our work, Panichella et al. [43] and Rojas
et al. [46] introduced two heuristics called infection distance and propagation dis-
tance, to improve the weak mutation score of two generated test cases. However,
these heuristics do not help the search process to improve the general statement
coverage (i.e., they are effective only after covering a mutated statement).
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In this paper, we introduce a new secondary objective to improve the statement
coverage achieved by fitness functions based on the approach level and branch
distance, and analyze the impact of this secondary objective on search-based
unit test generation and search-based crash reproduction.

Listing 2 XWIKI-13377 crash stack trace [50]

0 java.lang.ClassCastException: [...]
1 at [...]. BaseStringProperty.setValue(BaseStringProperty.java :45)
2 at [...]. PropertyClass.fromValue(PropertyClass.java :615)
3 at [...]. BaseClass.fromMap(BaseClass.java :413)
4 [...]

2.2 Search-based unit test generation

Search-based software test generation (SBST) algorithms use meta-heuristic op-
timization search techniques (e.g., genetic algorithms) to automate the test gen-
eration tasks at different testing levels. One of these levels is unit testing, where
the search algorithm tries to generate tests satisfying various criteria (such as line
coverage and branch coverage) for a given class under test (CUT). SBST tech-
niques are widely used for unit test generation. Prior studies showed that the tests
generated by these techniques achieve a high code coverage [9, 42] and real-bug
detection [2], hence complementing the hand-written test cases.

Dynamic many-objective sorting algorithm (DynaMOSA). Panichella et al. have
recently introduced an evolutionary-based algorithm, called DynaMOSA, for unit
test generation [43]. Their study [42], independently confirmed by Campos et al. [9],
shows that DynaMOSA outperforms other unit test generation techniques in
terms of structural coverage and mutation coverage. This approach is currently
used as the default algorithm in EvoSuite, which is the state-of-the-art tool for
search-based unit test generation.

DynaMOSA relies on the hierarchy of dependencies between the coverage
targets (e.g., lines and branches) to perform a dynamic selection of the objectives
during the search process. For instance, by applying DynaMOSA to generate tests
for method fromMap (Listing 1), this algorithm, first, tries to cover targets that do
not have any dependencies. So, first, it tries to generate test cases to cover nodes
403 and 418. After covering node 403, it tries to cover the node 404-406, which
is control-dependent on the covered node. DynaMOSA continuously changes the
search objectives up to the point that all of the targets are covered.

Since DynaMOSA uses the approach level and branch distance heuristics to
guide the search process towards achieving the high line, branch, and weak mu-
tation coverage, BBC may help this technique to cover more targets. This study
performs an in-depth experiment and analysis to see whether BBC can improve
DynaMOSA.

2.3 Search-based Crash Reproduction

After a crash is reported, one of the essential steps of software debugging is to
write a crash reproducing test case to make the crash observable to the de-
veloper and help them in identifying the root cause of the failure [56]. Later, this
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crash reproducing test can be integrated into the existing test suite to prevent
future regressions. Despite the usefulness of a crash reproducing test, the process
of writing this test can be labor-intensive and time-taking [52]. Various techniques
have been introduced to automate the reproduction of a crash [10, 38, 47, 52, 55],
and search-based approaches (EvoCrash [52] and ReCore [47]) yielded the best
results [52].

EvoCrash. This approach utilizes a single-objective genetic algorithm to generate
a crash reproducing test from a given stack trace and a target frame (i.e., a frame
in the stack trace that its class will be used as the class under test). The crash
reproducing test generated by EvoCrash throws the same stack trace as the given
one up to the target frame. For example, by passing the stack trace in Listing 2
and target frame 3 to EvoCrash, it generates a test case reproducing the first
three frames of this stack trace (i.e., thrown stack trace is identical from line 0
to 3).

EvoCrash uses a fitness function, called WeightedSum, to evaluate the candi-
date test cases. WeightedSum is the sum scalarization of three components: (i) the
target line coverage (ds), which measures the distance between the execution
trace and the target line (i.e., the line number pointed to by the target frame)
using approach level and branch distance; (ii) the exception type coverage (de),
determining whether the type of the triggered exception is the same as the given
one; and (iii) the stack trace similarity (dtr), which indicates whether the stack
trace triggered by the generated test contains all frames (from the most in-depth
frame up to the target frame) in the given stack trace.

Definition 1 (WeightedSum [52]) For a given test case execution t, theWeight-
edSum (ws) is defined as follows:

ws(t) =


3× ds(t) + 2×max(de) +max(dtr) if line not reached
3×min(ds) + 2× de(t) +max(dtr) if line reached
3×min(ds) + 2×min(de) + dtr(t) if exception thrown

(1)

Where ds(t) ∈ [0, 1] indicates how far t is from reaching the target line and
is computed using the normalized approach level and branch distance: ds(t) =
∥approachLevels(t) + ∥branchDistances(t)∥∥ (∥ indicates the normalized value);
de(t) ∈ {0, 1} shows if the type of the exception thrown by t is the same as the
given stack trace (0) or not (1); dtr(t) ∈ [0, 1] measures the stack trace similarity
between the given stack trace and the one thrown by t. max(f) and min(f) denote
the maximum and minimum possible values for a function f , respectively.

In this fitness function, de(t) and dtr(t) are only considered in the satisfaction
of two constraints: (i) exception type coverage is relevant only when we reach the
target line and (ii) stack trace similarity is important only when we both reach
the target line and throw the same type of exception.

As an example, when applying EvoCrash on the stack trace from Listing 2
with the target frame 3, WeightedSum first checks if the test cases generated by
the search process reach the statement pointed to by the target frame (line 413
in class BaseClass in this case). Then, it checks if the generated test can throw
a ClassCastException or not. Finally, after fulfilling the first two constraints, it
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checks the similarity of frames in the stack trace thrown by the generated test case
against the given stack trace in Listing 2.

EvoCrash uses guided initialization, mutation and single-point crossover op-
erators to ensure that the target method (i.e., the method appeared in the target
frame) is always called by the different tests during the evolution process.

According to a recent study, EvoCrash outperforms other non-search-based
crash reproduction approaches in terms of effectiveness in crash reproduction and
efficiency [52]. This study also shows the helpfulness of tests generated by Evo-
Crash for developers during debugging.

In this paper, we assess the impact of BBC as the secondary objective in the
EvoCrash search process.

ReCore. This approach utilizes a genetic algorithm guided by a single fitness
function, which has been defined according to the core dump and the stack trace
produced by the system when the crash happened. To be more precise, this fitness
function is a sum scalarization of three sub-functions: (i) TestStackTraceDis-
tance, which guides the search process according to the given stack trace; (ii)
ExceptionPenalty, which indicates whether the same type of exception as the
given one is thrown or not (identical to ExceptionCoverage in EvoCrash); and
(iii) StackDumpDistance, which guides the search process by the given core
dump.

Definition 2 (TestStackTraceDistance [47]) For a given test case execution
t, the TestStackTraceDistance (STD) is defined as follows:

STD(R, t) = |R| − lcp− (1− StatementDistance(s)) (2)

Where |R| is the number of frames in the given stack trace, and lcp is the longest
common prefix frames between the given stack trace and the stack trace thrown
by t. Concretely, |R| − lcp is the number of frames not covered by t. More-
over, StatementDistance(s) is calculated using the sum of the approach level
and the normalized branch distance to reach the statement s, which is pointed
to by the first (the utmost) uncovered frame by t: StatementDistance(s) =
approachLevels(t) + ∥branchDistances(t)∥.

Since using runtime data (such as core dumps) can cause significant over-
head [10] and leads to privacy issues [38], the performance of ReCore in crash
reproduction was not compared with EvoCrash in prior studies [52], even though
two out of three fitness functions in ReCore use only the given stack trace to
guide the search process. Hence, this paper only considers TestStackTraceDistance
+ ExceptionPenalty (called STDistance hereafter).

As an example, when applying ReCore with STDistance on the stack trace
in Listing 2 with target frame 3, first, STDistance determines if the generated test
covers the statement at frame 3 (line 413 in class BaseClass). Then, it checks the
coverage of frame 2 (line 615 in class PropertyClass). After covering the first two
frames by the generated test case, it checks the coverage of the statement pointed
to by the deepest frame (line 45 in class BaseStringProperty). For measuring
the coverage of each of these statements, STDistance uses the approach level and
branch distance. After covering all of the frames, this fitness function checks if the
the generated test throws a ClassCastException in the deepest frame.
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In this study, we perform an empirical evaluation to assess the performance
of crash reproduction using STDistance with and without BBC as the secondary
objective in terms of effectiveness in crash reproduction and efficiency.

3 Basic Block Coverage

3.1 Motivating Example

During the search process, the fitness of a test case is evaluated using a fitness
function. These fitness functions are different according to the given test criteria.
However, one of the main components of these fitness functions is the coverage of
specific statements and branches. For instance, one of the main goals in unit test
generation is achieving a high structural coverage (e.g., line and branch coverage).
For this goal, the search process seeks to cover all of the statements and branches
in the given CUT. Similarly, the fitness functions used in search-based crash re-
production (either WeightedSum or STDistance) require the coverage of specific
statements pointed by the given stack trace.

The distance of the test case from the target statement is calculated using
the approach level and branch distance heuristics. As we have discussed in Sec-
tion 2.1, the approach level and branch distance cannot guide the search process
if the execution stops because of implicit branches in the middle of basic blocks
(e.g., a thrown NullPointerException during the execution of a basic block). As
a consequence, these fitness functions may return the same fitness value for two
tests, although the tests do not cover the same statements in the block of code
where the implicit branching happens.

For instance, assume that one of the objectives of a search process (either for
unit test generation or crash reproduction) is covering line 413 in method fromMap

(appeared in Listing 1). This search process generates two test cases T1 and T2

for achieving this objective in a population of solutions. However, T1 stops the
execution at line 404 due to a NullPointerException thrown in method getName,
and T2 throws a NullPointerException at line 405 because it passes a null value
input argument to map. Even though T2 covers more lines, the combination of
approach level and branch distance returns the same fitness value for both of
these test cases: approach level is 2 (nodes 407-408 and 410), and branch distance
cannot be helpful in this case as the last covered predicate does not change the
execution path away from covering the target line and also the execution stops
before covering the next predicate. This is because these two heuristics assume
that each basic block is atomic, and by covering line 404, it means that lines 405
and 406 are covered, as well.

3.2 Secondary Objective

The goal of the Basic Block Coverage (BBC ) secondary objective is to prioritize
the test cases with the same fitness value (i.e., same approach level and branch
distance) according to their coverage within the basic blocks between the clos-
est covered control dependency and the target statement. At each iteration of
the search algorithm, test cases with the same fitness value are compared with
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Listing 3 BBC secondary objective computation algorithm

1 input: test T1, test T2, String method , int line
2 output: int
3 begin
4 FCB1 ← fullyCoveredBlocks(T1,method ,line);
5 FCB2 ← fullyCoveredBlocks(T2,method ,line);
6 SCB1 ← semiCoveredBlocks(T1,method ,line);
7 SCB2 ← semiCoveredBlocks(T2,method ,line);
8

9 if SCB1 = SCB2 ∧ (FCB1 ⊆ FCB2 ∨ FCB2 ⊆ FCB1) :
10 closestBlock ← closestSemiCoveredBlocks(SCB1, method , line);
11 coveredLines1 ← getCoveredLines(T1,closestBlock);
12 coveredLines2 ← getCoveredLines(T2,closestBlock);
13 return size(coveredLines2) - size(coveredLines1);
14 else if (FCB1 ⊆ FCB2 ∧ SCB1 ∈ FCB2) ∨ (FCB2 ⊆ FCB1 ∧ SCB2 ∈ FCB1):
15 return size(FCB2) - size(FCB1)
16 else:
17 return 0;
18 end

each other using BBC . Listing 3 presents the pseudo-code of the BBC calcula-
tion. Inputs of this algorithm are two test cases T1 and T2, which both have the
same approach level and branch distance values (calculated either using crash re-
production or unit test generation fitness functions), as well as line number and
method name of the target statement. This algorithm compares the coverage of
basic blocks on the path between the last control dependent node executed by both
of the given tests and the basic block that contains the target statement (called
effective blocks hereafter). If T1 and T2 do not cover any control dependency of the
target block, BBC uses the entry point of the CFG of the given method instead
as the starting point of the effective blocks’ path. If BBC determines there is no
preference between these two test cases, it returns 0. Also, it returns a value < 0
if T1 has higher coverage compared to T2, and vice versa. A higher absolute value
of the returned integer indicates a bigger distance between the given test cases.

In the first step, BBC detects the effective blocks that are fully covered by each
given test case (i.e., the test covers all of the statements in the block) and saves
them in two sets called FCB1 and FCB2 (lines 4 and 5 in Listing 3). Then, for each
of the tests T1 and T2, it detects the closest semi-covered effective block (i.e., the
closest basic block to the target statement where the test covers the first line
but not the last line of the block) and stores them as SCB1 and SCB2, respectively
(lines 6 and 7). The semi-covered blocks indicate the presence of implicit branches.

BBC can prioritize given tests in two scenarios: Scenario 1, both tests get
stuck in the middle of the same basic block (i.e., they both have the same closest
semi-covered basic block), or, Scenario 2, one of the tests throws an exception in
an effective basic block while the other test fully covers this block.

Scenario 1. Line 9 in Listing 3 checks if the first scenario is true by determining
two conditions. First, BBC checks if both tests have the same semi-covered basic
block. Then, it examines if the fully covered basic blocks of one of the given tests
are equal or the subset of the other test. If the second condition is not fulfilled,
it means that each of these tests has one covered block that the other one does
not cover, and thereby they achieve their semi-covered basic block from different
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paths. In this case, BBC cannot find the better test as we do not know which path
can lead to covering the target statement. If these two conditions are fulfilled, BBC
checks if one of the tests has a higher line coverage in the identified SCB (lines 10
to 13). If this is the case, BBC will return the number of lines in this block
covered only by the winning test case. If the lines covered are the same for T1

and T2 (i.e., coveredLines1 and coveredLines2 have the same size), there is no
difference between these two test cases and BBC returns value 0 (line 13).

Scenario 2. Line 14 in Listing 3 checks if the effective blocks covered by one test
are a subset of the other one. This is true if all of the fully-covered blocks of one
test are a subset of fully covered blocks of the other one. Also, the semi-covered
block of this test must be among the fully-covered blocks of the test with more
coverage (i.e., winner test). In this case, BBC returns the number of blocks that
are only fully covered by the winner test case (line 15). If BBC determines T2

wins over T1, the returned value will be positive, and vice versa.
Finally, if each of the given tests has a unique covered block in the given method

(i.e., the tests cover different paths in the method), BBC cannot determine the
winner and returns 0 (lines 16 and 17) because we do not know which path leads
to the target block. Even if T1 and T2 reach a particular basic block from different
paths in the CFG and both throw exceptions in different lines, BBC returns 0 and
does not select the one with the more coverage in the closest basic block as the
winner. The rationale behind this behavior of BBC is to provide an equal chance
for these two tests to evolve as we do not know which path covered by each of these
tests has more potential to help the search process to get closer to the target line.
If BBC always selects the test with more coverage in the nearest basic block, even
if it covers another path, we are negatively impacting the diversity of the tests
chosen for the next generation, thereby reducing the search process’s exploration
ability.

Example. When giving two tests with the same fitness value (calculated by the
primary objective) T1 and T2 from our motivation example to BBC with target
method fromMap and line number 413, this algorithm compares their fully and
semi-covered blocks with each other. In this example, both T1 and T2 cover the
same basic blocks: the fully covered block is 403 and the semi-covered block is
404-406. So, here the conditions in Scenario 1 are fulfilled. Hence, BBC checks
the number of lines covered by T1 and T2 in block 404-406. Since T1 stopped
its execution at line 404, the number of lines covered by this test is 1. In con-
trast, T2 managed to execute two lines (404 and 405). Hence, BBC returns
size(coveredLines2) − size(coveredLines1) = 1. The positive return value in-
dicates that T2 is closer to the target statement, and therefore, it should have a
higher chance of being selected for the next generation.

Branchless Methods. BBC can also be helpful for branchless methods. These meth-
ods do not contain any branching statement (e.g., if conditions or for loops), and
thereby theoretically, covering the first line in these methods leads to covering all
of the other lines, as well. In other words, by ignoring the Entry and Exit nodes,
CFGs of branchless methods contain only one node (i.e., basic block) without any
edges. For instance, methods from frames 1 and 2 in Listing 2 are branchless. The
absence of branches in these methods means that there are no control dependent
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nodes in them, and thereby approach level and branch distance cannot guide the
search process in these cases if the generated tests throw implicit exceptions in the
middle of these methods. However, in contrast with these two heuristics, BBC can
guide the search process toward covering the most in-depth statement in these
cases. As an example, if tests T1 and T2 both throws implicit branches in the
middle of the only basic block (b0) of branchless method m(), BBC enters the
Scenario 1 (FCB1 = FCB2 = ∅ and SCB1 = SCB2 = {b0}) and examines if one
of the tests has more lines covered in b0.

3.3 Application of BBC

The time complexity of BBC is O(N×E× log V ) where E and V are the numbers
of edges and vertices of the CFG of the given method, respectively; and N is the
number of semi-covered basic blocks calculated by semiCoveredBlocks method
at lines 6 and 7 of Listing 3. This complexity stems from the computation of
the closest semi-covered basic blocks in Line 12 of Listing 3. In this procedure,
BBC measures the shortest path between each semi-covered basic block and the
target basic block (i.e., the block containing the given target line) using Dijkstra’s
shortest path algorithm, which has a time complexity of O(E × log V ).

Given the complexity of BBC , applying this secondary objective for any gen-
erated tests with the same approach level and branch distance may negatively
impact the search process’s efficiency. In the following paragraphs, we discuss this
potential negative impact on search-based crash reproduction and unit test gen-
eration.

3.3.1 Search-Based Crash Reporduction

The crash reproduction search process can be guided by either WeightedSum or
STDistance. As discussed in Section 2.3, both of these fitness functions heavily
rely on approach level and branch distance. Hence, BBC can be helpful in the
crash reproduction search process. Since the crash reproduction search process’s
goal is to cover a specific path in the control dependent graph, which is indicated
by the given stack trace, we apply BBC without any limitation on any case that
includes two test cases with the same (and nonzero) approach level and branch
distance.

3.3.2 Search-Based Unit Test Generation

In contrast with crash reproduction, the unit test generation search process has
multiple statements and branches to cover simultaneously. In DynaMOSA, each
line or branch to cover is an objective of the search. Hence, the number of times
that BBC is applied as the secondary objective is higher compared to crash repro-
duction. Therefore, we should limit the number of times that BBC is applied in
this algorithm. We introduce two parameters to bring this limitation: Sleep Time
and Usage Rate.
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Sleep Time. When DynaMOSA adds a target to the active search objectives,
the target will stay active until the search process covers it. Some of the targets are
easy to cover, and thereby, approach level and branch distance can simply cover
them without BBC . However, BBC can help in harder cases where approach level
and branch distance cannot cover them in a certain time. Sleep Time makes
sure that BBC is only applied for the hard-to-cover search objectives. If we set
this parameter to t seconds, DynaMOSA uses BBC secondary objective only for
search objectives that are active for more than t seconds.

Usage Rate. Like any other evolutionary-based algorithm, the unit test gener-
ation search process needs to maintain a balance between the exploration and
exploitation. The former indicates the diversity in the solutions (i.e., generated
tests execute new paths in the code); the latter indicates searching the solutions
in the existing ones’ neighborhood (i.e., the search process should generate tests
similar to the existing ones). By applying BBC , we improve the exploitation abil-
ity of the search process. However, the over-application of BBC may negatively
impact the exploration ability of the search process. Usage Rate makes sure
that BBC does not hinder this balance. Higher Usage Rate means that there
is a higher chance of BBC application during the search process. Assume we set
p ∈ [0, 1] as our Usage Rate. Any time that the search process generates two
test cases with the same approach level and branch distance for a hard-to-cover
target (i.e., target which stays as an active objective in DynaMOSA for more
than Sleep Time), BBC will be used with the probability of p.

Moreover, by default, EvoSuite has eight types of search objectives [46]: line
coverage, which aims to cover maximum lines in the given CUT; branch coverage,
which aims to cover maximum branches in the CUT; exception coverage, which
aims to maximize the number of exceptions captured by the generated tests; weak
mutation, which aims to generate tests that kill the maximum number of mutants
(in weak mutation, a mutant is considered killed if executing one of the generated
tests on the mutant leads to a different state compared to the execution on the
given CUT); output coverage, that aims for generating tests that drive the most
diverse outputs; method coverage, which aims to cover all of the methods in the
given CUT; no-exception Method Coverage, checks if each of the methods in the
CUT is called directly by one of the tests and this invocation does not lead to
any exception; and direct branch coverage that makes sure that each branch in the
public methods of CUT is covered by a direct call from one of the generated tests.

Since BBC aims to help the search process rely on the approach level and
branch distance in covering lines and branches that cannot be executed with the
tests generated by DynaMOSA, this secondary objective is only triggered when
two tests have the same fitness value either for a non-covered line coverage or
branch coverage objective. Hence, BBC is not involved in segments of the search
process in which two tests are getting the same fitness value for other kinds of
objectives such as exception coverage. Thereby, despite the fact that BBC priori-
tizes tests without throwing implicit exceptions, since this secondary objective is
not triggered for objectives other than line coverage and branch coverage, it does
not have any negative impact on covering other search objectives (e.g., exception
coverage).
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4 Empirical Evaluation

Before evaluating the impact of BBC , we want to assess its potential usefulness
by answering the following research question:

RQ 0 How frequent are implicit branches in a search-based test case generation
process?

This research question serves as a preliminary analysis before the full evaluation
of the impact of BBC on search-based unit test generation and search-based crash
reproduction. To answer it, we consider a special configuration of DynaMOSA,
currently the best algorithm for unit test generation, where the executions of the
BBC algorithm described in Listing 3 are monitored. We choose DynaMOSA,
a many-objectives algorithm, because, unlike search-based crash reproduction, it
targets each line and branch of a class under test independently, allowing us to
collect more data about the execution of BBC for the different objectives.

To assess the impact of BBC on search-based unit test generation, we perform
an empirical evaluation to answer the following research questions:

RQ 1 What is the impact of BBC on search-based unit test generation?
RQ 1.1 What is the impact of BBC on the structural coverage effectiveness

of the unit tests?
RQ 1.2 What is the impact of BBC on the output and implicit exception

coverage of the unit tests?
RQ 1.3 What is the impact of BBC on the fault finding capabilities of the

unit tests?
RQ 1.4 What is the impact of BBC on the structural coverage efficiency of

the unit tests?

In these RQs, we want to evaluate the effect of BBC on DynaMOSA. As for
other algorithms, DynaMOSA relies on the approach level and branch distance
to evaluate the progress of the search process. Previous research has shown that
it outperforms other search-based and guided random approaches [9,19,30,37,42,
43]. We compare DynaMOSA for 11 different configurations of BBC in terms
of structural coverage effectiveness (RQ 1.1). Since a change in the structural
coverage of a class might impact the data flow, we also study the output coverage
(i.e., diversity of the values returned by the tested methods [3]) and captured
implicit exceptions produced by the different tests (RQ 1.2). Then, we look at the
fault finding capabilities using weak mutation and real faults from the Defects4J
collection (RQ 1.3). Finally, we study the structural coverage efficiency of BBC
(RQ 1.4).

Similarly, for search-based crash reproduction, we answer the following research
questions:

RQ 2 What is the impact of BBC on search-based crash reproduction?
RQ 2.1 What is the impact of BBC on the crash reproduction effectiveness?
RQ 2.2 What is the impact of BBC on the crash reproduction efficiency?

In these two RQs, we want to evaluate the effect of BBC on the existing fitness
functions, namely STDistance and WeightedSum, from two perspectives: the crash
reproduction ratio of the different configurations (RQ 2.1) and the time required
to reproduce a crash (RQ 2.2).
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Table 1 Classes under test used for the evaluation of BBC for unit testing (RQ 0 RQ 1):
number of classes under test (CUTs), number of non-commented source statements per class
(NCSS), number of methods per class (Methods), weighted methods per class (WMC), and
cyclomatic complexity per method (CCN).

Project CUTs NCSS Methods WMC CCN
x(σ) range x(σ) range x(σ) range x(σ) range

Chart 10 471.0(570.9) [5,1917] 54.1(64.7) [2,229] 199.7(245.1) [2,817] 3.7(6.7) [1,110]
Cli 14 140.9(77.5) [45,236] 25.4(13.8) [8,44] 66.9(39.5) [17,111] 2.6(3.3) [1,19]
Closure 11 589.4(389.2) [88,1276] 63.6(69.4) [22,265] 265.6(188.4) [52,601] 4.2(10.4) [1,230]
Codec 11 152.2(158.1) [42,564] 19.6(14.1) [4,50] 72.8(83.5) [10,304] 3.7(5.1) [1,42]
Collections 4 375.8(440.1) [49,1021] 67.5(61.0) [14,153] 204.5(234.2) [23,542] 3.0(3.8) [1,28]
Compress 10 257.3(192.7) [24,569] 35.9(24.8) [4,75] 117.7(81.1) [10,226] 3.3(3.6) [1,27]
Csv 11 225.9(127.6) [53,460] 36.5(24.2) [15,78] 119.7(75.8) [29,250] 3.3(6.4) [1,44]
Gson 12 319.1(242.0) [56,933] 38.0(21.9) [10,80] 160.9(121.8) [32,464] 4.2(6.0) [1,64]
JacksonCore 13 852.2(645.4) [125,2121] 67.5(22.0) [32,109] 386.8(312.7) [56,1012] 5.7(7.7) [1,71]
JacksonDatabind 32 214.1(196.0) [19,911] 34.0(29.7) [1,126] 106.8(103.7) [8,446] 3.1(4.2) [1,62]
JacksonXml 6 290.7(166.0) [104,526] 36.7(23.8) [11,68] 126.0(66.5) [49,214] 3.4(5.0) [1,40]
Jsoup 18 273.1(338.6) [5,1348] 38.8(37.4) [2,125] 116.4(143.5) [2,583] 3.0(7.7) [1,176]
JxPath 14 239.9(194.4) [22,488] 26.0(18.5) [3,45] 131.7(108.5) [9,291] 5.1(7.1) [1,61]
Lang 10 274.1(190.0) [29,455] 34.6(25.2) [2,75] 153.7(121.4) [10,329] 4.4(9.9) [1,76]
Math 18 195.7(182.1) [29,579] 23.0(17.7) [4,54] 78.5(69.3) [13,198] 3.4(4.6) [1,49]
Mockito 13 68.7(65.8) [10,220] 18.5(24.0) [2,74] 39.8(45.5) [3,151] 2.1(2.5) [1,31]
Time 12 273.2(130.0) [71,442] 51.8(25.3) [18,103] 123.9(53.8) [45,195] 2.4(3.0) [1,28]

In Sections 4.1 and 4.2 we will detail the experimental setup for respectively
the study on unit test generation (RQ 0 and RQ 1) and crash reproduction (RQ 2).

4.1 Setup for search-based unit test generation (RQ 0 and RQ 1)

4.1.1 Implementation

We implemented BBC as a secondary objective (called BBCOVERAGE) in Evo-
Suite [20], the state-of-the-art tool for search-based unit test generation. As dis-
cussed in Section 3.3.2, since BBC impacts the exploration-exploitation trade-off
and efficiency of the search process, we also defined two additional parameters
for Sleep Time (BBC SLEEP with a default value of 60 seconds) and Usage Rate
(BBC USAGE PERCENTAGE with a default probability of 0.5). Our implementation is
openly available in our replication package on Zenodo [12].

4.1.2 Classes under test selection

We selected classes under test from the latest version of Defects4J (v.2.0.0) [29],
a collection of reproducible failures coming from open source projects with the
identification of the corresponding faulty classes. Defects4J has been used in
other studies to assess the coverage and the effectiveness of unit-level test case
generation [33,43,48], program repair [34,49], fault localization [7,45], and regres-
sion testing [32, 39]. We selected the ten most recent bugs from the 17 available
projects for a total of 225 faulty classes, used as classes under test in our evalua-
tion. This offers a good balance between the number of repetitions (i.e., statistical
power) of each configuration and number of cases (i.e., generalization) [5].

Since EvoSuite may face inevitable challenges for generating tests for some
particular classes [23,36,54], we performed a trial with default parameters, on all
of the classes to filter out the ones for which EvoSuite cannot generate any test,
as recommended by related work [9,37,43]. We filtered out six classes according to
our trial experiment results. In three of these classes, EvoSuite could not finish
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the class instrumentation. For the other two, DynaMOSA could not find any
search objective. Finally, EvoSuite failed to generate tests for a class because
of missing classes. By filtering these classes, we performed our main experiment
on the 219 remaining cases. Table 1 provides more information about the classes
selected for the evaluation.

4.1.3 Parameter settings

To evaluate the impact of BBC secondary objective on search-based unit test
generation, first, we should set values for Sleep Time and Usage Rate (explained
in Section 3.3.2). To find the optimum Sleep Time, we performed a pre-analysis
on a subset of subjects. We have randomly selected 45 classes (20% of our subjects)
for this pre-analysis. We ran DynaMOSA on each of the sampled classes for 30
times and collected the time required by the search process for covering each
objective. These collected results indicate that DynaMOSA can cover more than
85% of the objectives in 60 seconds. For this reason, we have set Sleep Time to
60 seconds for our experiments.

For our pre-analysis (RQ 0), we have enabled BBC (Usage Rate = 1.0)
after 60 seconds (with an additional setting to record the execution results of
BBC ) to evaluate the number of implicit branches occurring during the search
and the number of times BBC could help overcoming those implicit branches.
Furthermore, to draw a comparison between setting different Usage Rate, we
have used ten different values of this parameter in our main experiment (RQ 1):
Usage Rate ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

Hence, for the main experiment, we have executed DynaMOSA and one plus
ten configurations of BBC on 219 classes for 30 rounds of execution with a search
budget of 10 minutes. Also, we have executed DynaMOSA on 45 classes with
the same number of repetitions and search budget for finding the optimum Sleep
Time. In total, we ran 80,190 independent executions to answer RQ 0 and RQ
1. These executions took about 12 days overall.

4.1.4 Data collection

To evaluate the potential impact of BBC (RQ 0), we collected for each line and
branch objective: the number of times its fitness has been evaluated, and the
number of times BBC has been called, activated (i.e., the call effectively led to
an evaluation of the BBC , line 13 or 15 in Listing 3), and useful (i.e., the call
to BBC has returned a non-zero value). When BBC is useful, it indicates that at
one or both of the test throw an implicit exception in the middle of a basic block
in the method of search objective (i.e., line or branch coverage objective).

We compare BBC to DynaMOSA using branch coverage for RQ 1.1 and
RQ 1.4 for 30 rounds of execution. Branch coverage provides an indication on the
structural coverage by looking at the percentage of branches covered by the execu-
tions of the test cases in the class under test. We recorded the value of the branch
coverage every ten seconds to see how it evolves over time and answer RQ 1.4.

For RQ 1.2, we consider output coverage and implicit exceptions. Output cov-
erage [3] denotes the diversity of the outputs of the different methods of the class
under test. It provides information about the data output coverage of the gener-
ated tests by looking at how many pre-defined abstract values (i.e., partitions of
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the output domain) are returned by the methods of the class under test. We used
the method from Rojas et al. [46] available in EvoSuite to compute the output
coverage. For instance, a method returning integer value has to return negative,
zero, and positive values (when the tests are executed) to satisfy the output cov-
erage criterion. In addition to (expected) outputs, we consider implicit exceptions
by looking at the number (e) of top-level methods in the class under test throwing
an undeclared (i.e., runtime) exception implicitly (i.e., without any throw new

instruction). For one execution, we compute the implicit exception coverage as the
ratio between e and the highest value of e among the all the executions of the
different BBC configurations for that class. Since BBC addresses the challenge of
handling implicit branches for search-based unit test generation, we expect it to
impact both the output coverage and the number of methods throwing an implicit
exception.

We rely on weak mutation and real faults to assess the fault finding capa-
bilities of the generated tests (RQ 1.3). Weak mutation score [27, 44] gives the
percentage of mutants (i.e., artificially injected faults) for which at least one test
triggers a different program state, compared to the original program, directly after
the execution of the mutated statement. Weak mutation is a viable and cheaper
alternative to strong mutation, which requires an additional propagation of the er-
roneous state to the output of the program [40]. For our evaluation, weak mutation
allows us to assess the diversity of runtime states, allowing to catch more faults,
when using BBC . We use the default set of weak mutation operators available in
EvoSuite [25]: delete call, delete field, insert unary operator, replace arithmetic
operator, replace bitwise operator, replace comparison operator, replace constant,
and replace variable.

Additionally, we use real faults from the Defects4J benchmark to compare
the effective fault finding capabilities of tests generated using BBC . We executed
all of the 11 configurations on the buggy versions of the software, and next, we
check if the tests generated by each configuration can throw the same exception as
the bug exposing stack traces, which are indicated by Defects4J. The rationale
behind running all of the configurations only on the buggy versions, and not the
fixed versions, is to have a realistic scenario. In a realistic scenario, developers are
neither aware of the bug, nor have access to the fixed version. In this scenario, an
automated test generation tool can help developers if it generates tests that throw
an exception revealing the bug. Since EvoSuite can detect the assertion-based
failures only by running it on the fixed version [24], we limited our comparison for
fault detection only to the 92 faults that a non-assertion error can expose.

4.1.5 Data analysis

For each class under test, we use the Vargha-Delaney Â12 statistic [53], a non-
parametric effect size measure, to examine the effect size of differences between
using and not using BBC for branch, output, and implicit exception coverage,
and weak mutation score (RQs 1.1-1.4). For a pair of factors (A,B) a value of
Â12 > 0.5 indicates that A is more likely to achieve a higher coverage or mutation
score, while a value of Â12 < 0.5 shows the opposite. Also, Â12 = 0.5 means that
there is no difference between the factors. We used the standard thresholds [53] for
interpreting the Â12 magnitude: 0.56 (small), 0.64 (medium), and 0.71 (large). To
assess the significance of effect sizes (Â12), we apply the non-parametric Wilcoxon
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Rank Sum test, with α = 0.01 for the Type I error (H0: there is no difference
between using and not using BBC for x on a class under test c, where x is the
branch, output, or implicit exception coverage, or weak mutation score).

We also rank the different configurations of BBC , based on their coverage and
weak mutation score, using Friedman’s non-parametric test for repeated measure-
ments with a significance level α = 0.05 [26] (RQs 1.1-1.3). This test is used
to test the significance of the differences between groups (treatments) over the
dependent variable (here, coverage and weak mutation score). We further com-
plement the test for significance with Nemenyi’s post-hoc procedure [28, 41]: two
configurations are significantly different if their corresponding average ranks differ
by at least the given Critical Distance (CD).

Finally, since fault coverage (RQ 1.3) has a dichotomic distribution (i.e., a
generated test exposes the fault or not), for each fault, we use the Odds Ratio (OR)
to measure the impact of each BBC configuration on the real faults coverage. A
value OR > 1 in a comparison between a pair of factors (A,B) indicates that the
application of factor A increases the fault coverage, while OR < 1 indicates the
opposite. Also, a value of OR = 1 indicates that both of the factors have the same
performance. We apply Fisher’s exact test, with α = 0.01 for the Type I error, to
assess the significance of the results (H0: there is no difference between using and
not using BBC in reproduction ratio of the fault).

4.2 Setup for search-based crash reproduction (RQ 2)

4.2.1 Implementation

Since ReCore and EvoCrash are not openly available, we implement BBC in
Botsing [14], an extensible, well-tested, and open-source search-based crash repro-
duction framework already implementing the WeightedSum fitness function and
the guided initialization, mutation, and crossover operators. We also implement
STDistance (ReCore fitness function) in this tool. Botsing relies on EvoSuite
for code instrumentation and test case generation by using evosuite-client as a
dependency. We also implement the STDistance fitness function used as baseline
in this paper.

4.2.2 Crash selection

We select crashes from JCrashPack [50], a benchmark containing hard-to-repro-
duce Java crashes. We apply the two fitness functions with and without using
BBC as a secondary objective to 124 crashes, which have also been used in a
recent study [16]. These crashes stem from six open-source projects: JFreeChart,
Commons-lang, Commons-math, Mockito, Joda-time, and XWiki. For each crash,
we apply each configuration on each frame of the crash stack traces. We repeat
each execution 30 times to take randomness into account, for a total of 114,120
independent executions. We run the evaluation on two servers with 40 CPU-cores,
128 GB memory, and 6 TB hard drive. In total, these executions took about 5
days.



Basic Block Coverage for Search-based Unit Testing and Crash Reproduction 19

4.2.3 Parameter settings

We run each search process with five minutes time budget and set the popula-
tion size to 50 individuals, as suggested by previous studies on search-based test
generation [43]. Moreover, as recommended in prior studies on search-based crash
reproduction [52], we use the guided mutation with a probability pm = 1/n (n =
length of the generated test case), and the guided crossover with a probability
pc = 0.8 to evolve test cases. We do note that prior studies do not investigate the
sensitivity of the crash reproduction to these probabilities. Tuning these parame-
ters should be undertaken as future work.

4.2.4 Data collection

To evaluate the crash reproduction ratio (i.e., the ratio of success in crash repro-
duction in 30 rounds of runs) of different assessed configurations (RQ 2.1), we
follow the same procedure as previous studies [16,51]: for each crash C, we detect
the highest frame that can be reproduced by at least one of the configurations
(rmax). We examine the crash reproduction ratio of each configuration for crash
C targeting frame rmax.

To evaluate the efficiency of different configurations (RQ 2.2), we analyze the
time spent by each configuration on generating a crash reproducing test case. We
do note that the extra pre-analysis and basic block coverage in BBC is considered
in the spent time. Since measuring efficiency is only possible for the reproduced
crashes, we compare the efficiency of algorithms on the crashes that are reproduced
at least once by one of the algorithms. We assume that the algorithm reached the
maximum allowed budget (5 minutes) in case it failed to reproduce a crash.

4.2.5 Data analysis

As for real fault coverage (RQ 1.3), crash reproduction data (RQ 2.1) has a
dichotomic distribution (i.e., an algorithm reproduces a crash C from its rmax or
not), for each crash, we use the Odds Ratio (OR) to measure the impact of each
algorithm on the crash reproduction ratio for each crash. We apply Fisher’s exact
test, with α = 0.01 for the Type I error, to assess the significance of the results
(H0: there is no difference between using and not using BBC in the reproduction
ratio of the crash).

For RQ 2.2, for each crash, we use the non-parametric Vargha-Delaney Â12

statistic [53] with the non-parametric Wilcoxon Rank Sum test to examine differ-
ences between using and not using BBC for efficiency (H0: there is no difference
between using and not using BBC in the reproduction efficiency of the crash).

4.3 Replicability

We enable the replicability of our results by providing replication packages on
Zenodo (https://zenodo.org) for RQ 0 and RQ 1 [12] and RQ 2 [11]. Those
replication packages include the classes under test and crashes used for the evalua-
tion, the evaluation infrastructure (including documentation and scripts to re-run

https://zenodo.org
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Table 2 Statistics about the number of objectives (Obj.), fitness evaluations (Fitness eval.),
calls to BBC evaluations (BBC calls), calls effectively leading to an evaluation of the BBC
(BBC active), and evaluations returning a non-zero value (BBC useful).

Project Obj. Fitness eval. BBC calls BBC active BBC useful
count σ count σ count σ count σ

Chart 3492 17,522.59 69,478.23 15,769.44 108,896.01 2,267.34 15,409.45 133.66 4,980.58
Cli 963 46,395.51 144,057.34 39,927.05 179,255.85 5,300.18 37,189.29 2.74 43.16
Closure 4779 23,864.65 33,537.30 34,880.69 59,787.43 8,716.67 28,410.00 446.23 6,556.16
Codec 526 85,859.14 138,087.36 118,522.38 249,495.43 49,434.50 161,610.84 0.00 0.07
Collections 915 41,404.66 40,811.89 78,162.33 80,603.58 2,391.87 13,382.00 713.11 6,706.91
Compress 1602 27,870.01 56,441.02 25,610.46 58,955.84 10,477.92 35,881.90 0.06 2.13
Csv 1279 21,797.16 66,812.74 21,892.09 89,951.27 1,617.00 16,831.40 51.66 561.60
Gson 2272 50,307.24 105,668.55 47,428.92 143,743.06 12,515.74 69,460.49 972.59 22,547.11
JacksonCore 8108 16,546.99 32,507.93 16,406.25 49,033.41 10,233.04 34,686.78 240.63 5,202.30
JacksonDatabind 4932 19,779.36 44,533.60 26,837.34 72,399.41 6,323.01 21,387.24 436.74 6,523.39
JacksonXml 1130 30,898.57 29,490.09 55,675.38 64,763.15 35,723.20 47,364.58 195.75 1,210.80
Jsoup 2458 58,216.14 117,964.61 82,136.18 168,880.68 2,080.66 17,089.75 87.03 3,178.65
JxPath 2348 51,578.30 103,321.87 29,519.46 104,762.47 7,402.75 42,828.18 4.72 64.64
Lang 1749 37,868.96 93,794.17 20,247.58 60,978.13 1,338.74 12,510.84 2.91 38.91
Math 1309 27,917.29 48,262.64 49,197.32 84,697.47 21,353.59 45,462.28 2,710.62 19,146.62
Mockito 584 91,840.19 113,787.23 156,256.50 216,605.91 42,901.56 95,736.14 608.66 4,312.73
Time 1891 19,180.13 45,616.90 21,628.31 68,101.74 1,331.23 11,072.58 90.19 2,319.25
(all) 40337 30,111.81 71,396.34 34,988.58 100,703.53 9,472.14 40,567.40 354.12 7,913.20

the evaluation), and the data analysis procedure used to produce the graphs, ta-
bles, and numbers reported in this paper.

5 Results

5.1 Potential impact of BBC (RQ 0)

Table 2 provides the general statistics of the preliminary analysis answering RQ 0
per project. The number of branch and line objectives ranges from 526 for Codec
to 8,108 for JacksonCore. In total, the number of fitness evaluations per objective
ranges between 1 and 1,143,620 with an average of 30,111.81 evaluations. BBC
has been called between 1 and 1,681,329 times per objective with an average of
34,988.58 calls. It is interesting to note that, since the evaluation of an objective
may require to compare multiple test cases, BBC can be called multiple times
for each fitness evaluation. BBC has been effectively activated up to 1,365,526
(average of 9,472.140) times per objective, and has been useful up to 798,005
(average of 354) times per objective.

Figure 2 provides a summary of the usefulness of BBC . Each data point corre-
sponds to the percentage of useful calls to BBC per fitness evaluation, measured
for one objective and one execution out of 30. On average, BBC has been useful
2.5 times (σ = 3.17 times) per fitness evaluation, with a maximum of 4,0145 times
for a single fitness evaluation (which happens when multiple test cases have to be
compared).

Summary (RQ 0). Implicit branches are quite common. Our results show that
on average, BBC has been activated (i.e., the call to BBC effectively led to an
evaluation) 9,472.140 times with a standard deviation σ = 40, 567.40, denoting
big variations of the activation among the different objectives. The usefulness
rate per activation is 2.39% on average (σ = 12.09%), confirming that not all
activations can effectively lead to a distinction between two test cases w.r.t. to
their partial coverage of basic blocks. Those results tend to confirm our design
choice to parameterize the activation of BBC using an activation probability.
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Fig. 2 Distribution of the usefulness of BBC activations per fitness evaluations. The usefulness
is defined as the number of BBC evaluations returning a non-zero value divided by the number
of activations. Grey points denote fitness evaluations without any BBC activation.

5.2 Search-based unit test generation (RQ 1)

We first discuss the results of applying BBC as a secondary objective for unit test
generation using DynaMOSA. Contrarily to crash reproduction, which seeks to
cover only a small number of branches, unit test generation targets all the branches
in a class under test.

Branch coverage effectiveness (RQ 1.1). Figure 3a reports the branch coverage of
the different classes under test for all the 30 test suites for the different config-
urations of BBC . Generally, the average branch coverage slightly improves when
activating BBC as a secondary objective, from 74.5% (σ = 28%) for DynaMOSA
up to 76.1% (σ = 27.5%) for BBC 0.2, 0.4, 0.6, and 1.0. Although small, this
improvement is systematic across all BBC configurations according to the effect
sizes reported in Figure 3b. BBC 0.6 gives the best results with a large positive
(Â12 > 0.5) effect size for 59 classes under test (against 0 large negative, Â12 < 0.5,
effect size), followed by BBC 0.2 with 59 classes (against 1 classes), and BBC 0.8
with 57 classes (against 1 class).

Figure 4 provides a graphical representation of the ranking (i.e., mean ranks
with confidence interval) of the different BBC configurations. According to Fried-
man’s test, the different treatments BBC 0.1 to 1.0 achieve significantly different
branch coverage (p-values < 0.01) compared to DynaMOSA. Furthermore, the
differences between the average ranks of BBC 0.1 to 1.0 and the average rank of
the baseline are larger than the critical distance CD = 1.375 determined by Ne-
menyi’s post-hoc procedure (denoted by red dots in Figure 4). This indicates that
BBC 0.1 to 1.0 achieves a significantly higher branch coverage than DynaMOSA.

We analyzed the correlation between the effect sizes (Â12) of the best perform-
ing BBC configuration (according to Friedman’s test with Nemenyi’s post-hoc
procedure) and BBC usefulness (presented in RQ 0). The result of this analysis
indicates that there is a positive correlation between the number of times that BBC
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Fig. 3 Branch coverage of the tests generated for the 219 classes under test (out of 30 execu-
tions) for different configurations of BBC . The square (□) denotes the arithmetic mean, the
bold line (—) is the median.

Friedman: 0.000 (Ha: Different) 
 Critical distance: 1.375

Mean ranks

bbc−0.1 − 5.51
bbc−0.2 − 5.52
bbc−0.4 − 5.56
bbc−0.7 − 5.67
bbc−0.6 − 5.68
bbc−0.8 − 5.78
bbc−0.9 − 5.83
bbc−0.5 − 5.91
bbc−1.0 − 5.97
bbc−0.3 − 6.22

DynaMOSA − 8.36

5 6 7 8 9

Fig. 4 Non-parametric multiple comparisons of the branch coverage using Friedman’s test
with Nemenyi’s post-hoc procedure.

could be useful (i.e., select a winner between two given tests with the same ap-
proach level and branch distance) and the effect that this secondary objective has
on branch coverage improvement (Spearman’s ρ = 0.4 with a p-value < 0.6e−10).
Hence, in any case that BBC exposes that one generated test is closer to the target
line than another test with the same approach level and branch distance (due to
the implicit branch occurrence), there is a considerable chance that it helps the
search-based test generation process to generate tests with higher branch coverage.

To confirm if this observed correlation stems from the connection between the
potential implicit branches in the middle of basic blocks and improvement in the
branch coverage, we manually analyzed some cases in which BBC application
leads to statistically significant improvement in branch coverage achieved by the
generated test. In this manual analysis, we identified multiple potential implicit
exceptions before the target lines and branches, which are only covered by tests
generated by utilizing BBC as a secondary objective.
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Listing 4 method nextToken() from JacksonDatabind-106

1 public JsonToken nextToken (){
2 [...]
3 if (_startContainer) {
4 _startContainer = false;
5 [...]
6 _nodeCursor = _nodeCursor.iterateChildren ();
7 _currToken = _nodeCursor.nextToken ();
8 if ([...]) {
9 _startContainer = true;

10 }
11 return _currToken;
12 }
13 [...]
14 }

Listing 5 method iterateChildren() in JacksonDatabind-106

1 public final NodeCursor iterateChildren () {
2 [...]
3 if (n == null){
4 throw new IllegalStateException("No current node");
5 }
6 if (n.isArray ()) {
7 [...]
8 }
9 if (n.isObject ()) {

10 [...]
11 }
12 throw new IllegalStateException ([...]);
13 }

For instance, for the class under test com.fasterxml.jackson.databind.no-

de.TreeTraversingParser in JacksonDatabind-106, we see that tests generated
by BBC configurations achieve a higher structural coverage against DynaMOSA.
In the majority of runs, the tests generated by BBC managed to cover Lines 6
to 11 in method nextToken() (Listing 4), while DynaMOSA is not successful
in covering these lines. By looking at method nodeCursor.iterateChildren()

(Listing 5), which is called by nextToken() in line 6 of Listing 4, we see that this
method may throw an IllegalStateException at lines 4 and 12. Since Dyna-
MOSA does not have any information about the branches in the other classes
other than the class under test, it cannot guide the search process to execute the
method iterateChildren() without raising an exception.

Output coverage and implicit exception coverage (RQ 1.2). The improvement of
branch coverage also leads to more output diversity, reported in Figure 5a: from
54.2% (σ = 26.6%) for DynaMOSA up to 55.5% (σ = 26.2%) for BBC 0.8.
This improvement is also systematic across all BBC configurations according to
the effect sizes reported in Figure 5b. BBC 0.6 give the best results with a large
positive (Â12 > 0.5) effect size for 57 classes under test each (against 2 large
negative, Â12 < 0.5, effect sizes each), followed by BBC 0.1 and 0.5 with 54
classes (against 2 classes), and BBC 0.4 with 53 classes (against 2 classes).
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Fig. 5 Output coverage of the tests generated for the 219 classes under test (out of 30 execu-
tions) for different configurations of BBC . The square (□) denotes the arithmetic mean, the
bold line (—) is the median.

The two target classes with large negative effect sizes on the output coverage
are the same classes for the different configurations of BBC : i.e., different versions
of the class org.apache.commons.cli.HelpFormatter in Cli-31 and Cli-32. In-
terestingly, all BBC configurations achieve a statistically significant higher im-
plicit runtime exception coverage (i.e., undeclared runtime exceptions not explic-
itly thrown by a throw new instruction) with a large effect size for the same class
on the same buggy versions of Cli, indicating that for this particular class, the
loss of coverage of output values is compensated by a higher number of methods
throwing implicit runtime exceptions.

This could be explained by the fact that BBC favors test cases with a higher
coverage of basic blocks, but that are not able to reach the return statements
of the methods under test (e.g., if the values used by the test cause implicit
runtime exceptions). There is however no general correlation between the output
coverage and the implicit exception coverage (Spearman’s ρ = −0.008 with a p-
value < 0.001).

Same as RQ 1.1, we evaluated the correlation between the improvement of BBC
in terms of output coverage and BBC usefulness (presented in RQ 0). This analysis
shows a positive correlation between these two metrics (Spearman’s ρ = 0.3 with
a p-value < 0.1e−5). As we explained, this observation stems from the correlation
between branch coverage and the output coverage achieved by each test: covering
more lines and branches increases the chance of seeing more diverse output from
CUT. To support this hypothesis, we also checked if there is a correlation between
branch coverage and output coverage. Our analysis shows that branch coverage
and output coverage are strongly correlated (Spearman’s ρ = 0.6 with a p-value
< 0.3e− 16).

Figure 6a reports the implicit runtime exception coverage of the generated
tests. Implicit exceptions are not declared in the method under test and are trig-
gered when implicit branches are executed. Results show that the average excep-
tion coverage increases when using BBC as a secondary objective: from 75.1%
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Fig. 6 Exception coverage of the tests generated for the 219 classes under test (out of 30
executions) for different configurations of BBC . The square (□) denotes the arithmetic mean,
the bold line (—) is the median.
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(a) Output coverage.
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(b) Exception coverage.

Fig. 7 Non-parametric multiple comparisons of the coverage using Friedman’s test with Ne-
menyi’s post-hoc procedure.

(σ = 22.8%) when using DynaMOSA up to 80.3% for BBC 0.1 (σ = 21.2%) and
0.6 (σ = 21%). BBC 0.9 gives the best results with a large positive (Â12 > 0.5)
effect size for 67 classes under test (against 8 large negative, Â12 < 0.5, effect
size), followed by BBC 0.6 with 66 classes (against 8 classes), and BBC 0.1 with
64 classes (against 7 classes).

The rankings in Figure 7 indicate that BBC 0.1 to 1.0 perform well, with
an average rank much smaller than the baseline, both for output and exception
coverage. The configurations’ average ranks differences with the average rank of the
baseline are larger than the critical distance CD = 1.375 determined by Nemenyi’s
post-hoc procedure.

In contrast with branch coverage and output coverage, Spearman’s test does
not show any general correlation between BBC usefulness and implicit exception
coverage (Spearman’s ρ = 0.04 with a p-value = 0.5). This result supports our
discussion in Section 3: since BBC is only triggered when DynaMOSA compares
tests regarding a line or branch coverage search objective, it does not have any
negative impact on other search objectives, including the implicit exception cover-
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Listing 6 An implicit exception in MATH-3 which is thrown significantly more often by tests
generated by the search process utilizing BBC secondary objective.

1 java.lang.ArrayIndexOutOfBoundsException: 1
2 at [...]. MathArrays.linearCombination ([...]:846)

Listing 7 method linearCombination from Apache Commons MATH

834 public static double linearCombination(final double [] a, final double [] b)
835 {
836 [...]
837 if (len != b.length) {
838 throw new DimensionMismatchException(len , b.length);
839 }
840

841 for (int i = 0; i < len; i++) {
842 [...]
843 }
844

845 final double prodHighCur = prodHigh [0];
846 double prodHighNext = prodHigh [1]; // target line
847 [...]
848 }

age of the generated tests. We also analyzed some of the exceptions that are only
thrown by the tests generated using BBC . The remainder of this section explains
one of these instances.

Listing 6 shows an example of an implicit exception that is thrown significantly
more often when using BBC . DynaMOSA managed to capture this exception in
9 our of 30 runs, while BBC 0.5 captured it in 23 out of 30 runs. This excep-
tion occurs in line 846 of method linearCombination (Listing 7). This exception
can be triggered only in one specific case where the input arrays (a and b) both
contain only one element. If these two parameters do not have the same size,
this method throws an explicit exception at line 838 (i.e., this line is formatted
as throw new [...]). Since EvoSuite can recognize explicit exception throws
in the CUT and convert them to explicit branches while generating the control
flow graphs, approach level and branch distance can guide the search process to
cover other lines after 839 by prioritizing tests that pass two arrays with the same
size to method linearCombination. However, since the explicit branch was the
only control-dependent branch for the target line (line 846), the search process
does not have any guidance to cover the following lines (including the target line).
Assume that test T1 generates input parameters a and b with size 0. Then, this
method throws ArrayIndexOutOfBoundsException in one line before the target
line (line 845). This implicit branch will be hidden from the approach level and
branch distance heuristics. By adding BBC , the search process can differentiate
these two tests and help the search process to generate tests that can cover the
following lines more often. By having more tests that can cover the target line, the
search process has a higher opportunity to execute the target line, and thereby
find the exception in this line.



Basic Block Coverage for Search-based Unit Testing and Crash Reproduction 27

0.00

0.25

0.50

0.75

1.00

D
yn

aM
O

SA
bb

c−
0.

1
bb

c−
0.

2
bb

c−
0.

3
bb

c−
0.

4
bb

c−
0.

5
bb

c−
0.

6
bb

c−
0.

7
bb

c−
0.

8
bb

c−
0.

9
bb

c−
1.

0

W
ea

k 
m

ut
at

io
n 

sc
or

e

(a) Weak mutation score.
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Fig. 8 Weak mutation score of the tests generated for the 219 classes under test (out of 30
executions) for different configurations of BBC . The square (□) denotes the arithmetic mean,
the bold line (—) is the median.
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Fig. 9 Non-parametric multiple comparisons of the weak mutation score using Friedman’s
test with Nemenyi’s post-hoc procedure.

Weak mutation score and real faults (RQ 1.3) As for branch and output coverage,
activating BBC slightly improves the weak mutation score of the generated tests
(reported in Figure 8a). BBC 0.4, 0.6 and 0.8 achieve the higher average mutation
score with 74.6% (σ = 29.6%), compared to 73.2% (σ = 30.1%) for the baseline
(DynaMOSA). That improvement is also systematic across the different configu-
rations of BBC according to the effect sizes reported in Figure 8b. BBC 0.5 gives
the best results with a large positive (Â12 > 0.5) effect size for 54 classes under
test (against 0 large negative, Â12 < 0.5, effect size), followed by BBC 0.2 with
53 classes (against 0 class), and BBC 0.4, 0.6, 0.7 and 0.9 with 51 classes each
(against 0 class).

Looking at the ranking reported in Figure 9, BBC 0.1 to 1.0 have an average
rank much smaller than the baseline. Those differences are larger than the critical
distance CD = 1.375 determined by Nemenyi’s post-hoc procedure.

Moreover, we checked if we could find any correlation between the weak muta-
tion score and BBC usefulness (presented in RQ 0). This analysis shows a mod-
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Table 3 Real faults coverage of the different configurations with the number of faults covered
at least once in 30 runs (#) out of 92 faults, the average coverage frequency (freq., σ), and
the number of time a configuration performed better (> 1) of worse (< 1) than DynaMOSA
with a significance level of 0.01.

Config. Faults coverage Odds ratio

# freq. σ > 1 = 1 < 1
bbc-0.1 26 22.25% 38.84% 1 - -
bbc-0.2 27 22.79% 39.18% 2 - -
bbc-0.3 26 22.28% 39.02% 2 - 1
bbc-0.4 26 22.28% 38.66% 3 - -
bbc-0.5 25 22.68% 39.36% 3 - -
bbc-0.6 27 22.46% 38.86% 3 - -
bbc-0.7 26 23.04% 39.68% 2 - -
bbc-0.8 28 22.39% 38.75% 3 - -
bbc-0.9 25 22.57% 38.96% 2 - -
bbc-1.0 27 22.25% 38.97% 3 - -
DynaMOSA 26 21.49% 38.37% - - -

Listing 8 The fault in CHART-4 which is captured significantly more often by tests generated
by the search process utilizing BBC secondary objective.

0 java.lang.NullPointerException
1 at org.jfree.chart.plot.XYPlot.getDataRange(XYPlot.java :4493)
2 at org.jfree.chart.axis.NumberAxis.autoAdjustRange(NumberAxis.java :434)
3 at org.jfree.chart.axis.NumberAxis.configure(NumberAxis.java :417)
4 at org.jfree.chart.plot.XYPlot.configureDomainAxes(XYPlot.java :972)
5 at org.jfree.chart.plot.XYPlot.setRenderer(XYPlot.java :1644)
6 at org.jfree.chart.plot.XYPlot.setRenderer(XYPlot.java :1620)
7 at org.jfree.chart.plot.XYPlot.setRenderer(XYPlot.java :1607)

erate correlation between these two metrics (Spearman’s ρ = 0.37 with a p-value
< 0.3e−8). One reason for this correlation could be the strong correlation between
weak mutation score and branch coverage (Spearman’s ρ = 0.91 with a p-value
< 0.3e − 16). Thanks to BBC secondary objective, the search-based test gener-
ation process can cover more lines and branches, thereby killing the mutants in
these newly covered lines.

Finally, we compare the fault revealing capabilities of the generated tests using
Defects4J. Table 3 presents the results for the different configurations of BBC
and the baseline (DynaMOSA). In general, the tests reveal between 25 and 28
faults at least once in 30 rounds of executions out of the 92 faults considered (the
selection procedure is detailed in Section 4.1). For the faults that are revealed in
at least one round, the average coverage frequency (for 30 rounds of execution)
varies between 22.25% (for BBC 0.1 and 1.0) and 23.04% (for BBC 0.7). The table
also reports the number of faults for which a configuration performed better (odds
ratio above 1) or worse (odds ratio below 1) than the DynaMOSA baseline with
a significance level of 0.01. The best configurations are BBC 0.4, 0.5, 0.6, 0.8, and
1.0 with 3 faults (against 0).

We manually analyzed the three faults that are captured significantly more
often by BBC . In all of them, we identified potential implicit branches before
covering the target line (i.e., the line in which the fault happens) that can prevent
the classical and approach level from guiding the search process towards covering
these failures.
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Listing 9 method getDataRange from JFreeChart

4464 public Range getDataRange(ValueAxis axis) {
4465 [...]
4466 // iterate through the datasets that map to the axis and get the union
4467 // of the ranges.
4468 Iterator iterator = mappedDatasets.iterator ();
4469 while (iterator.hasNext ())
4470 {
4471 XYDataset d = (XYDataset) iterator.next();
4472 if (d != null) {
4473 XYItemRenderer r = getRendererForDataset(d);
4474 if (isDomainAxis) {
4475 if (r != null) {
4476 result = Range.combine(result , r.findDomainBounds(d));
4477 }
4478 else {
4479 result = Range.combine(result ,
4480 DatasetUtilities.findDomainBounds(d));
4481 }
4482 }
4483 else {
4484 if (r != null) {
4485 result = Range.combine(result , r.findRangeBounds(d));
4486 }
4487 else {
4488 result = Range.combine(result ,
4489 DatasetUtilities.findRangeBounds(d));
4490 }
4491 }
4492

4493 Collection c = r.getAnnotations (); // target line
4494 [...]
4495 }
4496 }
4497 ‘‘‘
4498 }

For instance, Listing 8 presents the stack trace that reveals a fault in JFree-

Chart.2 When selecting the XYPlot class as class under test, BBC configurations
can throw this exception significantly more often than tests generated by Dyna-
MOSA. This stack trace has five frames that are pointing to a method in the target
class (XYPlot): Lines 1, 4, 5, 6, and 7 in Listing 8. By analyzing the methods in
these frames, we can see that majority of them are simple methods with one line
except the first frame in Line 1 of Listing 8, which points to method getDataRange

that has about 100 lines of codes.

As we can see in Listing 9, the target line, in which the NullPointerException
occurs (Line 4493), is in an if condition which starts at Line 4472. The target line
is directly control-dependent on this condition. Hence, when a test fulfills the con-
dition in line 4472, the approach level and branch distance heuristics assume that
the generated test eventually will cover the target line (Line 4494), and thereby
these two heuristics do not provide any guidance for the test generation search
process afterward. However, by taking a closer look, we can see that even after
entering the if condition, a test needs to, first, call the combine method (in one
of the Lines 4476, 4479, 4485, or 4488) and also call either findDomainBounds (in

2 See case CHART-4 in Defects4J at https://github.com/rjust/defects4j/blob/master/
framework/projects/Chart/trigger_tests/4

https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/trigger_tests/4
https://github.com/rjust/defects4j/blob/master/framework/projects/Chart/trigger_tests/4
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Lines 4476 or 4479) or findRangeBounds (in Lines 4485 or 4488) before it can
reach the target line. Each of these methods can throw explicit exceptions. Since
these methods are not part of the class under test, the search process is unaware
of those exceptions. Also, each of these methods calls multiple methods that can
also throw exceptions.

BBC can guide the test generation search process to execute these lines without
any exception and cover the target line. By covering the target line, the search
process has the opportunity to generate a test that throws a NullPointerExce-

ption in this target line, and thereby captures the fault.

Branch coverage efficiency (RQ 1.4). Figure 10a presents the tendency of the
branch coverage over time using the smoothed conditional means. Overall, BBC 0.5
tends to achieve a higher branch coverage. This is confirmed by the number of
classes for which we observe a significant difference (with α = 0.01) in the cover-
age achieved, reported in Figure 10b and grouped by effect size (Â12) magnitude.
Counts above (resp. below) 0 denote the number of classes for which we observe
a positive (resp. negative) effect. After three minutes, BBC 0.4 achieves a large
(resp. medium) positive effect size for 34 (resp. 18) classes under test against 1
(resp. 0) large (resp. medium) negative effect sizes. Those numbers slightly de-
crease over time with 27 (resp. 18) classes under test with a large (resp. medium)
effect size after exhaustion of the ten minutes search budget, for 1 (resp. 0) large
(resp. medium) classes with a negative effect size.

Summary (RQ 1). We see an improvement of the branch coverage of the gen-
erated tests when activating BBC as a secondary objective in DynaMOSA. This
improvement in branch coverage also leads to an increase of the output and excep-
tion coverage, and of the diversity of runtime states (denoted by an increase of the
weak mutation score). Among the different configurations, BBC 0.5 gives the best
results and those results remain stable over time. It also leads to the coverage of
three additional faults in Defects4J without any loss compared to the baseline.
Giving our results, we can recommend using BBC 0.5 as a secondary objective for
unit test generation.

5.3 Search-based crash reproduction (RQ 2)

Crash reproduction effectiveness (RQ 2.1). Figure 11 presents the crash reproduc-
tion ratio of the search processes guided by STDistance (Figure 11a) and Weight-
edSum (Figure 11b), with and without BBC as a secondary objective. This figure
shows that, on average, the crash reproduction ratio of WeightedSum improves
3.3% when using BBC : the average crash reproduction ratio of WeightedSum is
74.8% (with standard deviation 38.1%) while the average crash reproduction of
WeightedSum + BBC is increased to 78.1% (with standard deviation 36.1%). This
improvement is higher for crash reproduction using STDistance. On average, the
crash reproduction ratio achieved by STDistance + BBC is 9.2% higher than
STDistance without BBC : STDistance achieves 70.5% (with standard deviation
38.1%) average crash reproduction ratio, while the average crash reproduction
ratio of STDistance + BBC is 79.7% (with standard deviation 37.3%). Higher im-
provement in STDistance was expected as this fitness function relies more on the
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Fig. 10 Evolution of the branch coverage of the tests generated for the 219 classes under test
(out of 30 executions) for different configurations of BBC .

approach level and branch distance heuristics for covering each of the frames in the
given stack trace. Also, in both of the fitness functions, the lower quartile of crash
reproduction ratio has been improved by utilizing BBC . These improvements in
crash reproduction ratio for WeightedSum and STDistance are 19.1% and 31.7%,
respectively.
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Fig. 11 Crash reproduction ratio (out of 30 executions) of fitness functions with and without
BBC . The square (□) denotes the arithmetic mean and the bold line (—) is the median.
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Fig. 12 Pairwise comparison of impact of BBC on each fitness function in terms of crash
reproduction ratio with a statistical significance < 0.01.

Table 4 Comparing the crash reproduction ratio between crash reproduction using WS and
WS + BBC , for cases where one of the configurations has a significantly higher crash repro-
duction ratio (p-value < 0.01)

.

Crash Reproduction ratio OR p-value
WeightedSum WeightedSum+BBC

LANG-54b 19 29 0.1 2.4659e-03
XCOMMONS-1057 17 27 0.2 7.4098e-03
XWIKI-12889 17 27 0.2 7.4098e-03
XWIKI-14556 11 24 0.2 1.4306e-03

To make our observations in Figure 11 more robust, we performed an additional
statistical analysis. Figure 12 depicts the number of crashes, for which BBC has
a significant impact on the effectiveness of crash reproduction guided by STDis-
tance (Figure 12a) and WeightedSum (Figure 12b). BBC significantly improves
the crash reproduction ratio in 10 and 4 crashes for fitness functions STDistance
and WeightedSum, respectively. Notably, the application of this secondary objec-
tive does not have any significant adverse effect on crash reproduction. Tables 4
and 5 present the odds ratio and p-value in cases that BBC leads to a signifi-
cant improvement in crash reproduction ratios of WeightedSum and STDistance,
respectively. As we can see in these tables, the odds ratio values in all cases are
lower or equal to 0.2, indicating the high impact of BBC . Finally, we observed
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Table 5 Comparing the crash reproduction ratio between crash reproduction using STD
and STD + BBC , for cases where one of the configurations has a significantly higher crash
reproduction ratio (p-value < 0.01)

.

Crash Reproduction ratio OR p-value
RecoreSTDistance RecoreSTDistance+BBC

LANG-54b 20 29 0.1 5.5791e-03
MATH-78b 10 21 0.2 9.2060e-03
TIME-7b 1 12 0.1 1.0508e-03
XWIKI-12667 16 30 0.0 1.6767e-05
XWIKI-13141 13 27 0.1 2.5073e-04
XWIKI-13196 19 30 0.0 3.1881e-04
XWIKI-13316 17 29 0.0 4.3102e-04
XWIKI-13916 19 30 0.0 3.1881e-04
XWIKI-14152 3 18 0.1 9.4143e-05
XWIKI-14556 0 24 0.0 3.2940e-11
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Fig. 13 Pairwise comparison of impact of BBC on each fitness function in terms of efficiency
with a small, medium, and large effect size Â12 < 0.5 and a statistical significance < 0.01.

that BBC helps each of the STDistance and WeightedSum to reproduce 3 new
crashes that could not be reproduced without this secondary objective.

Crash reproduction efficiency (RQ 2.2). Figure 13 illustrates the number of cra-
shes, in which BBC significantly affects the time consumed by the crash reproduc-
tion search process. As Figure 13b shows, BBC significantly improves the speed
of crash reproduction guided by WeightedSum in 54 crashes (43.5% of cases),
while it does not lose efficiency in the reproduction of any crash. Similarly, Figure
13a shows that BBC has a higher positive impact on the efficiency of the search
process guided by STDistance. It significantly reduces the time consumed by the
search process in 56 crashes (45.1% of cases), while it had no adverse impact on
the reproduction efficiency of any crash.

Figure 14 depicts the average improvements in the efficiency and effect sizes for
crashes where the difference in the consumed budget when using BBC or not was
significant. According to the right-side plot in Figure 14a, BBC reduces the time
consumed by the search process guided by STDistance up to 98% (being 71.7% on
average). Also, the left-side plot indicates that the average effect size of differences
between STDistance and STDistance +BBC (calculated by Vargha-Delaney) is
0.102 (lower than 0.5 indicates that BBC improved the efficiency). Figure 14b
shows that the average improvement (right-side plot) achieved by using BBC as
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Fig. 14 The effect size and the average improvement achieved by BBC on each of the fitness
functions in cases that BBC makes a significant difference in terms of efficiency.

the second objective of WeightedSum is 68.7%, and the average effect size (left-side
plot), in terms of the crash reproduction efficiency, is 0.104.

Summary (RQ 2). BBC improves the crash reproduction ratio for both of the
WeightedSum and STDistance fitness functions. This improvement is higher for
STDistance as this fitness function relies more on approach level and branch dis-
tance. Moreover, BBC improves the efficiency of the search process with both of
the crash reproduction fitness functions.

6 Discussion

6.1 BBC for unit test generation

Increase in program state and return value diversity. Using BBC as a secondary
objective leads to better branch coverage. Although small on average, the improve-
ment is systematic, as demonstrated by the effect sizes. More interestingly, BBC
also leads to a better output and implicit exception coverage. This is particularly
interesting in a unit testing context because it allows to capture more diverse
returned values (including implicit exceptions) from the methods under test. We
observe the same trends for weak mutation, denoting more diverse program states.
Although the evaluation of the quality of the generated tests is outside of the scope
of this study, we believe that diverse return values and program states can have
a positive impact on the quality of the generated assertions, which is one of the
known current limitations preventing the large industrial adoption of search-based
unit test generation [2].

Adaptive secondary objectives. As explained in Section 3.3, applying BBC can be
expensive (O(N ×E × log V )), compared to classical secondary objectives (linear
time). Therefore, BBC should be activated only when it can effectively contribute
to decide between two test cases with the same fitness value. As shown by our
preliminary analysis, this is especially relevant in the context of unit test gener-
ation, where each branch should be covered, which could trigger a high number
of BBC evaluations. In our implementation of BBC for unit testing (described
in Section 3.3.2), we limit the number of activations of BBC , based on the acti-
vation time of an objective (Sleep Time) and a user-defined probability (Usage
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Rate). This approach might however not be optimal. For instance, for classes
under test with a high number of implicit branches, activating BBC sooner and
more often might improve the search process. In our future work, we will explore
how the secondary objective can be dynamically adapted during the search, for
instance, based on the evolution of the fitness values of the different objectives in
DynaMOSA.

6.2 BBC for crash reproduction

Generally, using BBC as secondary objective leads to a better crash reproduction
ratio and higher efficiency in search-based crash reproduction. This improvement
is achieved thanks to the additional ability to guide the search process when facing
implicit branches during the search. Combining BBC with STDistance shows an
important improvement compared to the combination of BBC with WeightedSum.
This result was expected, since only one (out of three) component in WeightedSum
is allocated to line coverage, and thereby most parts of the fitness function do not
use the approach level and branch distance heuristics. In contrast, STDistance
uses the approach level and branch distance to cover each of the frames in the
given stack trace incrementally.

Our results show that BBC helps the crash reproduction process to reproduce
new crashes. For instance, the crash that we used in this study (XWIKI-13377)
can be reproduced only by STDistance + BBC .

7 Threats to validity

Internal validity. We cannot guarantee that our implementation of BBC in Evo-
Suite and Botsing is bug-free. However, we mitigated this threat by testing our
implementations and manually examining some samples of the results. Moreover,
following the guidelines of the related literature [5], we executed each configuration
30 times to take the randomness of the search process into account.

External validity. We cannot ensure that our results are generalizable to all cases.
However, for both of our experiments for unit test generation and crash reproduc-
tion, we have used two earlier established benchmarks: JCrashPack [50], which is
a benchmark for crash reproduction containing 124 hard-to-reproduce crashes pro-
voked by real bugs in a variety of open-source applications, and Defects4J [29],
a collection of real-world Java projects failures containing 835 bugs.

To increase the external validity while maintaining a good balance between
the statistical power and the overall execution, analysis, and reporting time, we
choose to consider only the ten most recent bugs from the 17 projects available in
Defects4J. After filtering out classes that cannot be handled by EvoSuite, we
ran our evaluation on 219 classes. Among those 219 classes, 44 come from different
versions of the same projects. Although involved in different bugs, those classes
might be similar and influence our results. To mitigate this threat, we performed
a qualitative analysis to confirm the effect of BBC .
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Construct validity. For unit test generation (RQ 1), we left the parameters of Dy-
naMOSA to their default values used by EvoSuite. Those values are commonly
used in the literature and it has been empirically shown that they give good
results [6, 23, 42, 43]. We can, however, not guarantee that these default values
are the best when used with BBC . Nevertheless, our results show that BBC can
improve search-based unit test generation when using the default parameter values.

For search-based crash reproduction (RQ 2), we used BBC with two different
fitness functions and left other parameters to their default values, used in previous
studies [18, 52]. Those studies do not investigate the sensitivity of search-based
crash reproduction to these values, and tuning these parameters should be under-
taken as future work. However, as for unit test generation, our results show that
BBC can improve search-based crash reproduction with the default parameter
values.

Conclusion validity. We based our conclusion on standard statistical analysis for
significance [5] with α = 0.01. Effects of multiple comparisons are mitigated by
adjusting p − values via Nemenyi’s post-hoc procedure [28, 41]. Furthermore, we
complemented our quantitative analysis with qualitative investigations to confirm
the observed effects.

Verifiability. Finally, we openly provide all our implementations: Botsing [14], as
an open-source crash reproduction tool, and the implementation of BBC in Evo-
Suite [12]. Also, the data and the processing scripts used to present the results
are available as two replication packages on Zenodo [11,12].

8 Related work

8.1 Handling implicit branches

Related to our approach, the Testability Transformations (TT) technique ad-
dresses the problem of implicit branches in unit test generation [24, 31]. This
strategy transforms the code to make implicit branches explicit by adding ex-
tra branches for error conditions and brings more guidance for the approach level
and branch distance heuristics. For code transformation of each class, TT needs
extra bytecode instrumentation. Since instrumenting some classes can be difficult
due to several known issues [21], instrumenting each class, which is coupled with
the class under test, may fail. Also, if we limit the testability transformations to
the class under test, the search process will not have any extra guidance in cases
of facing the implicit branches in the other classes.

In this study, we tried to evaluate TT in DynaMOSA. However, EvoSuite
failed before starting the search process for all the different classes under test.
After a deeper investigation, we found out that TT is not compatible with Dyna-
MOSA, which is the default search algorithm in EvoSuite. Moreover, TT faces
extra challenges while it needs extra bytecode instrumentation. In theory, given the
nature of TT and BBC , these two techniques can be applied simultaneously to the
search process. Hence, these two approaches can complement each other to achieve
high structural coverage and detect more faults. Studying the impact of using both
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TT and BBC on search-based test generation calls for further implementation and
efforts, and thereby, it is part of our future research agenda.

8.2 Search-based crash reproduction

Many previous papers have studied search-based crash reproduction approaches.
Two of these papers introduced new fitness functions to guide the search process.
EvoCrash [52] measures the distance of a generated test from a given crash, and
Rößler et al. [47] have proposed an approach called ReCore in order to guide
the crash reproduction search process using the given crash and core dump. We
have described both these approaches with their corresponding fitness functions
in Section 2.3; we consider them as baselines in our evaluation.

We have previously performed multiple studies on the search process intro-
duced in EvoCrash. One of our recent studies evaluated the crash reproduction
ability of EvoCrash against 200 real-world crashes [50]. We have also performed
an extensive manual analysis of the EvoCrash execution results to identify the
challenges in this search process. We have also carried out other studies on other
aspects of this search process to address some of the identified challenges. For
instance, we have proposed an approach called Behavioral Model Seeding [16]. In
this approach, the usages of objects in the source code of software under test are
transformed into transition systems, and these models are later used for generat-
ing more realistic solutions (i.e., tests) during the search process. Furthermore, in
other studies [15, 51], we rely on multi-objectivization techniques to improve the
diversity of the population during the search.

Each of the aforementioned studies show that the proposed approaches can
improve crash reproduction in their respective way. All of these studies use the
EvoCrash approach as baseline. We also used this approach (i.e., WeightedSum)
as a baseline, and our results are consistent with those of our prior studies [15,16]
(i.e., the no seeding configuration in [16], and the Single configuration in [15]).
However, it should be noted that these results can slightly differ from [51] and [50]
as the experiments for these studies are performed using the EvoCrash tool. We
previously re-implemented the EvoCrash approach (i.e., including the Weight-
edSum fitness function) in Botsing [14], a framework for search-based crash re-
production. Since Botsing is a well-tested and more mature tool compared to the
early versions of EvoCrash, it can achieve more stable results.

In this study, we applied BBC only on WeightedSum. We have not considered
other strategies introduced in our previous studies [15, 16, 50] because each of
these strategies works independently, and thereby can be applied simultaneously
on the search process. For instance, model seeding improves the test generation
capability of the search process, while BBC focuses on improving the guidance
that the second objectives can provide for the search process. Hence, both of them
can be activated during the crash reproduction process. If we wanted to apply
BBC for each of these strategies, we would have many configurations to assess
and compare. This kind of analysis is out of the scope of this study, which only
concentrates on BBC , and calls for further studies in our future work.

In addition, for the first time, we have also considered the STD fitness function
as one of the baselines [47]. As we explained in Section 2.3, STD is part of a main
fitness function inReCore. This sub-function measures the distance of a generated
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test from covering a given crash. Since this study considers that we only have the
crash stack trace and do not have any other information like core dumps, we only
implemented STD as an independent fitness function in Botsing.

9 Conclusion and future work

Approach level and branch distance are two well-known heuristics, widely used by
search-based test generation approaches to guide the search process towards cov-
ering target statements and branches. These heuristics measure the distance of a
generated test from covering the target using the coverage of control dependencies.
However, these two heuristics do not consider implicit branches. For instance, if a
test throws an exception during the execution of a non-branch statement, approach
level and branch distance cannot guide the search process to tackle this exception.
In this paper, we extended our previous work on Basic Block Coverage (BBC ), a
secondary objective addressing this issue. We complemented our previous study
into BBC on search-based crash reproduction with an investigation of BBC for
unit test generation.

Our results show that BBC improves the branch coverage for unit tests gener-
ated using DynaMOSA. Although small (∼1%), this improvement in the branch
coverage is systematic and leads to an increase of the output and implicit runtime
exception coverage, and of the diversity of runtime states. BBC also helps STDis-
tance and WeightedSum to reproduce 6 and 1 new crashes, respectively. Finally,
BBC significantly improves the efficiency in 26.6% and 13.7% of the crashes using
STDistance and WeightedSum, respectively.

An important implication of our work for future research is that we need to
investigate secondary search objectives that can be dynamically activated depend-
ing on the software under test. In this work, we applied the activation mecha-
nism for secondary search objectives (BBC ) based on user-provided (static) meta-
parameters. We have seen indications that such a mechanism can both improve
the search process and at the same time reduce the computational cost, yet it can
be counter-productive in some cases. We envision that BBC and other secondary
objectives would benefit from an adaptive activation, depending on the runtime
behavior (e.g., if the number of implicit runtime exceptions increases) or structure
(e.g., high coupling or deep inheritance hierarchy) of the classes under test.

In our future work, we will investigate the application of BBC for other search-
based test generation techniques (such as testability transformations, and system
and integration testing), as well as the implications of an increase of the diversity
of program states in the generated unit tests (e.g., for assertions generation).
We will also investigate how BBC can be dynamically activated using an adaptive
secondary objectives approach to reduce the computational overload on the search
process.
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