
It is not Only About Control Dependent Nodes:
Basic Block Coverage for Search-Based Crash

Reproduction

Pouria Derakhshanfar1[0000−0003−3549−9019], Xavier
Devroey1[0000−0002−0831−7606], and Andy Zaidman1[0000−0003−2413−3935]

Delft University of Technology, Delft, The Netherlands
p.derakhshanfar@tudelft.nl, x.d.m.devroey@tudelft.nl,

a.e.zaidman@tudelft.nl

Abstract. Search-based techniques have been widely used for white-box
test generation. Many of these approaches rely on the approach level and
branch distance heuristics to guide the search process and generate test
cases with high line and branch coverage. Despite the positive results
achieved by these two heuristics, they only use the information related
to the coverage of explicit branches (e.g., indicated by conditional and
loop statements), but ignore potential implicit branchings within basic
blocks of code. If such implicit branching happens at runtime (e.g., if an
exception is thrown in a branchless-method), the existing fitness func-
tions cannot guide the search process. To address this issue, we introduce
a new secondary objective, called Basic Block Coverage (BBC), which
takes into account the coverage level of relevant basic blocks in the con-
trol flow graph. We evaluated the impact of BBC on search-based crash
reproduction because the implicit branches commonly occur when try-
ing to reproduce a crash, and the search process needs to cover only a
few basic blocks (i.e., blocks that are executed before crash happening).
We combined BBC with existing fitness functions (namely STDistance
and WeightedSum) and ran our evaluation on 124 hard-to-reproduce
crashes. Our results show that BBC , in combination with STDistance
and WeightedSum, reproduces 6 and 1 new crashes, respectively. BBC
significantly decreases the time required to reproduce 26.6% and 13.7% of
the crashes using STDistance and WeightedSum, respectively. For these
crashes, BBC reduces the consumed time by 44.3% (for STDistance) and
40.6% (for WeightedSum) on average.

Keywords: automated crash reproduction · search-based software test-
ing · evolutionary algorithm · secondary objective.

1 Introduction

Various search-based techniques have been introduced to automate different
white-box test generation activities (e.g., unit testing [9, 10], integration test-
ing [7], system-level testing [2], etc.). Depending on the testing level, each of

2 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

these approaches utilizes dedicated fitness functions to guide the search process
and produce a test suite satisfying given criteria (e.g., line coverage, branch
coverage, etc.).

Fitness functions typically rely on control flow graphs (CFGs) to represent
the source code of the software under test [12]. Each node in a CFG is a basic
block of code (i.e., maximal linear sequence of statements with a single entry
and exit point without any internal branch), and each edge represents a possi-
ble execution flow between two blocks. Two well-known heuristics are usually
combined to achieve high line and branch coverages: the approach level and the
branch distance [12]. The former measures the distance between the execution
path of the generated test and a target basic block (i.e., a basic block containing
a statement to cover) in the CFG. The latter measures, using a set of rules, the
distance between an execution and the coverage of a true or false branch of a
particular predicate in a branching basic block of the CFG.

Both approach level and branch distance assume that only a limited number
of basic blocks (i.e., control dependent basic blocks [1]) can change the execution
path away from a target statement (e.g., if a target basic block is the true branch
of an conditional statement). However, basic blocks are not atomic due to the
presence of implicit branches [4] (i.e., branches occuring due to the exceptional
behavior of instructions). As a consequence, any basic block between the entry
point of the CFG and the target basic block can impact the execution of the
target basic block. For instance, a generated test case may stop its execution
in the middle of a basic block with a runtime exception thrown by one of the
statements of that basic block. In these cases, the search process does not benefit
from any further guidance from the approach level and branch distance.

Fraser and Arcuri [11] introduced testability transformation, which instru-
ments the code to guide the unit test generation search to cover implicit excep-
tions happening in the class under test. However, this approach does not guide
the search process in scenarios where an implicit branch happens in the other
classes called by the class under test. This is because of the extra cost added
to the process stemming from the calculation and monitoring of the implicit
branches in all of the classes, coupled with the class under test. For instance,
the class under test may be heavily coupled with other classes in the project,
thereby finding implicit branches in all of these classes can be expensive.

However, for some test case generation scenarios, like crash reproduction,
we aim to cover a limited number of paths, and thereby we only need to analyse
a limited number of basic blocks [5, 13, 16, 19, 21]. Current crash reproduction
approaches rely on information about a reported crash (e.g., stack trace, core
dump etc.) to generate a crash reproducing test case (CRT)

Among these approaches, search-based crash reproduction [16, 19] takes as
input a stack trace to guide the generation process. More specifically, the state-
ments pointed by the stack trace act as target statements for the approach level
and branch distance. Hence, current search-based crash reproduction techniques
suffer from the lack of guidance in cases where the involved basic blocks contain
implicit branches (which is common when trying to reproduce a crash).

Basic Block Coverage for Search-Based Crash Reproduction 3

Listing 1.1. Method fromMap from XWIKI version 8.1 [17]

402 public BaseCo l l ec t ion fromMap(Map< [. . .] > map, BaseCo l l e c t ion ob j e c t){
403 for (PropertyClass property : (Co l l e c t i on < [. . .] >) g e tF i e l dL i s t ()) {
404 St r ing name = property . getName () ;
405 Object formvalues = map . get (name) ;
406 i f (formvalues != null) {
407 BaseProperty objprop ;
408 i f (formvalues instanceof Str ing []) {
409 [. . .]
410 } else i f (formvalues instanceof Str ing) {
411 objprop = property . f romStr ing (formvalues . t oS t r ing ()) ;
412 } else {
413 objprop = property . fromValue (formvalues) ;
414 }
415 [. . .]
416 }}
417 return ob j e c t ;}

This paper introduces a novel secondary objective called Basic Block Cov-
erage (BBC) to address this guidance problem in crash reproduction. BBC
helps the search process to compare two generated test cases with the same dis-
tance (according to approach level and branch distance) to determine which one
is closer to the target statement. In this comparison, BBC analyzes the coverage
level, achieved by each of these test cases, of the basic blocks in between the
closest covered control dependent basic block and the target statement.

To assess the impact of BBC on search-based crash reproduction, we re-
implemented the existing STDistance [16] and WeightedSum [19] fitness func-
tions and empirically compared their performance with and without using BBC
(4 configurations in total). We applied these four crash reproduction configura-
tions to 124 hard-to-reproduce crashes introduced as JCrashPack [17], a crash
benchmark used by previous crash reproduction studies [8]. We compare the
performances in terms of effectiveness in crash reproduction ratio (i.e., percent-
age of times that an approach can reproduce a crash) and efficiency (i.e., time
required by for reproducing a crash).

Our results show that BBC significantly improves the crash reproduction ra-
tio over the 30 runs in our experiment for respectively 5 and 1 crashes when com-
pared to using STDistance and WeightedSum without any secondary objective.
Also, BBC helps these two fitness functions to reproduce 6 (for STDistance)
and 1 (for WeightedSum) crashes that they could not be reproduced without
secondary objective. Besides, on average, BBC increases the crash reproduction
ratio of STDistance by 4%. Applying BBC also significantly reduces the time
consumed for crash reproduction guided by STDistance and WeightedSum in
33 (26.6% of cases) and 14 (13.7% of cases) crashes, respectively, while it was
significantly counter productive in only one case. In cases where BBC has a
significant impact on efficiency, this secondary objective improves the average
efficiency of STDistance and WeightedSum by 40.6% and 44.3%, respectively.

2 Background

4 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

Entry

403

417 404-406

407-408

409
410

411 413

415

Exit

Fig. 1. CFG for method fromMap

2.1 Coverage Distance Heuristics

Many structural-based search-based test generation approaches mix the branch
distance and approach level heuristics to achieve a high line and branch cover-
age [12]. These heuristics measure the distance between a test execution path
and a specific statement or a specific branch in the software under test. For that,
they rely on the coverage information of control dependent basic blocks, i.e., basic
blocks that have at least one outgoing edge leading the execution path toward
the target basic block (containing the targeted statement) and at least another
outgoing edge leading the execution path away from the target basic block. As
an example, Listing 1.1 shows the source code of method fromMap in XWIKI1,
and Figure 1 contains the corresponding CFG. In this graph, the basic block 409

is control dependent on the basic block 407-408 because the execution of line
409 is dependent on the satisfacation of the predicate at line 408 (i.e., line 409
will be executed only if elements of array formvalues are String).

The approach level is the number of uncovered control dependent basic blocks
for the target basic block between the closest covered control dependent basic
block and the target basic block. The branch distance is calculated from the
predicate of the closest covered control dependent basic block, based on a set
of predefined rules. Assuming that the test t covers only line 403 and 417, and
our target line is 409, the approach level is 2 because two control dependent
basic blocks (404-406 and 407-408) are not covered by t. The branch distance
the predicate in line 403 (the closest covered control dependency of node 409)
is measured based on the rules from the establised technique [12].

To the best of our knowledge, there is no related work studying the extra
heuristics helping the combination of approach level and branch distance to im-
prove the coverage. Most related to our work, Panichella et al. [14] and Rojas
et al. [15] introduced two heuristics called infection distance and propagation dis-
tance, to improve the weak mutation score of two generated test cases. However,

1 https://github.com/xwiki

Basic Block Coverage for Search-Based Crash Reproduction 5

these heuristics do not help the search process to improve the general statement
coverage (i.e., they are effective only after covering a mutated statement).

In this paper, we introduce a new secondary objective to improve the state-
ment coverage achieved by fitness functions based on the approach level and
branch distance, and analyze the impact of this secondary objective on search-
based crash reproduction.

Listing 1.2. XWIKI-13377 crash stack trace [17]

0 java.lang.ClassCastException: [...]
1 at [...]. BaseStringProperty.setValue(BaseStringProperty.java :45)
2 at [...]. PropertyClass.fromValue(PropertyClass.java :615)
3 at [...]. BaseClass.fromMap(BaseClass.java :413)
4 [...]

2.2 Search-based Crash Reproduction

After a crash is reported, one of the essential steps of software debugging is to
write a Crash Reproducing Test case (CRT) to make the crash observable
to the developer and help them in identifying the root cause of the failure [22].
Later, this CRT can be integrated into the existing test suite to prevent future
regressions. Despite the usefulness of a CRT, the process of writing this test
can be labor-intensive and time-taking [19]. Various techniques have been intro-
duced to automate the reproduction of a crash [5,13,16,19,21], and search-based
approaches (EvoCrash [19] and ReCore [16]) yielded the best results [19].

EvoCrash. This approach utilizes a single-objective genetic algorithm to
generate a CRT from a given stack trace and a target frame (i.e., a frame in
the stack trace that its class will be used as the class under test). The CRT
generated by EvoCrash throws the same stack trace as the given one up to the
target frame. For example, by passing the stack trace in Listing 1.2 and target
frame 3 to EvoCrash, it generates a test case reproducing the first three frames
of this stack trace (i.e., thrown stack trace is identical from line 0 to 3).

EvoCrash uses a fitness function, called WeightedSum, to evaluate the can-
didate test cases. WeightedSum is the sum scalarization of three components:
(i) the target line coverage (ds), which measures the distance between the
execution trace and the target line (i.e., the line number pointed to by the tar-
get frame) using approach level and branch distance; (ii) the exception type
coverage (de), determining whether the type of the triggered exception is the
same as the given one; and (iii) the stack trace similarity (dtr), which indi-
cates whether the stack trace triggered by the generated test contains all frames
(from the most in-depth frame up to the target frame) in the given stack trace.

Definition 1 (WeightedSum [19]). For a given test case execution t, the
WeightedSum (ws) is defined as follows:

ws(t) =

3× ds(t) + 2×max(de) + max(dtr) if line not reached
3×min(ds) + 2× de(t) + max(dtr) if line reached
3×min(ds) + 2×min(de) + dtr(t) if exception thrown

(1)

6 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

Where ds(t) ∈ [0, 1] indicates how far t is from reaching the target line and
is computed using the normalized approach level and branch distance: ds(t) =
‖approachLevels(t) + ‖branchDistances(t)‖‖. Also, de(t) ∈ {0, 1} shows if the
type of the exception thrown by t is the same as the given stack trace (0) or
not (1). Finally, dtr(t) ∈ [0, 1] measures the stack trace similarity between the
given stack trace and the one thrown by t. max(f) and min(f) denote the
maximum and minimum possible values for a function f , respectively. In this
fitness function, de(t) and dtr(t) are only considered in the satisfaction of two
constraints: (i) exception type coverage is relevant only when we reach the target
line and (ii) stack trace similarity is important only when we both reach the
target line and throw the same type of exception.

As an example, when applying EvoCrash on the stack trace from Listing 1.2
with the target frame 3, WeightedSum first checks if the test cases generated by
the search process reach the statement pointed to by the target frame (line 413
in class BaseClass in this case). Then, it checks if the generated test can throw
a ClassCastException or not. Finally, after fulfilling the first two constraints,
it checks the similarity of frames in the stack trace thrown by the generated test
case against the given stack trace in Listing 1.2.

EvoCrash uses guided initialization, mutation and single-point crossover
operators to ensure that the target method (i.e., the method appeared in the
target frame) is always called by the different tests during the evolution process.

According to a recent study, EvoCrash outperforms other non-search-based
crash reproduction approaches in terms of effectiveness in crash reproduction
and efficiency [19]. This study also shows the helpfulness of tests generated by
EvoCrash for developers during debugging.

In this paper, we assess the impact of BBC as the secondary objective in the
EvoCrash search process.

ReCore. This approach utilizes a genetic algorithm guided by a single fitness
function, which has been defined according to the core dump and the stack trace
produced by the system when the crash happened. To be more precise, this fitness
function is a sum scalarization of three sub-functions: (i) TestStackTraceDis-
tance, which guides the search process according to the given stack trace; (ii)
ExceptionPenalty, which indicates whether the same type of exception as the
given one is thrown or not (identical to ExceptionCoverage in EvoCrash); and
(iii) StackDumpDistance, which guides the search process by the given core
dump.

Definition 2 (TestStackTraceDistance [16]). For a given test case execu-
tion t, the TestStackTraceDistance (STD) is defined as follows:

STD(R, t) = |R| − lcp− (1− StatementDistance(s)) (2)

Where |R| is the number of frames in the given stack trace. And lcp is the longest
common prefix frames between the given stack trace and the stack trace thrown
by t. Concretely, |R| − lcp is the number of frames not covered by t. More-
over, StatementDistance(s) is calculated using the sum of the approach level
and the normalized branch distance to reach the statement s, which is pointed

Basic Block Coverage for Search-Based Crash Reproduction 7

to by the first (the utmost) uncovered frame by t: StatementDistance(s) =
approachLevels(t) + ‖branchDistances(t)‖.

Since using runtime data (such as core dumps) can cause significant over-
head [5] and leads to privacy issues [13], the performance of ReCore in crash
reproduction was not compared with EvoCrash in prior studies [19]. Although,
two out of three fitness functions in ReCore use only the given stack trace to
guide the search process. Hence, this paper only considers TestStackTraceDis-
tance + ExceptionPenalty (called STDistance hereafter).

As an example, when applying ReCore with STDistance on the stack trace
in Listing 1.2 with target frame 3, first, STDistance determines if the generated
test covers the statement at frame 3 (line 413 in class BaseClass). Then, it
checks the coverage of frame 2 (line 615 in class PropertyClass). After covering
the first two frames by the generated test case, it checks the coverage of the state-
ment pointed to by the deepest frame (line 45 in class BaseStringProperty).
For measuring the coverage of each of these statements, STDistance uses the
approach level and branch distance. After covering all of the frames, this fitness
function checks if the the generated test throws ClassCastException in the
deepest frame.

In this study, we perform an empirical evaluation to assess the performance
of crash reproduction using STDistance with and without BBC as the secondary
objective in terms of effectiveness in crash reproduction and efficiency.

3 Basic Block Coverage

3.1 Motivating Example

During the search process, the fitness of a test case is evaluated using a fitness
function, either WeightedSum or STDistance. Since the search-based crash re-
production techniques model this task to a minimization problem, the generated
test cases with lower fitness values have a higher chance of being selected and
evolved to generate the next generation. One of the main components of these
fitness functions is the coverage of specific statements pointed by the given stack
trace. The distance of the test case from the target statement is calculated using
the approach level and branch distance heuristics. As we have discussed in Sec-
tion 2.1, the approach level and branch distance cannot guide the search process
if the execution stops because of implicit branches in the middle of basic blocks
(e.g., a thrown NullPointerException during the execution of a basic block).
As a consequence, these fitness functions may return the same fitness value for
two tests, although the tests do not cover the same statements in the block of
code where the implicit branching happens.

For instance, assume that the search process for reproducing the crash in
Figure 1.2 generates two test cases T1 and T2. The first step for these test
cases is to cover frame 3 in the stack trace (line 413 in BaseClass). However,
T1 stops the execution at line 404 due to a NullPointerException thrown in
method getName, and T2 throws a NullPointerException at line 405 because

8 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

Listing 1.3. BBC secondary objective computation algorithm

1 input: test T1, test T2, String method , int line
2 output: int
3 begin
4 FCB1 ← fullyCoveredBlocks(T1,method ,line);
5 FCB2 ← fullyCoveredBlocks(T2,method ,line);
6 SCB1 ← semiCoveredBlocks(T1,method ,line);
7 SCB2 ← semiCoveredBlocks(T2,method ,line);
8

9 if (FCB1 ⊂ FCB2 ∧ SCB1 ⊂ SCB2) ∨ (FCB2 ⊂ FCB1 ∧ SCB2 ⊂ SCB1):
10 return size(FCB2 ∪ SCB2) - size(FCB1 ∪ SCB1)
11 else if FCB1 = FCB2 ∧ SCB1 = SCB2:
12 closestBlock ← closestSemiCoveredBlocks(SCB1, method , line);
13 coveredLines1 ← getCoveredLines(T1,closestBlock);
14 coveredLines2 ← getCoveredLines(T2,closestBlock);
15 return size(coveredLines2) - size(coveredLines1);
16 else:
17 return 0;
18 end

it passes a null value input argument to map. Even though T2 covers more lines,
the combination of approach level and branch distance returns the same fitness
value for both of these test cases: approach level is 2 (nodes 407-408 and 410)
and branch distance is measured according to the last predicate. This is because
these two heuristics assume that each basic block is atomic, and by covering line
404, it means that lines 405 and 406 are covered, as well.

3.2 Secondary Objective

The goal of the Basic Block Coverage (BBC) secondary objective is to prioritize
the test cases with the same fitness value according to their coverage within
the basic blocks between the closest covered control dependency and the target
statement. At each iteration of the search algorithm, test cases with the same
fitness value are compared with each other using BBC . Listing 1.3 presents
the pseudo-code of the BBC calculation. Inputs of this algorithm are two test
cases T1 and T2, which both have the same fitness value (calculated either
using WeightedSum or STDistance), as well as line number and method name
of the target statement. This algorithm compares the coverage of basic blocks
on the path between the entry point of the CFG of the given method and the
basic block that contains the target statement (called effective blocks hereafter)
achieved by T1 and T2. If BBC determines there is no preference between these
two test cases, it returns 0. Also, it returns a value < 0 if T1 has higher coverage
compared to T2, and vice versa. A higher absolute value of the returned integer
indicates a bigger distance between the given test cases.

In the first step, BBC detects the effective blocks fully covered by each given
test case (i.e., the test covers all of the statements in the block) and saves them
in two sets called FCB1 and FCB2 (lines 4 and 5 in Listing 1.3). Then, it detects the
effective blocks semi-covered by each test case (i.e., blocks where the test covers
the first line but not the last line) and stores them in SCB1 and SCB2 (lines 6
and 7). The semi-covered blocks indicate the presence of implicit branches. Next,

Basic Block Coverage for Search-Based Crash Reproduction 9

BBC checks if both fully and semi-covered blocks of one of the tests are subsets
of the blocks covered by the other test (line 9). In this case, the test case that
covers the most basic blocks is the winner. Hence, BBC returns the number of
blocks only covered by the winner test case (line 10). If BBC determines T2 wins
over T1, the returned value will be positive, and vice versa.

If none of the test cases subsumes the coverage of the other one, BBC checks
if the blocks covered by T1 and T2 are identical (line 11). If this is the case,
BBC checks if one of the tests has a higher line coverage for the semi-covered
blocks closest to the target statement (lines 12 to 15). If this is the case, BBC
will return the number of lines in this block covered only by the winning test
case. If the lines covered are the same for T1 and T2 (i.e., coveredLines1 and
coveredLines2 have the same size), there is no difference between these two
test cases and BBC returns value 0 (line 15). Finally, if each of the given tests
has a unique covered block in the given method (i.e., the tests cover different
paths in the method), BBC cannot determine the winner and returns 0 (lines
16 and 17) because we do not know which path leads to the crash reproduction.

Example. When giving two tests with the same fitness value (calculated by
the primary objective) T1 and T2 from our motivation example to BBC with
target method fromMap and line number 413 (according to the frame 3 of Figure
1.2), this algorithm compares their fully and semi-covered blocks with each other.
In this example both T1 and T2 cover the same basic blocks: the fully covered
block is 403 and the semi-covered block is 404-406. So, BBC checks the number
of lines covered by T1 and T2 in block 404-406. Since T1 stopped its execution
at line 404, the number of lines covered by this test is 1. In contrast, T2 managed
to execute two lines (404 and 405). Hence, BBC returns size(coveredLines2)−
size(coveredLines1) = 1. The positive return value indicates that T2 is closer to
the target statement and therefore, it should have higher chance to be selected
for the next generation.

Branchless Methods. BBC can also be helpful for branchless methods.
Since there are no control dependent nodes in branchless methods, approach level
and branch distance cannot guide the search process in these cases. For instance,
methods from frames 1 and 2 in Figure 1.2 are branchless. So, we expect that
BBC can help the current heuristics to guide the search process toward covering
the most in-depth statement.

4 Empirical Evaluation

To assess the impact of BBC on search-based crash reproduction, we perform
an empirical evaluation to answer the following research questions:

RQ1: What is the impact of BBC on crash reproduction in terms of effec-
tiveness in crash reproduction ratio?

RQ2: What is the impact of BBC on the efficiency of crash reproduction?
In these two RQs we want to evaluate the effect of BBC on the existing

fitness functions, namely STDistance and WeightedSum, from two perspectives:
effectiveness on crash reproduction ratio and efficiency.

10 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

4.1 Setup

Implementation. Since ReCore and EvoCrash are not openly available, we
implement BBC in Botsing, an extensible, well-tested, and open-source search-
based crash reproduction framework already implementing the WeightedSum
fitness function and the guided initialization, mutation, and crossover operators.
We also implement STDistance (ReCore fitness function) in this tool. Botsing
relies on EvoSuite [9], an open-source search-based tool for unit test generation,
for code instrumentation and test case generation by using evosuite-client

as a dependency. We also implement the STDistance fitness function used as
baseline in this paper.

Crash selection. We select crashes from JCrashPack [17], a benchmark
containing hard-to-reproduce Java crashes. We apply the two fitness functions
with and without using BBC as a secondary objective to 124 crashes, which have
also been used in a recent study [8]. These crashes stem from six open-source
projects: JFreeChart, Commons-lang, Commons-math, Mockito, Joda-time, and
XWiki. For each crash, we apply each configuration on each frame of the crash
stack traces. We repeat each execution 30 times to take randomness into account,
for a total number of 114,120 independent executions. We run the evaluation on
two servers with 40 CPU-cores, 128 GB memory, and 6 TB hard drive.

Parameter settings. We run each search process with five minutes budget
and set the population size to 50 individuals, as suggested by previous studies
on search-based test generation [14]. Moreover, as recommended in prior studies
on search-based crash reproduction [19], we use the guided mutation with a
probability pm = 1/n (n = length of the generated test case), and the guided
crossover with a probability pc = 0.8 to evolve test cases. We do note that
prior studies do not investigate the sensitivity of the crash reproduction to these
probabilities. Tuning these parameters should be undertaken as future works.

4.2 Data Analysis

To evaluate the crash reproduction ratio (i.e., the ratio of success in crash re-
production in 30 rounds of runs) of different assessed configurations (RQ1), we
follow the same procedure as previous studies [8,18]: for each crash C, we detect
the highest frame that can be reproduced by at least one of the configurations
(rmax). We examine the crash reproduction ratio of each configuration for crash
C targeting frame rmax. Since crash reproduction data has a dichotomic distri-
bution (i.e., an algorithm reproduces a crash C from its rmax or not), we use
the Odds Ratio (OR) to measure the impact of each algorithm in crash repro-
duction ratio. A value OR > 0 in a comparison between a pair of factors (A,B)
indicates that the application of factor A increases the crash reproduction ratio,
while OR < 0 indicates the opposite. Also, a value of OR = 0 indicates that
both of the factors have the same performance. We apply Fisher’s exact test,
with α = 0.01 for the Type I error, to assess the significance of results.

To evaluate the efficiency of different configurations (RQ2), we analyze the
time spent by each configuration on generating a crash reproducing test case.

Basic Block Coverage for Search-Based Crash Reproduction 11

0.00

0.25

0.50

0.75

1.00

RecoreSTDistance RecoreSTDistance+BBC

Configurations

R
ep

ro
du

ct
io

n
R

at
io

 (
pe

rc
)

(a) STDistance

0.00

0.25

0.50

0.75

1.00

WeightedSum WeightedSum+BBC

Configurations

R
ep

ro
du

ct
io

n
R

at
io

 (
pe

rc
)

(b) WeightedSum

Fig. 2. Crash reproduction ratio (out of 30 executions) of fitness functions with and
without BBC . (�) denotes the arithmetic mean and the bold line (—) is the median.

0

5

RecoreSTDistance RecoreSTDistance+BBC
Winner configuration

of

 c
ra

sh
es

(a) STDistance

0

1

WeightedSum WeightedSum+BBC
Winner configuration

of

 c
ra

sh
es

(b) WeightedSum

Fig. 3. Pairwise comparison of impact of BBC on each fitness function in terms of
crash reproduction ratio with a statistical significance < 0.01.

We do note that the extra pre-analysis and basic block coverage in BBC is
considered in the spent time. Since measuring efficiency is only possible for the
reproduced crashes, we compare the efficiency of algorithms on the crashes that
are reproduced at least once by one of the algorithms. In executions that an
algorithm failed to reproduce a crash, we assume that it reached the maximum
allowed budget (5 minutes).

In this study, we use the Vargha-Delaney Â12 statistic [20] to examine the
effect size of differences between using and not using BBC for efficiency. For a
pair of factors (A,B) a value of Â12 > 0.5 indicates that A reproduces the target
crash in a longer time, while a value of Â12 < 0.5 shows the opposite. Also,
Â12 = 0.5 means that there is no difference between the factors. In addition,
to assess the significance of effect sizes (Â12), we utilize the non-parametric
Wilcoxon Rank Sum test, with α = 0.01 for the Type I error.

A replication package of this study has been uploaded to Zenodo [6].

5 Results

Crash reproduction effectiveness (RQ1) Figure 2 presents the crash re-
production ratio of the search processes guided by STDistance (Figure 2a) and
WeightedSum (Figure 2b), with and without BBC as a secondary objective. This

12 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

00
1 1

1616

RecoreSTDistance RecoreSTDistance+BBC
Configurations

of

 c
ra

sh
es

VD_magnitude large medium small

(a) STDistance

0
1

3

14

WeightedSum WeightedSum+BBC
Configurations

of

 c
ra

sh
es

(b) WeightedSum

Fig. 4. Pairwise comparison of impact of BBC on each fitness function in terms of
efficiency with a small, medium, and large effect size Â12 < 0.5 and a statistical signif-
icance < 0.01.

figure shows that the crash reproduction ratio of WeightedSum improves slightly
when using BBC . However, on average, the crash reproduction ratio achieved
by STDistance + BBC is 4% better than STDistance without BBC . Also, the
lower quartile of crash reproduction ratio using STDistance has been improved
by about 30% by utilizing BBC .

Figure 3 depicts the number of crashes, for which BBC has a significant im-
pact on the effectiveness of crash reproduction guided by STDistance (Figure 3a)
and WeightedSum (Figure 3b). BBC significantly improves the crash reproduc-
tion ratio in 5 and 1 crashes for fitness functions STDistance and WeightedSum,
respectively. Importantly, the application of this secondary objective does not
have any significant negative effect on crash reproduction. Also, BBC helps
STDistance and WeightedSum to reproduce 6 and 1 new crashes, respectively
(in at least one out of 30 runs), that could not be reproduced without BBC .

Summary. BBC slightly improves the crash reproduction ratio when using
the WeightedSum fitness function. However, on average, BBC achieves a higher
improvement when used as a secondary objective with the STDistance function.

Crash reproduction efficiency (RQ2) Figure 4 illustrates the number of
crashes, in which BBC significantly affects the time consumed by the crash re-
production search process. As Figure 4b shows, BBC significantly improves the
speed of crash reproduction guided by WeightedSum in 17 crashes (13.7% of
cases), while it lost efficiency in the reproduction of only one crash. In cases
that BBC significantly improves the efficiency of WeightedSum, on average, the
efficiency is improved for about 40%. Moreover, Figure 4a shows that BBC has a
higher positive impact on the efficiency of the search process guided by STDis-
tance. It significantly reduces the time consumed by the search process in 33
crashes (26.6% of cases), while it had an adverse impact on the reproduction ef-
ficiency of only one crash. In cases that BBC significantly improves the efficiency
of STDistance, on average, the efficiency is improved for about 53%.

Figure 5 depicts the average improvements in the efficiency and effect sizes
for crashes where the difference in the consumed budget when using BBC or not

Basic Block Coverage for Search-Based Crash Reproduction 13

●

●

0.2

0.4

0.6

0.8

RecoreSTDistance+BBC

ef
fe

ct
 s

iz
e

●

●
−0.5

0.0

0.5

1.0

RecoreSTDistance+BBC

Im
pr

ov
em

en
t (

pe
rc

)
(a) STDistance

●

0.0

0.2

0.4

0.6

WeightedSum+BBC

ef
fe

ct
 s

iz
e

●

−1.0

−0.5

0.0

0.5

1.0

WeightedSum+BBC

Im
pr

ov
em

en
t (

pe
rc

)

(b) WeightedSum

Fig. 5. The effect size and the average improvement achieved by BBC on each of the
fitness functions in cases that BBC makes a significant difference in terms of efficiency.

was significant. According to the right-side plot in Figure 5a, BBC reduces the
time consumed by the search process guided by STDistance up to 98% (being
40.6% on average). Also, the left-side plot indicates that the average effect size of
differences between STDistance and STDistance +BBC (calculated by Vargha-
Delaney) is 0.26 (lower than 0.5 indicates that BBC improved the efficiency).
Figure 5b shows that the average improvement (right-side plot) achieved by
using BBC as the second objective of WeightedSum is 44.3%, and the average
effect size (left-side plot), in terms of the crash reproduction efficiency, is 20.5.

Summary. BBC improves the efficiency of the search process with both of
the crash reproduction fitness functions.

6 Discussion

Generally, using BBC as secondary objective leads to a better crash reproduction
ratio and higher efficiency in search-based crash reproduction. This improvement
is achieved thanks to the additional ability to guide the search process when
facing implicit branches during the search. Combining BBC with STDistance
shows an important improvement compared to the combination of BBC with
WeightedSum. This result was expected, since only one (out of three) component
in WeightedSum is allocated to line coverage, and thereby most parts of the
fitness function do not use the approach level and branch distance heuristics. In
contrast, STDistance uses the approach level and branch distance to cover each
of the frames in the given stack trace incrementally.

Our results show that BBC helps the crash reproduction process to reproduce
new crashes. For instance, the crash that we used in this study (XWIKI-13377)
can be reproduced only by STDistance + BBC . Considering our results, we
believe that the usage of approach level and branch distance can be improved
in other areas of search-based test generation (e.g., unit testing) by taking the
implicit branches into account. However, it can be expensive to apply this sec-
ondary objective in cases where the search process tries to cover multiple paths.
Assessing the impact of BBC on other search-based test generation techniques
is part of our future research agenda.

14 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

Threats to validity. We cannot guarantee that our implementation of
Botsing is bug-free. However, we mitigated this threat by testing our tool and
manually examining some samples of the results. We cannot ensure that our
results are generalizable to all crashes. However, we used an earlier established
benchmark for crash reproduction containing 124 hard-to-reproduce crashes pro-
voked by real bugs in a variety of open-source applications. Moreover, by follow-
ing the guidelines of the related literature [3], we executed each configuration 30
times to take the randomness of the search process into account. Finally, we pro-
vide Botsing as an open-source tool. Also, the data and the processing scripts
used to present the results are available as a replication package on Zenodo [6].

7 Conclusion and Future work

Approach level and branch distance are two well-known heuristics, widely used
by search-based test generation approaches to guide the search process towards
covering target statements and branches. These heuristics measure the distance
of a generated tests from covering the target using the coverage of control de-
pendencies. However, these two heuristics do not consider implicit branches. For
instance, if a test throws an exception during the execution of a non-branch
statement, approach level and branch distance cannot guide the search process
to tackle this exception. In this paper, we introduced a secondary objective
called BBC to address this issue. To assess BBC , we used it for search-based
crash reproduction due to the high chance of implicit branch occurrence and the
limited number of basic blocks that should be covered. Our results show that
BBC helps STDistance and WeightedSum to reproduce 6 and 1 new crashes,
respectively. Also, BBC significantly improves the efficiency in 26.6% and 13.7%
of the crashes using STDistance and WeightedSum, respectively.

In our future work, we will investigate the application of BBC for other
search-based test generation techniques (such as unit and integration).

Acknowledgements

The authors would like to thank Carolin Brandt for her valuable feedback on
the paper. This research was partially funded by the EU Horizon 2020 ICT-10-
2016-RIA “STAMP” project (No.731529).

References

1. Allen, F.E.: Control flow analysis. vol. 5, pp. 1–19. ACM, New York, NY, USA
(1970). https://doi.org/10.1145/390013.808479

2. Arcuri, A.: RESTful API automated test case generation with evomaster. ACM
Transactions on Software Engineering and Methodology (TOSEM) 28(1), 1–37
(2019)

3. Arcuri, A., Briand, L.: A Hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Software Testing, Verification and
Reliability 24(3), 219–250 (2014). https://doi.org/10.1002/stvr.1486

Basic Block Coverage for Search-Based Crash Reproduction 15

4. Borba, P., Cavalcanti, A., Sampaio, A., Woodcook, J.: Testing techniques in
software engineering: Second pernambuco summer school on software engineer-
ing, PSSE 2007, Recife, Brazil, December 3-7, 2007, Revised Lectures, vol. 6153.
Springer (2010)

5. Chen, N., Kim, S.: STAR: Stack trace based automatic crash reproduction via
symbolic execution. IEEE Trans. on Software Engineering 41(2), 198–220 (2015)

6. Derakhshanfar, P., Devroey, X.: Replication package of Basic Block Coverage
for Search-Based Crash Reproduction. https://doi.org/10.5281/zenodo.3953519,
https://doi.org/10.5281/zenodo.3953519

7. Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman, A., van Deursen, A.:
Towards integration-level test case generation using call site information. arXiv
preprint arXiv:2001.04221 (2020)

8. Derakhshanfar, P., Devroey, X., Perrouin, G., Zaidman, A., van Deursen, A.:
Search-based crash reproduction using behavioural model seeding. Software Test-
ing Verification and Reliability (2020). https://doi.org/10.1002/stvr.1733

9. Fraser, G., Arcuri, A.: Evosuite: Automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. pp. 416–419 (2011)

10. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2), 276–291 (2012)

11. Fraser, G., Arcuri, A.: 1600 faults in 100 projects: Automatically finding faults
while achieving high coverage with evosuite. Empirical software engineering 20(3),
611–639 (2015)

12. McMinn, P.: Search-based software test data generation: a survey. Software testing,
Verification and reliability 14(2), 105–156 (2004)

13. Nayrolles, M., Hamou-Lhadj, A., Tahar, S., Larsson, A.: Jcharming: A bug repro-
duction approach using crash traces and directed model checking. In: Int’l Conf.
on Software Analysis, Evolution, and Reengineering (SANER). pp. 101–110. IEEE
(2015)

14. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE
Transactions on Software Engineering 44(2), 122–158 (2018)

15. Rojas, J.M., Campos, J., Vivanti, M., Fraser, G., Arcuri, A.: Combining multiple
coverage criteria in search-based unit test generation. In: International Symposium
on Search Based Software Engineering (SSBSE). pp. 93–108. Springer (2015)

16. Rößler, J., Zeller, A., Fraser, G., Zamfir, C., Candea, G.: Reconstructing core
dumps. In: Proc. International Conference on Software Testing, Verification and
Validation (ICST). pp. 114–123. IEEE (2013)

17. Soltani, M., Derakhshanfar, P., Devroey, X., van Deursen, A.: A benchmark-based
evaluation of search-based crash reproduction. Empirical Software Engineering
25(1), 96–138 (jan 2020)

18. Soltani, M., Derakhshanfar, P., Panichella, A., Devroey, X., Zaidman, A., van
Deursen, A.: Single-objective versus multi-objectivized optimization for evolution-
ary crash reproduction. In: Symposium on Search-Based Software Engineering (SS-
BSE). LNCS, vol. 11036, pp. 325–340. Springer (2018)

19. Soltani, M., Panichella, A., Van Deursen, A.: Search-based crash reproduction and
its impact on debugging. IEEE Trans. on Software Engineering pp. 1–1 (2018)

20. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. Journal of Educational and Be-
havioral Statistics 25(2), 101–132 (2000)

16 Pouria Derakhshanfar , Xavier Devroey, and Andy Zaidman

21. Xuan, J., Xie, X., Monperrus, M.: Crash reproduction via test case mutation: Let
existing test cases help. In: Proceedings of the Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). pp. 910–913. ACM (2015)

22. Zeller, A.: Why programs fail, Second Edition: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edn. (2009)

