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SUMMARY

Search-based crash reproduction approaches assist developers during debugging by generating a test case
which reproduces a crash given its stack trace. One of the fundamental steps of this approach is creating
objects needed to trigger the crash. One way to overcome this limitation is seeding: using information about
the application during the search process. With seeding, the existing usages of classes can be used in the
search process to produce realistic sequences of method calls which create the required objects. In this
study, we introduce behavioral model seeding: a new seeding method which learns class usages from both
the system under test and existing test cases. Learned usages are then synthesized in a behavioral model (state
machine). Then, this model serves to guide the evolutionary process. To assess behavioral model-seeding, we
evaluate it against test-seeding (the state-of-the-art technique for seeding realistic objects) and no-seeding
(without seeding any class usage). For this evaluation, we use a benchmark of 122 hard-to-reproduce crashes
stemming from six open-source projects. Our results indicate that behavioral model-seeding outperforms
both test seeding and no-seeding by a minimum of 6% without any notable negative impact on efficiency.
Copyright c© 2019 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The starting point of any debugging activity is to try to reproduce the problem reported by a user
in the development environment [1, 2]. In particular, for Java programs, when a crash occurs, an
exception is thrown. A developer strives to reproduce it to understand its cause, then fix the bug,
and finally add a (non-)regression test to avoid reintroducing the bug in future versions.

Manual crash reproduction can be a challenging and labor-intensive task for developers: it is often
an iterative process that requires setting the debugging environment in a similar enough state as the
environment in which the crash occurred [1]. Moreover, it requires the developer to have knowledge
of the system’s components involved in the crash. To help developers in their task, several automated
crash reproduction methods, relying on different techniques, have been proposed [3, 4, 5, 6, 7, 8, 9].

One of the most promising approaches is to generate crash-reproducing test cases using search-
based software testing [8, 9]. This approach benefits from a guided genetic algorithm which searches
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for the crash reproducing test case. Soltani et al. performed an empirical evaluation of EVOCRASH
and reported that it outperforms other crash reproduction approaches [8].

One of the challenges of search-based crash reproduction is to bring enough information into
the test generation process. For instance, complex elements (like strings with a particular format or
objects with a complex structure) are hard to initialize without additional information. This can lead
to two different issues: first, complex elements take more time to be generated, which can prevent
finding a solution within the time budget allocated to the search; and second, elements that require
complex initialization procedures (e.g., specific sequences of method calls to set up an object) may
prevent starting the search if the search-based approach is unable to create an initial population.

Rojas et al. [10] demonstrated that seeding is beneficial for search-based unit test generation.
More specifically, by analyzing source code (collecting information that relates to numeric values,
string values, and class types) and existing tests (collecting information about the behavior of the
objects in the test) and making them available for the search process, the overall coverage of the
generated test improves. However, current seeding strategies focus on collecting and reusing values
and object states as-is.

In this paper, we define, implement, and evaluate a new seeding strategy, called behavioral
model seeding, which abstracts behavior observed in the source code and test cases using transition
systems. The transition systems represent the (observed) usages of the classes and are used during
the search to generate objects and sequences of method calls on those objects.

Behavioral model seeding takes advantage of the advances made by the model-based testing
community [11] and uses them to enhance search-based software testing. This seeding strategy
helps the search process: (i) it provides the possibility of covering the given crash by collecting
information from various resources (e.g., source code and existing test cases) to infer a unique
transition system; and (ii) it finds the most beneficial seeding candidates, for guiding the crash
reproduction search process, by defining a rational procedure for the selection of abstract object
behaviors from the inferred models.

We also adapt test seeding, introduced by Rojas et al., for search-based crash reproduction.
Contrarily to model seeding, test seeding relies only on the states of the objects observed during
the execution of the test to seed a search process. Unlike search-based unit test generation, search-
based crash reproduction does not seek to maximize the coverage of the class, but rather generates
a specific test case able to reproduce a crash. Since test seeding has only been applied to search-
based unit test generation [10], we first evaluate the use of test seeding for crash reproduction.
We then compare the results of test seeding with the application of model seeding, which combines
information on the objects states coming from the test cases with information collected in the source
code, to search-based crash reproduction.

We performed an evaluation on 122 crashes from 6 open-source applications to answer the
following research questions:

RQ1 What is the influence of test seeding used during initialization on search-based crash
reproduction?

RQ2 What is the influence of behavioral model seeding used during initialization on search-based
crash reproduction?

We consider both research questions from the perspective of effectiveness (of initializing the
population and reproducing crashes) and efficiency. We also investigate the factors (e.g., the cost
of analyzing existing tests) that influence the test and model seeding approaches and gain a better
insight into how search-based crash reproduction works and how it can be improved. Generally,
our results indicate that behavioral model seeding increases the number of crashes that we can
reproduce. More specifically, because of the randomness in the test generation process, we execute
the crash replication multiple times and we observe that in the majority of these executions 4 crashes
(out of 122) can be replicated; also, this seeding strategy can reproduce 9 crashes, which are not
reproducible at all with no seeding, in at least one execution. In addition, this seeding strategy
slightly improves the efficiency of the crash reproduction process. Moreover, model seeding enables
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Listing 1: Stack trace of the XWIKI-13372 crash
0 java.lang.NullPointerException: null
1 at com[...]BaseProperty.equals([...]:96)
2 at com[...]BaseStringProperty.equals([...]:57)
3 at com[...]BaseCollection.equals([...]:614)
4 at com[...]BaseObject.equals([...]:235)
5 at com[...]XWikiDocument.equalsData([...]:4195)
6 [...]

the search process to start for three additional crashes. In contrast, using test seeding in crash-
reproduction leads to a lower crash-reproduction rate and search initialization.

The contributions of this paper are:
1. An evaluation of test seeding techniques applied to search-based crash reproduction;
2. A novel behavioral model seeding approach for search-based software testing and its

application to search-based crash reproduction;
3. An open source implementation of model seeding in the BOTSING toolset†; and
4. The discussion of our results demonstrating improvements in search-based crash reproduction

abilities and contributing to a better understanding of the search-based process. All our results
are available in the replication package‡.

The remainder of the paper is structured as follows: Section 2 provides background on search-
based crash reproduction, and model-based testing. Section 3 describes our behavioral model
seeding strategy. Section 4 details our implementation, while Section 5 explains the evaluation
setup. Section 6 presents our results. We discuss them and explain threats to our empirical analyses
in Section 7. Section 8 discusses future work and Section 9 wraps up the paper.

2. BACKGROUND AND RELATED WORK

Application crashes that happen while the system is operating are usually reported to developer
teams through an issue tracking system for debugging purposes [12]. Depending on the amount of
information reported from the operation environment, this debugging process may take more or less
time. Typically, the first step for the developer is to try to reproduce the crash in his development
environment [1]. Various approaches [3, 5, 6, 7, 8] automate this process and generate a crash-
reproducing test case without requiring human intervention during the generation process. Previous
studies [3, 13] show that such test cases are helpful for the developers to debug the application.

For Java programs, the information reported from the operations environment ideally includes a
stack trace. For instance, Listing 1 presents a stack trace coming from the crash XWIKI-13372.§

The stack trace indicates the exception thrown (NullPointerException here) and the frames,
i.e., the stack of method calls at the time of the crash, indexed from 1 (at line 1) to 26 (not shown
here).

Various approaches use a stack trace as input to automatically generate a test case reproducing
the crash. CONCRASH [7] focuses on reproducing concurrency failures that violate thread-
safety of a class by iteratively generating test code and looking for a thread interleaving that
triggers a concurrency crash. JCHARMING [4, 5] applies model checking and program slicing to
generate crash reproducing tests. MUCRASH [6] exploits existing test cases written by developers.
MUCRASH selects test cases covering classes involved in the stack trace and mutates them
to reproduce the crash. STAR [3] applies optimized backward symbolic execution to identify

†Available at https://github.com/STAMP-project/botsing.
‡Available at https://doi.org/10.5281/zenodo.3673916
§Described in issue https://jira.xwiki.org/browse/XWIKI-13372.
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preconditions of a target crash and uses this information to generate a crash reproducing test that
satisfies the computed preconditions. Finally, RECORE [14] applies a search-based approach to
reproduce a crash using both a stack trace and a core dump produced by the system when the crash
happened to guide the search.

2.1. Search-based crash reproduction

Search-based approaches have been widely used to solve complex, non-linear software engineering
problems, which have multiple and sometimes conflicting optimization objectives [15]. Recently,
Soltani et al. [8] proposed a search-based approach for crash reproduction called EVOCRASH.
EVOCRASH is based on the EVOSUITE approach [16, 17] and applies a new guided genetic
algorithm to generate a test case that reproduces a given crash using a distance metric, similar
to the one described by Rossler et al. [14], to guide the search. For a given stack trace, the user
specifies a target frame relevant to his debugging activities: i.e., the line with a class belonging to
his system, from which the stack trace will be reproduced. For instance, applying EVOCRASH to
the stack trace from Listing 1 with a target frame 2 will produce a crash-reproducing test case for
the class BaseStringProperty that produces a stack trace with the same two first frames.

Soltani et al. [8] demonstrated the usefulness of the tests generated by EVOCRASH for debugging
and code fixing. They also compared EVOCRASH to EVOSUITE and showed that EVOCRASH
reproduces more crashes (85%) than EVOSUITE (33%), and, for the crashes reproduced by both
approaches, EVOCRASH took on average 145 seconds while EVOSUITE took on average 391
seconds. These results illustrate the limitations of high-code-coverage-driven test case generation
and the need for adequate guidance for crash reproduction.

An overview of the EVOCRASH approach is shown at the right part of Figure 2 (box 5). The
first step of this algorithm, called guided initialization, is used to generate a random population.
This random population is a set of random unit tests where a target method call (i.e., the method in
the target frame) is injected in each test. During the search, classical guided crossover and guided
mutation are applied to the tests in such a way that they ensure that only the tests with a call to the
target method are kept in the evolutionary loop. The overall process is guided by a weighted sum
fitness function [9], applied to each test t:

fitness(t) = 3× dl(t) + 2× de(t) + ds(t) (1)

The terms correspond to the following conditions when executing the test: (i) whether the
execution distance from the target line (dl) is equal to 0.0, in which case, (ii) if the target exception
type is thrown (de), in which case, (iii) if all frames, from the beginning up until the selected frame,
are included in the generated trace (ds). The overall fitness value for a given test case ranges from
0.0 (crash is fully reproduced) to 6.0 (no test was generated), depending on the conditions it satisfies.

2.2. Seeding strategies for search-based testing

In addition to guided search, a promising technique is seeding. Seeding strategies use related
knowledge to help the generation process and optimize the fitness of the population [18, 19, 20]. We
focus here on the usage of the source code and the available tests as primary sources of information
for search-based testing. Other approaches, for instance, search for string inputs on the internet
[21], or use the existing test corpus [22] to mine relevant formatted string values (e.g., XML or SQL
statements).

2.2.1. Seeding from the source code Three main seeding strategies exploit the source code
for search-based testing [10, 18, 23]: (i) constant seeding uses static analysis to collect and
reuse constant values appearing in the source code (e.g., constant values appearing in boundary
conditions); (ii) dynamic seeding complements constant seeding by using dynamic analysis to
collect numerical and string values, observed only during the execution of the software, and reuse
them for seeding; and (iii) type seeding is used to determine the object type that should be used as
an input argument, based on a static analysis of the source code (e.g., by looking at instanceof
conditions or generic types for instance).
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Figure 1. Transition system for method call sequences of the class java.util.LinkedList derived
from Apache commons math source code and test cases.

2.2.2. Seeding from the existing tests Rojas et al. [10] suggest two test seeding strategies,
using dynamic analysis on existing test cases: cloning and carving. Dynamic analysis uses code
instrumentation to trace the different methods called during an execution, which, compared to static
analysis, makes it easier to identify inter-procedural sequences of method calls (for instance, in the
context of a class hierarchy). Cloning and carving have been implemented in EVOSUITE and can be
used for unit test generation.

For cloning, the execution of an existing test case is copied and used as a member of the initial
population of a search process. Specifically, after its instrumentation and execution, the test case is
reconstructed internally (without the assertions), based on the execution trace of the instrumented
test. This internal representation is then used as-is in the initial population. Internal representation
of the cloned test cases are stored in a test pool.

For carving, an object is reused during the initialization of the population and mutation of the
individuals. In this case, only a subset of an execution trace, containing the creation of a new object
and a sequence of methods called on that object, is used to internally build an object on which the
methods are called. This object and the subsequent method calls are then inserted as part of a newly
created test case (initialization) or in an existing test when a new object is required (mutation).
Internal representations of the carved objects¶ are stored in an object pool.

The integration of seeding strategies into crash reproduction is illustrated in Figure 2, box 5. As
shown, the test cases (respectively objects) to be used by the algorithm are stored in a test case
(respectively object) pool, from which they can be used according to user-defined probabilities.
For instance, if a test case only contains the creation of a new LinkedList (using new) that is
filled using two add method calls, the sequence, corresponding to the execution trace <new, add,
add>, may be used as-is in the initial population (cloning) or inserted by a mutation into other test
cases (carving).

2.2.3. Challenges in seeding strategies The existing seeding techniques use only one resource
to collect information for seeding. However, it is possible that the selected resource does not
provide enough information about class usages. For instance, test seeding only uses the carved call
sequences from the execution of the existing test cases. If the existing test cases do not cover the
behavior of the crash in the interesting classes, this seeding strategy may even misguide the search
process. Additionally, if the number of observed call sequences is large, the seeding strategy needs
a procedure to prioritize the call sequences for seeding. Using random call sequences as seeds can
sometimes misguide the search process. Existing seeding strategies do not currently address these
issues.

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
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2.3. Behavioral model-based testing

Model-based testing [11] relies on abstract specifications (models) of the system under test to
support the generation of relevant (abstract) test cases. Transition systems [24] have been used as
a fundamental formalism to reason about test case generation and support the definition of formal
test selection criteria [25]. Each abstract test case corresponds to a sequence of method calls on one
object: i.e., a path in the transition system starting from the initial state and ending in the initial state,
a commonly used convention to deal with finite behaviours [26]. Once selected from the model,
abstract test cases are concretized (by mapping the transition system’s paths to concrete sequences
of method calls) into executable test cases to be run on the system. In this paper, we derive abstract
test cases (called abstract object behavior hereafter) and concretize them, producing pieces of code
creating objects and invoking methods on such objects. Those pieces of code serve as seeds for
search-based crash reproduction.

Figure 1 shows an example of a transition system representing the possible sequences of method
calls on java.util.List objects. Figure 1 illustrates usages of methods in java.util.List
objects, learned from the code and tests, in terms of a transition system, from which sequences of
methods calls can be derived.

The obtained transition system subsumes the behavior of the sequences used to learn it but also
allows for new combinations of those sequences. These behaviors are relevant in the context of
seeding as the diversity of the objects induced is useful for the search process. Also, generating
invalid behaviors from the new combinations is not a problem here as they are detectable during the
search process.

2.3.1. Abstract object behavior selection The abstract object behaviors are selected from the
transition system according to criteria defined by the tester. In the remainder of this paper, we use
dissimilarity as selection criteria [27, 28]. Dissimilarity selection, which aims at maximizing the
fault detection rate by increasing diversity among test cases, has been shown to be an interesting
and scalable alternative to other classical selection criteria [28, 29]. This diversity is measured using
a dissimilarity distance (here, 1 - the Jaccard index [30]) between the actions of two abstract object
behaviors.

2.3.2. Model Inference The model may be manually specified (and in this case will generally focus
on specific aspects of the system) [11], or automatically learned from observations of the system
[31, 32, 33, 34, 35, 36]. In the latter case, the model will be incomplete and only contain the
observed behavior of the system [37]. For instance, the sequence <new, addAll > is valid for
a java.util.List object but cannot be derived from the transition system in Figure 1 as the
addAll method call has never been observed. The observed behavior can be obtained via static
analysis [38] or dynamically [39]. Model inference may be used for visualization [32, 36], system
properties verification [40, 41], or generation [31, 33, 34, 42, 43, 38] and prioritization [26, 44] of
test cases.

3. BEHAVIORAL MODEL AND TEST SEEDING FOR CRASH REPRODUCTION

The goal of behavioral model seeding (denoted model seeding hereafter) is to abstract the behavior
of the software under test using models and use that abstraction during the search. At the unit test
level (which is the considered test generation level in this study), each model is a transition system,
like in Figure 1, and represents possible usages of a class: i.e., possible sequences of method calls
observed for objects of that class.

The main steps of our model seeding approach, presented in Figure 2, are: the inference of the
individual models 3© (described in Section 3.1) from the call sequences collected through static

¶In this paper, we use the term object to refer to a carved object, i.e., an object plus the sequence of methods called on
that object.
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Figure 2. General overview of model seeding and test seeding for search-based crash reproduction

analysis 1© performed on the application code (described in Section 3.1.1), and dynamic analysis
2© of the test cases (described in Section 3.1.2); and for each model, the selection of abstract object

behaviors 4©, that are concretized into Java objects (described in Section 3.2), stored in an object
pool from which the guided genetic algorithm 5© (described in Section 3.3) can randomly pick
objects to build test cases during the search process.

3.1. Model inference

Call sequences are obtained by using static analysis on the bytecode of the application 1© and by
instrumenting and executing the existing test cases 2©.

We use n-gram inference to build the transition systems used for model seeding. N -gram
inference takes a set of sequences of actions as input to produce a transition system where the
nth action depends on the n− 1 previously executed actions.

A large value of n for the n-gram inference would result in wider transition systems with more
states and less incoming transitions, representing a more constrained behavior and producing less
diverse test cases. In contrast, a small value of n enables better diversity in the behavior allowed by
the model (ending up in more diverse abstract object behaviors), requires less observations to reach
stability of the model, simplifies the inference, and results in a more compact model [33, 34]. For
these reasons, we use 2-gram inference to build our models.

For each class, the model 3© is obtained using a 2-gram inference method using the call sequences
of that class.

For instance, in the transition system of Figure 1, the action size(), executed from state s3 at
step k only depends on the fact that the action add(Object) has been executed at step k − 1,
independently of the fact that there is a step k − 2 during which the action iterator() has been
executed.

Calls to constructors are considered as method calls during model inference. However,
constructors may not appear in any transition of the model if no constructor call was observed
during the collection of the call sequences. This is usually the case when the call sequences used to
infer the model have been captured from objects that are parameters or attributes of a class. If an
abstract object behavior does not start by a call to a constructor, a constructor is randomly chosen to
initialize the object during the concretization.

For one version of the software under test, the model inference is a one time task. Models can
then be directly reused for various crash reproductions.

3.1.1. Static analysis of the application The static analysis is performed on the bytecode of the
application. We apply this analysis to all of the available classes in the software under test. In
each method of these classes, we build the control flow graph, and for each object of that method,
we collect the sequences of method calls on that object. For each object, each path in the control

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
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flow graph will correspond to one sequence of method calls. For instance, if the code contains
an if-then-else statement, the true and false branches will produce two call sequences.
In the case of a loop statement, the true branch is considered only once. The static analysis is
intraprocedural, meaning that only the calls in the current method are considered. If an object is
passed as a parameter of a call to a method that (internally) calls other methods on that object, those
internal calls will not appear in the call sequences. This analysis ensures collecting all of the existing
relevant call sequences for any internal or external class, which is used in the project.

3.1.2. Dynamic analysis for the test cases Since the existing manually developed test cases
exemplify potential usage scenarios of the software under test, we apply dynamic analysis to collect
all of the transpired sequences during the execution of these scenarios. Contrarily to static analysis,
which would require an expensive effort and produce imprecise call sequences, dynamic analysis
is interprocedural. Meaning that the sequences include calls appearing in the test cases, but also
internal calls triggered by the execution of the test case (e.g., if the object is passed as a parameter
to a method and methods are internally called on that object ). Hence, through dynamic analysis, we
gain a more accurate insight into the class usages in these scenarios.

Dynamic analysis of the existing tests is done in a similar way to the carving approach of Rojas et
al. [10]: instrumentation adds log messages to indicate when a method is called, and the sequences
of method calls are collected after execution. In similar fashion to static analysis, we collect call
sequences of any observed object (even objects which are not defined in the software under test).
The representativeness of the collected sequences depends on the coverage of the existing tests.

3.2. Abstract object behaviors selection

Abstract object behaviors are selected from the transition systems and concretized to populate the
object pool used during the search. To limit the number of objects in the pool, we only select abstract
object behaviors from two categories of models: models of internal classes (i.e., classes belonging
to packages of the software under test) and models of dependency classes (i.e., classes belonging
to packages of external dependencies) that are involved in the stack trace. Since we do not seek to
validate the implementation of the application, the states are ignored during the selection process.

3.2.1. Selection There exist various criteria to select abstract object behaviors from transition
systems [11]. To successfully guide the search, we need to establish a good ratio between
exploration (the ability to visit new regions of the search space) and exploitation (the ability to
visit the neighborhood of previously visited regions) [45]. The guided genetic operators which are
introduced in the EVOCRASH approach [8] guarantee the exploitation by focusing the search based
on the methods in the stack trace. However, depending on the stack trace, focusing on particular
methods may reduce the exploration. Poor exploration decreases the diversity of the generated tests
and may trap the search process in local optima.

To improve the exploration ability in the search process, we use dissimilarity as the criterion to
select the abstract object behaviors. Compared to classical structural coverage criteria that seek to
cover as many parts of the transition system as possible, dissimilarity tries to increase diversity
among the test cases by maximizing a distance d (i.e., the Jaccard index [30]):

d = 1− {call1i ∈ b1} ∩ {call2j ∈ b2}
{call1i ∈ b1} ∪ {call2j ∈ b2}

Where b1 =< call11, call12, . . . > and b2 =< call21, call22, . . . > are two abstract object behaviors.

3.2.2. Concretization Each abstract object behavior has to be concretized to an object and method
calls before being added to the objects pool. In other words, for each abstract object behavior,
if the constructor invocation is not the first action, one constructor is randomly called; and the
methods are called on this object in the order specified by the abstract object behavior with randomly
generated parameter values. Due to the randomness, each concretization may be different from the
previous one. For each abstract object behavior, n concretizations (default value is n = 1 to balance

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr



SEARCH-BASED CRASH REPRODUCTION USING BEHAVIORAL MODEL SEEDING 9

Listing 2: Concretized abstract object behavior for LinkedList based on the transition system
model of Figure 1

1 int[] t = new int[7];
2 t[3] = -2147483647;
3 EuclideanIntegerPoint ep = new EuclideanIntegerPoint(t);
4 LinkedList<[...]> lst = new LinkedList<>();
5 lst.add(ep);
6 lst.add(ep);

Listing 3: Stack trace excerpt for MATH-79b
1 java.lang.NullPointerException
2 at ...KMeansPlusPlusClusterer.assignPointsToClusters()
3 at ...KMeansPlusPlusClusterer.cluster()

Listing 4: Test generated for frame 2 of MATH-79b (Listing 3)
1 public void testCluster() throws Exception{
2 int[] t = new int[7];
3 t[3] = (-2147483647);
4 EuclideanIntegerPoint ep = new EuclideanIntegerPoint(t);
5 LinkedList<[...]> lst = new LinkedList<>();
6 lst.add(ep);
7 lst.add(ep);
8 KMeansPlusPlusClusterer<[...]> kmean = new KMeansPlusPlusClusterer<>(12);
9 lst.offerFirst(ep);

10 kmean.cluster(lst, 1, (-1357));}

scalability and diversity of the objects in the object pool) are done for each abstract object behavior
and saved in the object pool. For instance, Listing 2 shows the concretized abstract object behavior
<add(Object), add(Object)> derived from the transition system model of Figure 1. The type of
the parameters (EuclideanIntegerPoint) is randomly selected during the concretization and
created with required parameter values (an integer array here).

3.3. Guided Initialization and Guided Mutation

Classes are instantiated to create objects during two main steps of the guided genetic algorithm:
guided initialization, where objects are needed to create the initial set of test cases; and guided
mutation, where objects may be required as parameters when adding a method call. When no
seeding is used, those objects are randomly created (as in the concretization step described in
Section 3.2.2) by calling the constructor and random methods.

Finally, to preserve exploration in model seeding, objects are picked from the object pool during
guided initialization (resp. guided mutation) according to a user-defined probability Pr[pick init]
(resp. Pr[pick mut]), and randomly generated otherwise. In our evaluation, we considered four
different values for Pr[pick init] ∈ {0.2, 0.5, 0.8, 1.0}, to study the effect of model seeding on
the initialization of the search process. Furthermore, we fixed the value of Pr[pick mut] = 0.3,
corresponding to the default value of Pr[pick mut] for test seeding for classical unit test generation
in EVOSUITE.

As an example of object picking in action, test case generation with model seeding generated the
test case in Listing 4 for the second frame of the stack trace from the crash MATH-79b from the
Apache commons math project, reported in Listing 3. The target method is the last method called

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
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in the test (line 10) and throws a NullPointerException, reproducing the input stack trace.
The first parameter of the method has to be a Collection<T> object. In this case, the guided
genetic algorithm picked the list object from the object pool (from Listing 2) and inserted it in the
test case (lines 2 to 7). The algorithm also modified that object (during guided mutation) by invoking
an additional method on the object (line 9).

3.4. Test seeding

As described in Section 2.2.2, test seeding starts by executing the test cases (Figure 2 box A©) for
carving and cloning, and subsequently populating the test and object pools. Like for model seeding,
only internal classes and external classes appearing in the stack trace are considered.

For crash reproduction, the test pool is used only during guided initialization to clone test cases
that contain the target class, according to a user-defined Pr[clone] probability. If the target method
is not called in the cloned test case, the guided initialization also mutates the test case to add a call
to the target method. The object pool is used during the guided initialization and guided mutation
to pick objects. As described by Rojas et al. [10], the properties of using the object pool during
initialization (Pr[pick init]) and mutation (Pr[pick mut]) are indicated as a single property called
p object pool in test seeding.

4. IMPLEMENTATION

Relying on the EVOCRASH experience [8, 13, 46], we developed BOTSING, a framework for crash
reproduction with extensibility in mind. BOTSING also relies on EVOSUITE [47] for the code
instrumentation during test generation and execution by using evosuite-client as a dependency.
Our open-source implementation is available at https://github.com/STAMP-project/
botsing. The current version of BOTSING includes both test seeding and model seeding as
features.

4.1. Test seeding

Test seeding relies on the implementation defined by Rojas et al. [10] and available in EVOSUITE.
This implementation requires the user to provide a list of test cases to consider for cloning and
carving. In BOTSING, we automated this process using the dynamic analysis of the test cases to
automatically detect those accessing classes involved in a given stack trace. We also modified the
standard guided initialization and guided mutation to preserve the call to the target method during
cloning and carving.

4.2. Model seeding

As mentioned in Section 3, BOTSING uses a combination of static and dynamic analysis to infer
models. The static analysis ( 1© in Figure 2) uses the reflection mechanisms of EVOSUITE to inspect
the compiled code of the classes involved in the stack traces, and collect call sequences. The
dynamic analysis ( 2© in Figure 2) relies on the test seeding mechanism used for cloning that allows
inspecting an internal representation of the test cases obtained after their execution and collect call
sequences. The resulting call sequences are then used to infer the transition system models of the
classes using a 2-gram inference tool called YAMI [26] ( 3© in Figure 2). From the infered models,
we extract a set of dissimilar (based on the Jaccard distance [30]) abstract object behaviors ( 4© in
Figure 2). For abstract object behavior extraction, we use the VIBeS [48] model-based testing tool.
Abstract object behaviors are then concretized into real objects. For this concretization, we rely on
the EvoSuite API.
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5. EMPIRICAL EVALUATION

Our evaluation aims to assess the effectiveness of each of the mentioned seeding strategies (model
and test seeding) on search-based crash reproduction. For this purpose, first, we evaluate the impact
of each seeding strategy on the number of reproduced crashes. Second, we examine if using each
of these strategies leads to a faster crash reproduction. Third, we see if each seeding strategy can
help the search process to start more often. Finally, we characterize the impacting factors of test and
model seeding.

Since the focus of this study is using seeding to enhance the guidance of the search initialization,
we examine different probabilities of using the seeded information during the guided initialization
in the evaluation of each strategy. Hence, we repeat each execution of test seeding with the following
values for Pr[clone]: 0.2, 0.5, 0.8, and 1.0. Likewise, we execute each execution of model seeding
with the same values for Pr[pick init] (which is the only property that we can use for modifying
the probability of the object seeding in the initialization of model seeding).

5.1. Research questions

In order to assess the usage of test seeding applied to crash reproduction and our new model seeding
approach during the guided initialization, we performed an empirical evaluation to answer the two
research questions defined in Section 1.

RQ1 What is the influence of test seeding used during initialization on search-based crash
reproduction? To answer this research question, we compare BOTSING executions with test seeding
enabled to executions where no additional seeding strategy is used (denoted no seeding hereafter),
from their effectiveness to reproduce crashes and start the search process, the factors influencing this
effectiveness, and the impact of test seeding on the efficiency. We divide RQ1 into four sub-research
questions:
RQ1.1 Does test seeding help to reproduce more crashes?
RQ1.2 Does test seeding impact the efficiency of the search process?
RQ1.3 Can test seeding help to initialize the search process?
RQ1.4 Which factors in test seeding impact the search process?

RQ2 What is the influence of behavioral model seeding used during initialization on search-
based crash reproduction? To answer this question, we compare BOTSING executions with model
seeding to executions with test seeding and no seeding. We also divide RQ2 into four sub-research
questions:
RQ2.1 Does behavioral model seeding help to reproduce more crashes compared to no seeding?
RQ2.2 Does behavioral model seeding impact the efficiency of the search process compared to no

seeding?
RQ2.3 Can behavioral model seeding help to initialize the search process compared to no seeding?
RQ2.4 Which factors in behavioral model seeding impact the search process?

5.2. Setup

5.2.1. Crash selection In a recent study about the evaluation of search-based crash reproduction
approaches, Soltani et al. [46] introduced a new benchmark, called JCRASHPACK, containing 200
real-world crashes from seven projects: JFreeChart, a framework for creating interactive charts;
Commons-lang, a library providing additional utilities to the java.lang API; Commons-math, a
library of mathematics and statistics components; Mockito, a testing framework for object mocking;
Joda-time, a library for date and time manipulation; XWiki, a popular enterprise wiki management
system; and ElasticSearch, a distributed RESTful search and analytics engine. We use the same
benchmark for the empirical evaluation of model-seeding and test-seeding on crash reproduction.

To use test and model seeding for reproducing the crashes of JCRASHPACK, first, we needed
to apply static and dynamic analysis on different versions of projects in this benchmark. We
successfully managed to run static analysis on all of the classes of JCRASHPACK. On the contrary,
we observed that dynamic analysis was not successful in the execution of existing test suites
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Table I. Projects used for the evaluation with the number of crashes (Cr.), the average number of frames per
stack trace (frm), the average cyclomatic complexity (CCN), the average number of statements (NCSS),
the average line coverage of the existing test cases (LC), and the average branch coverage of the existing

test cases (BC).

Application Cr. frm CCN NCSS LC BC
JFreeChart 2 6.00 2.79 63.01k 67% 59%
Commons-lang 22 2.04 3.28 13.38k 91% 87%
Commons-math 27 3.92 2.43 29.98k 90% 84%
Mockito 12 5.08 1.79 6.06k 97% 93%
Joda-Time 8 3.87 2.11 19.41k 89% 82%
XWiki 51 27.45 1.92 181.68k 73% 71%

Table II. Information about test classes and models used, respectively, for test and model seeding in each
project. test designate the average number of test classes used for test seeding. Also, state, trans, and
BFS denote the average number of states, transitions, and BFS height of the used models, respectively. The

standard deviations of each of these metrics (σ) are located beside them.

Project test σ
chart 29.17 20.01
lang 1.45 2.03
math 1.24 1.37
mockito 0.73 2.15
time 9.24 9.55
xwiki 0.14 1.09

Project state σ trans σ BFS σ
chart 56.67 50.40 157.50 167.86 21.00 17.50
lang 39.69 51.49 117.96 158.07 5.58 7.32
math 14.00 12.46 34.22 40.59 5.20 4.11
mockito 12.18 10.93 21.45 22.70 5.32 3.90
time 63.35 40.85 230.80 167.99 16.10 11.79
xwiki 47.94 90.94 139.15 323.75 11.08 17.04

of ElasticSearch. The reason for this failure stemmed from the technical difficulty of running
ElasticSearch tests by the EvoSuite test executor. Since both of the seeding strategies need dynamic
analysis, we excluded ElasticSearch cases from JCRASHPACK for this experiment. JCRASHPACK
contains 122 crashes after excluding ElasticSearch cases. Table I provides more details about our
dataset.

We used the selected crashes for the evaluation of no seeding and model seeding. Since test
seeding needs existing test cases that are using the target class, we filtered out the crashes which
contain only classes without any using tests. Hence, we used only 59 crashes for the evaluation of
test seeding. More information about average number of used test classes for test seeding is available
in Table II.

5.2.2. Model inference Since the selected crashes for this evaluation are identified before the model
inference process, we have applied the dynamic analysis only on the test cases which use the classes
involved in the crashes. During the static analysis, we spot all relevant test cases which call the
methods of the classes that have appeared in the stack traces of the crashes. Next, we apply dynamic
analysis only on the detected relevant test cases. This filtering process helps us to shorten the model
inference execution time without losing accuracy in the generated models.

More information about the inferred models is available in Table II.

5.2.3. Configuration parameters We used a budget of 62,328 fitness evaluations (corresponding
on average to 15 minutes of executing BOTSING with no seeding on our infrastructure which is
introduced in Section 5.2.4) to avoid side effects on execution time when executing BOTSING on
different frames in parallel. We also fixed the population size to 100 individuals as suggested by
the latest study on search-based crash reproduction [9]. All other configuration parameters are set
at their default value [10], and we used the default weighted sum scalarization fitness function
(Equation 1) from Soltani et al. [9].

For test seeding executions, as we described at the beginning of this section, we execute each
execution with four values for Pr[clone]: 0.2 (which is the default value), 0.5, 0.8, and 1.0. Also,
we used the default value of 0.3 for p object pool.

We also use values 0.2, 0.5, 0.8, and 1.0 for Pr[pick init] for model seeding executions. The value
of Pr[pick mut], which indicates the probability of using seeded information during the mutation,
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is fixed at 0.3. In addition to model seeding configurations, we fix the size of the selected abstract
object behaviors to the size of the individual population in order to ensure that there are enough test
cases to initiate the search.

For each frame (951 in total), we executed BOTSING for no seeding (i.e., no additional seeding
compared to the default parameters of BOTSING) and each configuration of model seeding. Since
test seeding needs existing test cases which are using the target class, we filtered out the frames that
do not have any test for execution of this seeding strategy. Therefore, we executed each configuration
of test seeding on the subset of frames (171 in total).

5.2.4. Infrastructure We used 2 clusters (with 20 CPU-cores, 384 GB memory, and 482 GB hard
drive) for our evaluation. For each stack trace, we executed an instance of BOTSING for each frame
which points to a class of the application. We discarded other frames to avoid generating test cases
for external dependencies. We ran BOTSING on 951 frames from 122 stack traces for no-seeding and
each model-seeding strategy configuration. Also, we ran BOTSING with test-seeding on 171 frames
from 59 crashes. To address the random nature of the evaluated search approaches, we repeated
each execution 30 times. We executed a total of 186,560 independent executions for this study.
These executions took about 18 days overall.

5.3. Data analysis procedure

To check if the search process can reach a better state using seeding strategies, we analyze the status
of the search process after executing each of the cases (each run in one frame of a stack trace). We
define 5 states:

(i) not started, the initial population could not be initialized, and the search did not start;
(ii) line not reached, the target line could not be reached;

(iii) line reached, the target line has been reached, but the target exception could not be thrown;
(iv) ex. thrown, the target line has been reached, and an exception has been thrown but produced

a different stack trace; and
(v) reproduced the stack trace could be reproduced.

Since we repeat each execution 30 times, we use the majority of outcomes for a frame reproduction
result. For instance, if BOTSING reproduces a frame in the majority of the 30 runs, we count that
frame as a reproduced.

To measure the impact of each strategy in the crash reproduction ratio (RQ1.1 and RQ2.1), we
use the Odds Ratio (OR) because of the binary distribution of the related data: a search process
either reproduces a crash (the generated test replicates the stack trace from the highest frame which
is reproduced by at least one of the other searches) or not. Also, we apply Fisher’s exact test, with
α = 0.05 for the Type I error, to evaluate the significance of results.

Moreover, to answer RQ1.2 and RQ2.2, which investigate the efficiency of the different
strategies, we compare the number of fitness function evaluations needed by the search to reach
crash reproduction. This metric indicates if seeding strategies lead to better initial populations that
need fewer iterations to achieve the crash reproducing test. Since efficiency is only relevant for
the reproduced cases, we only applied this comparison on the crashes which are reproduced at
least once by no seeding or the seeding strategy (test seeding for RQ1.2 and model seeding for
RQ2.2). We use the Vargha-Delaney statistic [49] to appraise the effect size between strategies. In
this statistic, a value lower than 0.5 for a pair of factors (A,B) gives that A reduces the number of
needed fitness function evaluations, and a value higher than 0.5 shows the opposite. Also, we use
the Vargha-Delaney magnitude measure to partition the results into three categories having large,
medium, and small impact. In addition, to examine the significance of the calculated effect sizes,
we use the non-parametric Wilcoxon Rank Sum test, with α = 0.05 for Type I error. Moreover, we
do note that since the reproduction ratio of each strategy is not 30/30 for each crash, executions that
could not reproduce the frame simply reached the maximum allowed budget (62,328).

To measure the impact of each strategy in initializing the first population (RQ1.3 and RQ2.3), we
use the same procedure as RQ1.1 and RQ2.1 because the distribution of related data in this aspect
is binary too (i.e., whether the search process can start the search or not).
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Table III. Odds ratios of model/test seeding configurations vs. no seeding in crash reproduction ratio. This
table only shows the crashes, which reveal statistically significant differences (p-value < 0.05). An Odds
ratio value higher than 1.0 gives that the seeding strategy is better than no seeding, and a value lower than

1.0 shows the opposite.

Conf. Crash Odds Ratio (p-value)
test s. 0.5 LANG-6b Inf (2.37e-02)

MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (1.94e-03)
TIME-10b 207.79 (2.36e-12)
TIME-5b 3.52 (3.52e-02)

test s. 0.8 LANG-6b Inf (1.94e-03)
MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (4.64e-05)
TIME-10b Inf (9.23e-14)
TIME-7b 0.00 (6.19e-07)

test s. 1.0 LANG-51b 0.21 (8.21e-03)
LANG-6b Inf (4.64e-05)
MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (5.83e-06)
TIME-10b 69.79 (2.82e-10)

test s. 0.2 MATH-1b 0.00 (1.69e-17)
MATH-61b 0.00 (1.69e-17)
CHART-4b 0.00 (1.69e-17)
TIME-20b 0.00 (3.19e-04)
TIME-10b Inf (9.23e-14)
TIME-7b 0.00 (1.05e-02)

Conf. Crash Odds Ratio (p-value)
model s. 0.2 LANG-9b Inf (1.94e-03)

LANG-51b 0.17 (3.33e-03)
MOCKITO-10b Inf (1.43e-08)
XWIKI-13141 13.95 (5.58e-03)

model s. 0.5 LANG-9b Inf (2.37e-02)
MOCKITO-10b Inf (1.87e-07)
XWIKI-13141 Inf (7.97e-04)
XWIKI-14152 6.66 (7.41e-03)

model s. 0.8 LANG-9b Inf (1.94e-03)
LANG-51b 0.29 (3.70e-02)
MOCKITO-10b Inf (8.27e-10)
XWIKI-13141 Inf (7.97e-04)
XWIKI-14152 11.24 (2.51e-04)

model s. 1.0 LANG-9b Inf (1.94e-03)
MOCKITO-10b Inf (5.34e-08)
XWIKI-13141 13.95 (5.58e-03)
XWIKI-14152 32.80 (5.62e-08)

For all of the statistical tests in this study, we only use a level of significance α = 0.05.
Since the model inference (in model seeding) and test carving (in test seeding) techniques can

be applied as one time processes before running any search-based crash reproduction, we do not
include them in the efficiency evaluation.

To answer RQ1.4 and RQ2.4, we performed a manual analysis on the logs and crash reproducing
test case (if any). We focused our manual analysis on the crash reproduction executions for which
the search in one seeding configuration has a significant impact (according to the results of the
previous sub-research questions) on (i) initializing the initial population, (ii) crash reproduction,
(iii) or search process efficiency compared to no-seeding. Based on our manual analysis, we used
a card sorting strategy by assigning keywords to each frame result and grouping those keywords to
identify influencing factors.

6. EVALUATION RESULTS

We present the results of the evaluation and answer the two research questions by comparing each
seeding strategy with no-seeding.

6.1. Test seeding (RQ1)

6.1.1. Crash reproduction effectiveness (RQ1.1) Figure 3 demonstrates the comparison of each
seeding strategy (left-side of the figure is for test seeding and right-side is for model seeding) with
the baseline (no seeding). Figures 3a and 3b show the overall comparison, while Figures 3c and 3d
illustrate the per project comparison. In each of these figures, the yellow bar shows the number
of reproduced crashes in the majority of the 30 executions, and the orange bar shows the non-
reproduced crashes.
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Table IV. Evaluation results for comparing seeding strategies (test and model seeding) and no-seeding
in crash reproduction. ratio and σ designate average crash reproduction ratio and standard deviation,

respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Reproduction Comparison to no s.
ratio σ better worse

test s. 1.0 23.7 11.01 2 5
test s. 0.8 23.4 10.74 2 5
test s. 0.5 23.8 10.76 1 4
test s. 0.2 23.5 10.93 1 4
no s. 25.4 9.65 - -

Conf. Reproduction Comparison to no s.
ratio σ better worse

model s. 1.0 22.0 11.58 4 0
model s. 0.8 21.9 11.92 4 1
model s. 0.5 21.8 11.86 4 0
model s. 0.2 21.6 12.00 3 1
no s. 21.3 12.32 - -

According to Figure 3a, test s. 0.8 reproduced the same number of crashes. However, the
other configurations of test-seeding reproduced fewer crashes in the majority of times. Moreover,
according to Figure 3c, test seeding reproduces one more crash compared to no seeding. Also, some
configurations of test seeding can reproduce one extra crash in XWiki and commons-lang projects.
On the contrary, all of the configurations of test seeding missed one and two crashes in JFreeChart
and commons-math, respectively. Finally, we cannot see any difference between test seeding and no
seeding in the Joda-Time project.

Table IV demonstrates the impact of test-seeding on the crash reproduction ratio compared to no-
seeding. It indicates that test s. 0.2 & 0.5 have a better crash reproduction ratio for one of the crashes,
while they perform significantly worse in 4 other crashes compared to no-seeding. The situation is
almost the same for the other configurations of test seeding: test s. 0.8 & 1.0 are significantly better
in 2 crashes compared to no-seeding. However, they are significantly worse than no-seeding in 5
other crashes. The other interesting point in this table is the standard deviation crash reproduction
ratio. This value is slightly higher for all of the test seeding configurations compared to no seeding.
The values of odds ratios and and p-values for crashes with significant difference is available in
Table III.

The underlying reasons for the observed results in this section are analyzed in RQ1.4.

6.1.2. Crash reproduction efficiency (RQ1.2) Table V demonstrates the comparison of test-seeding
and no-seeding in the number of needed fitness function evaluations for crash reproduction. The
average number of fitness function evaluations increases when using test-seeding. It means that
test-seeding is slower than no-seeding on average. test s. 0.8 has the highest average fitness function
evaluations.

Moreover, the standard deviations of both no seeding and test seeding are high values (more than
20k evaluations). This notable variation is explainable due to the nature of search-based approaches.
In some executions, the initialized population is closer to the objectives, and the search process
can achieve reproduction faster. Similar variations are reported in the JCRASHPACK empirical
evaluation as well [46]. According to the reported standard deviations, we can see that this value
increases for all of the configurations of test seeding compared to no seeding.

Also, the values of the effect sizes indicate that the number of crashes that receive (large or
medium) positive impacts from test s. 0.2 & 0.5 for their reproduction speed is higher than the
number of crashes that exhibit a negative (large or medium) influence. However, this is not the case
for the other two configurations. In the worst case, test s. 1.0 is considerably slower than no-seeding
(with large effect size) in 13 crashes.

6.1.3. Guided initialization effectiveness (RQ1.3) Table VI indicates the number of crashes where
test-seeding had a significant (p-value < 0.05) impact on the search initialization compared to no-
seeding. As we can see in this table, any configuration of test-seeding has a negative impact on the
search starting process for 4 or 5 crashes. Additionally, this strategy does not have any significant
beneficial impact on this aspect except on one crash in test s. 0.8. Also, the standard deviation of the
average search initialization ratios, in all of the configurations of test seeding, is increased compared
to no seeding. For instance, this value for test s. 0.8 is about three times more than no seeding.
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Figure 3. Outcomes observed in the majority of the executions for each crash in total and for each
application.

6.1.4. Influencing factors (RQ1.4) To finding the influencing factors in test seeding, we manually
analyzed the cases which cause significant differences, in various aspects, between no-seeding
and test-seeding. From our manual analysis, we identified 3 factors of the test seeding process
that influence the search: (i) Crash-Test Proximity, (ii) Crash-Object Proximity, and (iii) Test
Execution Cost.
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Table V. Evaluation results for comparing test-seeding and no-seeding in the number of fitness evaluations
evaluations and σ designate average fitness function evaluations needed for crash reproduction and standard

deviation, respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Fitness Comparison to no s.
large medium small

evaluations σ < 0.5 > 0.5 < 0.5 > 0.5 < 0.5 > 0.5
no s. 10,467 22,368.13 - - - - - -
test s. 0.2 14,089 25,464 4 3 1 1 2 -
test s. 0.5 13,366 25,043 5 3 1 - 2 1
test s. 0.8 14,254 25,496 3 4 1 5 1 3
test s. 1.0 13,856 25,097 3 13 4 3 1 3

Table VI. Evaluation results for comparing seeding strategies (test and model seeding) and no-seeding
in search initialization. ratio and σ designate average successful search initialization ratio and standard

deviation, respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Search started Comparison to no s.
ratio σ better worse

test s. 1.0 26.9 9.22 0 5
test s. 0.8 27.9 7.67 1 4
test s. 0.5 26.9 9.22 0 5
test s. 0.2 27.4 8.49 0 4
no s. 29.5 3.94 - -

Conf. Search started Comparison to no s.
ratio σ better worse

model s. 1.0 30.0 0.28 3 0
model s. 0.8 30.0 0.00 3 0
model s. 0.5 29.7 2.75 2 0
model s. 0.2 29.5 3.87 2 1
no s. 29.2 4.72 - -

Crash-Test Proximity For the first factor, we observe that cloning existing test cases in the initial
population leads to the reproduction of new crashes when the cloned tests include elements which
are close to the crash reproducing test. For instance, all of the configurations of test seeding are
capable of reproducing the crash LANG 6b, while no-seeding cannot reproduce it. For reproducing
this crash, Botsing needs to generate a string of a specific format, and this format is available in the
existing test cases, which are seeded to the search process.

However, manually developed tests are not always helpful for crash reproduction. According
to the results of Table V, test s. 1.0, which always clones test cases, is considerably and largely
slower than no-seeding in 13 crashes. In these cases, cloning all of the test cases to form the initial
population can prevent the search process from reaching the crash reproducing test. As an example,
Botsing needs to generate a simple test case, which calls the target method with an empty string
and null object, to reproduce crash LANG-12b. But, test s. 1.0 clones tests which use the software
under test in different ways. To summarize, the overall quality of results of our test seeding solution
is highly dependent on the quality of the existing test cases in terms of factors like the distance of
existing test cases to the scenario(s) in which the crash occurs and the variety of input data.

Crash-Object Proximity For the second factor, we observe that (despite the fixed value of
Pr[pick mut] for test seeding), the objects with call sequences carved from the existing tests and
stored in the object pool can help during the search depending on their diversity and their distance
from the call sequences that we need for reproducing the given crash. For instance, for crash MATH-
4b, BOTSING needs to initialize a List object with at least two elements before calling the target
method in order to reproduce the crash. In test-seeding, such an object had been carved from the
existing tests and allowed test seeding to reproduce the crash faster. Also, test-seeding can replicate
this crash more frequently: the number of successfully replicated executions, in 30 runs, is higher
with test-seeding.

In contrast, the carved objects can misguide the search process for some crashes which need
another kind of call sequence. For instance, in crash MOCKITO-9b, Botsing cannot inject the target
method into the generated test because the carved objects do not have the proper state to instantiate
the input parameters of the target method.

In summary, if the involved classes in a given crash are well-tested (the existing tests contain all of
the usage scenarios of these classes), we have more chances to reproduce by utilizing test-seeding.
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Test Execution Cost The third factor points to the challenge of executing the existing test cases
for seeding. The related tests for some crashes are either expensive (time/resource consuming) or
challenging (due to the security issues) to execute. Hence, the EVOSUITE test executor, which is
used by Botsing, cannot carve all of them.

As an example of expensive execution, the EvoSuite test executor spends more than 1 hour during
the execution of the related test cases for replicating frame 2 of crash Math-1b.

Also, as an example for security issues, the EvoSuite test executor is not successful in running
some of the existing tests. It throws an exception during this task. For instance, this executor throws
java.lang.SecurityException during the execution of the existing test cases for CHART-
4b, and it cannot carve any object for seeding.

In some cases, test-seeding faces the mentioned problems during the execution of all of the
existing test cases for a crash. If test seeding cannot carve any object from existing tests, there
will be no useful call sequence in the object pool to seed during the search process. Hence, although
the project contains some potentially valuable test scenarios for reproducing the given crash, there
is no difference between no seeding and test seeding in these cases.

6.1.5. Summary (RQ1) Test seeding (for any configuration) loses against no-seeding in the search
initialization because some of the related test cases of crashes are expensive or even impossible to
execute. Also, we observe in the manual analysis that the lack of generality in the existing test cases
prevents the crash reproduction search process initialization. In these cases, the carved objects from
the existing tests mismatch the search process in the target method injection. Moreover, this seeding
strategy can outperform no seeding in the crash reproduction and search efficiency for some cases
(e.g., LANG 6b), thanks to the call sequences carved from the existing tests. However, these carved
call sequences can be detrimental to the search process in some cases, if the carved call sequences
do not contain beneficial knowledge about crash reproduction, overusing them can misguide the
search process.

6.2. Behavioral model seeding (RQ2)

6.2.1. Crash reproduction effectiveness (RQ2.1) Figure 3b draws a comparison between model-
seeding and no-seeding in the crash reproduction ratio according to the results of the evaluation on
all of the 122 crashes. As mentioned in Section 5.2.1, since model seeding collects call sequences
both from source code and existing tests, it can be applied to all of the crashes (even the crashes that
do not have any helpful test). As depicted in this Figure, all of the configurations of model-seeding
reproduce more crashes compared to no-seeding in the majority of runs. We observe that model s.
0.2 & 0.5 & 1.0 reproduce 3 more crashes than no-seeding. In addition, in the best performance of
model-seeding, model s. 0.8 reproduces 70 out of 122 crashes (6% more than no-seeding).

Figure 3d categorizes the results of Figure 3b per application. As we can see in this figure, model
seeding replicates more crashes for XWiki, commons-lang, and Mockito. However, no-seeding
reproduces one crash more than model-seeding for commons-math. For the other projects, the
number of reproduced crashes does not change between no-seeding and different configurations
of model-seeding.

We also check how many crashes can be reproduced at least once with model seeding, but not
with no seeding. In total, model-seeding configurations reproduce nine new crashes that no-seeding
cannot reproduce.

Table IV indicates the impact of model-seeding on the crash reproduction ratio. As we can see
in this table, model s. 0.2 has a significantly better crash reproduction ratio in 3 crashes. Also,
other configurations of model-seeding are significantly better than no seeding in 4 crashes. This
improvement is achieved by model-seeding, while 2 out of 4 configurations of model-seeding have
a significant unfavorable impact on only one crash. The values of odds ratios and and p-values for
crashes with significant difference is available in Table III.

6.2.2. Crash reproduction efficiency (RQ2.2) Table VII compares the number of the needed fitness
function evaluations for crash reproduction in model-seeding and no-seeding. As we can see in this

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr



SEARCH-BASED CRASH REPRODUCTION USING BEHAVIORAL MODEL SEEDING 19

Table VII. Evaluation results for comparing model-seeding and no-seeding in the number of fitness
evaluations evaluations and σ designate average fitness function evaluations needed for crash reproduction
and standard deviation, respectively. The numbers in the comparison only count the statistically significant

cases.

Conf. Fitness Comparison to no s.
large medium small

evaluations σ < 0.5 > 0.5 < 0.5 > 0.5 < 0.5 > 0.5
no s. 18,713.1 28,023.93 - - - - - -
model s. 0.2 18,016.1 27,699.61 2 1 1 1 2 1
model s. 0.5 17,646.9 27,463.02 2 1 2 - 2 1
model s. 0.8 17,564.5 27,400.27 3 1 2 - 1 3
model s. 1.0 17,268.8 27,190.73 3 1 2 - 1 2

table, the average effort is reduced by using model-seeding. On average mode s. 1.0 achieves the
fastest crash reproduction.

According to this table, and in contrast to test-seeding, model-seeding’s efficiency is slightly
positive. The number of crashes that model-seeding has a positive large or medium influence (as
Vargha-Delaney measures are lower than 0.5) on varies between 3 to 5. Also, model-seeding has a
large adverse effect size (as Vargha-Delaney measures are higher than 0.5) on one crash, while this
number is higher for test-seeding (e.g., 13 for test s. 1.0).

Table VII does not include the cost of model generation for seeding as mentioned in our
experimental setup. In our case, model generation was not a burden and is performed only once
per case study. We will cover this point in more detail in Section 7.

6.2.3. Guided initialization effectiveness (RQ2.3) Table VI provides a comparison between model-
seeding and no-seeding in the search initialization ratio. As shown in this Table, model s. 0.2 &
0.5 significantly outperform no seeding in starting the search process for two crashes. This number
increases to 3 for model s. 0.8 & 1.0. In contrast to test-seeding, most of the configurations of
model-seeding do not have any significant negative impact on the search initialization (only model
s. 0.2 is significantly worse than no-seeding in one crash). Notably, the average search initialization
ratios for all of the model seeding configurations are slightly higher than no seeding. In the best
case for model seeding, model s. 0.8 & 1.0 is 30/30 runs, and the standard deviations for these two
configurations are 0 or close to 0.

6.2.4. Influencing factors (RQ2.4) We have manually analyzed the crashes which lead to significant
differences between different configurations of model seeding and no seeding. In doing so, we
have identified 4 influencing factors in model-seeding on search-based crash reproduction, namely:
(i) using Call sequence dissimilarity for guided initialization, (ii) having Information source
diversity to infer the behavioral models, (iii) Sequence priority for seeding by focusing on the
classes involved in the stack trace, and (iv) having Fixed size abstract object behavior selection
from usage models.

Call sequence dissimilarity Using dissimilar call sequences to populate the object pool in model
seeding seems particularly useful for search efficiency compared to test seeding. In particular, if
the number of test cases is large, model seeding enables (re)capturing the behavior of those tests
in the model and regenerate a smaller set of call sequences which maximize diversity, augmenting
the probability to have more diverse objects used during the initialization. For instance, Botsing
with model-seeding is statistically more efficient than other strategies for replicating crash XWIKI-
13141. Through our manual analysis we observed that model-seeding could replicate crash XWIKI-
13141 in the initial population in 100% of cases, while the other seeding strategies replicate it after
a couple of iterations. In this case, despite the large size of the target class behavioral model (35
transitions and 17 states), the diversity of the selected abstract object behaviors guarantees that
Botsing seeds the reproducing test cases to the initial population.
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Information source diversity Having multiple sources to infer the model from helps to select
diversified call sequences compared to test seeding. For instance, the sixth frame of the crash
XWIKI-14556 points to a class called HqlQueryExecutor. No seeding cannot replicate this
crash because it does not have any guidance from existing solutions. Also, since the test carver
could not detect any existing test which is using the related classes, this seeding strategy does not
have any knowledge to achieve reproduction. In contrast, the knowledge required for reproducing
this crash is available in the source code, and model-seeding learned it from static analysis of this
resource. Hence, this seeding strategy is successful in accomplishing crash reproduction.

Sequence priority By prioritizing classes involved in the stack trace for the abstract object
behaviors selection, the object pool contains more objects likely to help to reproduce the crash. For
instance, for the 10th frame of the crash LANG-9b, model seeding could achieve reproduction in
the majority of runs, compared to 0 for test and no seeding, by using the class FastDateParser
appearing in the stack trace.

Fixed size abstract object behavior selection The last factor points to the fixed number of the
generated abstract object behaviors from each model. In some cases, we observed that model-
seeding was not successful in crash reproduction because the usage models of the related classes
were large, and it was impossible to cover all of the paths with 100 abstract object behaviors. As
such, this seeding strategy missed the useful dissimilar paths in the model. As an example, model-
seeding was not successful in replicating crash XWIKI-8281 (which is replicated by no-seeding and
test-seeding). In this crash, the unfavorable generated abstract object behaviors for the target class
misguided the search process in model seeding.

6.2.5. Summary (RQ2) Model seeding achieves a better search initialization ratio compared to no
seeding. With respect to the best achievement of model seeding (model s. 0.8 & 1.0), they decrease
the number of not started searches in 3 crashes. Moreover, compared to no seeding, model seeding
increases the number of crashes that can be reproduced in the majority of times to 6%. It also
reproduces 9 (out of 122) extra crashes that are unreproducible with no-seeding. In addition, model
seeding improves the efficiency of search-based crash reproduction compared to no seeding. It takes,
on average, less fitness function evaluations. Also, model seeding delivers more positive significant
impact on the efficiency of the search process compared to no seeding.

In general, model seeding outperforms no seeding in all of the aspects of search-based crash
reproduction. According to the manual analysis that we have performed in this study, model seeding
achieves this performance thanks to multiple factors: Call sequence dissimilarity, Information source
diversity, and Sequence priority. Nevertheless, we observe a negative impacting factor in model
seeding, as well. This factor is the fixed size abstract object behavior selection.

7. DISCUSSION

7.1. Practical implications

Model derivation costs Generating seeds comes with a cost. For our worst case, XWIKI-13916,
we collected 286K call sequences from static and dynamic analysis and generated 7,880 models
from which we selected 6K abstract object behaviors. We repeated this process 10 times and found
the average time for call sequence collection to be 14.2 seconds; model inference took 77.8 seconds;
and abstract object behavior selection and concretization took 51.5 seconds. We do note however
that the model inference is a one-time process that could be done offline (in a continuous integration
environment). After the initial inference of models, any search process can utilize model seeding.
To summarize, the total initial overhead is ∼ 2.5 minutes, and the total nominal overhead is around
∼ 1.25 minute. We argue that the overhead of model seeding is affordable giving its increased
effectiveness. The initial model inference can also be incremental, to avoid complete regeneration
for each update of the code, or limited to subparts of the application (like in our evaluation where we
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only applied static and dynamic analysis for classes involved in the stack trace). Similarly, abstract
object behavior selection and concretization may be prioritized to use only a subset of the classes
and their related model. In our current work, this prioritization is based on the content of the stack
traces. Other prioritization heuristics, based for instance on the size of the model (reflecting the
complexity of the behavior), is part of our future work.

Applicability and effectiveness Generally, test seeding alone does not make crash reproduction
more effective. Actually, test seeding has a more negative impact on the search-based crash
reproduction. Test seeding only uses dynamic analysis, which entails that it collects more accurate
information from the potential usage scenarios of the software under test; it also means that this
strategy collects more limited information for seeding. If these limited amounts of call sequences
differ from the call sequences needed to reproduce the crash scenario, test seeding can misguide the
crash reproduction search process.

In contrast to test-seeding, we observe that model seeding always performs better than no seeding
with different configurations. As such, we observe that model seeding can reproduce more crashes
than other strategies. Also, since model seeding also exploits test cases, thereby subsuming test
seeding regarding the observed behavior of the application that is reused during the search, greater
performance can be attributed to the analysis of the source code translated in the model.

In our experiments, various configurations of model seeding reproduced 8 new crashes that
neither test seeding nor no seeding strategies could reproduce. Additionally, only model seeding
could reproduce stack traces with more than seven frames (e.g., LANG-9b). Still, model
seeding missed the reproduction of one crash which is reproduced by no seeding. Despite the
achieved improvements by model seeding, this seeding strategy could not outperform no-seeding
dramatically (crash reproduction improved by 6%). To better understand the reasons for the results,
we manually analyzed the logs of Botsing executions on the crashes for which model seeding could
not show any improvements. Through this investigation, we noticed that the generated usage models
in these cases are limited and they do not contain the beneficial call sequences for covering the
particular path that we need for crash reproduction. The average size of the generated model in this
study is 7 states and 14 transitions. We believe that by collecting more call sequences from different
sources (i.e., log files), model seeding can increase the number of crash reproductions.

We also observed two crashes that all of the test seeding configurations could reproduce them
significantly more often compared to all of the configurations of model seeding: LANG-6b and
TIME-5b. We manually analyzed the crash reproduction process in these two crashes to understand
the reason for test seeding outperforming model seeding. In the former crash, test seeding is the
only seeding strategy that can reproduce the crash because of the Crash-Test Proximity (explained
in section 6.1.4 as an example of this factor). In the latter crash, we observed that the size of the
inferred model for the target class is big (it has 99 states and more than 300 transitions).

We witnessed that the size of the generated abstract behaviors set is commensurate to the size of
the inferred model. If we have a small model, and we choose too many abstract behaviors, we will
get similar abstract behaviors that misguide the search process. The mutation operator may counter
this negative impact during the search by potentially adding the missing method calls. In contrast, if
we chose a small set of abstract behaviors from a behavioral model with a large size, we will miss
the chance of using all of the potentials of the model for increasing the chance of crash reproduction
by the search process.

Extendability The usage models can be inferred from any resource providing call sequences.
In this study, we used the call sequences derived from the source code and existing test cases.
However, we can extend the models with extra resources (e.g., execution logs). Also, the abstract
object behavior selection approach can be adapted according to the problem. In this study, we used
the dissimilarity strategy to increase the diversity of the generated tests. Moreover, model seeding
makes a distinction between using the object pool during guided initialization and guided mutation
(as shown in Figure 2). This distinction enables us to study the influence of seeding during the
different steps of the algorithm independently.
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Table VIII. Evaluation results for comparing different configurations of model seeding in crash reproduction.
rate and σ designate average crash reproduction rate and standard deviation, respectively. The numbers in

the comparison only count the statistically significant cases.

Conf. Reproduction Comparison to other conf.
rate σ better worse

Pr[init]=0.0 Pr[mut]=0.3 18.8 13.81 0 11
Pr[init]=0.0 Pr[mut]=0.6 19.0 13.64 0 10
Pr[init]=0.0 Pr[mut]=0.9 19.0 13.55 0 13
Pr[init]=0.2 Pr[mut]=0.0 20.4 12.42 2 2
Pr[init]=0.2 Pr[mut]=0.3 19.6 12.87 0 7
Pr[init]=0.2 Pr[mut]=0.6 19.8 12.88 1 5
Pr[init]=0.2 Pr[mut]=0.9 19.4 13.15 0 7
Pr[init]=0.5 Pr[mut]=0.0 20.8 12.17 3 1
Pr[init]=0.5 Pr[mut]=0.3 20.6 12.29 3 2
Pr[init]=0.5 Pr[mut]=0.6 19.4 13.24 0 7
Pr[init]=0.5 Pr[mut]=0.9 20.0 12.58 1 5
Pr[init]=0.8 Pr[mut]=0.0 21.8 11.46 8 0
Pr[init]=0.8 Pr[mut]=0.3 21.6 11.53 6 0
Pr[init]=0.8 Pr[mut]=0.6 21.8 11.77 8 0
Pr[init]=0.8 Pr[mut]=0.9 20.8 11.96 3 2
Pr[init]=1.0 Pr[mut]=0.0 21.6 11.53 6 0
Pr[init]=1.0 Pr[mut]=0.3 23.0 11.31 12 0
Pr[init]=1.0 Pr[mut]=0.6 21.6 11.82 8 0
Pr[init]=1.0 Pr[mut]=0.9 22.6 11.30 11 0

Table IX. Evaluation results for comparing different configurations of model seeding in the number of fitness
evaluations rate and σ designate average fitness function evaluations needed for crash reproduction and
standard deviation, respectively. The numbers in the comparison only count the statistically significant cases.

Conf. Fitness Comparison to other configurations
large medium small

evaluations σ < 0.5 > 0.5 < 0.5 > 0.5 < 0.5 > 0.5
Pr[init]=0.0 Pr[mut]=0.3 23,456.5 30,105.20 - 5 - 3 - 3
Pr[init]=0.0 Pr[mut]=0.6 23,066.3 29,976.23 - 2 - 5 - 3
Pr[init]=0.0 Pr[mut]=0.9 23,030.9 30,001.82 - 7 - 4 1 2
Pr[init]=0.2 Pr[mut]=0.0 20,179.0 29,012.80 - - 1 2 1 -
Pr[init]=0.2 Pr[mut]=0.3 21,803.0 29,620.34 - 2 2 5 - 1
Pr[init]=0.2 Pr[mut]=0.6 21,448.9 29,441.74 - 2 - 3 1 2
Pr[init]=0.2 Pr[mut]=0.9 22,214.6 29,752.12 - 2 2 5 1 1
Pr[init]=0.5 Pr[mut]=0.0 19,371.3 28,668.58 - - 2 1 3 -
Pr[init]=0.5 Pr[mut]=0.3 19,766.8 28,849.00 - - 1 2 2 -
Pr[init]=0.5 Pr[mut]=0.6 22,245.2 29,729.80 - - - 4 - 3
Pr[init]=0.5 Pr[mut]=0.9 21,030.0 29,302.03 - 2 - 3 1 2
Pr[init]=0.8 Pr[mut]=0.0 17,329.0 27,693.98 2 - 6 - - 1
Pr[init]=0.8 Pr[mut]=0.3 17,710.5 27,919.28 1 - 4 - 3 -
Pr[init]=0.8 Pr[mut]=0.6 17,327.0 27,694.60 2 - 6 - - -
Pr[init]=0.8 Pr[mut]=0.9 19,383.3 28,659.38 - - 1 1 2 2
Pr[init]=1.0 Pr[mut]=0.0 17,730.5 27,906.92 1 - 4 - 3 1
Pr[init]=1.0 Pr[mut]=0.3 14,863.9 26,275.53 7 - 3 - - -
Pr[init]=1.0 Pr[mut]=0.6 17,692.5 27,930.17 2 - 5 - 1 -
Pr[init]=1.0 Pr[mut]=0.9 15,656.9 26,798.15 7 - 5 - 1 -

7.2. Model seeding configuration

Model seeding can be configured with different Pr[pick init] and Pr[pick mut] probabilities. Like
many other parameters in search-based test case generation [50], the values of those parameters
could influence our results. Although a full investigation of the effect of Pr[pick init] and
Pr[pick mut] on the search process is beyond the scope of this paper, we set up a small experiment
on a subset of crashes (10 crash in total) with 15 new configurations, each one run 10 times.

Tables VIII and IX presents the configurations used for Pr[pick init] and Pr[pick mut] with, for
each one, the crash reproduction effectiveness (Table VIII), and the crash reproduction efficiency
(Table IX). In general, we observe that changing the probability of picking an object during guided
initialization (Pr[pick init]) has an impact on the search and leads to more reproduced crashes with
a lower number of fitness evaluations. This confirms the results presented in Section 6. Changing
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the probability of picking an object during mutation (Pr[pick mut]) does not seem to have a large
impact on the search. A full investigation of the effects of Pr[pick init] and Pr[pick mut] on the
search process is part of our future work.

7.3. Threats to validity

7.3.1. Internal validity We selected 122 crashes from 5 open source projects: 33 crashes have
previously been studied [9] and we added additional crashes from XWiki and Defects4J (see
Section 5). Since we focused on the effect of seeding during guided initialization, we fixed the
Pr[pick mut] value (which, due to the current implementation of BOTSING, is also used as
Pr[pick init] value in test seeding) to 0.3, the default value used in EVOSUITE for unit test
generation. The effect of this value for crash reproduction, as well as the usage of test and model
seeding in guided initialization, is part of our future work. We cannot guarantee that our extension of
BOTSING is free of defects. We mitigated this threat by testing the extension and manually analyzing
a sample of the results. Finally, each frame has been run 30 times for each seeding configuration
to take randomness into account and we derive our conclusions based on standard statistical tests
[51, 52].

7.3.2. External validity We cannot guarantee that our results are generalizable to all crashes.
However, we used JCRASHPACK, which is the most recent benchmark for Java crash reproduction.
This benchmark is assembled carefully from seven Java projects and contains 200 real-life crashes.
Since the EVOSUITE test executor is unsuccessful in running the existing test cases of one of
the seven projects in JCRASHPACK (ElasticSearch), thereby test seeding and dynamic analysis of
model-seeding are not applicable on crashes of this project, we excluded ElasticSearch crashes from
JCRASHPACK. The diversity of crashes in this benchmark also suggests mitigation of this threat.

7.3.3. Verifiability A replication package of our empirical evaluation is available at https://
github.com/STAMP-project/ExRunner-bash/tree/master. The complete results
and analysis scripts are also provided as a dataset in Zenodo‖ for long-term storage. Our extension
of BOTSING is released under a LGPL 3.0 license and available at https://github.com/
STAMP-project/botsing.

8. FUTURE WORK

We observed that one of the advantageous factors in model seeding, which helps the search
process to reproduce more crashes, consists in using more multiple resources for collecting the
call sequences. Further diversification of sources is worth considering. In our future work, we will
consider other sources of information, like logs of the running environment, to collect relevant call
sequences and additional information about the actual usage of the application.

Also, collecting additional information from the log files would enable using full-fledged
behavioral usage models (i.e., a transition system with probabilities on their transitions quantifying
the actual usage of the application) to select and prioritize abstract object behaviors according to
that usage as it is suggested by statistical testing approaches [26]. For instance, we can put a high
priority for the most uncommon observed call sequences for the abstract object behavior selection.
We observed that selecting the most dissimilar paths in model-seeding helps the search process
through crash reproduction. However, there is no guarantee that this approach is the best one. In
future studies, we examine this approach with the new abstract object behavior selection approaches
that we gain by the new full-fledged behavioral usage models.

In this study, we focus on the impact of seeding during guided initialization by using different
values for Pr[pick init] and Pr[clone] and setting Pr[pick mut] to the default value (0.3). However,

‖https://doi.org/10.5281/zenodo.3673916

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://github.com/STAMP-project/ExRunner-bash/tree/master
https://github.com/STAMP-project/ExRunner-bash/tree/master
https://github.com/STAMP-project/botsing
https://github.com/STAMP-project/botsing
https://doi.org/10.5281/zenodo.3673916


24 P. DERAKHSHANFAR, X. DEVROEY, G. PERROUIN, A. ZAIDMAN, A. VAN DEURSEN

our results show that even with the default value 0.3, using seeded objects during the search process
helps to reproduce several crashes. Our future work includes a thorough assessment of that factor.
Furthermore, in the current version of model seeding, we noticed that the fixed size for the selected
abstract object behaviors from the usage models could negatively impact the crash reproduction
process. This set’s size affects BOTSING’s performance and must be chosen carefully. If too small,
abstract object behaviors may not cover the transition system sufficiently, missing out on important
usage information. Too few abstract object behaviors can misguide the search process. In contrast,
too many of them will lead to a time-consuming test concretization process. In future investigations,
we will study the integration of the search process with the abstract object behavior selection from
the models. This integration can guide the seeding (e.g., the abstract object behavior selection) using
the current status of the search process.

Finally, we hypothesize that this seeding strategy may be useful for other search-based software
testing applications and we will evaluate this hypothesis in our future work.

9. CONCLUSION

Manual crash reproduction is labor-intensive for developers. A promising approach to alleviate them
from this challenging activity is to automate crash reproduction using search-based techniques. In
this paper, we evaluate the relevance of using both test and behavioral model seeding to improve
crash reproduction achieved by such techniques. We implement both test seeding and the novel
model seeding in BOTSING.

For practitioners, the implication is that more crashes can be automatically reproduced, with a
small cost. In particular, our results show that behavioral model seeding outperforms test seeding
and no seeding without a major impact on efficiency. The different behavioral model seeding
configurations reproduce 6% more crashes compared to no seeding, while test seeding reduces the
number of reproduced crashes. Also, behavioral model seeding can significantly increase the search
initialization rate for 3 crashes compared to no seeding, while test seeding performs worse than
no seeding in this aspect. We hypothesize that the achieved improvements by model seeding can
be further extended by using more resources (i.e., execution logs) for collecting the call sequences
which are beneficial for the model generation.

From the research perspective, by abstracting behavior through models and taking advantage
of the advances made by the model-based testing community, we can enhance search-based crash
reproduction. Our analysis reveals that (1) using collected call sequences, together with (2) the
dissimilar selection, and (3) prioritization of abstract object behaviors, as well as (4) the combined
information from source code and test execution, enable more search processes to get started, and
ultimately more crashes to be reproduced.

In our future work, we will explore whether behavioral model seeding has further ranging
implications for the broader area of search-based software testing. Furthermore, we aim to study
the effect of changing the seeding probabilities on the search process, explore other sources of data
to generate the model and try different abstract object behavior selection strategies.
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