
PETrA: a Software-Based Tool for Estimating the
Energy Profile of Android Applications

Dario Di Nucci1, Fabio Palomba13, Antonio Prota1, Annibale Panichella2, Andy Zaidman3, Andrea De Lucia1

1University of Salerno — 2University of Luxembourg — 3Delft University of Technology

Abstract—Energy efficiency is a vital characteristic of any
mobile application, and indeed is becoming an important factor
for user satisfaction. For this reason, in recent years several
approaches and tools for measuring the energy consumption of
mobile devices have been proposed. Hardware-based solutions
are highly precise, but at the same time they require costly
hardware toolkits. Model-based techniques require a possibly
difficult calibration of the parameters needed to correctly create
a model on a specific hardware device. Finally, software-based
solutions are easier to use, but they are possibly less precise than
hardware-based solution. In this demo, we present PETRA, a
novel software-based tool for measuring the energy consumption
of Android apps. With respect to other tools, PETRA is com-
patible with all the smartphones with Android 5.0 or higher,
not requiring any device specific energy profile. We also provide
evidence that our tool is able to perform similarly to hardware-
based solutions.

Keywords-Energy Consumption; Mobile Apps; Estimation

I. INTRODUCTION

Laptops, smartphones and tablets are becoming the most
used devices for billions of users from all over the world [1],
which rely on portable devices for running a number of mobile
applications (i.e., apps) essential for their daily activities.
Unfortunately, the utility of mobile apps and, more in general
of mobile devices, is threatened by their energy efficiency [2].
To deal with energy related issues, the research community
proposed several solutions which are mainly concerned with
hardware efficiency (e.g., circuit efficiency [3]). However,
recent findings have shown software to be a potential source
of energy inefficiency for mobile apps (see e.g., [4]).

In this context, correctly measuring the energy consumption
of mobile devices becomes an important step to identify
energy leaks, i.e., portions of source code consuming too much
energy. In the last five years, a number of approaches and
tools for measuring energy consumption have been proposed.
The vast majority of them can be classified as hardware-
based, and rely on hardware toolkits to perform measurements.
For instance, Hindle et al. devised GREENMINER [5], a
hardware mining testbed based on an ARDUINO board with
an INA219 chip [6]. Besides the extraction of the energy
consumption of mobile devices, GREENMINER also provides a
web application1 for (i) automating the testing of applications
running on a device, and (ii) analyzing the results.

While hardware-based solutions are supposed to be more
precise in their measurements, they require costly hardware

1http://softwareprocess.es/static/GreenMining.html

devices. Consequently, researchers are trying to find alterna-
tives to approximate the energy consumption. One good choice
is represented by model-based approaches, which define math-
ematical functions to estimate the energy consumption of
mobile apps on a given hardware device. For example, Zhang
et al. [7] proposed POWERBOOTER, a technique for automated
power model construction that relies on battery voltage sensors
and knowledge of battery discharge behavior. It does not
require external power meters. However, a not always easy-
to-find calibration of the parameters of the model is essential
to correctly estimate power consumption.

Finally, software-based approaches use only the system
functionalities to estimate the power consumption, without
constructing any specific model. For instance, Hao et al.
proposed ELENS [8] a tool for fine-grained estimation of
energy consumption at method, path or line-of-source level.
It relies on a combination of program analysis and energy
modeling and it produces visual feedback to help developers
to better understand the application behavior.

Despite the fact that some techniques are showing good
performance, there is a still lack of publicly available tools able
to combine the cost-effectiveness of software and model-based
tools and the reliability of hardware-based tools in order to
quickly and efficiently measure energy consumption of mobile
applications [9]. Moreover, most of these approaches are not
easily usable in practice. For example, ELENS requires that a
Software Environment Energy Profile (SEEP) is
provided by the manufacturer of the specific Android device,
but currently this scenario is not common although Hao et al.
provide guidelines to develop a SEEP [8].

In this paper, we present a novel tool, coined PETRA
(Power Estimation Tool for Android), able to measure the
energy consumption of ANDROID apps relying on the tools
and APIs provided with the publicly available Project
Volta2. For this reason, PETRA is compatible with all the
smartphones equipped with Android 5.0 or higher. Our tool
provides estimations at the method level.

An empirical investigation that we have conducted to eval-
uate PETRA indicates similar performance to hardware-based
solutions. In fact, the mean relative error with respect to the
MONSON toolkit [10] is always lower than 0.05. Moreover,
95% of the estimation errors are within 5% of the actual values
measured using the hardware-based toolkit.

Tool and Data Replication. The executable file and all the

2https://developer.android.com/about/versions/android-5.0.html



data used in the experiment are available on the PETRA
replication package [11]. Moreover, a video of the tool at work
is available at https://youtu.be/1rrFPDMIBbI. The
binaries and the data are released under the MIT license3.

II. PETRA: A POWER ESTIMATION TOOL FOR ANDROID
APPLICATIONS

This Section reports the main characteristics of PETRA, as
well as details about its architecture and inner-working.

A. Design Goals

Harman et al. [9] recently pointed out two main charac-
teristics that should be met by an energy measurement tool,
namely a (1) quick and (2) efficient estimation of the energy
consumption. These two characteristics should contribute to
the systematic use of such tools in the context of other pro-
cesses (e.g., software testing [9]). For this reason, we designed
PETRA in order to face these two challenges. Specifically, the
characteristics of our tool can be summarized as follow:

• Efficiency and Granularity. PETRA is able to quickly
estimate the energy consumed by an app at the method
level. It is worth noting that this level of granularity
allows the developer to calculate the energy estimations
per test case. The tool does not require any human effort.

• Hawthorne Effect and Impact of Sampling Frequency.
The technologies on which PETRA relies are an integral
part of the core ANDROID OS and the instrumentation has
little influence on the estimation process. In this way, it is
possible to minimize the Hawthorne effect in which the
measurements are affected by the measurement process
[9]. Moreover, since the tool does not rely on hardware
components, it does not suffer of the sampling frequency
highlighted by Saborido et al. [12].

• Specialized Hardware Requirements. PETRA does not
need any particular hardware and provides output results
that can be easily analyzed.

B. PETrA’s inner workings

PETRA’s workflow can be observed in Figure 1. PETRA
starts a pre-processing phase, which entails installing the app
(step 1), cleaning the app cache and resetting the Android
tools that PETrA needs in order to make the estimations
(step 2). Such pre-processing phases are needed to create
an adequate test environment not influenced by the previous
app executions. Subsequently, in step 3 of Figure 1, it ex-
ercises the app using (i) ANDROID MONKEY tool4, or (ii)
a ANDROID MONKEYRUNNER script5. ANDROID MONKEY
generates pseudo-random streams of user events such as clicks,
touches, or gestures, as well as a number of system-level
events with the aim of performing stress-testing of the app
under analysis. ANDROID MONKEYRUNNER is an API for
controlling an Android device. It allows to write programs

3https://opensource.org/licenses/MIT
4http://tinyurl.com/gvnxdd3
5https://developer.android.com/studio/test/monkeyrunner/index.html

More executions
to run?

Fig. 1: PETRA: workflow

that install Android applications, run them while sending
keystrokes, take screenshots of its user interface, and store
screenshots on the workstation.

Afterwards, PETRA collects the data provided by the
Android tools (step 4) and computes the energy consumed
by the methods previously executed (step 5). At a high level,
PETrA’s estimation works as follows: given a time window
Tw, we define a time frame T∆ as a smaller time unit in
which none of the smartphone components changed its state.
In each time frame T∆, PETRA extracts the state of each
hardware component (e.g., CPU, WiFi, GPS) and the device
voltage. Afterwards, it calculates the current intensity of the
smartphone looking at the information contained in the Power
profile file. Given current intensity, voltage, and time
frame length PETRA calculates the energy consumed in Joule.
The energy consumed by a method call is then calculated by
summing up the energy consumed in each time frame T∆ in
which the method call was active:

J =
∑

T∆∈Tw

(I∆ × V∆ × T∆) (1)

where J is the consumed energy in Joule, I∆ is the current
intensity in Ampere, V∆ is the device voltage in Volt and T∆

is the length of the time frame in seconds. Further details are
reported in the paper by Di Nucci et al. [13]. To perform
the estimations, PETRA relies on some of the tools available
from Project Volta6, which are responsible for handling
the communication with the hardware components of the
smartphone the app is running on. Specifically, we rely on
dmtracedump7, Batterystats8, and Systrace9:

6http://tinyurl.com/lvj4lxq
7 https://developer.android.com/studio/profile/traceview.html
8https://developer.android.com/studio/profile/battery-historian.html
9https://developer.android.com/studio/profile/systrace-commandline.html



• dmtracedump allows to show trace log files. For each
method call it provides the entry and the exit time at
microseconds granularity.

• BatteryStats is an open source tool of the Android
framework able to collect battery data from the device
under evaluation. PETrA uses the Batterystats log
in order to retrieve the active smartphone components and
their status in a specific time window. Furthermore, it can
provide the information about the device voltage.

• Systrace is a tool that can be used to analyze applica-
tion performance. In PETRA, the information provided
by Systrace is used to capture the frequency of the
CPU in a given time window. Considering that CPU’s
consumption changes as its frequency varies, this infor-
mation completes the one provided by Batterystats
improving the estimations.

Considering these sources of information, collecting and
merging all this information represented the main challenge
during the development of the tool. In particular, when the
time the app is exercised is long, the data extraction is
not a trivial task: we mitigated this issue applying efficient
streaming algorithms. As a consequence of the choices applied
in this stage, PETRA requires to add the Android SDK and
in particular the Android Development Bridge (ADB) to the
PATH environment variables. ADB is a command line tool
needed to allow the different tools to exchange information
with the mobile device. Moreover, the apk of the app to be
analyzed must be enabled for debugging.

As explained in step 6 of Figure 1, the results are then
saved as CSV file in the same folder of apk. The steps [2-6]
are repeated for each execution. Finally, the apk is uninstalled
from the device (step 7).

Fig. 2: PETRA: Results Table View

C. PETrA at Work
Being a software-based approach, PETRA does not require

any additional hardware equipment and, consequently, any

Fig. 3: PETRA: Results Plot View

strong experience in the setup of the test bed. Indeed, a
developer interested in computing the energy consumption of
her mobile applications with our tool simply needs to connect
her smartphone and run the executable jar file via command
line using the following command:

java -jar PETrA-1.0.jar

Subsequently, PETRA shows the configuration view. Using
this window, the developer can customize PETRA with respect
to (i) the location of the apk file, (ii) the ANDROID MONKEY
options, (iii) the ANDROID MONKEYRUNNER script location,
(iv) the number of times (i.e., runs) the energy measurements
must be computed, (v) the location of the ANDROID SDK,
and (vi) the location of the XML file containing the power
profile of the device. Regarding the ANDROID MONKEY
configuration it is possible to set the number of interactions
(e.g., keystrokes, gestures) to send to the app and the time that
must elapse between an interaction and the next one.

Once the input parameters have been configured and the
Start Energy Estimation button is clicked, the process de-
scribed in the previous section is executed. When the esti-
mations have been computed, the Statistics button is enabled.

This button allows the user to see the results of the compu-
tations though the table depicted in Figure 2. The table reports,
for each method of the app under analysis, (i) its signature,
(ii) the average Joules consumed during the tests, and (iii) the
average time in which it was executed, expressed in seconds.
Note that the methods are sortable by both Joules consumed
and execution time. Moreover, the results can be filtered by
using the field available in the top part of the view, thus,
allowing the user to select methods having specific names or
belonging to specific packages.

Additionally, the user can analyze the results of the top 5
energy-greedy methods by looking at the distribution of the
energy estimations computed during the tests. In particular,



clicking on the Consumption Distribution tab of the window,
a new view, depicted in Figure 3, is shown. To better study
the energy consumption estimations, five box plots (i.e., one
for each top 5 greedy method) are reported.

III. EVALUATION

The ability of PETRA in providing correct estimations has
been studied on a set of 54 mobile applications from the
dataset provided by Linares-Vasquez et al. [14]. The appli-
cations were exercised using the same test data (e.g., Mon-
keyrunner scripts), previously used (included in the dataset).
Due to space constraints, in this Section we summarize the
main findings achieved in the empirical study [13]. Further
details are reported in our replication package [11].

As done in other work [14], the experiment has been
conducted using a LG Nexus 4. The goal was to analyze
how close the estimations of PETRA were with respect to
the ones provided by a hardware-based tool used in previous
research [14], such as the MONSON toolkit [10]. To this aim,
we compared the estimations of the two tools on 414,899 API
calls belonging to the 321 APIs in terms of two widely known
metrics, i.e., Mean Magnitude Relative Error (MMRE) [15]
and PRED(x) [16].

It is worth noting that to isolate the behavior of an ap-
plication being executed on the smartphone, we adopted a
number of precautions. In particular, we disabled all the un-
necessary apps and processes (e.g., Google Services) running
on the phone to avoid race conditions. Then, we avoided
asynchronous events, such as incoming messages or calls by
removing the sim card from the phone. Finally, we held the
phone steady to avoid energy measurements by sensors and
WiFi signal changes.

The results show that the estimations produced by the tools
are quite close to each other. Specifically:
• Error Magnitude. The average estimation error achieved

using PETRA is 4% with respect to actual value com-
puted using the MONSOON toolkit. Moreover, 95% of the
PETRA’s estimation errors are within 5% of the actual
values.

• Error Reasons. A significant usage of the network ca-
pabilities or sensors negatively impacts the measurement
error.

• Error Type. Most of the estimations are over-estimations
(i.e., 89%). In the remaining cases, the use of sensors and
network produces underestimations.

IV. CONCLUSION REMARKS

In this demo, we presented PETRA, a software-based tool
for the estimation of the energy consumption of Android apps
at method level granularity. Unlike other tools proposed in
the literature, it uses reliable tools coming from the Android
Toolkit and does not exploit energy models that need to be
calibrated. Moreover, it is publicly available. We also reported
the main findings of the empirical study conducted to evaluate
the correctness of the estimations of PETRA, which show
that our tool performs similarly to the MONSOON toolkit. Our

research agenda will focus on designing and developing new
techniques that better estimate the energy consumption ex-
ploiting those components such as sensors and network. With
this aim, we will work on providing more precise information
on the state of components, exploring new Android tools (i.e.,
GPU Monitor10 and Network Monitor11) and designing
new services able to capture those components not analyzed
by the ANDROID TOOLS, e.g., sensors.

REFERENCES

[1] The statistics portal association. [Online]. Avail-
able: http://www.statista.com/statistics/330695/number-of-smartphone-
users-worldwide/

[2] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in Green Computing and Communications (GreenCom), IEEE
and Internet of Things (iThings/CPSCom), IEEE International Confer-
ence on and IEEE Cyber, Physical and Social Computing. IEEE, 2013,
pp. 134–141.

[3] H. Jabbar, Y. S. Song, and T. T. Jeong, “Rf energy harvesting system
and circuits for charging of mobile devices,” IEEE Transactions on
Consumer Electronics, vol. 56, no. 1, pp. 247–253, February 2010.

[4] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proc. of the International
Conference on Software Engineering (ICSE). ACM, 2016, pp. 225–236.

[5] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proc. of the
Working Conference on Mining Software Repositories (MSR). ACM,
2014, pp. 12–21.

[6] Arduino. [Online]. Available: https://www.arduino.cc
[7] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and

L. Yang, “Accurate online power estimation and automatic battery be-
havior based power model generation for smartphones,” in Proceedings
of the IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 2010, pp. 105–114.

[8] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Proc. Int’l
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 92–101.

[9] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in Proc. Int’l Conf. on
Software Testing, Verification and Validation (ICST). IEEE, 2015, pp.
1–12.

[10] Monsoon-solutions. power monitor. [Online]. Available: http:
//www.msoon.com/LabEquipment/PowerMonitor/

[11] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia. (2016, 11) Petra: a software-based tool for estimating
the energy profile of android applications. [Online]. Available:
https://doi.org/10.6084/m9.figshare.4233767.v1

[12] R. Saborido, V. V. Arnaoudova, G. Beltrame, F. Khomh, and G. An-
toniol, “On the impact of sampling frequency on software energy
measurements,” PeerJ PrePrints, Tech. Rep., 2015.

[13] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in Software Analysis, Evolution, and Reengineer-
ing (SANER), 2017 IEEE 24rd International Conference on. IEEE,
2017, p. To appear.

[14] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy API usage
patterns in android apps: An empirical study,” in Proc. Working Confer-
ence on Mining Software Repositories (MSR). ACM, 2014, pp. 2–11.

[15] L. C. Briand and I. Wieczorek, Resource Estimation in Software Engi-
neering. John Wiley & Sons, Inc., 2002.

[16] M. Jorgensen, “Experience with the accuracy of software maintenance
task effort prediction models,” IEEE Transactions on software engineer-
ing, vol. 21, no. 8, pp. 674–681, 1995.

10https://developer.android.com/studio/profile/am-gpu.html
11https://developer.android.com/studio/profile/am-network.html


