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Abstract—Software testing is essential, and automatic test
case generation can be an important aid to software engineers.
However, generated tests are sometimes difficult to understand.
Test summarization approaches that provide an overview of what
exactly is tested can provide help, but existing summarization
approaches generate documentation that is lengthy and redun-
dant. In this paper, we investigate whether large language models
(LLMs) can be used to generate more concise, yet understandable
summaries. In a small-scale user study with 11 participants, we
obtained positive feedback on the LLM-generated summaries.

Index Terms—Automated Test Generation, Large Language
Models, Unit Testing, Readability, Test Case Summarization

I. INTRODUCTION

Software testing is essential for ensuring software reliability
and correctness, but it can be a time-consuming endeavour
to write tests [1]–[4]. This has led to initiatives to automate
test generation, e.g., EvoSuite [5] and Randoop [6]. While
EvoSuite achieves high code coverage, the generated tests
often suffer from limited understandability [7]–[10], due to
non-intuitive variable naming, meaningful test data, and the
absence of informative comments [11], [12].

Several research efforts have aimed at improving test doc-
umentation by generating test summaries. One such tool,
TestDescriber [13], leverages the executed code seg-
ments to generate relevant summaries. Another approach,
DeepTC-Enhancer [14], uses a template-based with combi-
nation with deep learning to produce high-level summaries.
However, these tools’ summaries, as seen in Listings 1, often
suffer from issues like redundancy and excessive length.

Recent advancements in large language models (LLMs)
have led to investigations into their usefulness for test gen-
eration [15]–[19]. In particular, the UTGen [20] tool combines
EvoSuite with LLMs to both explore the search space, thus
ensuring high cover coverage, and improve the understand-
ability of the generated test cases through enhanced variable
naming, test data, test names, and comments [20].

This paper explores how we can add test summarization
to UTGen with the use of LLMs. Given the importance of
prompt engineering for quality output [21], we investigate
how different prompting techniques impact the quality of the
LLM-generated outputs. We look into approaches like Chain-
of-Thought prompting [22] and few-shot learning [23]. We
also compare output quality of a local open-source model,

/** A. TestDescriber:

* OVERVIEW: The test case "test10" covers around 2.0% (low percentage) of

* statements in "ArrayIntList" */

/** B. DeepTC:

* 1. Creates a new ArrayIntList

* 2. Adds to "arrayIntList0" 3 times and checks if its size is

* 3. Expects an IndexOutOfBoundsException when calling removeElementAt

* on "arrayIntListo" with argument 1 */

@Test
public void test10() throws Throwable {

ArrayIntList arrayIntList0 = new ArrayIntList();
try {

arrayIntList0.add(0, 0);
arrayIntList0.add(0, 1);
arrayIntList0.add(0, 2);
assertEquals(3, arrayIntList0.size());
arrayIntList0.removeElementAt((1));
fail("Expecting exception: IndexOutOfBoundsException");

} catch (IndexOutOfBoundsException e) {
// Should be at least 0 and less than 0, found -1

}

}

Listing 1: Examples of test summaries generated by A. TestDescriber
and B. DeepTC.

CodeLLama [24], and a commercial closed-source LLM,
ChatGPT [25]. We provide a replication package with our
implementation, prompts, data, and evaluation results [26].

The following research questions steer our investigation:
RQ1 What is the impact of using different prompt techniques

to generate LLM-based test summaries?
We investigate how prompt engineering techniques like few-
shot prompting and context awareness affect the summaries.
RQ2 How do developers rate LLM-generated test summaries

compared to those from existing approaches in terms of
content, conciseness, and naturalness?

We perform a user study to compare the quality of LLM-
generated summaries with existing tools by looking at the con-
tent (completeness and correctness), conciseness (no irrelevant
information), and naturalness of the language.
RQ3 Which characteristics of LLM-generated test summaries

most influence summarization quality?
We explore how different characteristics shape the quality of
LLM-generated summaries, based on developers’ feedback.

II. BACKGROUND

TestDescriber [13] and DeepTC-Enhancer [14] both use
template-based test case summaries. They fill the template with



the output of SWUM, a technique that uses nouns, verbs, and
prepositional phrases to represent program statements [27].

Prompt engineering is important given that each LLM has
its favoured input structures. As such, we use action words,
adopt a persona, and employ Chain of Thought [18], [22].

Few-shot learning is another technique that can be used to
prompt the LLM. Here, one will first give a few examples or
demonstrations similar to the task that will be performed, and
then prompt the LLM to do the actual task [23].

III. LLM-GENERATED SUMMARIZATIONS

A. Prompting Techniques Used for Summarizations
We utilized codellama:7b-instruct [28] as the local

model, and GPT-3.5 [29] and GPT-4o [30] as commercial
models with four prompts utilizing different prompting tech-
niques to generate summaries with the LLM.

Simple/Baseline: This basic prompt asks the LLM to gen-
erate a summary using only the test method as input. This will
be our baseline to see if using different prompting techniques
will affect the output of the LLM.

Prompt Engineering: Research shows that Chain-of-
Thought prompting enhances LLM performance in complex
reasoning tasks [22]. As such, we structured our process
into five steps, emphasizing generating adequate content, and
concise, bullet-point summaries. An example of prompt engi-
neering using the CodeLLama model is shown in Listing 2.

Context-Awareness: In addition to the test method used in
the simple prompt, we include the Method Under Test (MUT)
to give the LLM more context for generating summaries.
We hypothesize that this additional context will lead to more
detailed explanations of the MUT in the generated summaries.

Few-shot: In the few-shot prompt, we provide the LLM with
example summaries written by industry developers to illus-
trate what ideal summaries should look like. After reviewing
GitHub repositories, we selected Spr8510Tests.java from
Spring [31], StanfordCoreNLPServerITest.java from
CoreNLP [32], and LongCycleTest.java from Dagger [33]
for their brevity, clarity, and unit test focus. An example of
Few-Shot using the GPT-4o model is shown in Listing 2.

B. Integration in UTGen
We integrated the summary functionality in UTGen. We also

modified the LLM server, where the prompt is processed to
generate summaries by connecting to the LLM—either locally
for codellama:7b-instruct or through the official API for
GPT-3.5 and GPT-4o. Additionally, we implemented a prompt
healing technique, inspired by token healing [34], to correct
formatting deviations and remove unnecessary elements from
the generated summaries.

IV. EXPERIMENTAL SETUP

A. Set-up for user-evaluation (RQ1)
Comparing all LLM summarization techniques with

template-based summaries is impractical for a user study. We
first select two promising LLM approaches—one open-source
and one commercial—based on a preliminary evaluation of
various prompt techniques and models.

/** A. GPT-4o - Few-shot

* Tests adding elements to an ArrayIntList and verifies that removing an

* element at an invalid index throws an IndexOutOfBoundsException */

/** B. CodeLLama:7b - Prompt Engineering

* The test case adds 3 elements to the list and asserts that the size is 3.

* Then, it tries to remove an element at index 1, which is out of bounds,

* expecting an `IndexOutOfBoundsException`.

* The test case verifies that the expected exception is thrown with the

* appropriate message. */

@Test
public void test10() throws Throwable {

ArrayIntList arrayIntList0 = new ArrayIntList();
try {

arrayIntList0.add(0, 0);
arrayIntList0.add(0, 1);
arrayIntList0.add(0, 2);
assertEquals(3, arrayIntList0.size());
arrayIntList0.removeElementAt((1));
fail("Expecting exception: IndexOutOfBoundsException");

} catch (IndexOutOfBoundsException e) {
// Should be at least 0 and less than 0, found -1

}

}

Listing 2: Examples of LLM-generated test summaries with A. GPT-
4o (few-shot) and B. CodeLLama:7b (prompt engineering).

Experimental Design: We used two test cases,
ArrayIntList and Rational, from TestDescriber [13]
and employed three LLMs—codellama:7b-instruct,
GPT-3.5, and GPT-4o. Given the non-deterministic nature
of these models, we ran each prompt three times. With
three LLMs, two tests, four prompt techniques, and three
runs, two authors analyzed 72 prompts in total. Our
analysis focuses on three criteria—content (completeness and
accuracy), conciseness (absence of irrelevant information),
and naturalness (flow and tone)—to assess how human-like
the generated summaries appeared [13], [14], [35].

Experimental Procedure: We used a rule-based evaluation
system to reduce subjectivity. Each summary started with a
score of 5 on a Likert scale, with deductions for violations.
1) Content: Must clearly state what is being tested and how,
with deductions for missing or inaccurate details. 2) Concise-
ness: Should be brief, with points deducted for unnecessary
information. 3) Naturalness: Should have a human-like tone,
with deductions for poor flow or formal tone errors.

B. User Study (RQ2)

We conducted a user study to compare LLM-generated test
summaries with those from existing tools. Eleven participants
from our network, including eight Bachelor’s and three Mas-
ter’s students with at least one year of Java experience (see
Table I), completed a survey to assess the quality of these
summaries. For the evaluation, we used two test methods from
RQ1, along with one test from DeepTC-Enhancer and another
from TestDescriber. This selection enables us to compare the
LLM-generated and template-based summaries directly.

Experimental Procedure: The survey began with informed
consent, followed by four rounds of 20 questions where partic-
ipants evaluated and compared summaries from two selected
LLM approaches, DeepTC-Enhancer, and TestDescriber, each
applied to four different test cases. In the first two rounds,
participants compared all four tools, while in the last two
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Experience Industry Academic

0-1 years 6 (60%) 3 (30%)
2-3 years 3 (30%) 1 (10%)
4-5 years 2 (20%) 7 (70%)

Total 11 (100%) 11 (100%)

TABLE I: Experience of Participants

rounds, they compared the LLM-generated summaries with
either DeepTC-Enhancer or TestDescriber.

Participants rated the summarizations based on content,
conciseness, and naturalness using a 5-point Likert scale,
with optional text boxes for additional feedback. To reduce
bias, the order of summaries was randomized in each round,
preventing grouping by their respective tools. Additionally, we
were present during the evaluation to address questions.

Analysis: We apply the Kruskal-Wallis H test (α = 0.05) to
identify significant differences between groups, as the Shapiro-
Wilk test confirmed non-normal data. We use Dunn’s test for
pairwise comparisons, and Cohen’s d for effect size, categoriz-
ing the effect as negligible (d < 0.2), small (0.2 ≤ d < 0.5),
medium 0.5 ≤ d < 0.8), and large (d ≥ 0.8) [36].

C. Elements to explain the results (RQ3)

To answer RQ3, participants described their most and least
liked test summary features, such as length and formatting,
in two text boxes. Two authors categorized responses using
card-sorting method and calculated feature frequencies.

V. RESULTS

We now discuss the results per research question.

A. RQ1: Impact of prompt techniques on LLM test summaries

Table II presents the results of a rule-based evaluation of
prompt techniques across LLM models, focusing on content,
conciseness, and naturalness. The first four columns (Fre-
quency of Points) show the frequency and percentage of
scores for each technique, while the last four columns display
mean scores for each aspect and an overall average. Overall,
GPT models consistently outperformed CodeLlama across all
the techniques. Among the techniques, prompt engineering
achieved the best performance, followed by context awareness
and few-shot prompting.

For content, simple prompt, context-awareness, and prompt
engineering techniques performed similarly, while the few-
shot technique scored lower. Few-shot summaries often cover
only the main idea without detailing steps, resulting in an
average score of around 4 based on our rules. We hypothesize
that concise examples lead few-shot prompts to prioritize
brevity over completeness. Context-awareness added more
detail to the ArrayIntList class, while all LLMs consistently
included method explanations for the Rational class. This
may indicate that LLMs may rely on prior training data for
these classes or infer methods from test context cues.

In conciseness, GPT models outperformed CodeLlama.
With the few-shot technique, GPT models used one-line
examples for concise summaries, while CodeLlama often
ignored concise examples, favoring longer explanations. In

Prompt
Technique LLM Frequency of Points Mean

5 4 3 ≤ 2 Cont. Conc. Nat. Tot.

Simple
CodeL. 7-19% 8-22% 16-44% 5-14% 4.1 2.9 3.4 3.5
GPT3.5 24-67% 11-31% 1-3% 0 4.8 4.6 4.5 4.6
GPT4o 21-58% 8-22% 7-19% 0 4.5 4.2 4.4 4.4

Context-
Awareness

CodeL. 17-47% 6-17% 11-31% 2-6% 4.1 3.7 4.4 4.1
GPT3.5 21-58% 10-28% 4-11% 1-3% 4.7 4 4.5 4.4
GPT4o 19-53% 13-36% 4-11% 0 4.7 3.9 4.7 4.4

Prompt
Engineer-
ing

CodeL. 14-39% 13-36% 7-19% 2-6% 4.7 3.5 4 4.1
GPT3.5 23-64% 13-36% 0 0 4.8 4.4 4.6 4.6
GPT4o 25-69% 11-31% 0 0 4.8 4.7 4.6 4.7

Few-
shot

CodeL. 5-14% 14-39% 4-11% 13-36% 3.9 2.5 3.2 3.2
GPT3.5 24-67% 9-25% 3-8% 0 3.9 4.9 4.9 4.6
GPT4o 25-69% 11-31% 0 0 4.1 5 5 4.7

TABLE II: Comparison of different techniques and LLMs

the prompt-engineering technique, which uses bullet points,
CodeLlama frequently repeated lines from test cases, resulting
in redundancy. With context-aware prompts, GPT models
became less concise, adding details that were sometimes
unnecessary. For naturalness, issues like inconsistent tone,
repeated numbers (e.g., ‘3.11041E-4’), and excessive brackets
impacted readability. These issues were less evident in prompt-
engineering, which follows specific guidelines for summary
clarity. The few-shot technique also benefited from examples
in GPT models, helping maintain a natural tone.

Based on these results, we selected CodeLlama with prompt
engineering as the open-source model and GPT-4o with few-
shot as the commercial model for RQ2.

B. RQ2: Comparative influence of LLM-generated summaries
and existing tools

In the first two survey rounds, all summarization ap-
proaches—GPT-4o (few-shot), CodeLlama (prompt engineer-
ing), TestDescriber, and DeepTC-Enhancer—were evalu-
ated together. In the final two rounds, however, LLM-generated
summaries were assessed separately due to unique test cases
in TestDescriber and DeepTC-Enhancer.

Table III presents results from the first two rounds, where
LLM-generated summaries consistently scored above 4 for
higher overall ratings and naturalness. Participants preferred
these summaries, selecting them 20 and 17 times compared to
7 and 12 for the existing tools. CodeLlama (prompt engineer-
ing) emerged as the top choice, followed by GPT (few-shot).
CodeLlama scored highest in content richness, while GPT was
favored for conciseness, indicating participants appreciated
both depth and brevity. Figure 1 shows the two final rounds,
revealing that: 1) CodeLlama (prompt engineering) received
the highest ratings for content quality, 2) GPT-4o (few-shot)
scored highest for conciseness, 3) LLM-generated summaries
outperformed template-based ones in naturalness.

Two statistical tests comparing LLM-generated summaries
with those from existing tools show that:

1) CodeLlama (prompt engineering) and GPT-4o (few-shot)
as significantly more concise than TestDescriber (Dunn’s test,
p ≤ 0.01, effect sizes 0.92 and 1.41, respectively). GPT-4o
(few-shot) also scored significantly higher in naturalness than
TestDescriber (p = 0.04, medium effect size 0.60), while no
significant difference appeared for content (p = 0.08).
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Fig. 1: Results from comparing the summaries of TestDescriber, CodeLlama:7b-instruct, and GPT-4o using a 5-point Likert scale

Tool Mean # times
favouredContent Conciseness Naturalness Total

TestDescriber 3.97 2.85 3.21 3.34 7
DeepTC 3.88 4.21 3.64 3.90 12
CodeLlama 4.48 3.93 4.09 4.17 20
GPT-4o 3.78 4.57 4.05 4.13 17

TABLE III: Left: averages of the quality aspects (content, concise-
ness, naturalness) of the LLM-generated summaries. Right: compar-
ison of the number of times participants preferred a summary.

2) DeepTC-Enhancer’s summaries are rated significantly more
concise than CodeLlama (p = 0.03, small effect size 0.46).
GPT-4o (few-shot) was rated more concise than CodeLlama
(p ≤ 0.01, medium effect size 0.77), while CodeLlama
(prompt engineering) scored higher for content (p ≤ 0.01,
large effect size 0.94).

C. RQ3: Impact of Characteristics on Test Summary Quality

Analyzing user feedback on both liked and disliked aspects
of each approach reveals:

1) TestDescriber received positive feedback from two partic-
ipants for its step-by-step commentary (four mentions) but was
criticized by seven participants for excessive detail as reducing
readability (twelve mentions). This feedback aligns with its
low conciseness scores in Figure 1.

2) DeepTC-Enhancer was praised by five participants for
concise summaries and numbered steps (seven mentions).
However, some participants felt the line-by-line descriptions
lacked clarity about the test’s purpose, leading to lower content
scores than CodeLlama (prompt engineering).
3) CodeLlama (prompt engineering) was highlighted by eight

participants for its detailed explanations (fourteen mentions)
and skimmable format (five mentions). However, five par-
ticipants noted redundancy (seven mentions), which affected
conciseness relative to DeepTC-Enhancer and GPT-4o.
4) GPT (few-shot) was commended by five participants for

concise summaries (six mentions) and by another five for clear
test objectives (eight mentions). However, seven participants
found it lacked detail (seventeen times), which affected content
scores, as seen in Figure 1.

VI. DISCUSSION

A. Revisiting the Research Questions

Our findings in exploring the research questions reveal that
the prompt engineering technique produces richer content,

while few-shot prompting provides more concise summaries.
Context-aware prompting also benefits complex tests by under-
standing test logic. Among models, GPT models consistently
outperformed CodeLlama:7b (RQ1). Comparing LLMs with
tools like TestDescriber and DeepTC-Enhancer highlighted
variability in quality metrics like content and conciseness
(RQ2). For example, GPT-4o (few-shot)’s summaries were
concise but sometimes lacked detail, affecting clarity. Char-
acteristics like inline comments and summary length varied
in their influence, with conciseness sometimes beneficial and
other times limiting (RQ3). These mixed results suggest that no
single approach or characteristic element is universally optimal
for test case summarization. We also expect the performance
gap between GPT and CodeLlama to widen with further
evaluation on more test cases.

B. Threats to Validity
Construct Validity could be affected by our self-assessment

of summaries in RQ1, introducing subjective bias despite our
consistent guidelines.

Internal Validity was addressed by randomizing summaries
and anonymizing tool identifiers to reduce bias. Permutation
testing indicated no significant effect of participant background
on ratings, supporting our findings’ robustness.

External Validity is limited by our selection of test cases:
we used two classes for RQ1 and four tests for RQ2 and RQ3
to avoid skewing results. A broader user evaluation would also
improve generalizability.

VII. CONCLUSIONS AND FUTURE WORK

Our research reveals that while LLM-generated test sum-
maries often excel in quality, particularly in creating concise
summaries, their effectiveness depends on the right combina-
tion of prompting techniques and LLM choice. We evaluated
four prompting strategies across three LLMs, finding that
codellama:7b-instruct excelled with prompt engineering, and
GPT-4o outperformed other ChatGPT models in few-shot
prompting by balancing content, conciseness, and naturalness.
In user evaluations, LLM-generated summaries outperformed
existing tools (TestDescriber and DeepTC-Enhancer), partic-
ularly in naturalness, though summary length remains a factor
affecting readability. For future work, we intend to perform
a user study to deeply explore the differences in prompt
techniques across LLMs.
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