
Web API Growing Pains:
Stories from Client Developers and Their Code

Tiago Espinha, Andy Zaidman, Hans-Gerhard Gross
Delft University of Technology, The Netherlands
{t.a.espinha, a.e.zaidman, h.g.gross}@tudelft.nl

Abstract—Web APIs provide a systematic and extensible
approach for application-to-application interaction. Developers
using web APIs are forced to accompany the API providers in
their software evolution tasks. In order to understand the distress
caused by this imposition on web API client developers we
perform a semi-structured interview with six such developers. We
also investigate how major web API providers organize their API
evolution, and we explore how this affects source code changes
of their clients. Our exploratory study of the Twitter, Google
Maps, Facebook and Netflix web APIs analyzes the state of web
API evolution practices and provides insight into the impact of
service evolution on client software. Our study is complemented
with a set of observations regarding best practices for web API
evolution.

I. INTRODUCTION

Modern-day software development is inseparable from the
use of Application Programming Interfaces (APIs) [1]. Soft-
ware developers access APIs as interfaces for code libraries,
frameworks or sources of data, to free themselves from low-
level programming tasks and/or speed up development [2].
In contrast to statically linked APIs, a new breed of APIs,
so called web service APIs, offer a systematic and extensible
approach to integrate services into (existing) applications [3],
[4]. However, what happens when these web APIs start to
evolve? Lehman and Belady emphasize the importance of
evolution for software to stay successful [5], and updating
software to the latest version of its components, accessed
through APIs [6]. In the context of statically linked APIs, Dig
and Johnson state that breaking changes to interfaces can be
numerous [6], and Laitinen says that, unless there is a high
return-on-investment, developers will not migrate to a newer
version [7].

In the context of web APIs, developers can no longer afford
the inertia that was noted by Laitinen, as it is the web API
provider that sets the pace when it comes to migrating to a new
version of the web API. In the statically linked API context,
developers could choose to stay with an older version of e.g.
libxml, which meets their needs, yet, with web service APIs
the provider can at any time unplug a specific version (and
functionality), thus forcing an upgrade. In 2011, a study by
Lämmel et al. showed that among 1,476 Sourceforge projects
the median number of statically linked APIs used is 4 [8].
Should developers have no control over the API evolution
(as is the case with web APIs), this would represent a heavy
burden for client developers as it causes an endless struggle
to keep up with changes pushed by the web API providers.

Also in 2011, a survey among 130 web API client de-
velopers entitled “API Integration Pain” [9] revealed a large
number of complaints about current API providers. The au-
thors reported the following regarding web API providers:
“[...] There’s bad documentation. [...] APIs randomly change
without warning. And there’s nothing even resembling industry
standards, just best practices that everyone finds a way around.
As developers, we build our livelihoods on these APIs, and we
deserve better.”

Pautasso and Wilde present different facets of “loose
coupling” [10] on web services. Indeed, all the web APIs
make use of REST interfaces which can be easily integrated
with through a single HTTP request. However, a facet not
considered in Pautasso and Wilde’s work is that of how clients
end up tightly tied to the evolution policies of the web API
providers. This motivated us to investigate how web service
APIs evolve and to study the consequences for clients of these
web APIs.

In this exploratory study, we start by investigating [RQ1]
what some of the pains from client developers are when
evolving their clients to make use of the newest version
of a web API. We do this by interviewing six professional
developers that work with changing web APIs. Subsequently,
we investigate the guidelines provided by 4 well-known and
frequently used web API providers to find out [RQ2] what
are the commonalities in the evolution policies for web APIs?
Ultimately, we turn our attention to the source code of web
API clients to find out [RQ3] what the impact on source code
is when web APIs start to evolve.

The remainder of this paper is structured as follows: in
Section II we describe our experimental setup including how
the projects were selected and how we calculate the impact
on code, Section III describes the interviews with client
developers and the lessons learned across different domains,
Section IV looks at the different web API policies from
different providers, Section V presents the impact web API
evolution has on code and Section VI frames these results
with our research questions and provides a list of recommen-
dations for API providers. Lastly, we discuss related work in
Section VII and present our conclusions in Section VIII.

II. EXPERIMENTAL SETUP

Our exploratory study is composed of three parts. We started
by interviewing six developers (Table II) who maintain clients
for web APIs as to obtain anecdotal evidence of developers

978-1-4799-3752-3/14 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

84



Web API Project LOC Commits Avg. Churn Evol. Churn (% of Avg.) File dispersion Evol. Commits

Twitter

rsstwi2url 2101 366 0.008203 0.008251 0.59 3 1
TwiProwl 1199 156 0.007530 0.030629 306.75 1 1

netputweets 8853 218 0.001679 0.005521 228.80 15 3
sixohsix/twitter 3866 375 0.00871 0.004509 -48.21 11 7

Google Maps
hobobiker 478994 37 0.0000607 0.000147 142.27 4 2

cartographer 1895 36 0.009328 0.115652 1139.84 17 2
wohnungssucherportal 35119 208 0.00026 0.000127 -51.34 4 1

Facebook spring-social-facebook 30362 1042 0.001222 0.000277 -77.33 14 1

Netflix pyflix2 3433 49 0.008032 0.008409 4.70 8 2
Netflix.bundle 1724 80 0.007530 0.002115 -71.91 2 1

TABLE I
STATISTICS PER PROJECT

who had to undergo web API evolution in their clients. In
the second part of our study we analyze common evolution
policies (i.e. deprecation periods, breaking change notifica-
tions, etc) from four major web API providers. This allows
us to identify potential best practices. Lastly we measure and
interpret the impact web API evolution has on client code by
analyzing code churn and identifying the commits related to
web API evolution.

In this section we provide more insight on how we selected
the developers to be interviewed, how we selected the projects
under analysis as well as how we measure the impact on the
client code.

A. Interviews With The Developers

Our experiment included interviews with several developers
who have at some point dealt with evolving web APIs. In order
to find suitable candidates we e-mailed the developers of all
the clients under study (see Section V) and sent out public
calls for participation on social networks.

Additionally we had the opportunity to interview the client
developers of a multi-national payment aggregator company
whose software system interacts with several financial institu-
tions through web APIs.

Table II provides an overview of the web APIs each of the
6 interviewees developed clients for.

The interviews took on average thirty minutes per developer
and were either performed face-to-face or via Skype in the
format of a semi-structured interview [11]. The ten starting
questions that we used during the interview are listed in
Table III and cover several web API-related issues, such as:
maintenance effort, frequency of version upgrades, security,
developer communication and implementation technologies.

B. Selecting Web APIs

In order to perform our code analysis we required web
APIs with a large number of clients. To find such web APIs

Google Maps 1 developer
Google Search & Bing 1 developer

Redmine API 1 developer
Google Calendar 1 developer

Unnamed Payments Aggregator 2 developers

TABLE II
INTERVIEWED DEVELOPERS

we resorted to ProgrammableWeb’s 1 web services directory.
From this list, sorted by popularity, we picked the top most
popular web APIs and quickly verified which web APIs
contained the largest number of references in GitHub. This led
us to choose Twitter, Google Maps and Facebook. The projects
using the Netflix web API were found while investigating
projects on GitHub.

C. Selecting The Projects With Web API Evolution

Once we have selected a set of web APIs that are known to
have evolved, we have to find candidate projects integrating
with those web APIs. Candidate projects for our analysis need
to meet the criteria of having had to perform maintenance due
to the web API having changed. In order to have access to
projects which contain this evolution step and thus shine a
light on the amount of changes involved in web API evolution
we devised a mechanism to identify the evolution step.

This mechanism was then applied on GitHub as it contains
a large collection of potentially suitable open-source projects.

For web API providers such as Twitter, Google Maps and
Netflix, where an explicit versioning system is provided, the
approach consists of two steps. They are: 1) compiling a list
of all the projects on GitHub which contain references to the
latest version of their specific web API, and 2) for each project
found, filter the Git diffs which contain references to the old
version of the web API.

Facebook required a different approach. Even though a
booklet on web API design by Apigee2 emphasizes the
importance of versioning by dubbing it “one of the most
important considerations” and advising developers to “never
release an API without a version”, Facebook violates this
principle. Because there is no version number involved in
the requests, our search is done by querying the GitHub
repositories for small pieces of code which were reported in
Facebook Developer’s blog3 as having been changed.

D. Impact evaluation

The goal of the paper is to investigate how web service APIs
evolve, and how this affects their clients. So, for each project,
we looked at the commits right before and right after the first

1Web Services Directory — http://bit.ly/web-services-directory, last visited
October 3rd 2013

2Web API Design — http://bit.ly/apigee-web-api-design
3Completed Changes — http://bit.ly/fb-completedchanges

85



commit containing references to the new version of a web
API. This was done to identify potential initial preparations
prior to bringing a new API online, as well as to check for a
potential fallout effect caused by switching to the new API.

In order to estimate the impact involved in maintaining the
clients of a web service API, we start by using the code churn
metric [12], which we define for each file as

FileCodeChurn =
LOCAdded+ LOCChanged

TotalLOC
(1)

The code churn we analyze and display in Table I (Avg.
Churn) represents the average code churn for each commit.
Of note is the fact that the churn presented does not count
added files. Additionally, the evolution churn presented in the
table consists of the churn caused by the evolution-related
code changes. This churn is determined manually and through
visual inspection of the evolution-related commits. This is
done manually to ensure that all the churn considered in the
evolution commits is indeed related to the evolution task.
The percentage presented is then how this evolution churn
compares to the average. With the data we collected we are
also able to plot graphs showing the code churn per commit.
This way we can also visually identify abnormally high code
churn peaks as well as churn peaks surrounding the evolution
related commits. These peaks are potential candidates for web
API-related maintenance and are then investigated in more
detail by looking at the source code and commit messages.

While code churn provides a good starting point for as-
sessing the impact of a maintenance task, it does not provide
the whole picture: the nature of the code change, the number
of files involved and their dispersion also play a role in
determining the impact of a change. Hence, we also provide
a more in-depth view of how the API migration affects a
particular project. This is done by looking at the number of
source code files changed, and analyzing the nature of the
changes (e.g. file dispersion, actual code changes, whether the
API-related files are changed again). This analysis also allows
us to mitigate the code churn’s indifference to the complexity
of code changes.

III. INTERVIEWS WITH CLIENT DEVELOPERS

This study aims at understanding how web API evolution
impacts client developers through the forced nature of the web
API changes. To do so we first performed interviews with
client developers for well known web APIs (Table II).

The most interesting findings obtained through the inter-
views are presented in the subsections below.

A. Web API Stability

We asked the client developers “how does the effort of
initial integration with a web API compare with the effort
of maintaining this integration over time”. Two of the inter-
viewed developers (one for Google Maps and one for Google
Calendar) were very peremptory and claimed that it takes
them far more time maintaining the integration than it does
integrating with a web API in the beginning.

The developer behind the integration with Redmine web
API claimed that the effort involved in these two tasks is

divided “at least 50% into each task, with possibly even more
time going into maintaining the integration”.

What also came to light from all the participating client
developers was the fact that in the beginning, the web APIs
are very unstable and generally prone to changes.

This results in two-fold advice for web API providers and
client developers alike when it comes to web API stability:

• From a provider’s point of view, more thought should
be put towards the early versions of the web API. In
the event the web API requires some instability, then an
approach as suggested by one of the interviewed client
developers is recommended: the Redmine API developers
clearly mark which features are prototype/alpha/beta (i.e.
features which are very likely to change).

• As for web API client developers, because of this inherent
instability in the early versions of web APIs, the need
for separation of concerns and good architectural design
becomes more urgent than ever. Integration with static
libraries can be maintained for as long as the client de-
veloper wishes but since a third party is now in charge of
pushing changes, making sure the changes are contained
to a small set of files should become a top priority.

B. Evolution Policies

While different web API providers establish different time-
lines for deprecation of older versions of their web API, the
client developer using Google Calendar’s APIs was generally
happy with the two year window provided by Google. Of
consideration is the fact that this developer works on his
project as a hobby (even though he is a professional developer)
and therefore favors having a longer time to migrate to newer
versions of the API.

The developer interviewed in the context of the Redmine
API claimed his team is usually given four months and while
he was generally happy with this pace, because the Redmine
API is still under development, he would rather have shorter
cycles with functionality added more often.

Despite this developer’s preference for shorter cycles, the
nature of the changes should also be considered. In the case

Q1 How does the effort of initial integration with a web API compare
with the effort of maintaining this integration over time?

Q2 How often does your web API provider push changes?
Q3 How dependent is your client on the 3rd party web APIs you are

currently using?
Q4 Does your project also make use of statically linked libraries and do

you feel there is a difference on how its evolution compares with web
APIs’?

Q5 How do you usually learn about new changes being pushed to the web
API your client is making use of?

Q6 Do implementation technologies make a difference to you?
Q7 How do you learn how to use an API? (Documentation? Examples?

Do errors play a role in this learning?)
Q8 Is having different versions of a web API useful when integrating with

your client?
Q9 When using 3rd party APIs, did you ever find that particular thought

was put into an API behavior?
Q10 As a web API client developer, given your development life cycle,

how many versions should the API provider maintain? And for how
long?

TABLE III
QUESTIONS ASKED DURING THE DEVELOPER INTERVIEWS

86



of the Redmine API, the evolution process consists mostly
of feature addition and the features of the web API which
are likely to change are clearly marked accordingly. However,
looking at the comments in the 2011 survey [9] regarding
Facebook’s similar four-month deprecation policy, developers
complained about how “Facebook continually alters stuff thus
rapidly outdating my apps” and “as I only use Facebook[...],
[the biggest headache] is the never ending changes to the
API”. This is an indicator that more than just the frequency
of the changes, web API providers should take also into
consideration how invasive are the changes being pushed.

Also interviewed were two client developers for web APIs
provided by financial institutions. An important distinction
in this context is the fact that the web APIs being used
are not available for free, as opposed to the others under
study. Perhaps for this reason and according to the interviewed
developers because “the stakes are too high in the financial
context”, the web API providers maintained all the older
versions of the web API indefinitely. This allows for client
developers to never have to make any changes unless they
require the features made available in the new web API
version. While this is the ideal scenario from a web API
client developer’s point of view, whether this is feasible for all
web API providers and the effort it takes to maintain several
versions simultaneously is still something we would like to
investigate in future research.

C. Static Libraries versus Web APIs

We asked all the interviewed developers how does, in their
experience, the evolution of static libraries compare with the
evolution of web APIs. While only one of the developers
was simultaneously using static libraries as well as web APIs,
his experience was that the static library he used had always
maintained backwards compatible methods even after adding
new features.

The developer interviewed in the context of Google Maps
also mentioned that while his projects do not resort to statically
linked libraries, he is using Drupal (a content management
system) as the basis for his Google Maps integration and
admitted that with Drupal and PHP he was in control of when
to migrate to newer versions in contrast with those pushed by
Google Maps. This is particularly relevant seeing as PHP itself
introduced breaking changes in versions 5.3 and 5.4.

D. Communication Channels

Another issue touched upon in the interviews with the
client developers has to do with how the web API providers
notify their clients of upcoming changes. The client developers
integrating with financial institutions’ web APIs said that while
it is a rare event, they will be notified by e-mail of any
upcoming changes pushed by their web API providers. What
was also mentioned was that while it ultimately does not affect
them (because the web API providers do not force them to
migrate to newer versions), it would be unfeasible to keep up
with changes (should they be mandatory) from all providers
due to the unreliable nature of e-mail (e.g. messages can be

lost, automatically filtered as spam or simply missed altogether
by the recipient).

Nonetheless, the web API providers under analysis have
changed their communication channels over time. For instance,
Google and Twitter nowadays force all client developers to
request an API key and by doing so, they are added to a
mailing list on which the upcoming changes are announced.

While this is what is currently considered the state of the
practice, client developers for these web APIs will still get
e-mails even if their code is not affected by the changes.

Facebook goes further and dynamically determines what
parts of the web API a specific client is using in order to
send e-mails only when changes are planned for that particular
functionality.

E. Implementation Technologies

Even though all the web APIs under study use JSON-based
technologies, we asked the interviewed developers whether
they believe that the choice of technology from the web API
provider can have an impact on the effort it takes to both
integrate and maintain the integration with a web API.

One of the developers integrating with financial institutions
using both SOAP and REST interfaces claimed both come with
advantages and disadvantages. For instance, while integrating
with a SOAP interface there is generally a WSDL file available
which gives an overview of which methods and types are
available and how to invoke them. The downside is the extreme
verbosity of such an interface which is hardly ever human-
readable. On the other side, REST, while allowing for less
wordy interactions lacks anything similar to the WSDL file and
the client developer is left to rely solely on the documentation
which is usually written manually by the web API providers
(and is thus, not as reliable as an automatically generated
WSDL file).

An interesting remark by the same developers was that while
some web API providers claim to provide a REST interface,
this is in fact not the case. In his experience the interface
is simply an HTTP endpoint which outputs JSON content
but which does not, for example, meet the criteria of being
stateless.

The developers integrating with Google Calendar and
Google Maps expressed a very strong distaste for SOAP,
claiming it is unnecessarily complex. The developer behind the
integration with Google Calendar said that while it took some
effort when Google Calendar switched from SOAP (XML) to
REST (JSON), after the initial effort was complete the changes
later on became much easier.

F. Additional Remarks

An interesting remark from the interview with the client
developer for Google Maps was his concern for vendor lock-in.
In fact, when dealing with web APIs, a client is tightly coupled
with a particular web API provider. The same developer
highlighted the dangers of such dependencies with the example
of Google Translate which Google officially discontinued in

87



December 2011 (even if later on the web API was made
available once more).

Additionally, even though the feedback provided by the
developers integrating with the financial web APIs was limited
due to the providers maintaining all the old web API versions,
these developers also contributed with an additional anecdo-
tal story. During their integration with financial institutions
worldwide, they are often faced with web API documentation
in foreign languages. This causes great distress and requires
the developers to resort to either unreliable machine translation
or to eventual colleagues who happen to speak the language,
both of which come with the cost of time.

IV. WEB API CHARACTERISTICS

In the aforementioned survey performed in 2011, the authors
claimed that in the web API world, “there’s nothing even
resembling industry standards” [9]. We also found this to be
the case amongst the chosen web API providers.

In fact, each of the four web API providers under study in
this paper adhere to different policies on what concerns web
API evolution. These are explored in detail in the following
sub sections.

A. Google Maps

The Google Maps API allows client developers to, amongst
other things, display maps for specific regions, calculate di-
rections and distances between two locations.

This API4 falls under the global Google deprecation pol-
icy, i.e., whenever products are discontinued or backwards-
incompatible changes are to be made, Google will announce
this at least one year in advance. Exceptions to this rule
regard whenever it is required by law to make such changes or
whenever there is a security risk or “substantial economic or
material technical burden”. To summarize, save for security-
related bugs, Google claims to provide a 1-year window for
the transition to a new API.

In practice, however, Google is much more lenient, e.g.
analyzing the migration of Google Maps version 2 to version
3, Google provided a 3-year period for this transition rather
than the announced 1-year deadline. Additionally, before the
deadline arrived for version 2 going offline, Google prolonged
this period for another 6 months, effectively offering a 3.5-year
period for the transition. Why they offered such long period
is not certain. However, anecdotal evidence from Google’s
user forums shows that many developers waited until the last
moment to upgrade. In March 2013, an unnamed developer
asked “I’m working on upgrading to v3 but I’m expecting to
finish 2 or 3 weeks after 19 May [initial deprecation date], so
I was wondering if we can get an official answer about this”.
Similarly, when earlier in 2013 Google experienced an outage
in all its Maps APIs’ versions, several developers also asked
whether v2 had already been taken offline, thus revealing that
a number of developers were still using it. Google’s provision
of a very long transition period may have led the developers to

4Google Maps Terms — https://developers.google.com/maps/terms

be too relaxed about the deprecation, leading them to migrate
at the latest moment.

B. Twitter
The Twitter API allows client developers to manage a user’s

tweets as well as the timeline. While this web API5 has no
official deprecation policy, the announcement for the current
API version set a 6-month period to adjust to the change.
Since it implies a different endpoint URI, both versions could
in fact be maintained in parallel indefinitely, and it means that
once the old endpoint is disabled, all applications using it will
break. Despite the 6-month period, Twitter did not follow the
original plan. The new API version, announced in September
2012, was intended to fully replace the old version by March
2013. However, rather than fully take it offline, they decided to
approach the problem by starting to perform “blackout tests”6,
both on the date the API was supposed to be taken offline and
twice again two weeks apart after the original deadline. These
blackout tests last for a period of one hour and can occur at
random during the days they are announced. They act as an
indicator for unsuspecting users, that they should migrate.

This approach contrasts that of Google and Facebook but
gathers appreciation in its own right. The blackout tests have
been very well received, with developers claiming “These
blackout tests will be super helpful in the transition. Thanks
for setting those up!”7

C. Facebook
The Facebook API is extensive and allows for client de-

velopers to access many data related to users’ posts and
connections. Facebook’s8 approach to web API evolution is
substantially different as it does not use an explicit versioning
system. Instead, the introduction of new features is done by an
approach referred to as “migrations,” which consists of small
changes to the API that each developer can enable/disable at
will during the roll-in period. After this period the changes
become permanently enabled for all clients. The Facebook
Developers website claims that Facebook provides a 90-day
window for breaking changes. Like Google’s, this policy also
explicitly excludes security and privacy changes, which can
come into effect at any time without notice. Unlike Google,
however, Facebook has proven to not be lenient and the 90-day
window is consistently enforced.

Facebook is also in the process of changing this policy.
While so far there have been breaking changes put into
place every month from January 2012 to May 2013 (with
the exception of March 2012)9, Facebook has announced that
from April 2013, all the breaking changes will be bundled into
quarterly update bulks (except security and privacy fixes).

In addition, Facebook has an automated alert system in
place, which sends e-mails10 to developers whenever the

5Twitter API v1.1 — https://dev.twitter.com/docs/api/1.1/overview
6https://dev.twitter.com/blog/planning-for-api-v1-retirement
7Discussion API v1’s Retirement — http://bit.ly/apiv1-retirement
8Facebook Breaking Change Policy — http://bit.ly/fb-changepolicy
9Completed changes — http://bit.ly/fb-completedchanges
10Example e-mail: http://bit.ly/so-migrationemail

88



features they use are affected by a change. Dynamically
determining which developers are relying on which features
of the API goes along our previous line of work [13] where
we investigated to which extent such a mapping affects system
maintenance.

D. Netflix

The Netflix API is a public web API which allows client
developers to access text catalogues of movies and tv shows
available in the Netflix collection. Netflix, much like Twitter,
has no official deprecation policy. Additionally, to date only
two versions have been released and both versions do still
work. What makes this web API stand out is the fact that all
the versions released to date still work and have no planned
deprecation date. This highlights that, albeit at a potential
cost to the web API provider, it is possible to simultaneously
maintain several versions of the same web API.

It should be noted, however, that over time Netflix has
released breaking changes across all versions of its web API.
For example, on June 2012 Netflix announced a new web
API endpoint to which all clients had to migrate within three
months. Additionally, in March 2013 Netflix announced that it
“is not accepting new developers into its public API program”.
This suggests that the public Netflix API is on a path to
discontinuation.

Because no deprecation of older versions exists and the
migration to the newer version is fueled by the client devel-
opers’ will to access the latest features, very little can be said
regarding the amount of time given to client developers to
migrate. Nonetheless, the migration witnessed in both clients
under study stems from the web API endpoint change for
which three months were given to migrate.

V. IMPACT ON CLIENT CODE

When analyzing the impact web API evolution has on dif-
ferent clients, several considerations must be made regarding
each project’s code base. In Table I we present the projects
under analysis for each web API. All projects are different in
nature and the number of lines of code (LOC) for the projects
under consideration varies from 1.2KLOC to 479KLOC. This,
coupled with the file count for each project, has an influence
on both the average code churn for each project as well as the
code churn required to implement evolution-related changes.

In our study we use code churn, a measure of how much
code has been changed, as a first indicator of commits which
should be further investigated manually.

In the following subsections we analyze the data per web
API provider and present our findings.

A. Twitter

The web API evolution step under analysis for Twitter
consists of a minor version upgrade. It is, nonetheless, de-
scribed by Twitter as “the first major update of the API
since its launch”. This new version does indeed bring many
changes. For instance, clients are now forced to authenticate,
XML support was discontinued in favor of JSON (until then,

developers were given the option for either XML or JSON) and
changes have been made to rate limiting (which can penalize
clients who query the web API too often).
netputweets — The netputweets project is an alternative web
interface for Twitter on mobile phones. Because it implements
a wide range of features from the Twitter web API, it is also
the Twitter project with the highest LOC.

In Figure 1 we present the code churn data compiled for
the netputweets project. The figure shown concerns only the
netputweets project although we did compile the data for all
the projects. Doing so helped us in identifying potentially
interesting hotspots in the projects’ commits. In this figure we
highlighted the commits involved in the web API evolution
task. Here it is possible to visually assert that these commits
are not exceptional in terms of code churn when compared to
the remaining commits. Table I does show, however, that the
evolution-related code churn is approximately 228% higher
than average and the changes span across several files.

From the same table we also learn that netputweets is the
Twitter project with the largest codebase, yet, its evolution-
related churn is lower than TwiProwl (the smallest Twitter
project by LOC). The netputweets project contains approxi-
mately eight times more LOC than TwiProwl and it took three
commits over 15 files to implement these changes. Such an
increase in file dispersion may signal a tight coupling with
the web API. Through manual inspection of the netputweets
project we confirmed our hypothesis. Many of the changed
files contain on themselves a static reference to the Twitter
endpoint which, should it change, requires these files to be
also changed. Additionally, several changes are also made to
the code handling the web API data. Because the data is used
directly throughout the code (which implies a tight coupling
with the specific data format), several changes are required
throughout several files.
TwiProwl — As the client with the lowest LOC (compared
to all analyzed Twitter projects), TwiProwl is also the one that
implements the changes for the new API version by changing
one file in a single commit. This project is a one file script
which explains the file dispersion of 1. The 300% code churn
compared to the average churn comes from implementing
a new feature in the Twitter API (user lookup) and from
adjusting several lines of code which directly iterate through
the data provided by the web API (which was changed in this
version).
sixohsix/twitter — Another project which has an elevated file
dispersion is a Twitter library for Python (sixohsix/twitter).
Manual inspection resulted in a different finding from that of
netputweets. This client tucks away all the web API-specific
integration into one file and even after the changes for the
newest version had been implemented, the project was still
using the older version. This is possible because of how the
developer implemented a mechanism to allow him to choose
the version of the web API by changing an argument in the
method calls. This also justifies the file dispersion. While
normally having to change a several number of files would
be a task developers wanted to avoid, the only change to be

89



0	
  

0.005	
  

0.01	
  

0.015	
  

0.02	
  

20
11
-­‐0
1-­‐
31
	
  1
4:
48
:2
0+
08
:0
0	
  

20
11
-­‐0
1-­‐
31
	
  0
8:
16
:1
0+
00
:0
0	
  

20
11
-­‐0
9-­‐
01
	
  2
3:
31
:5
4+
08
:0
0	
  

20
11
-­‐0
9-­‐
03
	
  1
1:
16
:0
6+
08
:0
0	
  

20
11
-­‐0
9-­‐
21
	
  1
6:
46
:3
2+
08
:0
0	
  

20
11
-­‐0
9-­‐
22
	
  1
1:
01
:4
6+
08
:0
0	
  

20
11
-­‐0
9-­‐
25
	
  1
7:
36
:0
4+
08
:0
0	
  

20
11
-­‐0
9-­‐
27
	
  1
7:
52
:0
7+
08
:0
0	
  

20
11
-­‐0
9-­‐
27
	
  2
1:
10
:0
4+
08
:0
0	
  

20
11
-­‐0
9-­‐
28
	
  2
1:
07
:3
9+
08
:0
0	
  

20
11
-­‐0
9-­‐
30
	
  1
8:
47
:2
7+
08
:0
0	
  

20
11
-­‐1
0-­‐
15
	
  2
2:
31
:2
2+
08
:0
0	
  

20
11
-­‐1
0-­‐
16
	
  1
5:
37
:1
9+
08
:0
0	
  

20
11
-­‐1
0-­‐
19
	
  2
2:
34
:0
5+
08
:0
0	
  

20
11
-­‐1
0-­‐
22
	
  1
7:
13
:5
9+
08
:0
0	
  

20
11
-­‐1
0-­‐
25
	
  2
1:
41
:3
1+
08
:0
0	
  

20
12
-­‐0
1-­‐
31
	
  2
0:
59
:5
7+
08
:0
0	
  

20
12
-­‐1
1-­‐
14
	
  0
7:
06
:3
1-­‐
08
:0
0	
  

20
13
-­‐0
2-­‐
25
	
  1
5:
50
:5
7+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
6:
22
:1
1+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
7:
29
:3
1+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
8:
40
:1
8+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  0
4:
39
:1
4-­‐
08
:0
0	
  

20
13
-­‐0
2-­‐
28
	
  0
0:
07
:2
8+
08
:0
0	
  

20
13
-­‐0
2-­‐
27
	
  1
7:
45
:1
0-­‐
08
:0
0	
  

20
13
-­‐0
2-­‐
28
	
  1
1:
32
:2
9+
08
:0
0	
  

20
13
-­‐0
2-­‐
28
	
  1
2:
35
:1
7+
08
:0
0	
  

20
13
-­‐0
3-­‐
01
	
  1
5:
18
:2
5+
08
:0
0	
  

20
13
-­‐0
3-­‐
02
	
  1
2:
06
:1
7+
08
:0
0	
  

20
13
-­‐0
3-­‐
02
	
  1
5:
15
:0
7+
08
:0
0	
  

20
13
-­‐0
3-­‐
02
	
  1
6:
37
:2
1+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  1
1:
50
:0
9+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  1
4:
08
:1
8+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  1
8:
26
:1
4+
08
:0
0	
  

20
13
-­‐0
3-­‐
04
	
  2
0:
25
:2
7-­‐
08
:0
0	
  

20
13
-­‐0
3-­‐
05
	
  0
0:
43
:5
8-­‐
08
:0
0	
  

20
13
-­‐0
3-­‐
07
	
  1
0:
55
:0
2+
08
:0
0	
  

20
13
-­‐0
3-­‐
06
	
  2
3:
52
:4
6-­‐
08
:0
0	
  

20
13
-­‐0
3-­‐
08
	
  0
5:
46
:5
4+
08
:0
0	
  

20
13
-­‐0
3-­‐
08
	
  2
0:
06
:1
2+
08
:0
0	
  

20
13
-­‐0
3-­‐
10
	
  1
5:
38
:5
3+
08
:0
0	
  

20
13
-­‐0
3-­‐
11
	
  1
5:
27
:0
5+
08
:0
0	
  

20
13
-­‐0
3-­‐
18
	
  0
4:
09
:2
0-­‐
07
:0
0	
  

Co
de

	
  C
hu

rn
	
  

Timestamp	
  

Modified	
  only	
   Added	
  +	
  Modified	
  

882943d	
  

e36c9f0	
  

5510a0d	
  

Fig. 1. Code churn per commit netputweets

done in this case is an argument that specifies which web API
version to use.
rss twi2url — The rss twi2url project is a small script which
provides tweets as an RSS feed. Because of its limited focus on
a small subset of Twitter’s web API, we expected the changes
caused by web API evolution to be small. This was confirmed
through the low code churn (approximately the same as the
average). The changes span across three files, although manual
code inspection revealed one of the files is a configuration file
(changed due to Twitter’s rate limit) and the other two files
were directly impacted by Twitter’s change on the returned
data.

What We Learn
While in a general way Twitter pushed extensive changes

with its latest web API version, our findings are that when
dealing with web APIs a good architecture matters more than
ever. This finding is supported by two projects: sixohsix/twitter
and netputweets. While both integrate extensively with the
Twitter web API, netputweets, by virtue of a poorer archi-
tecture, contains larger evolution-related churn. For instance,
the Python library presents an evolution related churn that is
48% smaller than the average code churn which supports a
more carefully thought architecture, versus the 228% higher
than average churn seen on netputweets.

B. Google Maps

The changes put forth by Google in version 3 of its Maps
web API are extensive. Google says so itself in its thorough
upgrading Google Maps guide: “as you start working with
the new API, you will quickly find that this is not simply an
incremental upgrade”11. In our study we noticed that simple
activities such as creating an instance of the web API are now
done using entirely different constructors.
hobobiker — It took the hobobiker project changes in 4
files to implement the integration with the new web API.
Through manual inspection we concluded that despite the low
file dispersion, all the components of this project which require
Google Maps integration are tightly tied with its web API. This

11Upgrading Your Google Maps JavaScript Application To v3 —
https://developers.google.com/maps/articles/v2tov3

tight connection is observed as each component of this project
which requires web API integration establishes its own direct
dependency to the web API. This, coupled with the 142.27%
size of the evolution commits compared to the average churn
may indicate poor architectural design.
wohnungssucherportal — The wohnungssucherportal, by
comparison with hobobiker, despite requiring the same number
of files to be changed, it took -51% of the average churn
to implement the same changes. The LOC of both these
projects is rather high and is justified by both being web
applications and containing a large amount of boilerplate code
(hobobiker relies on Drupal whereas wohnungssucherportal
relies on Ruby on Rails). While the elevated LOC influences
the absolute average churn (0.00026 compared to 0.009328
for cartographer with 1895 LOC) it should not interfere with
the code churn required by the web API evolution task.
cartographer — The cartographer project stands out in the
elevated file dispersion it presents (17 files changed). As a
library which allows other projects to integrate with Google
Maps, this project also maintains backwards compatibility with
the previous version of the Google Maps web API. Because of
this and because this project’s architecture clearly separates the
connection to the two API versions, several files were touched
to provide support to the newer version. Namely, 8 files were
copied and became the basis for the older version 2 support
and the same files were copied and modified to enable the
integration with the latest version. It is then not surprising
that the code churn involved in the evolution task represents a
1139% increase over the average code churn spread out across
17 files.

What We Learn
The three projects under study present different lessons

learned for client developers. While the change introduced by
Google with version 3 of Maps is overarching and requires
substantial changes (as stated by Google and proven by the
creation of an extensive migration guide), projects like hobo-
biker and wohnungssucherportal suffered the sharpest pains
(hobobiker in code churn and wohnungssucherportal in file
dispersion). This is so as these two projects reveal poor design
choices where every reference to the Google Maps web API
was hardcoded.

The cartographer project on the other hand continuously
implements support for both the old and new versions of
Google Maps and despite the higher code churn, tucks away
the web API concerns in a way that the core library does not
require changes as extensive as the other projects.

C. Facebook

The only Facebook project available (as more could not
be found using our approach) is a fairly large plugin for the
Spring Framework which provides Facebook integration. What
can be learned from this project is that even though Facebook’s
migrations are said to be smaller (and happen more frequently
than in other web API providers), in fact the changes cause
many files to require maintenance.

90



Considering the changes analyzed are relative to a migration
and therefore not a major version change, and considering
the churn percentage of this evolution task compared to
the average is lower by 50%, we expected to encounter an
underlying architecture with a good separation of concerns.
This was confirmed through manual inspection. The web API-
related code is encapsulated in Java classes specifically built
for the web API communication, which were also the only
files that required changes. By analyzing the changes we
also realized the changes concern two major modifications
in the Facebook web API. Namely, Facebook changed the
way it handles images and simultaneously changed the way
it refers to “check-ins” and the way to retrieve them. What
also contributes to the high file dispersion of these changes
is the existence of an extensive test suite. In fact, for this
specific commit there are six changed files (out of the 13)
which are test-related. For this particular project we conclude
that despite the changes pushed by Facebook being actually
intrusive and require change, the way these particular client
developers designed their architecture by isolating web API
access into single-feature classes mitigates this problem. The
changes span across several files but are generally small and
confined to the web API-specific files.

D. Netflix

The Netflix web API pushed extensive changes with version
2. Amongst them are refactorings in the returned data, changes
in API conventions and addition of new features.
pyflix2 — The pyflix2 project presents a rather high file
dispersion of eight files. While the file dispersion is the first
indicator of a potential poor architectural design, the meagre
4% increase in code churn versus the average suggests the
changes are not very extensive. Nonetheless, manual inves-
tigation shows that part of the changes consist of unit tests
and database migrations which are stored in text files. The
majority of the remaining changes transform the hardcoded
Python strings to Unicode, as presumably Unicode became
mandatory on the new Netflix API. However, there are no
mentions to this in the Netflix web API documentation.
Netflix.bundle — The second project which makes use of
the Netflix API is a bundle for Plex (a media center) which
contains all its web API references in the same two files. This
justifies how all the evolution related changes are contained in
two files as only these two particular files have the necessity
to make web API calls.

What We Learn
Both projects analyzed in the context of the Netflix web

API are small and relatively young. This somewhat justifies
the small number of commits. The code churn caused by the
web API evolution is rather small (with the projects staying
around or below the code churn average). The pyflix2 project
is a Python library which requires a more extensive integration
than the one provided by Netflix.bundle, hence the larger file
dispersion and evolution-related churn.

VI. DISCUSSION

In this section we use our findings to address our three
research questions and present a list of seven do’s and don’ts
for developers of API web services.

A. Answering the Research Questions

We start by answering the research questions laid out in the
introduction regarding the three different API providers.

1) RQ1: “What are some of the pains from client develop-
ers when evolving their clients to make use of the newest ver-
sion of a web API. Through our interviews, client developers
highlighted how the early versions of web APIs are invariably
unstable and change-prone. While some web API providers
provide indicators of particularly unstable functionality in
their web API, by default web API providers push breaking
changes across the whole feature set. It also became clear
that no standard policy exists on what concerns deprecation
periods and that the ideal amount of time is dependent on the
developer. Ideally longer periods would be provided but further
study is required to establish what the cost would be for the
web API provider to keep two versions of a web API active for
a longer period of time. The technology being used also plays a
role in the developers satisfaction with an observed preference
for REST and JSON amongst the interviewed developers.

2) RQ2: “What are the commonalities in the evolution
policies for web APIs?”. In a survey on “Web API Evolution
Pains” the authors concluded that “there’s nothing even re-
sembling industry standards, just best practices that everyone
finds a way around”. When it comes to evolution policies,
this seems to be true as well. Google and Twitter make use
of versioning and give ample periods of time (∼2 years and
6 months respectively) for the client developers to migrate.
Facebook opts for not providing versioning altogether and
pushes breaking changes every three months. Lastly, Netflix
with already two existing versions continues to maintain
both versions simultaneously. Twitter also stands out for the
“blackout tests” which serve as warnings for developers that
eventually the old web API version will be shutdown.

3) RQ3: “What is the impact on source code when web
APIs start to evolve?”. As expected, the impact on source code
depends greatly on both the breadth of the changes pushed
by the web API provider and on the quality of the clients’
architectural design. An example of this is two projects which
integrate with the Twitter web API. While sixohsix/twitter
provides an extensive integration with the web API, the churn
caused by the changes is much lower than that of TwiProwl
which performs basic web API tasks. This same observation
applies to the two Netflix projects. The code churn and
file dispersion metrics have also had limited usefulness. For
instance, the cartographer project contains changes in excess of
1000% of average churn and reports having 17 files changed,
yet, the architectural design is robust as this project maintains
support for multiple web API versions. The lesson learned is
that the impact can be high (e.g. Google Maps pushed changes
which affect the smallest of tasks) and that for this reason,
developers should take caution and design for change. Lastly,

91



our evidence also suggests that web APIs are significantly
more change prone in their early versions.

B. Recommendations

Based on our investigation and additional insights obtained
from observing developer forums, we compiled a list of seven
recommendations for web service API providers with regard
to easing the evolution task for developers of API clients.

1) Do not change too often: Facebook is pushing monthly
“breaking changes”, yet a recent survey on API integration
pain [9] revealed that this policy has caused distress amongst
developers. It is unclear whether this has played a role in
Facebook moving to quarterly updates (starting April 2013).

2) Old versions of the API should not linger too long:
Looking at the scenarios where the web API provider will
deprecate older versions of their web API, Google started
off with a 1-year timeframe for the deprecation of Google
Maps’s version 2, and ended up extending it to 3 years. Yet,
reaching the 3-year mark, many developers still flocked to
the developer forums in hopes that the deadline would be
extended further (which happened for another 6 months). The
message is: longer periods leave developers too relaxed about
the change.

It should be noted that this advice is not applicable to web
API providers which decide not to deprecate their old web
API versions.

3) Keep usage data of your system: By knowing which
users are using which features, system maintainers can target
those particular users via e-mail to remind them about up-
coming changes. This approach has been studied in previous
work [14] and it was also adopted by Facebook.

4) Blackout tests: Before taking the old versions offline
permanently, try it for short periods of time. Twitter’s blackout
tests approach has been successful in reminding developers
that a change in the API is upcoming; the approach has also
been appreciated by developers.

5) Provide an example of interaction with the API: Some-
thing not gathered directly from the analysis presented in
this paper but rather collected from the API integration Pain
Survey, is the developers’ need for an (up-to-date!) example
of how to interact with the API. Maleshkova et al. [15] also
recognized this need stating that “most [web] API descriptions
are characterized by under-specifications”.

6) Stability Status per Web API Feature: As a web API
provider, tagging each of your web API’s features with a
“stability status” which indicates whether a feature is stable
for production use or instead it is alpha/beta is welcomed by
the interviewed developers. This way, developers aiming for
stability are able to know which features to be wary of.

7) Bonus — Client Developers: Lookout for Young Web
APIs: An observation recurring from nearly all the developer
interviews warns client developers about how young web APIs
tend to be very change-prone. This should be taken into
account by client developers who are advised to, from early
on, implement good separation of concerns between web API
interaction and the core of the client.

To summarize, web service APIs drive the evolution of
software. Clients are forced to update by the API providers
which contrasts with the statically linked libraries. However, in
order to ease that evolution, we think the seven aforementioned
guidelines should be taken into account.

C. Threats to validity

We now identify factors that may jeopardize the validity of
our results and the actions we have taken or intend to take.

External validity. While we have quite some variety in terms
of (1) developers working on web APIs, (2) API providers,
as well as in (3) API client projects, it remains to be seen
whether our observations still hold for (a) API providers who
charge money for usage of the API, as they might be more
reluctant when deprecating older version of the API which in
turn might imply losing customers, and (b) for closed source
API clients, whose developers might be inclined to upgrade
quicker in order to satisfy their (paying) customer base with
the latest security fixes and/or features. In future work, we will
expand our investigation in this direction.

Construct validity. We have measured the impact of evolving
APIs on clients by investigating the code churn. While code
churn is very valuable, it does not sufficiently take into account
the relative complexity, nor the time needed to perform change
tasks. In future work, through developer interviews we will
investigate the actual effort of these maintenance tasks.

Reliability validity. There might be bias in the manual
interpretation of the impact of change. To minimize bias
the lead author who performed the investigation, thoroughly
discussed all findings with the co-authors.

VII. RELATED WORK

Maintenance of service-based systems. Lewis and Smith
were among the first to recognize that maintenance of service-
based software systems is different from maintaining other
types of software systems [16]. In particular, they highlight
the importance of impact analysis for service providers as they
have to consider a potentially unknown set of users.

Espinha et al. address this lack of knowledge regarding the
user-base of services by tracking how different users use a
service-based system in different ways [13].

Pautasso and Wilde study the different facets along which
web services can be described as “loosely coupled” and
analyze different implementation technologies [10].

Maleshkova et al. study the state of the practice on what
concerns web API implementation and amongst the findings,
discovered that the majority of the web APIs are actually
underspecified [15].

Evolution of APIs. Robillard and DeLine conducted a large-
scale investigation among 440 professional developers at Mi-
crosoft to establish what makes APIs hard to learn [17]. Their
observations are that the most severe obstacles developers face
pertain to the documentation and other learning resources.

Dig and Johnson try to understand the nature of changes
to APIs [6]. From the five case studies that they analyzed in

92



detail, they found that over 80% of the API-breaking changes
can be classified as being refactorings.

Dagenais and Robillard present SemDiff, tool-support for
recommending API-method replacements for methods that
were broken during the evolution of the API [18].

McDonnell et al. through a study on API stability and
adoption in the Android ecosystem have found that, despite
the added benefits of newer versions of APIs, developers tend
to be slow in adopting the newer versions [19].

An interesting non-peer reviewed work in this field is a sur-
vey [9] conducted on the pains of web API integration which
presents many complaints from web API client developers.

Daigneau focuses specifically on the brittleness of web APIs
in his book on service design patterns [20]. He proposes the
Single Message Argument pattern, which suggests to refrain
from creating signatures with long parameter lists. Daigneau
further states that long parameter lists “[...] signal the un-
derlying framework to impose a strict ordering of parameters
which, in turn, increases client-service coupling and makes
it more difficult to evolve the client and service at different
rates.”

VIII. CONCLUSION

In this paper we perform an exploratory study regarding the
impact of web service API evolution. Our contributions are:

• An interview with six professional developers to ask them
about their experiences with web APIs that evolved.

• A study into the evolution policies of four high-profile
web APIs (Google Maps, Twitter, Facebook and Netflix).

• An investigation of ten open source clients integrating the
aforementioned four web APIs to see the impact of web
API evolution on source code.

• A list of seven recommendations for developers of web
APIs and client applications integrating web APIs.

Our findings suggest that web APIs still fall short of an
industry standard. Different web API providers adhere to
different practices and what would seem like essential features
(e.g. versioning), are in fact neglected (e.g. by Facebook).

Our study also stresses the importance of developing clients
for change on what concerns web API integration. The promise
of loosely coupled web service APIs comes, in fact, at the cost
of having changes forced upon the client developers. Should
developers fail to implement proper separation of concerns,
switching to different web API providers may also prove more
difficult than what “loosely coupled” would otherwise suggest.
While some web API providers may allow developers to use
their old web API versions for extended periods of time, in
general, all web API providers will sooner or later impose
changes on their clients.

As the evolution is indeed inevitable, we also found that the
different evolution policies impact the satisfaction of web API
client developers. To help mitigate this problem, we provide
a list of recommendations such as not changing the API too
often and performing blackout tests.

Future work. We aim to extend our investigation to a wider
range of API providers and a larger selection of projects using

these APIs. Additionally, we aim to analyze whether web
service API changes impact open-source and closed-source
applications differently. Do these closed-source projects apply
more urgency to their changes due to their paying customers?

Finally, we also want to investigate whether the closed-
source API providers’ policies differ from those of open-
source APIs where client developers have no direct say in
the evolution process.

ACKNOWLEDGMENTS

The authors would like to acknowledge NWO for sponsor-
ing this research through the Jacquard ScaleItUp project.

REFERENCES

[1] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Proc. Int’l Conf.
on Software Maintenance (ICSM). IEEE CS, 2012, pp. 378–387.

[2] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in Proc. Int’l Conf. on Software Engineering
(ICSE). ACM, 2008, pp. 481–490.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to SOAP,
WSDL, and UDDI,” Internet Computing, vol. 6, no. 2, pp. 86–93, 2002.

[4] S. Vinoski, “Restful web services development checklist,” IEEE Internet
Computing, vol. 12, no. 6, pp. 96–95, 2008.

[5] M. M. Lehman and L. A. Belady, Program Evolution: Processes of
Software Change. Academic Press, 1985.

[6] D. Dig and R. E. Johnson, “How do APIs evolve? A story of refactoring,”
Journal of Software Maintenance, vol. 18, no. 2, pp. 83–107, 2006.

[7] M. Laitinen, “Object-oriented application frameworks: Problems and
perspectives,” M. Fayad, D. Schmidt, and R. Johnson, Eds. Wiley,
1999, ch. Framework maintenance: Vendor viewpoint, p. 9.

[8] R. Lämmel, E. Pek, and J. Starek, “Large-scale, ast-based api-usage
analysis of open-source java projects,” in Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC). ACM, 2011, pp. 1317–1324.

[9] S. Blank (YourTrove), “Api integration pain survey results,” 2011, web-
site last visited September 27, 2013. [Online]. Available: https://www.
yourtrove.com/blog/2011/08/11/api-integration-pain-survey-results/

[10] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-
faceted metric for service design,” in Proc. Int’l World Wide Web Conf.
(IW3C2). ACM, 2009, pp. 911–920.

[11] E. Babbie, The practice of social research, 11th edn. Wadsworth
Belmont, 2007.

[12] J. C. Munson and S. G. Elbaum, “Code churn: A measure for estimating
the impact of code change,” in Proceedings of the International Con-
ference on Software Maintenance (ICSM). IEEE CS, 1998, pp. 24–33.

[13] T. Espinha, A. Zaidman, and H.-G. Gross, “Understanding the inter-
actions between users and versions in multi-tenant systems,” in Int’l
Workshop on Principles of Software Evolution (IWPSE). ACM, 2013,
pp. 53–62.

[14] ——, “Understanding the runtime topology of service-oriented systems,”
in Proc. of the Working Conf. on Reverse Engineering (WCRE). IEEE
CS, 2012, pp. 187–196.

[15] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web apis
on the world wide web,” in Proc. European Conf. on Web Services
(ECOWS). IEEE CS, 2010, pp. 107–114.

[16] G. Lewis and D. Smith, “Service-oriented architecture and its implica-
tions for software maintenance and evolution,” in Proceedings Frontiers
of Software Maintenance. IEEE CS, 2008, pp. 1–10.

[17] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[18] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommen-
dation support for API evolution,” in Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE, 2009, pp. 599–602.

[19] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in Proc. Int’l Conf. on Software
Maintenance (ICSM). IEEE CS, 2013, pp. 70–79.

[20] R. Daigneau, Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley, 2011.

93


