Understanding the Interactions between
Users and Versions in Multi-Tenant Systems

Tiago Espinha
Delft University of Technology
Delft, The Netherlands
t.a.espinha@tudelft.nl

ABSTRACT

Multi-tenant systems represent a class of software-as-a-service
(SaaS) applications in which several groups of users, i.e. the
tenants, share the same resources. This resource sharing re-
sults in multiple business organizations using the same base
application, yet, requiring specific adaptations or extensions
for their specific business models. Each configuration must
be tended to during evolution of a multi-tenant system, be-
cause the existing application is mended, or because new
tenants request additional features. In order to facilitate
the understanding of multi-tenant systems, we propose to
use a runtime topology augmented with user and version in-
formation, to help understand usage patterns exhibited by
tenants of the different components in the system.

We introduce Serviz, our implementation of the augmented
runtime topology, and evaluate it through a field user study
to see to which extent Serviz aids in the analysis and under-
standing of a multi-tenant system.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment— Restructuring, reverse engineering, and reengineer-
mng

General Terms

Experimentation

Keywords

Web service maintenance, runtime topology, multi-tenancy,
user-study

1. INTRODUCTION

Multi-tenant systems represent a class of software-as-a-
service (SaaS) applications in which several groups of users,
i.e. the tenants, share the same (software) resources [1]. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWPSE ’13, August 19-20, 2013, Saint Petersburg, Russia

Copyright 13 ACM 978-1-4503-2311-6/13/08 ...$xx.00.

Andy Zaidman
Delft University of Technology
Delft, The Netherlands
a.e.zaidman@tudelft.nl

Hans-Gerhard Gross
Delft University of Technology
Delft, The Netherlands
h.g.gross@tudelft.nl

multi-tenant system allows to make full use of the economy
of scale, as several SaaS customers access the same appli-
cation at the same time, while the instances are configured
according to the diverse requirements of the various ten-
ants [15]. Multi-tenant systems are characterized by high
demands on configurability and evolvability, which go well
beyond multi-instance and multi-user applications, or soft-
ware product lines [3]. These demands are instigated by the
multiple tenants, or business organizations, that all use the
same base application, yet, require specific adaptations or
extensions in order to suit their specific business models.

Since flexibility is key to effective multi-tenant applica-
tions, their deployment should go along with inherently ac-
commodative architectures, such as service oriented archi-
tectures (SOA) [21]. For example, SOA permit to isolate
tenant-specific business needs in a separate version of a ser-
vice, which raises the challenge of managing versions of ser-
vices. This is evidenced by the work of Fang et al. [10] who
describe an approach to manage different service versions in
a web service directory.

It has long been recognized, that software systems must
evolve in order to remain successful [16]. This is no different
in multi-tenant software systems, and we hypothesize that
evolution might even be more important. This is due to the
large number of stakeholders involved, each demanding new
features to be added to (their version of) the multi-tenant
software system. This brings about the challenge of having
to understand the impact of changes on different versions
of the code (deployed as different versions of services) that
might be specific to a single tenant or a group of tenants.

Even though SOA provides the flexibility for realizing
multi-tenant software systems, we know from Gold et al.
that the promise of easier software maintenance is not com-
pletely met [11], because even though conducting the actual
evolution in terms of exchanging services is possibly eas-
ier, the understanding of their interactions and usage is still
an issue [11]. This comes from understanding a monolithic
application versus understanding a distributed system com-
posed of many entities (services).

With the increased complexity of multi-tenant software
systems [1], their understanding is likely to become more
demanding. Corbi claims that up to 60% of the mainte-
nance effort lies in understanding the system [4]. Strangely
enough then, a large-scale survey of scientific literature in
the area of program comprehension using dynamic analysis
from 2009 did not reveal any major advances in the area
of understanding SOA based systems using dynamic analy-
sis. “This seems strange, as dynamically orchestrated com-

positions of services would benefit from dynamic analysis
for understanding them [5]”, because the composition of the
entire SOA-based system only happens at runtime and its
configuration can change during operation [2, 23], leading to
highly dynamic systems. It comes as no surprise then, that
Kajko-Mattsson et al. identified the understanding of the
SOA infrastructure as one of the most important challenges
when evolving SOA-based software systems [14].

In previous work [9] we presented the runtime topology
as a means to aid the understanding and maintenance of
service based systems. Our preliminary results show that
the runtime topology is indeed a good means to understand
highly dynamic SOA-based software systems. In this paper
we extend the runtime topology to also incorporate user and
version information, since we believe that these help to un-
derstand the role of multi-tenancy in SOA-based software
systems. They show how different tenants use the system,
and how several versions of similar services are customized
for particular business needs in different ways.

This leads us to our main research question: Does the
combination of user, service-version and timing information
projected on a runtime topology help in the understanding of
SOA-based multi-tenant software systems?

In order to steer our research, we will investigate these
subsidiary research questions:

RQ1 Does the user information added to the runtime topol-
ogy help in the understanding of SOA-based systems?

RQ2 Does the service version information added to the run-
time topology help in the understanding of SOA-based
systems?

RQ3 Do usage graphs help to understand SOA-based sys-
tems?

In order to evaluate the approach, we set up a user study
that involves our research prototype Serviz and a case study
system called Spicy Stonehenge [8], a stock-market simula-
tor. The user study is set up as a contextual interview and
it involves four software engineering professionals.

The remainder of this paper is structured as follows: Sec-
tions 2 and 3 describe our approach (the data requirements
and how we collect the data) and the tool implementing
it. Section 4 outlines the experimental setup, and Section 5
presents its results. Section 6 discusses the results and po-
tential threats to validity. The paper is rounded off with
related work and conclusions in Sections 7 and 8.

2. APPROACH

Central to our understanding approach stands the runtime
topology of a service-oriented software system, representing
the configuration of a set of services that are deployed within
an environment. Based on previous research [9], we found
to be essential to include information which allows us to link
service invocations to request traces and associate each re-
quest with its timestamp. This information alone allows us
to infer the runtime topology of a running service-based sys-
tem. In addition, and due to our focus on multi-tenant sys-
tems, usage scenarios require different versions of the same
service to co-exist in the same platform. These versions
can then be used by different tenants who, regardless of the
client used to invoke the service, may cause different usage
patterns.

In order to satisfy this requirement, we also included infor-
mation regarding which user caused a particular invocation
as well as which version of a service was invoked. In the fol-
lowing subsection we present the data requirements inherent
to creating the initial runtime topology of a service-oriented
system, plus the additional data required in order to be able
to add the user and service version dimensions.

2.1 Data requirements

The runtime topology on its own has specific data require-
ments which we already identified earlier, and whose extrac-
tion in our platform of choice (Turmeric SOA') is briefly de-
scribed below in subsection 2.2. These requirements repre-
sent the essential set of data required for plotting a runtime
topology diagram representing the service invocations. The
collected data are:

e Request ID - A unique identifier per invocation trace.
It allows us to link pairs of services as belonging to the
same trace.

e Timestamp - The current timestamp at the time of
the request, as seen by the database server. This is cru-
cial for analyzing exactly when the web services were
busiest.

e Consumer name and method - The name of the
caller service (i.e. client) and the respective method
which caused this request pair.

e Service name and method - The name of the callee
service in this request pair and the respective web
method being called.

More in-depth detail on the reasoning behind the usage of
this data can be found in our previous work [9].

In our current research, we analyze the usefulness of the
runtime topology for multi-tenant systems. This type of sys-
tems, due to its inherent usage patterns (i.e. multiple users
simultaneously use multiple service versions), adds two im-
portant dimensions which need to be taken into consider-
ation upon performing maintenance. For this reason, our
approach requires additional data to be added per service
request. Therefore, our approach now also includes:

e Consumer and service versions - For each pair of
calls, the consumer and service versions are stored.

e Username - The username of the user who originally
caused the request to happen.

Having identified all the data requirements for our par-
ticular goal, in the next section we propose an approach to
collect the data from a running system.

2.2 Data extraction

The data extraction step required to enable the runtime
topology is highly dependent on the platform used. Some
service platforms may already provide parts of the required
data whereas others may require deeper changes in order to
obtain such data. Ultimately, however, this is a completely
automated step after it has been enabled for a specific plat-
form. This means the data is automatically pulled from the
running system rather than requiring manual intervention.

!Turmeric SOA —
https://www.ebayopensource.org/index.php/Turmeric/

Serviz

Period 8
Start:
End:
BusinessSarvicev1.0.0

Invoked #7841 times: il
[FullReset | /
Users @& Gl

User #1 SN
(—1 +)

Versions ©

Service

Version (%)

o
Settings ®&

OrdarProcassorSarvicavi.0.0
Inveked #7841 times

— D

QuoteServicevi.0.0
Invoked #7841 times

ConfigurationSearvicav1.0.0
Invoked #7841 times

OrderProcessorSarvicavi. 1.0
Invoked #13044 timas

ExchangeSarvicev1.0.0
Invoked #3830 timas

Figure 1: Screenshot of Serviz

For our implementation we chose the Turmeric SOA plat-
form, the open source version of eBay’s services platform, as
it already provides some of the information we described in
the previous subsection. This data is not provided by default
in Turmeric SOA and in order to collect it, we make use of
one of the framework’s features. This allows us to intercept
each incoming request by means of a Java class which can
then access and manipulate information regarding the re-
quest. In order to retrieve information on invocation pairs,
we had to follow another solution: we appended information
to the request string, thus making sure that information on
the caller got to the callee. Since this data is only available
during the web service’s invocation lifetime, the data must
be stored persistently. For this reason, the request handler
stores the data in a MongoDB database in order to keep a
historical track of the system’s usage.

In practice, we are able to collect all the required data
by handling the incoming requests from the point of view
of each web service. This event provides us with all the
information mentioned in Subsection 2.1.

3. SERVIZ

Serviz? is an open-source visualization tool which allows
software engineers to visualize periods of high and low usage
in a service-based system. Additionally, Serviz allows this
information to be filtered for a set of users, per service and
version, and according to a specific time-frame.

In previous work [9] we performed a pre-test post-test ex-
periment on whether the use of a runtime topology of a
service-based system would help in understanding such a
system. From this experiment we gathered that while the
runtime topology alone provides a step forward in under-
standing service-based systems, it can be enhanced by pro-

Zhttps://github.com/etiago/serviz

viding more runtime information to system maintainers.

With this in mind, we enhanced Serviz with new features.
They are: the capability to filter the information displayed
based on which users were using the system at the time, and
similarly, the capability to filter such information based on a
specific service name and version. Simultaneously, we added
histograms to more easily visualize service usage, per service,
over time. Having these added filtering capabilities provides
the maintainers with more detailed insight into how the sys-
tem has behaved and is behaving. A screenshot of Serviz
can be seen in Figure 1. On the left hand side of the screen-
shot, we see the filtering options for the collected data: the
time-period under consideration, the users and also the ver-
sions of interest. The right hand side of the screenshot shows
the different services and the service methods called per ser-
vice (below the service name and invocation frequency). Of
interest here is that the OrderServiceProcessor has two
versions, which each play an active role in the functioning
of this service-based system.

We now discuss some of the main features of Serviz.

User filtering

It is important for a service provider managing a service-
based system to be able to filter the runtime usage based on
specific users. For instance, after a system maintainer has
inferred that a service is only used by a specific user (e.g.
in the case when a specific version was created to cater the
specific needs of a particular user), the maintainer can then
pinpoint high and low peak usages for that specific user by
filtering this data.

Service/Version filtering

By filtering the runtime topology with the service and
version axes, maintainers are able to find services which are
direct dependences to a particular service version. In the

same way, by selecting extended periods of time, maintain-
ers are also able to determine when a particular version of
service can be exchanged for a newer version with minimal
interruption.

Combined filtering

Our runtime topology also allows system maintainers to
perform combined filtering using both the user and version
filtering axes. This way maintainers can find out information
such as “which service versions have never been used by a
particular user” or through knowing that a particular version
is only used by a specific user, maintainers can find out
periods suitable for maintenance.

Histograms

Another feature of Serviz are the time-based histograms
with service usage over time (see Figure 2). The histograms
are created per service and also take into consideration the
filtering defined by the maintainer. The histograms are to
be combined with the filtering features, so that maintainers
can use them not only to determine periods of high and low
usage for the whole system, but also on a per user and per
service basis. This allows for a very fine grained view of
which users use which services the most and at which times.

4. EXPERIMENTAL SETUP

In order to evaluate our implementation of a runtime topol-
ogy augmented with time, user and version information, we
performed a field user study with a total of four software en-
gineers from two IT companies in the Netherlands, Adyen
B.V. and Exact N.V. The user study was done in two ses-
sions, one session at each company,

This augmented runtime topology is especially aimed at
multi-tenant systems, where different users use different parts
of the system in different periods of time. Because of this
added complexity, we involved software engineers from IT
companies which are dealing with multi-tenant scenarios as
part of their own software systems. This user study was
organized as a contextual interview [13, 18, 25].

Step 1: Demo of Serviz
We started the session with a short demo of Serviz in
which we showed the developers all features of Serviz.

Step 2: Free exploration

In this step we asked the developers to freely explore Spicy
Stonehenge, which we had pre-installed and ready to be used
with Serviz. We gave them the goal of getting a good under-

OrderProcessorService1.1.0
OrderProcessorService1.0.0 .

Number of calls

May June July August September October November December

Figure 2: Histogram showing the usage (requests
per minute) of two versions of the same service.

standing of the implementation of the major functionality in
Stonehenge and how the system is used based on the accom-
panying usage data. We told them that we would discuss the
implementation details of this functionality later on during
the session.

This phase of free exploration took in both cases less than
one hour and was done in pairs, as to stimulate communi-
cation between the participants during exploration, thereby
simulating the think-aloud protocol [7]. We recorded the
conversation between the software engineers and provided
assistance whenever the information shown was not clear
enough. As an example of this, Serviz was loaded with data
solely for the year 2012, so to prevent the participants from
losing time, this information was provided whenever the
participants tried to input dates in 2013. Similarly, when-
ever the directional arrows linking the service were not clear
enough, this information was provided to the participants.

Step 3: Questionnaire

When the developers were satisfied with their reconnais-
sance of Spicy Stonehenge, we presented them our question-
naire (shown in Table 1) which had to be answered individ-
ually. This questionnaire is not so much meant to gather
quantitative data, but rather serves as a means to steer the
discussion in the next step, which is aimed at gathering qual-
itative data.

Step 4: Contextual interview

While we already gained quite a lot of information dur-
ing the free exploration phase, we intensified the interview
once the developers felt they were comfortable with Serviz
and the case study system Spicy Stonehenge. In particu-
lar, we used a contextual interview [13]. This contextual
interview already started during the second step, where we
observed how the developers explored the system. In par-
ticular, we took note of which questions they were asking
and how they were using Serviz to answer these questions.
Subsequently, we continued the interview and we aimed to
further explore the possibilities of Serviz and identify cir-
cumstances in which Serviz can be of benefit. In order to
steer this conversation, we used the questionnaire from Ta-
ble 1 as a basis.

Again, this discussion was recorded. The interview took
on average one hour and a half and a time limit was not
imposed on the participants. This excludes any possibility
for time-related pressure to finish the experiment.

4.1 Case study system

The subject system that we pre-loaded into Serviz is Spicy
Stonehenge, a simulation of the stock market [8]®. Spicy
Stonehenge is composed of 6 services and the user data
that we preloaded concerns 3 users. An overview of Stone-
henge can be seen in Figure 3. The figure depicts two ser-
vices with multiple versions (BusinessService and Configura-
tionService), which are in fact fully independent implemen-
tations of each service. This particular setup was chosen due
to the resemblance it bears to multi-tenant systems. In such
systems, user-specific configuration is created by branching
versions of services containing the business logic required by
a specific user.

Important to note is that none of the participants was

3https://github.com/etiago/spicy-stonehenge

Configuration Service
vi.1.0

Configuration Service
v1.0.0

Quote Service Stock Database

Users Application Business Service
v1.0.0

Stonehenge Database

<<external>>
change Service

Order Processing Servige

Business Service
vi1.0

Exchange Service

Figure 3: Spicy Stonehenge

familiar with (Spicy) Stonehenge.

4.2 Questionnaire

The origin of the questionnaire can be traced back to the
work of Sillito et al. [19], in which the authors present a set
of 44 typical questions that software engineers have when
performing maintenance on a software system. However, a
number of questions from this work was either not relevant
for the context of service-based systems or had to be adapted
to this context. For example, the original question “What is
the behavior that these types provide together and how is it
distributed over the types?” is now rephrased as “What is the
behavior these services provide together and how is it dis-
tributed over the services?” (SE11). Despite these changes,
we tried to preserve the main phrasing of these questions
as much as possible. The questions should then be inter-
preted as whether Serviz helps in achieving each of those
goals (i.e. finding a particular behavior or pattern). From
the original 44 questions from Sillito et al. we kept 19 ques-
tions that are particularly relevant for Serviz, e.g., questions
that dealt with static analysis were removed. Additionally,
we introduced 20 new questions, which we feel are important
questions when trying to understand a service-based system.
All questions are listed in Table 1 and they are organized
as follows: G1 through G4 are general questions about the
usability and usefulness of Serviz, SE1 through SE19 are
questions extracted from Sillito’s work, Ul through U4 are
questions related to the user filtering feature, S1 through S4
concern the service filtering, V1 through V4 relate to the
version filtering and lastly, C1 through C3 identify the user
experience with combined filtering of the previous features.

The participants were asked to fill in the questionnaire
using a 5-point Likert scale ranging from strongly disagree to
strongly agree. At the end of the questionnaire there were 2
open questions gauging for the most-liked features of Serviz
and asking for any additional comments or suggestions.

4.3 Participants

For this study we approached four software engineers from
two distinct software companies. All four participants have
extensive experience with web service development (> 2
years). However, the technologies used and the context in
which they are used are quite different. This is reflected
in the results of the experiment where clear disagreements

exist and are explored later in the paper.

Adyen, a SMB, makes extensive use of web services in
their business practice and the majority of the technologies
used are developed in-house. This leads to a deep knowledge
of every single component of their own system. It also means
that every developer has a very good understanding of how
the system interacts to bring together functionality.

As for Exact, while this is by comparison a larger company
with around 3000 employees, service orientation is being ac-
tively pursued. There is also a larger reliance on proprietary
third-party technologies which can sometimes obscure the
runtime details of a software system.

5. RESULTS

The quantitative results obtained through the four partici-
pants of the questionnaire are presented in Table 1. The sub-
sequent interview was done in pairs of two participants and
discussed each of the questions in the questionnaire. Our
discussion below will highlight those questions that sparked
the most interesting discussions.

An important note concerning the results table is that the
results P1 and P2 represent the participants from Adyen
whereas P3 and P4 represent those from Exact.

5.1 General questions

The general questions assess the usability of Serviz, whether
it would save the maintainers time while maintaining the
system, and also whether the runtime topology helps with
understanding service-oriented systems during maintenance.

These first results provide a somewhat mixed image of
how useful Serviz is perceived to be. There is a clear divide
amongst the companies, with the participants from Adyen
generally giving lower marks. In particular, when asked
whether Serviz would save time and whether it would help
them understand a service oriented system during mainte-
nance, they seemed more reluctant by scoring these ques-
tions with a 2 (disagree). The two participants from Exact,
on the other hand, gave a score of respectively 4 (agree)
and 5 (strongly agree). This divide can be explained by the
context in which both companies are operating, something
which is also supported by the participants’ comments dur-
ing the interview. More specifically, P1 claimed “I think this
is useful to identify the topology of your system, but what
happens if you already know the topology, in the beginning
you want to get to know the system then it can be useful”.
In this case, participants P1 and P2 claimed during the in-
terview that because they are well acquainted with their
system’s topology, they did not see the usefulness of Serviz.

However, they recognized the value for immigrants to the
software system by stating “I liked it as a tool you can use
at the beginning”. This is in line with the observations of
Sim et al. [20] who state that “software immigrants” need to
undergo a naturalization process during which they get to
know the system. This notion of “software immigrants” de-
serves particular attention in the case of large multi-tenant
software systems. Here, interactions are determined at run-
time and the services interact in various ways to satisfy the
requirements of different users. Even well-seasoned software
engineers who are well acquainted with the system may feel
as if they were immigrants to a particular usage workflow of
a particular user.

Additionally, from the interview we identified another rea-
son why for participants P1 and P2 Serviz may have limited

Adyen | Exact

— N [
|
G1 | The tool was easy to use 3 3 4 3
G2 | A tool like Serviz will save me time 2 2 4 4
G3 | Visualizing the runtime topology makes main-[3 5 5 5
tenance tasks on service oriented systems eas-
ier
G4 | A tool like Serviz will help me understand and |2 2 5 4
maintain a service oriented system
SE1 | Which service represents this UI element or |3 3 4 4
action.
SE2 | Where is there any code involved in the im-|{4 4 3 3
plementation of a particular behavior
SE3 | Where is there an exemplar for a certain be-|3 4 5 4
havior?
SE4 | Identifying system services based on their|4 4 5 4
names.
SE5 | What are the interfaces of a specific service? |4 2 4 4
SE6 | Where is a method called? 4 2 4 2
SE7 | When during the execution is a method |2 1 2 2
called?
SES8 | Where are instances of a service created? 3 1 4 2
SE9 | How are services composed/assembled to|3 3 5 4
bring together functionality?
SE10 | How is a feature implemented? 2 2 4 3
SE11 | What is the behavior these services provideto- |2 1 4 4
gether and how is it distributed over the ser-
vices?
SE12 | How is control getting from here to there? 2 2 4 3
SE13 | Why isn’t control reaching this point in code? |2 2 3 2
SE14 [Which execution path is being taken in this|4 1 4 3
case?
SE15 | How does the system behavior vary over these |2 1 4 3
services?
SE16 | What is the mapping between these services? |4 2 5 4
SE17 | To move a certain feature, what else needsto|2 4 5 2
be moved?
SE18 [What will be the direct impact of a change? |3 4 5 3
SE19 | What will be the total impact of a change? 3 4 4 3
Ul | It was clear I could filter the runtime topology |4 5 5 4
based on usernames.
U2 | The username filtering adds value to the run-|5 5 5 4
time topology.
U3 | By using the username filtering, I could find |2 3 4 4
out which users use the system the most in a
specific time interval.
U4 | By using the username filtering, I could find |2 3 4 4
out which users have used the system the
most.
S1 | It was clear I could filter the runtime topology [1 4 4 4
based on specific services.
S2 | The service filtering adds value to the runtime |1 3 5 4
topology.
S3 | By using the service filtering, I could find out|1 3 2 3
which services are used the most.
S4 | Service filtering helps me find out which ser-|{1 3 4 3
vices depend on each other.
V1 | It was clear I could filter the runtime topology |4 4 5 4
by picking specific versions of services.
V2 | The version filtering adds value to the runtime |3 4 5 4
topology.
V3 | By using the version filtering, I could findout |1 4 4 4
which services are good candidates for dead
code (never used).
V4 | Version filtering will help me pinpoint which |1 4 5 3
service version to perform maintenance on.
C1l | With version and user filtering I could find |2 3 4 4
which user has used a specific version the
most.
C2 | Version and user filtering allows me to find |4 3 3 4
which versions a user never used.
C3 | With version and user filtering I can find pe-|2 4 5 4
riods of low usage which are more suitable for
software maintenance.

Table 1: Questionnaire

usefulness. As the participants stated, at Adyen, the user-
specific variation is not done through service versioning. In-
stead, their system resorts to inline configurability in the
source code. Because Serviz acts at the service level, it does
not provide source code granularity, and it might be diffi-
cult for participants P1 and P2 to imagine how Serviz would
address their scenario.

As for the Exact case, both participants P3 and P4 agreed
that the tool was easy to use (4 points and 3 points), that
it will save them time (4 points for both), that it makes
maintenance tasks easier (5 points for both) and that it will
help them understand and maintain a service oriented sys-
tem (5 points and 4 points). When asked how it helps them
during their understanding and/or maintenance, P3 and P4
mentioned that they do not have any tooling available which
shows them the information that Serviz provides.

In contrast, in the post-questionnaire discussion, Adyen’s
participants revealed a prototype tool developed in-house
which bears similarities to the histogram feature of Serviz.
This tool was driven by their own internal needs and in
the specific case of Adyen, the histogram works in real-
time. Simultaneously, it also lists the users which have been
using the system recently, ranked by number of requests.
This demonstrates that even in a slightly different setup
like Adyen’s, the need exists to know how the users of a
service-based system are actually using the system.

5.2 Generic software engineering questions

In this section we analyze the results regarding the gen-
eral software maintenance questions that are based on the
questions found by Sillito et al. [19]. Here the answers are
also mixed and require deeper analysis.

The first major disparity in the scores begins with ques-
tion SE5 (What are the interfaces of a specific service?),
where participants P1 and P2 scored the question with 4
and 2 points respectively. These results are intriguing at
a first sight, but through inquiring the participants about
these scores, we realized participant P2 had different expec-
tations from the “service interface” nomenclature. Namely,
participant P2 did not consider the method names as the
interface of a service as just the method name does not in-
clude, for example, the method signature.

Question SE7 has generally low scores with all partici-
pants scoring it with 2 points except for P2 which scored 1
point. Upon further investigation with the participants, the
general opinion was that more detail was expected regarding
the “when during the execution is a method called”. In fact,
the participants claimed they were expecting to know the
exact line of code to be able to infer the “when” rather than
just knowing the method in which another method is called.
This appears to simply have been a mismatch between ex-
pectation and reality.

Question SE8 presents a similar scenario with participants
P2 and P4 expecting more detail about the where the in-
stances of a service are created. Another remark was the
existence of a misunderstanding. Participant P2 said he
did not know where the service instance was created, as
with some implementations this happens within the service
framework. Here again, a misunderstanding happened with
the definition of the “creation of a service”. However, the
participant did agree that it was possible to identify the
place where the preparation of a service call is created.

Questions SE9, SE10 and SE11 focus on service composi-

tion and how the services come together to provide function-
ality. In all of these questions the major divide is between
the two different companies, with Adyen’s participants scor-
ing these questions much lower than Exact’s counterparts.
This can again be accounted for with the nature of the sys-
tems the participants are used to. Because P1 and P2 (from
Adyen) deal with much more stable software systems, it can
be more difficult to see the added value of using runtime in-
formation to figure out how a feature is implemented (SE10),
or how a behavior is distributed over services (SE11).

On the other hand, because Exact has a larger software
system with more variation, it seems easier for the partici-
pants to understand the value of finding out exactly how a
certain feature is implemented in terms of services, or how
a behavior is distributed across the different services. Since
service-orientation is also something not yet fully in practice
at Exact, it might also be the case that the participants do
not have as much bias from the systems they are used to.

5.3 User filtering

When asked whether it was clear that it was possible to
filter the runtime topology based on usernames (U1), the re-
sults were on the overall very positive (scores of 4 or more).
Also when asked whether this feature adds value to the run-
time topology (U2), the participants agreed, with only one
participant giving 4 points and all the rest scoring it 5 points.

Some disagreement seems to exist on whether this feature
helps in finding out which users use the system the most
during a specific time interval (U3). Participants P1 and P2
scored it with 2 and 3 points respectively, whereas partic-
ipants P3 and P4 scored this question with 4 points. The
same question was asked, but then with a broader scope re-
garding time rather than focusing on a specific interval (U4).
The results for this question were identical.

The lower scores from participants P1 and P2 can be ex-
plained also through weighing in the interview transcripts.
In the interview, the participants claimed they would have
liked the possibility to have this done automatically rather
than having to find the users manually. Namely, the de-
velopers considered the task of having to manually input
each username one by one to be cumbersome and time-
consuming. This is a valuable insight, which we intend to
implement in a future release of Serviz.

5.4 Service filtering

For service filtering, there was a disagreement within Adyen’s

participant group. All the questions received a 1 point mark
from P1 where as the remaining participants are generally
more positive about the service filtering features. Namely
when asked about how clear the feature’s availability was
(S1), all participants scored it with 4 points. As to whether
it adds value (S2), the results are all positive in the overall
with the participants P2, P3 and P4 ranking it 3 points, 5
points and 4 points respectively.

This feature was also combined with the histograms which
the participants seemed to have had trouble with. Two par-
ticipants (P1 and P3) ranked this feature with 1 and 2 points
respectively, whereas P2 and P4 ranked this feature with 3
points. From the interview it transpired that this was mainly
caused by the runtime data not containing actual cases of a
service being used more or less than another.

As for the question on whether the service filtering feature
helps in finding out which services depend on each other,

participants P2, P3 and P4 ranked it with 3, 4 and 3 points
respectively, which is a reasonably positive score.

The fact that P1 answered all the questions regarding ser-
vice filtering with 1 point can also be attributed to the fact
that P1 did not identify any usefulness for Adyen’s partic-
ular environment. This is also somewhat reflected in P2’s
answers, which despite more positive than P1’s, are also
generally lower scored than those of P3 and P4.

We conclude that the ability to filter the runtime topol-
ogy based on particular services is mostly useful for systems
with: a) a large amount of services and b) little insight about
service usage. In the particular case of Adyen where the
participants already possessed a very good understanding of
the software system, it would seem that such a feature would
provide no added value. Furthermore, Adyen’s system also
does not face regular changes in topology. It is also our un-
derstanding that for this particular system, there is a great
deal of logging being done down at the line level. While this
provides tremendous insight for post-mortem analysis when
failures occur, it also generates a great amount of data which
needs to be stored.

5.5 Version filtering

On what concerns version filtering, the results were on
the overall positive. Despite being clear to all participants
that this filtering was available (V1), disagreements exist
regarding whether it adds value (V2) and the overall use-
fulness of Serviz for different version-related tasks (V3 and
V4). Namely, participant P1 ranked once again the useful-
ness questions with 1 point. This was something we pursued
in depth during the interview that came after the question-
naire and it came to light that Adyen’s system does not
possess explicit versioning. This eliminates the needs to fil-
ter usage per version, as the per-user configurations are done
through conditional code calls.

Examining the question on dead code inference based on
the runtime topology filtered by service version (V3), all
but one participant agreed with a 4 point score. This fea-
ture is something which during the experiment left much to
the imagination. Because the data under analysis did not
actually include any event of a service becoming dead code,
this was something the participants had to imagine rather
than something they could in fact see during the experiment.
This could explain why P1 scored the feature with a lower
score compared to the remaining participants.

Lastly, as to whether it helps pinpoint which services to
perform maintenance on (V4), the results are mixed. Partic-
ipants agreed that this is something which could be possible
should there be a bug which completely disables a service
call. The only remark which came to light regarding this
question came from P1 who expected an automated failure
detection. Currently, the approach involves comparing pe-
riods of time when the system is healthy, with periods of
time when a problem occurred. Then, with the informa-
tion at hand, try to find out where the problem might exist.
Automated failure detection is not something we tried to
achieve with our current research. For this particular ques-
tion, the remaining participants (P2, P3 and P4) ranked it
with respectively 4, 5 and 3 points, therefore agreeing that
the version filtering feature helps figuring out which service
version requires maintenance.

5.6 Combined filtering

In the previous sections we analyze the results for the
individual filtering options used on their own. In the last
round of questions we analyze to what extent all the features
combined help in different maintenance tasks. Namely, we
asked the participants whether it was possible, using version
and user filtering, to identify which user accesses a partic-
ular version the most (C1). The results continue the trend
of previous questions with participants P1 and P2 scoring
lower (2 and 3 points respectively) and participants P3 and
P4 providing more positive results (4 points for both par-
ticipants). The lack of explicit versions in Adyen’s software
system makes the participants less prone to find the useful-
ness of version-related features. Additionally, participants
P1 and P2 had claimed previously about the user-specific
questions that it is a cumbersome task to manually filter
through all the users. This is a possible explanation to the
lower scores of these participants compared to the 4 points
attributed by participants P3 and P4.

Regarding question C2, because of its focus on a particular
user, the results are generally higher across all the partic-
ipants and there is no major discrepancy between Adyen’s
and Exact’s participants (4 points, 3 points, 3 points and 4
points).

6. DISCUSSION

In this section, we discuss the results of the experiment
with regards to the research questions. Subsequently, we
talk about our lessons learned and we identify threats to
validity.

6.1 The research questions revisited

RQ1: Does the user information added to the runtime topol-
ogy help in the understanding of SOA-based systems? We
asked the four participants of our user study for their opinion
on the usefulness of the runtime topology for understanding
SOA-based systems. They all expressed themselves posi-
tively here, giving a first clear indication that user informa-
tion does indeed help to understand the system and how
it is used. The participants’ appreciation for this feature
is likely related to the multi-tenant requirement of knowing
which tenants are using which parts of the system.

RQ2: Does the service version information added to the
runtime topology help in the understanding of SOA-based
systems? The opinions of the four participants somewhat
diverged from each other on this point. In particular, par-
ticipant P1 is of the opinion that the runtime topology is
mainly useful for software immigrants, and not for software
engineers who already have a thorough knowledge of the
system, especially for systems that do not change very often
and/or do not have explicit service versioning.

However, three participants do agree that in systems that
change often and that do have explicit service versioning, the
ability to add service versioning information to the runtime
topology — and also filter on versioning information — helps
in trying to understand a software system.

The same three participants were also positive about the
fact that the service filtering feature helps them to better
understand which services depend on each other.

RQ3: Do usage graphs help to understand SOA-based sys-
tems? Most participants think that the usage graphs avail-
able in Serviz provide a good combination with the user
filtering, this way they could get a clear view of how a (set

of) user(s) uses the system throughout time.

It should also be noted that with regard to the usage
graphs, this is a feature of which an experimental prototype
is being independently developed at one of the companies.
This on itself highlights that this particular feature repre-
sents a real-world need.

Having discussed the subsidiary research questions, we are
now in a position to answer our main research question: Does
thecombination of user, service-version and timing informa-
tion projected on a runtime topology help in the understand-
ing of SOA-based multi-tenant software systems? The re-
sults give a clear indication that most of the participants to
our field study are positive towards Serviz and its features
to better understand how users and service-versions inter-
act with each other over time. We also specifically gauged
for whether it is possible to find periods of low usage (for
particular service-versions) which would prove more suitable
for performing software maintenance when version and ver-
sion filtering is combined. The results (2, 4, 5 and 4 points)
indicate that this particular filtering combination helps in
finding periods of low usage.

6.2 Lessons learned

The field study with 4 participants at two different com-
panies also taught us a number of valuable insights that go
beyond the augmented runtime topology.

In particular, for a number of questions we observed quite
different answers from the participants belonging to the dif-
ferent companies. While all four participants are experts
in the area of SOA-based software systems, the particular
context of the company plays an important role in their ap-
preciation. This underlines the importance of performing
program comprehension experiments with participants that
are from different contexts.

We witnessed a generally lower appreciation of Serviz by
participant P1. From the interviews that we held as the final
step of the field study, we gathered from him that he thought
that Serviz was not particularly useful if you already have
a good understanding of the system. Yet, he also acknowl-
edges that novice users, the so-called software immigrants,
would actually benefit from the overview that Serviz could
give them. In effect, this seems somewhat strange, because
at the beginning of the field study, we explicitly asked them
to reason about Serviz from the point of view of an engi-
neer exploring an unknown system (hence also the choice
for Stonehenge, our subject system, which was not known
to any of the participants). It seems that reasoning out-
side of the technological or business context in which one is
immersed, is sometimes actually quite difficult.

This opens up the question of whether for program com-
prehension experiments, one needs to select experts in the
field, people that are aware of the particular difficulties faced,
or novice users, who are not familiar with all of the problems
in the area and that have a no bias when it comes to expe-
rience with potential difficulties in understanding systems.

6.3 Threats to validity

In this section we present a discussion of how the results
of our experiment might be challenged. We discuss internal
validity, namely whether the participants might have been
directly affected by factors we did not consider, and external
validity, meaning whether our results are generalizable.

6.3.1 Internal Validity

One possible threat to the internal validity could have
been related to a lack in the participants’ competence. How-
ever, in a short pre-study interview we did gauge for their
experience with SOA and we established that all participants
had at least 2 years of experience with developing SOA based
systems. This, as we noted in Section 6.2, might have been
both an advantage and a disadvantage. While experience
with SOA is welcomed, we theorize it may have also been a
source for bias towards a particular type of SOA system.

Participants might have been inclined to rate the tool
more positively than they actually value it, because they
might have felt this was the more desirable answer. We mit-
igated this concern by indicating to participants that only
honest answers were valuable. The good mix of answers
we have obtained is another indication of the participants
answering the questions truthfully.

6.3.2 External Validity

Our main concern with external validity has to do with the
performance impact of our approach. We are particularly
concerned with the performance overhead added by the data
collection step. However, the data collection is supported
by a robust framework used by a company with a large web
services infrastructure (eBay).

The storage requirement of our approach is also quite
high [24]. In a system with a large traffic of web service
requests, a large amount of storage space is required in or-
der to maintain the system’s state over time. This threat
can be mitigated by using compression techniques, e.g., as
applied in the Compact Trace Format (CTF) [12].

The applicability of our results to other, larger systems is
also a possible threat. We tried to mitigate this by using
Spicy Stonehenge, which, despite its small size, contains all
the ingredients of an industrial system, including complex
interactions between services and a well-specified domain.

7. RELATED WORK

In general, the increased maintenance complexity of SOA-
based systems has been acknowledged and emphasized by
Lewis and Smith [17], requiring for instance, impact analy-
sis for an unknown set of users, or increased number of ex-
ternally accessed services to be considered in maintenance.
These are asking for a readjustment of current maintenance
practice for SOA-based systems at large.

For this article, we started by analyzing the survey of
Cornelissen et al. [5] on program comprehension through
dynamic analysis, which, among others, lists the work of
De Pauw et al. [6]. They describe a web services naviga-
tor for generating service topologies, and focus on detecting
incorrect implementations of business rules and “excessively
chatty” communications. Our approach is different w.r.t.
two significant improvements to the service topology: it al-
lows to identify the method of an invoked service plus its
invoking client, and it includes the time dimension provid-
ing a historic view on the topology.

White et al. [23] present a dynamic analysis approach to
aid the maintenance of SOA-based composite applications
where they propose using a feature sequence viewer to re-
cover sequence diagrams from such systems. This approach,
however, does not seem to provide a basis for understanding
the topology of a running service-oriented system and rather
focuses on mapping features to software artifacts.

In other work, White et al. [22] investigated the infor-
mation of developers during the maintenance of SOA-based
systems. They established that the first question a main-
tainer must ask is “how does the software work now?”

Finally, we investigated citations to the aforementioned
papers, in particular the systematic survey by Cornelissen
et al. [5] in order to find more recent additions to the body of
knowledge. Unfortunately, this search has yielded no extra
relevant related work.

8. CONCLUSION

In this article, we investigate how the analysis of the users
and versions in a multi-tenant system can help its under-
standing for maintenance purposes. More specifically, our
contributions are:

e The runtime topology augmented with the time di-
mension.

e The runtime topology filtered by user and service ver-
sion.

e Serviz, an open-source implementation of this approach.

e A field user study with 4 participants from two soft-
ware engineering companies in order to evaluate the
effectiveness of such an approach.

We now summarize how our approach and the tool address
our original research questions formulated in Section 1:

RQ1 Does the user information added to the runtime
topology help in the understanding of SOA-based systems?
Our participants agree that having this information avail-
able helps in the understanding of a SOA-based system,
with some remarks regarding automating the identification
of important highlights (e.g. which users used the system
the most in a specific period).

RQ2 Does the service version information added to the
runtime topology help in the understanding of SOA-based
systems? On what concerns service version information, on
average all but one participant agreed that this having this
information at hand makes understanding highly dynamic
SOA-based systems easier. On systems where the runtime
topology is less prone to change, the usefulness might prove
to be diminished.

RQ3 Do usage graphs help to understand SOA-based sys-
tems? For our last research question, the participants gener-
ally agreed that time-based graphs add value to understand-
ing SOA-systems and their maintenance. Furthermore, one
of the companies is creating a prototype tool which offers a
similar set of features, highlighting the relevance and useful-
ness of such a feature.

Future work

From our interview, the participants noted several aspects
which we would like to improve as future work. An improve-
ment we plan to add to our runtime topology deals with
automatic identification of useful data. For example, the
participants claimed that identifying peaks of high and low
usage for a particular service costs a significant amount of
time. Similarly, a common remark was the lack of a service
usage referential. This means the participants had to man-
ually calculate the usage of a particular service by dividing
the number of requests by the specific time interval chosen.
This is something which was also suggested as beneficial,
should it be automated.

Another aspect we would like to further study is an auto-
mated dead code detection for service oriented systems. This

is particularly important in the context of multi-tenancy
where specific versions are tailored for a particular user, who
might in the future migrate to another version.

Our ultimate goal is to keep on developing Serviz, make
it more user-friendly and improve its visualization. Some
participants complained the graph did not retain its posi-
tion every time the dates were changed, which caused great
frustration.

9.

ACKNOWLEDGMENTS

The authors would like to acknowledge NWO for sponsor-
ing this research through the Jacquard ScaleltUp project.
Also many thanks to the participants in our user study and
their companies Adyen and Exact.

10.

1]

[10]

[11]

REFERENCES

C.-P. Bezemer and A. Zaidman. Multi-tenant saas
applications: maintenance dream or nightmare? In
Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution
(IWPSE), pages 88-92. ACM, 2010.

G. Canfora and M. Di Penta. New frontiers of reverse
engineering. In Future of Software Engineering
(FOSE), pages 326-341. IEEE CS, 2007.

P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

T. A. Corbi. Program understanding: Challenge for
the 1990s. IBM Systems Journal, 28(2):294-306, 1989.
B. Cornelissen, A. Zaidman, A. van Deursen,

L. Moonen, and R. Koschke. A systematic survey of
program comprehension through dynamic analysis.
IEEE Trans. Software Eng, 35(5):684-702, 2009.

W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold,
and J. F. Morar. Web services navigator: Visualizing
the execution of web services. IBM Systems Journal,
44(4):821-846, 2005.

K. A. Ericsson and H. A. Simon. How to study
thinking in everyday life: Contrasting think-aloud
protocols with descriptions and explanations of
thinking. Mind, Culture, and Activity, 5(3):178-186,
1998.

T. Espinha, C. Chen, A. Zaidman, and H.-G. Gross.
Maintenance research in SOA — towards a standard
case study. In Proc. of the Conf. on Software
Maintenance and Reengineering (CSMR), pages
391-396. IEEE CS, 2012.

T. Espinha, A. Zaidman, and H.-G. Gross.
Understanding the runtime topology of
service-oriented systems. In Proc. of the Working
Conf. on Reverse Engineering (WCRE), pages
187-196. IEEE CS, 2012.

R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola,

Y. Chen, and N. Du. A version-aware approach for
web service directory. In IEEE International
Conference on Web Services (ICWS), pages 406-413.
IEEE CS, 2007.

N. Gold, C. Knight, A. Mohan, and M. Munro.
Understanding service-oriented software. IEEE
Software, 21(2):71-77, 2004.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

22]

23]

(24]

(25]

A. Hamou-Lhadj and T. C. Lethbridge. A metamodel
for the compact but lossless exchange of execution
traces. Software and System Modeling, 11(1):77-98,
2012.

K. Holtzblatt and S. Jones. Human-computer
interaction. chapter Conducting and analyzing a
contextual interview (excerpt), pages 241-253. Morgan
Kaufmann, 1995.

M. Kajko-Mattsson, G. A. Lewis, and D. B. Smith.
Evolution and maintenance of soa-based systems at
sas. In Proc. Hawaii Int’l Conf. on Systems Science
(HICSS), page 119. IEEE CS, 2008.

T. Kwok, T. Nguyen, and L. Lam. A software as a
service with multi-tenancy support for an electronic
contract management application. In Proc. Int. Conf.
on Services Computing (SCC), pages 179-186. IEEE,
2008.

M. M. Lehman and L. A. Belady. Program Evolution:
Processes of Software Change. Academic Press, 1985.
G. Lewis and D. Smith. Service-oriented architecture
and its implications for software maintenance and
evolution. In Proceedings Frontiers of Software
Maintenance, pages 1-10. IEEE CS, 2008.

N. Matthijssen, A. Zaidman, M.-A. Storey, I. Bull, and
A. van Deursen. Connecting traces: Understanding
client-server interactions in ajax applications. In Proc.
18th Int. Conf. on Program Comprehension (ICPC),
pages 216—225. IEEE CS, 2010.

J. Sillito, G. C. Murphy, and K. De Volder. Asking
and answering questions during a programming change
task. IEEE Trans. Softw. Eng., 34(4):434-451, 2008.
S. E. Sim and R. C. Holt. The ramp-up problem in
software projects: A case study of how software
immigrants naturalize. In Proc. of the International
Conference on Software Engineering (ICSE), pages
361-370. IEEE CS, 1998.

Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang,
and W. H. An. A study and performance evaluation of
the multi-tenant data tier design patterns for service
oriented computing. In International Conference on
e-Business Engineering (ICEBE), pages 94-101.
IEEE, 2008.

L. White, N. Wilde, T. Reichherzer, E. El-Sheikh,

G. Goehring, A. Baskin, B. Hartmann, and M. Manea.
Understanding interoperable systems: Challenges for
the maintenance of soa applications. pages 2199-2206.
IEEE CS, 2012.

L. J. White, T. Reichherzer, J. Coffey, N. Wilde, and
S. Simmons. Maintenance of service oriented
architecture composite applications: static and
dynamic support. J. Softw. Maint. Evol.: Res. Pract.,
25(1):97-109, 2013.

A. Zaidman, B. Du Bois, and S. Demeyer. How
webmining and coupling metrics improve early
program comprehension. In Proc. Int’l Conf. on
Program Comprehension (ICPC), pages 74-78. IEEE
CS8, 2006.

A. Zaidman, N. Matthijssen, M.-A. D. Storey, and

A. van Deursen. Understanding ajax applications by
connecting client and server-side execution traces.
Empirical Software Engineering, 18(2):181-218, 2013.

