
Spicy Stonehenge: Proposing a SOA Case Study
Tiago Espinha, Cuiting Chen, Andy Zaidman, Hans-Gerhard Gross

Delft University of Technology, The Netherlands
{t.a.espinha, cuiting.chen, a.e.zaidman, h.g.gross}@tudelft.nl

Abstract—Maintenance research in the context of Service
Oriented Architecture (SOA) is currently lacking a suitable
standard case study that can be used by scientists in order to
(1) develop and assess their research ideas and (2) compare and
benchmark their solution(s). It is also well established in different
fields that having such a standard case study system brings many
benefits, in that it helps determine which approaches work best
for specific problems. For this reason, we decided to build upon
an existing open-source system and make it available for other
researchers to use. This system is Spicy Stonehenge.

I. INTRODUCTION

When looking at the past decade of research in service-
orientation, we can observe that although a lot of fruitful
research has been carried out (e.g., see [1], [2]), many of the
research efforts are isolated in nature. While this isolation is
not bad per se, it does hinder progress. Symptomatic of the
isolated nature of research in this area is the absence of a
common case study that can be used as a benchmark. Indeed,
Sim et al. report that benchmarking, when embraced by a
community, has a strong positive effect on the scientific ma-
turity of a discipline [3]; it allows to easily compare solutions
and to perform replication studies. In many fields of software
engineering, researchers have resorted to benchmarking in
order to compare approaches and advance the field.

We propose a system that is at the same time realistic, easy
to understand and which most researchers should be able to use
as a “standard case study system”. The system we propose —
Spicy Stonehenge [4] — is an extension to Apache Stonehenge
and consists of an application composed out of several web
services. The open-source nature of Spicy Stonehenge and its
availability should stimulate researchers, that normally resort
to small examples built specifically for the context of their
research, to choose for Spicy Stonehenge, thus enabling the
benchmarking process that the community needs.

II. STONEHENGE

Apache Stonehenge1 is a simulation of the stock market
consisting of a web application and several web services.
Stonehenge provides the possibility to buy and sell shares
in a single stock market, with a single currency. Apache
Stonehenge was built as a joint effort between Microsoft and
the Apache Software Foundation to showcase service interop-
erability between different technologies. Our goal, however, is
not to explore the field of interoperability but that of mainte-
nance in SOA, and all that it entails. We chose Stonehenge as
it provides a real world example of how services can interact

1Apache Stonehenge — https://cwiki.apache.org/STONEHENGE/

Fig. 1. Spicy Stonehenge

together to compose a software system. However, conscious
of its size, we decided to extend it in order to make it more
realistic and complex. We have extended it with several new
features to make the system more complex on what concerns
business logic and number of services. That is, we added the
possibility to maintain several wallets in different currencies,
to exchange money amongst the different currencies, and to
use real-world data from the stock market. The result of our
changes is called Spicy Stonehenge2 which relies substantially
on the business logic of the original implementation. We have
also ported the original JAX-WS-based implementation to the
Turmeric SOA platform3 [4].

A. Motivation

We previously noticed that in service-oriented research there
is no case study which researchers can use to compare their
approaches and results [4]. Furthermore, we tried to bring forth
a system that: a) is relatively easy to grasp, b) is large or at
least provides many extension possibilities that all researchers
can build upon and c) it must be easy to port to different
frameworks. With Spicy Stonehenge we feel we have met these
three criteria.

B. System Description

The current version of the system is composed out of five
different services and two databases (Fig. 1). In this section
we provide an overview of what each service does and further
into the section, what data is stored in each table.

Also referring to Figure 1, solid arrows represent one
service invoking another whereas the dashed arrow represent

2Spicy Stonehenge — https://github.com/SERG-Delft/spicy-stonehenge
3Turmeric — https://www.ebayopensource.org/index.php/Turmeric/



a publish/subscribe connection where the Order Processing
service can subscribe to topics on the external service.

Services:

• The Configuration Service acts as a registry for all the
deployed instances of the other services. All the other
services need, therefore, to know in advance the endpoint
of at least one instance of the Configuration Service.

• The Business Service mediates the interaction of the web
application with the business logic of the system. For this
reason, the Business Service contains all the operations
the web application is capable of performing, i.e., buying
and selling of stocks, user registration, statistical informa-
tion about the market and information about stock prices.

• The Order Processing Service is solely responsible for
processing the buying and selling of shares. It is invoked
by the Business Service whenever a user performs a
purchase or sale of shares in the web application.

• The Exchange Service makes use of Google’s API for
currency exchange. This service is invoked whenever the
user explicitly requests for currency to be exchanged from
a wallet in a certain currency into another wallet, with
a different currency. In the future, this service will also
become part of the purchase request for the cases when
the user wants to buy shares in a currency A but chooses
to use currency B.

• The Quote Service is in fact composed of two services.
Referring to Figure 1, the service described as Quote
Service is a normal pull-based service with a SOAP
interface that the Order Processing Service can invoke
to obtain data about specific stocks on-demand. On the
other hand we also have the Quote Data service which
performs two tasks: 1) it fills the Stock Database table
with data and continuously updates it with data from
Yahoo Finance, and 2) it provides a publish/subscribe
interface (implemented using the ZeroMQ library) which
other services, such as the Order Processing Service can
bind to in order to be notified for price changes in specific
stock symbols.

Databases:

• The Stonehenge Database contains the information nec-
essary for the basic operation of the system. Namely it
contains user information, including how much money
and which stocks each user owns. It also contains in-
formation about the services’ endpoints and the mapping
between service instances (which instance should each
service use).

• The Stock Database contains information about stock
prices. This table is kept separately as it is meant to be
filled by an external service which continuously checks
whether there is new data and pushes it to the database.

C. Usage Scenarios

With these services we can then have different usage sce-
narios. These are summarized in Table I.

TABLE I
FEATURES AVAILABLE/PLANNED FOR SPICY STONEHENGE

Currently available features Planned features

Purchase and sale of stocks Automatic conversion of currencies
Price info about stock symbols Multiple stock markets
Wallets in different currencies External bank entities
Management of service endpoints Stock options
User registration

Our planned extensions to the existing system aim at making
the interactions amongst web services more complex. For ex-
ample, the existence of multiple stock markets will create the
need for different instances of the Order Processing service.

III. DISCUSSION

Our personal motivation for coming up with Spicy Stone-
henge was to be able to have a small, yet realistic case study
with which we could work in the area of online evolution and
maintenance of SOA based systems. Questions like (1) what is
the actual runtime topology of the system?, (2) is a particular
service out-of-use and can it be disconnected permanently?,
(3) can we do online diagnosis of faulty services? and (4)
what is a good time to plug-out and plug-in a newer version
of a service are questions that we would like to address in our
future work.

Nevertheless, we also feel that the possibilities for Spicy
Stonehenge reach quite a lot farther than simply the software
evolution sub-field. Not in the least because Spicy Stone-
henge’s source code and build material are directly available
from GitHub4. As such, we see this paper as an open invitation
to the SOA community to evaluate Spicy Stonehenge and if
found useful, to use it during research.

ACKNOWLEDGMENT

The authors would like to acknowledge NWO for sponsor-
ing this research through the Jacquard ScaleItUp project. Also
many thanks to our industrial partners Adyen and Exact.

REFERENCES

[1] B. Benatallah and H. Motahari Nezhad, “Service oriented architecture:
Overview and directions,” in Advances in Software Engineering, ser.
LNCS. Springer, 2008, vol. 5316, pp. 116–130.

[2] S. Benbernou, L. C. M. S. Hacid, R. Kazhamiakin, G. Kecskemeti, J.-L.
Poizat, F. Silvestri, M. Uhlig, and B. Wetzstein, “State of the Art Report,
Gap Analysis of Knowledge on Principles, Techniques and Methodologies
for Monitoring and Adaptation of SBAs,” 2008, deliverable # PO-JRA-
1.2.1 of the S-Cube project.

[3] S. E. Sim, S. M. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proc. Int’l
Conf. on Software Engineering (ICSE). IEEE CS, 2003, pp. 74–83.

[4] T. Espinha, C. Chen, A. Zaidman, and H.-G. Gross, “Maintenance
research in SOA – towards a standard case study,” in Proc. of the Conf.
on Software Maintenance and Reengineering (CSMR). IEEE CS, 2012,
pp. xxx–xxx.

4https://github.com/SERG-Delft/spicy-stonehenge


