
Lean GHTorrent: GitHub data on demand

Georgios Gousios*, Bogdan Vasilescu†, Alexander Serebrenik†, Andy Zaidman*

*Delft University of Technology †Eindhoven University of Technology
Delft, The Netherlands Eindhoven, The Netherlands

{g.gousios, a.e.zaidman}@tudelft.nl {b.n.vasilescu, a.serebrenik}@tue.nl

ABSTRACT
In recent years, GITHUB has become the largest code host in the
world, with more than 5M developers collaborating across 10M
repositories. Numerous popular open source projects (such as Ruby
on Rails, Homebrew, Bootstrap, Django or JQuery) have chosen
GITHUB as their host and have migrated their code base to it.
GITHUB offers a tremendous research potential. For instance, it is
a flagship for current open source development, a place for develop-
ers to showcase their expertise to peers or potential recruiters, and
the platform where social coding features or pull requests emerged.
However, GITHUB data is, to date, largely underexplored. To facil-
itate studies of GITHUB, we have created GHTorrent, a scalable,
queriable, offline mirror of the data offered through the GITHUB
REST API. In this paper we present a novel feature of GHTorrent
designed to offer customisable data dumps on demand. The new
GHTorrent data-on-demand service offers users the possibility to
request via a web form up-to-date GHTorrent data dumps for any
collection of GITHUB repositories. We hope that by offering cus-
tomisable GHTorrent data dumps we will not only lower the “bar-
rier for entry” even further for researchers interested in mining
GITHUB data (thus encourage researchers to intensify their min-
ing efforts), but also enhance the replicability of GITHUB studies
(since a snapshot of the data on which the results were obtained can
now easily accompany each study).

1. INTRODUCTION
During recent years, GITHUB (2008) has become the largest

code host in the world, with more than 5M developers collabo-
rating across 10M repositories. Due to its support for distributed
version control (Git) and pull-based development [2], as well as
its modern Web UI and focus on social coding [4], GITHUB has
quickly surpassed in size and popularity even much older forges
such as Sourceforge (1999). As a result, numerous projects (espe-
cially open source) are migrating their code base to GITHUB (for
instance, the Google query migrate to github returns more than 4M
results), which now hosts popular projects such as Ruby on Rails,
Homebrew, Bootstrap, Django or jQuery.

Researchers have quickly jumped on board and have started ex-
ploring GITHUB data. So far, studies focused on building lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

guage topic models of source code [1], understanding the effects
of branching and pull-based software development [9, 14], uncov-
ering associations between crowdsourced knowledge and software
development [21], visualizing collaboration and influence [12], ex-
ploring the social network of developers [19],or investigating how
the social nature of GITHUB impacts collaboration and impression
formation [4] and could be used to improve development prac-
tices [15]. More studies are expected to be published this year,
since GITHUB is the topic of the Mining Challenge at the 2014 edi-
tion of the Working Conference on Mining Software Repositories
(MSR). However, as opposed to Stack Overflow (also 2008), the
largest Q&A site for programming-related questions and the topic
of the Mining Challenge at the 2013 edition of MSR, the richness of
GITHUB data remains largely underexplored in terms of academic
publications [20].

To facilitate studies of GITHUB, we have created GHTorrent [10],
a scalable, queriable, offline mirror of the data offered through
the GITHUB REST API. GHTorrent data has already been used
in empirical studies (e.g., [9, 18, 21]). In this paper we present a
novel feature designed to offer customisable data dumps on de-
mand. The new GHTorrent data-on-demand service offers users
the possibility to request via a web form up-to-date GHTorrent data
dumps (in both MySQL and MongoDB formats) for any collection
of GITHUB repositories.

Apart from lowering the “barrier for entry” even further for re-
searchers interested in mining GITHUB data, this data-on-demand
service offers several advantages. Firstly, while the GHTorrent
project already offered data dumps of both its raw data (MongoDB,
currently more than 2TB) and metadata (MySQL, currently more
than 20GB), downloading and restoring these dumps can be very
time consuming and might not be necessary if a particular analy-
sis is restricted in scope to say a handful of “interesting” GITHUB
projects (e.g., the Ruby on Rails project, for which separate data
sets also started being collected [23]).

Secondly, while the idea of running queries with a restricted
scope is not necessarily new with respect to the official release of
GHTorrent [10], the data-on-demand service enhances replicabil-
ity of results obtained using GHTorrent data. GHTorrent already
offered an online query interface with access to an archived version
of the relational database, which could be used to restrict the scope
of a query. However, GITHUB is a very dynamic platform where
developers, projects and wikis are created and deleted constantly.
Therefore, online queries of GHTorrent data may return different
results at different times if project data recorded by GHTorrent has
been refreshed in the meantime. To enhance the replicability [7] of
such results, it is therefore preferable to store the exact snapshot of
the data set used in the analysis.

Web server

Web form

1

GHTorrent server

5

6

8
Job db

Retrieval workers

…

Requests queue

Responses queue

3

Dispatcher

GHTorrent db GitHub API

2

Request
listener Response

listener

4

9 7

Requests db

Figure 1: Architecture of the GHTorrent data-on-demand service.

Thirdly, our experiences with curating academic papers based on
Stack Exchange data [20] suggest that researchers prefer to work
with data dumps rather than online data explorers (for reasons such
as eliminating the reliance on a third party service, replicability,
or integration with existing tooling or infrastructure). Even after
factoring out papers published at the Mining Challenge of MSR
2013, an overwhelming fraction of the remaining Stack Exchange
papers published after 2010 (when the Stack Exchange data ex-
plorer became available) have used data dumps rather than the data
explorer. We hope that by offering customisable GHTorrent data
dumps we will encourage researchers to intensify their efforts to
mine GITHUB data.

The rest of this paper is organised as follows. In Section 2 we
describe the architecture of lean GHTorrent, followed by a discus-
sion of how to use the service in Section 3 and current limitations in
Section 4. Next, we discuss related work in Section 5, and present
our conclusions in Section 6.

2. ARCHITECTURE
The architecture of the new GHTorrent data-on-demand service

consists of two loosely coupled parts: a web server that handles
data requests from users and the GHTorrent server that performs
the data extraction. The two servers communicate via messaging
queues.

The interaction between the different subcomponents of the web
and GHTorrent servers is illustrated in Figure 1. First, users spec-
ify their requests for data by filling in the web form at http:
//ghtorrent.org/lean 1 . A request listener validates each
request (e.g., it must contain an email address, it must not ask for
more than 1000 repositories) and records metadata about its owner,
payload, timestamp and status (completed, in progress) in a rela-
tional database. Then, for each GITHUB repository part of the re-
quest, the listener posts a message to the queue 2 containing the
request identifier, timestamp and repository.

On the GHTorrent server side, a dispatcher listens in on the re-
quests queue 3 and interprets the messages received as follows.
First, if the message refers to a request for which no previous mes-
sages (asking for different repositories) have been received, a new
shared relational database is created to collect metadata for the
repositories part of this request 4 . This database has the same

schema as the original GHTorrent MySQL database [10], repro-
duced for completeness in Figure 2. Then, for each message (repos-
itory) referring to the same job, a retrieval worker is instantiated
having as parameters the repository being requested, details for
connecting to the job database, and the timestamp of the request
5 .

Retrieval workers run in parallel and make extensive use of caching.
If the main GHTorrent MongoDB database already contains data
for this repository, then the shared job database is populated with
metadata for this repository extracted from the main GHTorrent
MongoDB database 6 . Otherwise, both the main GHTorrent
database and the job database 7 are updated with data freshly ex-
tracted from the GITHUB API. This data collection process, again
designed as a decentralized process, with decentralization mediated
using a similar worker queue model, was described previously [8].
Once a retrieval worker finishes, it posts a message to the responses
queue 8 signalling the completion of its task.

On the web server side, a response listener handles incoming re-
sponse messages (one for each repository in each request) 9 and
updates the status of the job in the requests database. When “task
complete” messages have been received for all repositories part of
a request, data dumps are being created from both the job database
(MySQL, having the GHTorrent schema [8]) and the main GHTorrent
database (MongoDB, only collections—groupings of MongoDB
documents—relevant for this request are extracted).

Finally, the request owner is notified via email that her job has
completed and the requested data dumps are available for download
at a given URL.

3. USING THE SERVICE
Essentially any study of a restricted collection of GITHUB repos-

itories can be carried out using the lean GHTorrent offering the ad-
vantages of flexibility in selecting the repositories and reproducibil-
ity of the results.

We envision, for example, use cases in which researchers inter-
ested in mining GITHUB data start off by using the in-browser in-
terface to select a number of GITHUB repositories matching their
research goals. Then, lean GHTorrent can be used to retrieve data
for those repositories.

http://ghtorrent.org/lean
http://ghtorrent.org/lean

Figure 2: MySQL database schema [8].

To use the web form at http://ghtorrent.org/lean,
repositories should be input one per line in the dedicated space.
The input format for a repository is <owner>/<repository> (for in-
stance, gousiosg/github-mirror, or rails/rails). To select the reposi-
tories that are interesting for analysis, researchers can use the exist-
ing GHTorrent MySQL web interface for filtering projects based
on specific criteria (e.g. all Ruby on Rails forks, projects in Java
that have more than 100 pull requests, projects that received a com-
mit throught a pull request in 2014 etc).

Once a job has been submitted, the user is sent an email with
a tracking URL, where information about the status of retrieving
each component (table; commits, forks, pull requests, project mem-
bers, etc.) of each requested repository is displayed. Refreshing the
tracking page will update the status information.

Once the job finishes, an archive containing the MySQL and
MongoDB data dumps is offered for download. The MySQL dump
contains metadata for the requested repositories, having the schema
described in Figure 2. The MongoDB dump contains all the data
extracted by GHTorrent from the GITHUB API (e.g., in addition to
metadata about users, organisations, repositories, commits, issues
and pull requests already available in MySQL, it contains the actual
changes—diffs—to the repository for each commit). To restore the
database dumps locally, the standard procedure of importing sql
archives or mongo collections (i.e., using the mongorestore
script provided with MongoDB) applies.

Furthermore, the Ruby scripts provided together with GHTorrent
(e.g., scripts to update all the data related to a given repository or
a given user; see the GHTorrent GITHUB repository https://
github.com/gousiosg/github-mirror) allow users of
lean GHTorrent, once they restore locally the database dumps they
requested, to update their local copies independently.

4. LIMITATIONS
Designing and implementing a robust and scalable lean GHTorrent

service was a challenging endeavour. Still, in its current implemen-
tation lean GHTorrent has a number of limitations. First, dumps
contain only the first order dependencies (e.g., contributors to a
repository and their followers, but not followers of these follow-
ers). Second, depending on the size of the request and the load on
GHTorrent servers at that time, creating the dumps can be a lengthy
process, potentially requiring several days to complete. Third, no
recovery actions in case of errors are currently implemented, poten-
tially leading to incomplete dumps, e.g., if GITHUB fails to answer
an API request. Researchers using lean GHTorrent data are ad-
vised to check the integrity of the data dumps themselves and, in
case of incomplete data, use the ght-retrieve-* scripts in the
main GHTorrent distribution to fill in the data holes. Finally, to
limit the load on GHTorrent servers, requests to lean GHTorrent
should not exceed 1000 repositories.

http://ghtorrent.org/lean
https://github.com/gousiosg/github-mirror
https://github.com/gousiosg/github-mirror

5. RELATED WORK
The idea of providing or retrieving software repository data on-

demand as such is not new and can be seen as related to “Data as a
Service” or “Information as a Service” [5]. The data being provided
was usually limited to the meta-data [3] or elements of the reposi-
tory such as files [22]. Similarly to the latter work, lean GHTorrent
provides elements of GITHUB. However, GITHUB is a repository
of repositories [17] or meta repository [11] and, therefore, its el-
ements are repositories themselves. Meta repositories, including
lean GHTorrent, provide for cross-domain analysis [17]. As op-
posed to existing meta repositories such as OHLOH or FLOSS-
MOLE [13], lean GHTorrent provides the researchers with the pos-
sibility to select their own object of study rather than being forced
to analyse the entire collection searching for the proverbial nee-
dle.Moreover, as opposed to such effort as Boa [6] integrating the
repository analysis tasks in the web-based interface, lean GHTorrent
allows the researchers to download the relevant repositories and
subject them to further processing by independent tools, i.e., the
analysis tasks are not restricted to the functionality provided the
web-interface.

Projects hosted GITHUB or the entire GITHUB collection have
been subject to numerous studies (e.g., [1,4,9,12,14–16,19]). The
GITHUB mirror and the predecessor of the current work [10], has
been used in empirical studies [18, 21].

6. CONCLUSIONS
We presented a novel feature of GHTorrent that allows users

to request GITHUB data dumps on demand for any collection of
GITHUB projects (repositories). Lean GHTorrent offers several
advantages, being lightweight and easy to use, fostering replicabil-
ity and offering flexibility and independence to researchers inter-
ested in mining GITHUB. Together with the existing GHTorrent
infrastructure, the new lean data-on-demand service lowers the “bar-
rier for entry” for GITHUB miners to a minimum. We hope this will
encourage researchers to intensify their efforts to mine GITHUB
data, as well as serve as inspiration for others willing to share soft-
ware engineering datasets (the implementations of both GHTorrent
and lean GHTorrent are publicly available).

Acknowledgements. Georgios Gousios is funded throught the
NWO TestRoots project (639.022.314). Bogdan Vasilescu has been
supported by the research project NWO 600.065.120.10N235 fi-
nanced by Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek (NWO).

7. REFERENCES
[1] M. Allamanis and C. Sutton. Mining source code repositories

at massive scale using language modeling. In MSR, pages
207–216. IEEE, 2013.

[2] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. German,
and P. Devanbu. Cohesive and isolated development with
branches. In FASE, pages 316–331. Springer, 2012.

[3] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook:
discovering and exploiting relationships in software
repositories. In ICSE, volume 1, pages 125–134, May 2010.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding
in Github: transparency and collaboration in an open
software repository. In CSCW, pages 1277–1286. ACM,
2012.

[5] A. Dan, R. Johnson, and A. Arsanjani. Information as a
service: Modeling and realization. In International Workshop
on Systems Development in SOA Environments, page 2, May
2007.

[6] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale
software repositories. In Proceedings of the 35th
International Conference on Software Engineering, pages
422–431, May 2013.

[7] J. M. González-Barahona and G. Robles. On the
reproducibility of empirical software engineering studies
based on data retrieved from development repositories.
Empirical Software Engineering, 17(1-2):75–89, 2012.

[8] G. Gousios. The GHTorent dataset and tool suite. In MSR,
pages 233–236. IEEE, 2013.

[9] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory
study of the pull-based software development model. In
ICSE. ACM, 2014.

[10] G. Gousios and D. Spinellis. GHTorrent: Github’s data from
a firehose. In MSR, pages 12–21. IEEE, 2012.

[11] V. Gruhn, C. Hannebauer, and C. John. Security of public
continuous integration services. In 9th International
Symposium on Open Collaboration, WikiSym ’13, pages
15:1–15:10, New York, NY, USA, 2013. ACM.

[12] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer.
Visualizing collaboration and influence in the open-source
software community. In MSR, pages 223–226. ACM, 2011.

[13] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A
collaborative repository for FLOSS research data and
analyses. International Journal of Information Technology
and Web Engineering, 1(3):17–26, 2006.

[14] H. Lee, B.-K. Seo, and E. Seo. A git source repository
analysis tool based on a novel branch-oriented approach. In
ICISA, pages 1–4. IEEE, 2013.

[15] R. Pham, L. Singer, and K. Schneider. Building test suites in
social coding sites by leveraging drive-by commits. In ICSE,
pages 1209–1212. IEEE, 2013.

[16] D. Pletea, B. Vasilescu, and A. Serebrenik. Security
discussions on GitHub: Topic mining and sentiment analysis.
In MSR. IEEE, 2014.

[17] S. K. Sowe, L. Angelis, I. Stamelos, and Y. Manolopoulos.
Using repository of repositories (RoRs) to study the growth
of F/OSS projects: A meta-analysis research approach. In
J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti, editors,
Open Source Development, Adoption and Innovation,
volume 234 of IFIP—The International Federation for
Information Processing, pages 147–160. Springer US, 2007.

[18] M. Squire. Forge++: The changing landscape of FLOSS
development. In HICSS47. IEEE, 2014.

[19] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang. Network
structure of social coding in GitHub. In CSMR, pages
323–326. IEEE, 2013.

[20] B. Vasilescu. Academic papers using Stack Overflow data.
http://meta.stackoverflow.com/q/134495,
2012.

[21] B. Vasilescu, V. Filkov, and A. Serebrenik. StackOverflow
and GitHub: associations between software development and
crowdsourced knowledge. In SocialCom, pages 188–195.
IEEE, 2013.

[22] L. Voinea and A. Telea. Mining software repositories with
CVSgrab. In MSR, MSR ’06, pages 167–168, New York, NY,
USA, 2006. ACM.

[23] P. Wagstrom, C. Jergensen, and A. Sarma. A network of
rails: a graph dataset of ruby on rails and associated projects.
In MSR, pages 229–232. IEEE, 2013.

http://meta.stackoverflow.com/q/134495

	Introduction
	Architecture
	Using the service
	Limitations
	Related work
	Conclusions
	References

