
Strategies for Avoiding Text Fixture Smells during
Software Evolution

Michaela Greiler, Andy Zaidman and Arie van Deursen
Delft University of Technology, The Netherlands
{m.s.greiler,a.e.zaidman,arie.vandeursen}@tudelft.nl

Margaret-Anne Storey
University of Victoria, Canada

mstorey@uvic.ca

Abstract—An important challenge in creating automated tests
is how to design test fixtures, i.e., the setup code that initializes the
system under test before actual automated testing can start. Test
designers have to choose between different approaches for the
setup, trading off maintenance overhead with slow test execution.
Over time, test code quality can erode and test smells can develop,
such as the occurrence of overly general fixtures, obscure in-
line code and dead fields. In this paper, we investigate how
fixture-related test smells evolve over time by analyzing several
thousand revisions of five open source systems. Our findings
indicate that setup management strategies strongly influence the
types of test fixture smells that emerge in code, and that several
types of fixture smells often emerge at the same time. Based on
this information, we recommend important guidelines for setup
strategies, and suggest how tool support can be improved to help
in both avoiding the emergence of such smells as well as how to
refactor code when test smells do appear.

Index Terms—test fixture smells; test evolution; maintenance;

I. INTRODUCTION

Modern software development often includes the use of
extensive automated test suites. While automated tests are
helpful from a continuous integration and regression testing
perspective, they lead to a substantial amount of test code [1].
This test code is often executed frequently, and needs to
be maintained and understood. The long term success of
automated testing is highly influenced by the maintainability of
the test code [2]. To support easier maintainability of a system,
test methods should be structured clearly, well named, small
in size, and code duplication across test methods should be
avoided [2], [3].

One important part of a test is the code that initializes the
system under test (SUT), sets up all dependencies and puts
the SUT in the right state to fulfill all preconditions needed to
exercise the test. In line with Meszaros, we refer to this part
of a test as the test fixture [2]. Developers have several options
for structuring their test fixture code. The most straightforward
option is to place the setup code directly in the test method,
which we refer to as an in-line setup. An alternative approach
is to place the setup code in helper methods that can be called
by several test methods, the so-called delegate setup [2].

Today’s testing frameworks, such as the widely used xUnit
family, have dedicated mechanisms for managing setup code
invocations [4], [5]. Therefore, helper-methods comprising the
setup code can be marked (e.g., using annotations or naming
conventions) as specific setup methods, and the test framework
takes care of invoking them at a specific point in time. We

refer to this as an implicit setup as the invocation happens
implicitly.1

Developers must decide how to set up test fixtures and
adjust their fixture strategies during the evolution of test code.
Otherwise, they end up with poor solutions to recurring imple-
mentation and design problems in their test code, also known
as test smells [6]. To support developers during the analysis
and adjustment of test fixtures, we previously developed a tool
called TestHound2 to automatically detect test fixture smells
and guide test code refactoring [7].

An evaluation of TestHound showed that developers are
concerned about test fixture smells, and that TestHound helps
them to discover and address those smells. But, we also
learned that resolving these smells after they have been in
the code for a long time can be problematic. Developers
would benefit greatly from having the tool available in the
continuous integration environment so that they are made
aware of changes in the densities of test smells immediately.

In this paper, we investigate the evolution of test fixture
smells and which software changes lead to increased test smell
densities to determine the best time to alert developers about
smell changes. We look at when and how test fixture smells
are introduced, and what role the setup strategies play in smell
evolution. Our contributions in this paper are:

1) a technique for analyzing multiple revisions of a software
system for fixture-related test smells, and examining
trends in smell evolution;

2) an implementation of this technique in a tool called
TestEvoHound, which mines Git and SVN repositories
for test fixture smells;

3) insights in test fixture smell evolution in real-world
situations based on an investigation of five well-known
open source systems;

4) strategies for avoiding test fixture smells.
Our investigation shows that fixture management strategies

strongly influence fixture smell evolution. Also, we find that
fixture smells remain stable over long periods of time, until
certain code changes cause drastic changes in smell densities.
Making developers aware of these changes can help prevent
the introduction of test smells with only small adjustments to
the test code in a continuous and incremental fashion. Further,

1For example, in the JUnit framework, methods can be named setUp() or
marked with annotations such as @Before or @BeforeClass.

2http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestHound

we show that classes with a larger number of test methods have
more test fixture smells than classes with fewer test methods,
and thus recommend that classes with many test methods be
avoided or refactored.

Section II briefly summarizes different test fixture smells.
Section III details the experimental design used to investigate
the evolution trends of test fixture smells. Section IV outlines
the measurements implemented in the TestEvoHound tool.
Section V details the results of our investigation, followed by
a discussion of the findings in Section VI. In Section VII, we
present related work and conclude in Section VIII.

II. TEST SMELLS

The code smells metaphor was first introduced by Fowler,
who describes a code smell as a poor solution to a recurring
implementation and design problem [8]. Code smells are not
a problem per se, but they may lead to issues such as under-
standing difficulties, inefficient tests and poor maintainability
of a software system. Later, van Deursen et al. introduced
the term test smells by applying the smell metaphor to test
code [6]. Since then, their initial set of test smells has been
extended [2], [9], [10]. In [7], we enhanced these test smells
with additional fixture-related smells, derived metrics to aid in
their detection, and implemented a technique to automatically
detect test fixture smells in a tool called TestHound.

In this paper, we investigate the evolution of these test
fixture smells, which are summarized below, in order to better
understand how they can be avoided and how tool support
would be most beneficial for developers. We refer the reader
to [7] for more details on the test fixture smells.

General Fixture Smell. The general fixture smell occurs
if test classes contain broad functionality in the implicit
setup, and if several tests only access part of the fixture.
Problems caused by a general fixture are two-fold. Firstly,
the cause-effect relationship between fixture and the expected
test outcome is less visible, and tests are harder to read and
understand. This can lead to fragile tests: a change that should
be unrelated affects tests because too much functionality is
covered in the fixture. Secondly, test performance can dete-
riorate and long test execution times may eventually cause
developers to stop running tests altogether. We identify a test
method as a general fixture method when it uses less than 70%
of the fields initialized in the setup.

Test Maverick Smell. A test method is a maverick when the
class providing the test method contains an implicit setup, but
the test method is completely independent from the implicit
setup procedure. The implicit setup is executed before the test
method, but it is not needed. In such cases, understanding the
cause-effect relationship between setup and test method can be
hampered because discovering that test methods are unrelated
from the implicit setup can be time consuming. We identify
a test method as a maverick when it does not use any of the
setup fields initialized.

Dead Fields Smell. The dead field smell occurs when a class
or its super classes have fields that are never used by any of
the test methods. Often, dead fields are inherited from a super

class. This can indicate a suboptimal inheritance structure, or
that the super class conflicts with the single responsibility
principle [11]. Also, dead fields within the test class itself
can indicate incomplete or deprecated development activities.
We identify dead fields as all fields that are initialized by the
implicit setup, but never used by any of the test methods.

Lack of Cohesion of Test Methods Smell. Cohesion of a
class indicates how strongly related and focused the various
responsibilities of a class are [12]. Low cohesive classes are
smelly because they negatively affect code reuse, maintainabil-
ity and comprehension [8], [13]. The smell Lack of Cohesion
of Test Methods (LCOTM) occurs if test methods are grouped
together in one test class without being cohesive. To measure
LCOTM, we adjusted the Henderson-Seller Lack of Cohesion
of Method metric [14]. Differing from the original metric, we
focus on the cohesion between test methods in a class.

Obscure In-Line Setup Smell. Meszaros introduced the smell
obscure test to refer to a test that is difficult to understand
[2], and thus, unsuitable for documentation purposes. From
this smell we derived the obscure in-line setup smell. An
in-line setup should consist of only the steps and variables
essential to understanding the test; necessary but irrelevant
steps should be encapsulated into helper methods. An obscure
in-line setup covers too much setup functionality within the
test method, and this can prevent one from seeing the test’s
relevant verification steps. We measure the obscurity of an
in-line setup based on the number of local variables directly
defined in a test method.

Vague Header Setup Smell. A vague header setup smell
occurs when fields are solely initialized in the header of a
class. We consider this a smell as the behavior of the code is
not explicitly defined and depends on the field modifier (static
or member) as well as on the implementation of the test frame-
work. Vague header setups might hamper code comprehension
and maintainability, as fields can be placed anywhere in the
class. Further, in many test frameworks exception messages are
more expressive for fields initialized in the setup. We report a
vague header smell when at least one field is solely initialized
in the header of a class.

III. EXPERIMENTAL SETTING

To understand test fixture smell evolution, we used case
study research and investigated five research questions within
five subject systems, as detailed below.

A. Research Questions

Our research questions focused on the evolution of test
fixtures and test fixture smells.
RQ1: Do test fixture strategies change over time?
RQ2: Do test fixture smell densities increase over time?
RQ3: How are test fixture smells spread throughout a project?
RQ4: Which changes cause alterations in fixture smell trends?
RQ5: Are test fixture smells resolved?
We investigated different test fixture strategies and the changes
made to test fixtures over time to get a general understanding
of the characteristics of the systems under investigation (RQ1).

.
TABLE I

FIXTURE MANAGEMENT STRATEGIES

Project KLOCs # Test # Test No No. Period in Date
classes cases setup revisions life cycle

of project

Voldemort JUnit 130 132 520 71 2900 start → end 04/2011-10/2012
PMD 174 118 739 102 1900 mid → end 09/2007-11/2012
Checkstyle 66 156 549 131 2251 start → end 06/2001-10/2010
Jsoup 20 23 372 23 973 start → end 12/2009-09/2012
Java Azure SDK 39 30 358 14 300 start → end 10/2011-10/2012

To understand whether test fixture smell densities increase
during the life of a project, we looked at test fixture smell
trends (RQ2). We also looked at fixture smell dispersion to
understand how smells spread throughout a software system
(RQ3). We investigated what causes test fixture smells to
change statistically and by manual investigation of severe
changes (fluctuations) in smell trends (RQ4). To see whether
smells are resolved by the developers (RQ5), we followed
smelly classes throughout their evolution.

B. Case Studies

To investigate the evolution of test fixture smells, we se-
lected five well-known, Java based, open source projects that
have test suites and automatic build files. We display important
characteristics of the latest analyzed revision of these projects
(i.e., size, analysis duration, and number of classes comprising
setup methods) in Table I.

Checkstyle is a tool to help programmers write Java code
that adheres to a coding standard. We analyzed 2252 Check-
style revisions. The latest revision contained 549 test methods.

PMD is a tool to analyze Java source code for potential
problems such as dead or duplicated code. We analyzed 1900
PMD revisions. The latest revision contained 739 test methods.

Jsoup is a Java HTML parser that provides an API to
extract and manipulate data using DOM, CSS and JQuery-
like methods. We analyzed all 973 revisions of Jsoup, and the
latest revision contained 372 test methods.

Azure Java SDK provides the Azure (i.e., Microsoft Cloud
Platform) libraries for Java. We analyzed all 300 revisions of
Azure. The latest revision contained 358 test methods.

Voldemort is a distributed key-value storage system. We
analyzed all 2900 revisions of Voldemort. The latest revision
contained 520 test methods.

IV. ANALYSIS OF FIXTURE SMELL EVOLUTION

In this section, we introduce TestEvoHound, a tool we de-
veloped to automatically analyze the evolution of test fixtures
and test fixture smells over multiple revisions of a software
system. We also detail the measurements taken in order to
answer our research questions.

A. TestEvoHound

We developed TestEvoHound to analyze fixture smell evo-
lution. TestEvoHound works with Git and SVN repositories,
and is available for download.3 When analyzing code, TestEvo-
Hound executes four tasks.

3http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestEvoHound

During the Revision Checkout task, TestEvoHound checks
out each revision of the project under analysis, and for each
revision it starts the Build Process task. Here, the tool searches
for ANT or MAVEN build files, initiates the build process
and compiles the source code (including tests). Then, the Test
Fixture Smell Analysis task invokes the TestHound tool to
analyze the current revision for smells and stores the outcome.
Finally, when all revisions have been analyzed, the Trend
Analysis occurs. Here, the TestEvoHound tool calculates the
trends and measurements among all revisions, as described
in the next subsection. This information is stored in comma-
separated value format to allow easy visualization by tools like
Excel or R.4

B. Measurements to Answer the Research Questions

RQ1. To see whether test fixture management changes over
time, we looked at the presence and absence of the implicit
setup mechanisms provided by the test frameworks. This
means that, for each project and over all revisions, we analyzed
how many of all test classes contained an implicit setup and
whether this changed over time. We also analyzed how many
fields were declared in a test class, as fields are also a way to
create a state accessible by all test methods of a test class.

RQ2. To answer whether test fixture smell density increases
over time, we measured the occurrence of the six different
fixture smells for each revision, and charted whether the ratio
between smelly entities to all entities changed. We looked at
this ratio because all of the systems under study increased in
size over time. Thus, the number of smelly entities has to be
considered in relation to the overall number of entities. This
ratio demonstrates whether the quantity of smells is rising or
falling. In the remainder of this paper, we refer to a series of
ratios as the trend of smell evolution.

For the general fixture, the test maverick, and the obscure
in-line setup smells, we compared the number of test methods
affected by these smells with the overall number of test
methods in the code base. We calculated the trend in dead
field evolution by comparing the number of dead fields with
the overall number of fields. For the LCOTM and vague header
smells, we compared the number of test classes affected with
the overall number of test classes.

RQ3. To better understand whether test fixture smells are
widely spread among all test classes, or whether certain test
classes are more prone to fixture smells, we investigated
the dispersion of fixture smells. To do this, we looked at
histograms of the test fixture smells.

RQ4. To understand which software changes cause test fix-
ture smell densities to change, we statistically tested whether
the number of test methods or fields within a class correlates
with the smell density of a class. Then, we manually inves-
tigated the code base and the commit logs for periods where
severe fluctuations in the trends of test fixture smells (increase
or decrease) occurred.

4http://www.r-project.org/

Fig. 1. Implicit Setup Trends

For the statistical tests, we used Spearman correlations
provided by the statistical program R (package hmisc) to
investigate the following two hypotheses:
H1 The more test methods placed within a test class, the

higher the smell density of a test class is.
H2 The more fields placed within a test class, the higher the

smell density of a test class is.
RQ5. By tracking smelly classes over time and investigating

decreases in test fixture smells, we see whether and how test
fixture smells are resolved.

V. INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION

In this section, we detail our findings from the investigation
of the five research questions. Each subsection covers one of
the research questions, with the exception of RQ4, to which
we dedicate two subsections (Sections V-D and V-E).

A. Evolution of Test Fixtures

Our analysis shows that the test fixture strategies used across
the projects differ greatly. In Jsoup, the developers completely
refrained from using the implicit setup mechanism available in
JUnit. In Checkstyle and PMD, approximately 10% and 13%
(respectively) of the test classes comprise an implicit setup.
In Voldemort and Azure, approximately 50% of the classes
have an implict setup. Just as the setup management styles
differ across all five projects, the fixture smells also differ, as
illustrated in Fig. 3.

Setup Trends. To answer whether the setup strategies change
over time (RQ1), we looked at the trends for the presence of
implicit setups. As can be seen in Fig. 1, the usage pattern
for the implicit setup changed. For example, in Azure, the
density of setups per class increased over time, and in PMD,
it decreased. On the other hand, apart from some severe
fluctuations in density, the ratio stays quite stable for all four
projects. We excluded Jsoup because we did not encounter a
single implicit setup.

Setup Fluctuations. To understand the severe setup fluctua-
tions, we manually investigated the changes between revisions
that caused the fluctuations. In Checkstyle, the drop in implicit
setup usage at the beginning is because the code base started
with three test cases, each containing an implicit setup (i.e.,
100%). Over time, tests without an implicit setup were added,
causing the percentage to drop to 10%.

In PMD, the percentage of test classes that have an implicit
setup drops at the beginning. This is due to a simple structural
change where 38 test classes were removed by changing
how methods were invoked. Before the change, many of
these test classes contained only one test method that invoked

Fig. 2. Field Trends

another method. After the change, this functionality is covered
by the parent test class within the setup, making 38 test
classes obsolete. The commit log states: “code refactoring:
testAll() moved to parent, rules are now added in setUp() using
addRule()”, confirming our observation.

In Azure, the increase of implicit setups is due to the
addition of six test classes, all of which have an implicit setup.
The commit log states: “table tests” have been added.

Fields. As the fields of a class are a way to create a state
accessible by all methods of a test class, we also analyzed
how many fields are declared within each test class over time.
In Checkstyle and PMD, even though only a small percentage
of the classes contain a setup, they still have a similar number
of class fields as compared with Azure and Voldemort (2.5
to 3 fields per test class). The only exception is Jsoup, which
has only two class fields within all test classes. The trend
of fields per test class, as illustrated in Fig. 2, reveals that
in Voldemort, the number of fields per test class continually
increases, which is an indication that the test classes become
more complex. In the other three systems, there are distinct
events where the number of fields fluctuates and then stays
quite stable over time. For PMD, the 38 deleted test classes
were quite simple and did not comprise fields, so their deletion
led to an increased ratio of fields per test class. In Azure, the
added test classes (“table tests”) also led to an increase in fields
per class, which is indicative of an increase in complexity.

B. Discovery of Test Fixture Smell Trends

Lehman’s law of increasing complexity states that when a
system evolves, its complexity increases unless work is done
to maintain or reduce it [15]. Therefore, we expect that due to
the increasing complexity of a given system – the test fixture
grows, and more test methods are placed within the same test
class – the potential for test fixture smells (such as the general
fixture, LCOTM, test mavericks and dead fields) increases.

Over the investigated periods of all five projects, the number
of test classes and test methods increased. On the other hand,

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 Azure Checkstyle JSoup PMD Voldemort

Test Mavericks General Fixture Vague Header Dead Fields LCOTM Inline

Fig. 3. Test Smell Density Among Projects

Fig. 4. Histograms of Tests per Class for first and last Analyzable Revisions

the ratio of test methods per test class stayed quite stable for
PMD and Voldermort. In Azure and Checkstyle, the number
of tests per class increased slightly over time, and in JSoup we
observed the strongest increase. In Checkstyle, a peak occurred
at the beginning because the test efforts started within a single
class that comprised up to 24 test methods, and new test
classes were introduced slowly. Even though the mean value
for tests per class seems small and stable across all systems,
the inspection of the dispersion of tests per class (see Fig. 4)
shows, some test classes contain a significantly larger number
of test methods (30, 40 or even 80) than other test classes.
Over time, this imbalance grows.

Interestingly, the experiments revealed that even though test
code becomes more complex (more tests and more fields per
test class), a general growth of test fixture smells over time
does not occur. As depicted in Fig. 5, the test fixture smell
trends often stay stable over time, and fluctuate greatly only
at a distinct point in time. Continual increases or decreases
are exceptional, as in the case of Voldemort. In the following
sections, we take a closer look at how smells dispersed in a
system, and what causes the fluctuations in the smell trends.

C. Dispersion of Test Fixture Smells

Over the course of several revisions, we investigated how
frequently smelly entities occur per test class. We used his-
tograms to visualize whether all classes contain the same

Fig. 5. All Smell Fixture Trends

number of fixture smells or whether some classes are more
prone to test smells.

For general fixtures, test mavericks and obscure in-line se-
tups, smells cluster in a few classes. To illustrate the outcome,
this paper shows the dispersion of the general fixture smell
for the first, middle and last analyzable revisions of each
project in Fig. 6. For all projects, some classes contribute a
disproportionately large number of general fixture methods,
and over time, these classes accumulate more general fixtures.
In the last revision of PMD, three test classes contributed
45% of all general fixture methods (i.e., 2.5% of the classes),
and 5.1% of the test classes contributed 60.1% of the general
fixtures. In the first analyzed revision, three classes contributed
40% of the smells. A similar effect can also be observed for
Azure, Checkstyle and Voldemort for the general fixture and
test maverick smells. Jsoup does not contain general fixture
methods, but it has a strong tendency for test mavericks to
cluster. We can also observe that over time, the relative number
of test smells per class increases (i.e., the ratio of smelly
entities to entities per class).

Fig. 6. Dispersion of General Fixtures for first, middle and last Analyzable
Revisions

On the other hand, dead fields did not cluster. As vague
headers or a LCOTM are either present or absent in a class,
their distribution is not of interest.

Summary. Since some classes are more prone to test smells,
such as general fixture, test maverick and obscure in-line setup,
refactoring activities can be directed to these classes. This
shows that one can reduce the majority of test fixture smells
by cleaning a few smelly classes.

D. Development of Test Fixture Smells

The smell trends do not show a general continual increase of
smell densities over time as expected, but considering the smell
distribution, there is a tendency for some classes to accumulate
more smells (absolute and relative) over time than others. We
also see that some classes comprise an unproportionally large
number of test methods. The more test methods contained
within a single class, the more diverse the requirements for
the test fixtures can become. Because of this, we expect that
test classes with a higher number of test methods have a higher
smell density than their smaller counterparts. Also, we expect
that test classes with more fields have a higher smell density
than test classes with fewer fields.

To investigate these hypotheses, we used statistics and
correlated the number of test methods, or fields per class,
with the percentage of test methods affected by a smell.
We excluded Jsoup from this experiment as the project has
few smells and few fields. The results are given in Table II.
We used the thresholds defined by Hopkins [16], where a
correlation is considered moderate when the value is higher
than 0.3 (or lower than -0.3), and strong when the value is
higher than 0.5 (or lower than -0.5). For a correlation to be

significant, the p-value of the test needs to be below 0.01. This
means the chance that the correlation is due to random chance
is less than 1 percent.

Data Points. We did not use each data point (i.e., all classes
for each revision) because the two variables correlated (i.e.,
test methods or fields, and a particular smell factor) might
be stable over time. This can cause certain combinations
(observations) to seem more likely than others. Therefore, we
reduced the dataset to include only unique combinations. For
example, in case test class “TestA” has three test methods
and one general fixture method over a period of 10 revisions,
we include this incident only once in our data set, whereby
we look for uniqueness considering more than 21 different
characteristics of a class.5 Further, as a class without a field
can not have a general fixture, LCOTM, test maverick, dead
field or vague header smell, we excluded classes without a
field. For LCOTM, we also only considered data points with
a valid LCOTM value (i.e., LCOTM is undefined when a class
has a single method). Therefore, the results for LCOTM detail
the number of data points separately.

Test Methods. For three of the four projects, the results
indicate that for test smells such as general fixture, LCOTM,
test maverick and obscure in-line setup, a higher number of
test methods per class correlates with a higher density of
these smells. For Checkstyle, the correlation cannot be shown
as very few test smells exist. We also investigated whether
more dead fields exist in classes with more test methods. This
correlation does not hold for Checkstyle and PMD. For Azure
and Voldemort, the results show a weak negative correlation,
indicating that with a higher number of test methods per class,
the dead fields density decreases.

Fields. The second characteristic we expect to find related
to the smell density of a class is the number of fields per class.

We observe a correlation between smell density and the
number of fields for the general fixture and LCOTM smells
within the PMD and Azure systems, as listed in Table II. A
weak correlation also exists for a higher obscure in-line setup
density and fields in PMD and Voldemort. Azure is the only
other system which shows a correlation between a higher test
maverick density and fields, and a weak negative correlation
for dead fields (i.e., more fields are correlated to a lower dead
field density).

We investigated why an increased number of fields also
increases fixture smell density for the PMD and Azure sys-
tems, and saw that this has to do with the style of fixture
management. For the majority of new test methods, developers
introduce a new dedicated field, and often there is one field
for each test method. This means that if new test methods are
added to a class, it is very likely that all of them are general
fixture methods, and the lack of cohesion between the test
methods increases further. With some test classes in PMD,
either almost all test methods are general fixtures, or they do
not have anything to do with the fields of the class, making

5Detailed information on the attributes covered for each class is outlined
at http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestEvoHound

TABLE II
STATISTICAL CORRELATIONS BETWEEN 1) NO. OF TESTS PER CLASS OR 2) NO. OF FIELDS PER CLASS AND SMELL DENSITY

H Project N GF TM OI DF LCOTM
Cor p Cor p Cor p Cor p Cor p N

Tests per Class

Voldemort 705 0.63 0 0.34 0 0.06 0.09 -0.41 0 0.60 0 687
PMD 268 0.51 0 0.56 0 0.37 0 0.05 0.40 0.67 0 263
Checkstyle 437 0.11 0.03 -0.09 0.06 Na Na -0.14 <0.001 0.11 0.02 430
Azure 118 0.51 0 0.40 0 0.48 0 -0.46 0 0.48 0 118

Fields per Class

Voldemort 705 0.23 0 -0.15 0 0.32 0 0.24 0 0.14 <0.001 687
PMD 268 0.72 0 0.23 <0.001 0.38 0 0.03 0.67 0.55 0 263
Checkstyle 437 -0.06 0.24 -0.04 0.43 Na Na 0.22 0 -0.02 0.74 430
Azure 118 0.58 0 0.64 0 0.25 0.005 -0.40 0 0.57 0 118

them test mavericks. For example, in the “JDKVersionTest”,
all 33 test methods are general fixture methods, whereby each
method uses very few of the 37 fields declared. The LCOTM
value in this class is as high as 0.99 (with 1 representing a
completely noncohesive class).

E. Fluctuations in Test Fixture Smells

As is apparent from Fig. 5, fixture smell trends tend to
change drastically at certain points in time. We manually in-
vestigated code base changes that occurred during the periods
of severe smell trend changes to understand “Which changes
cause alterations in fixture smell trends” (RQ4).

Vague Header Smell. A drastic change in the vague header
smell is seen in Checkstyle alone. Checkstyle started out with
a single test class that contains a vague header (i.e., 100%).
In the next revisions, several tests without vague headers
were added, until revision 433, where the smell continually
increases due to changes in the inheritance structure and
refactoring activities.

Dead Field Smell. For the dead field smell, we analyzed the
drastic changes in Azure and Checkstyle. The main test fixture
smell in Checkstyle is the dead field smell, which drastically
increases around revision 760-769 (as illustrated by Fig. 7).
The investigation of the changes between these revisions
revealed that all additional dead fields are inherited from a
single base class that is extended by almost all test classes
(BaseCheckTestCase). In this test class, a helper method was
introduced, and one field (which was no longer needed) was
forgotten and remained in the class as legacy. In the commit
log, the developer notes: “Added a helper method to create a
configuration for a check...”. This dead field remained for the
duration of our investigation. With Azure, a strong increase at
revision 39 is also due to dead fields inherited from one super
class, which is extended by six test classes.

General Fixture Smell. The main fluctuation in general
fixture smell trends can be seen in Azure. For Azure, this is

Fig. 7. Dead Field Density in Checkstyle

also the predominant smell. The trend, displayed in Fig. 8,
shows two distinct decreases: at revision 40 (from over 60%
to less than 42%) and at revision 150. In revision 40, a drastic
decrease occurred because new test classes providing 87 tests
(testing the Table client) were added. The commit log shows
“Table Client commit [...]”. With all these added tests, only
two new general fixture methods were introduced. Also at
revision 150, 3 new test classes and 76 tests were added, most
of them without general fixture methods. In both cases, none
of the already existing general fixtures have been resolved.

Fig. 8. General Fixture Trend Azure

Test Maverick Smell. There are stronger fluctuations in the
test maverick density in PMD and Jsoup, as well as a drastic
continual decrease of the test maverick density in Voldemort.

In PMD, 12-14% of the methods are test mavericks, and the
smell density increases and then decreases again, as illustrated
in Fig. 9. The first increases are due to the aforementioned
removal of several test classes and test methods, and the intro-
duction of vague headers in classes. The manual investigation
of the strong decrease around revision 900 reveals that the
Java version was changed during this period. The commit log
contains the following comment: “Remove support for Java
1.4 runtime. [...] changes are made to code which made checks
for running on a 1.4 JVM (found via searches).” This change
causes a drop in the number of test mavericks as the implicit
setup of two test classes, used only to set the Java version,
was removed.

In Jsoup, test mavericks are caused by two classes that
contain a vague header setup.6 The fluctuations (illustrated in
Fig. 10) occurred when the two classes were introduced to the
code base (revisions 20 and 80). Over time, more test methods
were added to these classes, which make no use of the fields of
the classes. Depending on whether more non-smelly tests are
added, or more tests are added to these two classes, the smell

6ElementTest and UrlConnectTest

Fig. 9. Test Maverick Trend in PMD

density increases or decreases. In the latest revision, these two
classes cause over 60 test maverick methods.

The test maverick density in Voldemort steadily decreases.
This is because fewer test mavericks are introduced over time,
whereby the number of test methods increases (as illustrated
in Fig. 11). The test maverick trend increases visible in the
graph are due to the introduction of a field (via a vague header)
which is only used by a few of the methods, and to a new
test class which has a setup used by only a few test methods.
The decreases are because new fields are added to classes with
implicit setups, and previous test mavericks now use the fields.

LCOTM Smell. The LCOTM smell trends do not increase
over time. In PMD, the relative number of test classes suffering
from the LCOTM smell even decreases. On the other hand,
when inspecting the smelly classes, we observe that their
LCOTM value does not decrease, but it either stays stable or
increases. In Azure, the more severe fluctuations in LCOTM
trends are because of the drastic increase of non-smelly
classes.

Obscure In-line Setup Smell. In Azure, the number of
obscure in-line methods increases (around revision 150).
The majority of smelly methods come from two new test
classes (“CloudQueueTests” and “CloudBlobContainerTests”).
The other obscure in-line setups were added to an already
existing class (“TableClientTests”). In Voldemort, there is a
continuous increase in the obscure in-line setup smell, where
a few classes, such as “RoutedStoreTest” and “AbstractRebal-
anceTest”, accumulate more smells over time. Interestingly,
in Jsoup, even though the test setup was placed within test
methods (or helper methods), not a single test method suffers
from the obscure in-line setup smell.

F. Test Fixture Smell Resolution

Previous research on test smells suggests that test smells
do not get resolved unless the test class or methods are
deleted [17]. We investigated whether this phenomenon can
also be observed in our subject systems for test fixture smells.

Fig. 10. Test Maverick Smell Trend in Jsoup

Fig. 11. Test Maverick Smell in Voldemort

In general, we did not observe a major reduction of test
smells. Several times, test smells decreased because new non-
smelly test methods were added, thus reducing the percentage
of smelly methods, as was seen with Azure. Other times,
changes to the code base caused the smells to be reduced.
For example, changing the Java version resolved many of
PMD’s test mavericks. In the majority of cases, we saw that
fixture smells are either not resolved, or are only resolved by
deletion. Here, we will summarize the exceptional cases of
smell resolution without deletion.

In Checkstyle, during a short period (revisions 442-444;
also visible in Fig. 7), an overly general inheritance structure
causes several dead inherited fields and test mavericks. The
log states: “Refactored the tests to only use the Checker
interface” and “Refactoring the way the Checker is configured.
Not happy with the current approach - it was hack”. This
change addresses the problem of the dead fields and the test
mavericks, and shows that the developers made an effort to
resolve the smells by changing the inheritance structure and
using the functionality of the super class. Another time, test
mavericks appear for a short time while the helper method in
“BaseCheckTestCase” is implemented.

In Voldemort, a large number of test mavericks are re-
solved over time (visible in the continual decrease in the
test mavericks trend) because new fields, which are then used
by test methods, were added to existing classes (also visible
in Fig. 2). For example, this occurs in test “ConsistentRout-
ingStrategyTest”.

In PMD, we see that some of the obscure in-line setups are
resolved. For example, in the test class “RuleSetFactoryTest”,
an “Extract Method” refactoring [8] was performed, which
resolved two in-line smells. In Voldemort, in-line setups are
also resolved from time to time. On the other hand, in Azure,
none of the obscure in-line methods are resolved.

General fixture, LCOTM and vague header smells are
seldomly resolved in all systems. Exceptions are cases where
the final functionality of a test is not yet implemented. For
example, in Voldemort, developers added a test method that
comprised only a few statements and a “todo” comment. After
some time, the method was fully implemented and the general
fixture resolved.

VI. DISCUSSION

A. Findings

Our study revealed many interesting findings about fixture
management strategies and their influence on test smells, as
well as how fixture strategies and smells evolve during the

lifetime of several open source projects. In summary, our
investigation of test fixture smells showed that:
• the style of fixture management varies greatly between

projects;
• the projects’ test suites also suffer from different patterns

of test fixture smells;
• the number of test methods per test class correlates with

the density of test fixture smells;
• more fields in a class do not necessarily correlate with a

higher test fixture smell density;
• drastic increases in test smells are often caused by struc-

tural changes (such as refactorings with forgotten legacy
functionality);

• once introduced, test smells tend to stick around and do
not get resolved;

• most likely, fixture smells disappear because the test class
or test method is deleted.

B. Implications for Automated Test Fixture Smell Detection

As we saw from a previous study [7], developers are
concerned with the quality of their test code and see test fixture
smells as potential problems. On the other hand, they are under
pressure to develop production code, not to improve test code.
The developers indicated that in terms of improving test code,
they look for “low hanging fruit”, i.e., easy changes that do
not involve major refactoring. The developers also indicated
that they want to be notified when smells are introduced. We
believe that the findings of this study can be used to design
smell alerting mechanisms for developers evolving test code.

We saw that the test fixture management strategy greatly
varies between projects, and that projects stay with the style
they started with. For project leads, this means that they have
to make conscious decisions at the beginning, and know which
test fixture smells are more likely to occur as a consequence
of the chosen fixture management strategy.

Also, even though some classes become smellier over time,
we saw that test smell trends do not continually increase. This
suggests that developers eventually learn the right strategies
for writing test cases for a given system, and that new classes
tend to be less smelly than old ones, which is in line with the
information developers gave in the interviews [7].

Further, we also saw that simple structural changes in test
classes can lead to both a drastic increase as well as a decrease
in test fixture smells. First, because small changes can have
a major impact on smell development, we believe getting
developers’ attention when they are about to introduce test
smells is an important first step to smell avoidance. Second,
as test smells tend to accumulate in a few classes, refactoring
these classes can greatly reduce test fixture smells.

Further, as the number of test methods per class impacts
the smelliness of test code, developers should reconsider the
current practice of grouping test methods within a class.
Alerting developers about the lack of cohesion of test methods
might be a first step in reducing class size.

C. Strategies and Recommendations
Based on the observations and findings of this study, we

defined the following strategies and recommendations for
smell avoidance:
• Keep test classes small (and therefore coherent), by

reducing the number of test methods within a class.
• Keep inheritance structures flat, and also limit the scope

of super classes (e.g., do not implement one super test
class that provides functionality for all base test classes).

• Use composition instead of inheritance to provide test
classes with helper functionality.

• Create data classes that provide test inputs to avoid over-
loading test classes with field declarations that are only
used for a single test method. This improves performance
and understandability of test classes.

• Be aware that declaring fields in the header may impact
tests in terms of understandability and test performance.

• Reconsider the “one test class per class” organization in
case test methods within a single test class require diverse
states and configurations for the system under test.

• Carefully consider the consequences of the chosen fixture
strategies and the impact those decisions will have on the
projects, as this is not likely to change.

D. Threats to Validity
In terms of generalizability, our current implementation only

works for Java-based systems that use JUnit or TestNG test
frameworks and have automatic build files (i.e., Maven or
ANT) available. On the other hand, it should be easy to adjust
our tool’s build process so that developers using other means
to build systems can analyze their history. Further, we believe
that this technique is not only easily transferable to other xUnit
testing frameworks, but also to other languages. Also, our
evaluation was limited to five software systems. However, we
chose systems that are well known, publicly accessible and
actively developed.

With respect to internal validity, the analysis may be incom-
plete or contain bugs. To conquer this threat, we implemented
multiple test cases. Also, the extensive manual inspection
of the systems under study confirmed our confidence in the
correctness and precision of the analysis. For future work, we
plan to assess the accuracy of the results in additional case
studies.

We also had to make some changes to the systems under
study. For Checkstyle, a wide range of revisions had a non
compilable test class checked in7. To be able to compile and
analyze the rest of the tests, we deleted this class in case it
failed to compile. For several revisions in PMD, the Maven
build file did not link to the correct dependencies. So, we
updated the dependency information in order to be able to
analyze a wide range of revisions.

VII. RELATED WORK

As discussed in Section II, test smells have been studied
previously, with some research efforts focusing on the auto-

7LocalizedMessageTest.java.

matic detection of test smells. Among them, Van Rompaey et
al. tried to detect General fixture and Eager test test smells
by means of metrics [18]. Subsequently, they described a tool
which used well-known software metrics to predict a broader
variety of potential problems and test smells [19]. Our study
of test smells differs in several ways. First, we focus on
test fixture management and analyze test code for specific
fixture problems relevant in practice. We also provide concrete
refactoring suggestions for developers. In contrast to our work,
Borg et al. described automated refactoring for acceptance
tests based on the FIT framework [20]. To the best of our
knowledge, fixture-related test smells and refactoring have not
been studied so far.

Co-evolution of software and test code has been investigated
by Zaidman et al. in [1]. Pinto et al. investigated the evolution
of test code in order to better understand how test repair
tooling can assist developers during test maintenance [21].

Gälli et al. presented a taxonomy of (Smalltalk) unit tests in
which they distinguish tests based on, for example, the number
of test methods per method under test, and whether or not
exceptions are taken into account [22].

In general, code and design smells have been researched
in previous work. For example, Moha et al. outline a method
called DECOR and its implementation to detect several code
and design smells and evaluate their technique in several case
studies [23]. Lanza and Marinescu use metrics to identify
classes that might have design flaws [24], [25]. The metrics
and smells presented in this paper address properties of code
exclusively present in test code, i.e., the creation and tear down
of the test fixtures.

VIII. CONCLUSION

In this paper, we investigated the evolution of test fixture
smells so that we could discover the most beneficial time
to alert developers about smell changes, and to learn which
software changes lead to test smell increases. Therefore, we
investigated when and how test fixture smells are introduced,
and which roles the setup strategies play. Our findings indi-
cate that test fixture smells do not continually increase over
time, even though system complexity increases. There is a
correlation between the number of tests within a class and
smell density. An important insight is the clustering effect of
test smells; the few classes that contribute the majority of test
smells are the classes developers should be made aware of.

Our contributions in this paper are:
1) an implementation of a tool which supports the mining

of repositories;
2) a technique (and implementation) to analyze several revi-

sions of a software system for fixture-related test smells,
and to understand the trends in smell evolution;

3) an investigation of test fixture smell evolution in five well-
known open source systems;

4) strategies and guidance on how to avoid test fixture
smells.

In future work, we plan to integrate the TestEvoHound tool
in the continuous integration environment in order to give

immediate feedback to developers based on the findings of
this paper.

REFERENCES

[1] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[2] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[3] S. Freeman and N. Pryce, Growing Object-Oriented Software, Guided
by Tests, 1st ed. Addison-Wesley, 2009.

[4] K. Beck, Test Driven Development: By Example. Addison-Wesley,
2002.

[5] E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns,
and Plugins. Addison-Wesley, 2003.

[6] A. van Deursen, L. Moonen, A. v. d. Bergh, and G. Kok, “Refactoring
test code,” in Proc. of the Int’l Conf. on Extreme Programming and
Flexible Processes (XP). University of Cagliari, 2001, pp. 92–95.

[7] M. Greiler, A. van Deursen, and M.-A. Storey, “Automated detection of
test fixture strategies and smells,” in Proc. of the Int’l Conf. on Software
Testing, Verification and Validation (ICST). IEEE CS, 2013.

[8] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[9] B. Van Rompaey, B. Du Bois, and S. Demeyer, “Characterizing the
relative significance of a test smell,” in Proc. of the Int’l Conf. on
Software Maintenance (ICSM). IEEE CS, 2006, pp. 391–400.

[10] H. Neukirchen and M. Bisanz, “Utilising code smells to detect quality
problems in ttcn-3 test suites,” in Proc. of the Int’l Conf. on Testing of
Communicating Systems and the Int’l Workshop on Formal Approaches
to Testing of Software (TestCom/FATES). Springer, 2007, pp. 228–243.

[11] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship, 1st ed. Prentice Hall, 2008.

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. on Softw. Engineering, vol. 20, no. 6, pp. 476–493,
1994.

[13] W. Li and S. Henry, “Object-oriented metrics that predict maintainabil-
ity,” Journal of Systems and Software, vol. 23, no. 2, pp. 111–122, 1993.

[14] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Prentice-Hall, 1996.

[15] M. M. Lehman, “On understanding laws, evolution, and conservation in
the large-program life cycle,” Journal of Systems and Software, vol. 1,
pp. 213–221, 1984.

[16] W. G. Hopkins, A new view of statistics. Internet Society for Sport
Science, 2000.

[17] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells
using software repository mining,” in Proc. European Conf. on Software
Maintenance and Reengineering (CSMR). IEEE, 2012, pp. 411–416.

[18] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, “On the
detection of test smells: A metrics-based approach for general fixture
and eager test,” IEEE Trans. on Softw. Engineering, vol. 33, no. 12, pp.
800–817, 2007.

[19] M. Breugelmans and B. Van Rompaey, “TestQ: Exploring structural and
maintenance characteristics of unit test suites,” in 1st Int’l Workshop on
Academic Software Development Tools and Techniques, 2008.

[20] R. Borg and M. Kropp, “Automated acceptance test refactoring,” in
Proceedings of the 4th Workshop on Refactoring Tools (WRT). ACM,
2011, pp. 15–21.

[21] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proc. Int’l Symposium on the Foundations of
Software Engineering (FSE). ACM, 2012, pp. 33:1–33:11.

[22] M. Galli, M. Lanza, and O. Nierstrasz, “Towards a Taxonomy of SUnit
Tests ?” in International Smalltalk Conference, 2004.

[23] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Trans. on Softw. Engineering, vol. 36, no. 1, pp. 20–36, 2010.

[24] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice - Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[25] R. Marinescu, “Detecting design flaws via metrics in object-oriented
systems,” in Proc. of the Int’l Conf. on Technology of Object-Oriented
Languages and Systems (TOOLS). IEEE CS, 2001, pp. 173–182.

