
An Analysis of Requirements Evolution in Open Source
Projects: Recommendations for Issue Trackers

Petra Heck
Fontys University of Applied Sciences

Eindhoven, The Netherlands
p.heck@fontys.nl

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
a.e.zaidman@tudelft.nl

ABSTRACT
While requirements for open source projects originate from
a variety of sources like e.g. mailing lists or blogs, typically,
they eventually end up as feature requests in an issue track-
ing system. When analyzing how these issue trackers are
used for requirements evolution, we witnessed a high per-
centage of duplicates in a number of high-profile projects.
Further investigation of six open source projects and their
users led us to a number of important observations and a
categorization of the root causes of these duplicates. Based
on this, we propose a set of improvements for future issue
tracking systems.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Management

Keywords
Open source, feature request, issue tracker

1. INTRODUCTION
Software evolution is an inevitable activity, as useful and

successful software stimulates users to request new and im-
proved features [29]. This process of continuous change of
requirements is termed requirements evolution [16]. Re-
quirements evolution management has become an important
topic in both requirements engineering [16] and software evo-
lution research [9].

Both industrial experience reports [24] and academic re-
search have identified a significant set of software projects for
which traditional notions of requirements engineering (RE)
are neither appropriate nor useful [8]. In these settings,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’13, August 19-20, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2311-6/13/08 ...$15.00.

requirements still exist, but in forms different to what re-
quirements textbooks typically characterize as best practice.
These requirement approaches are characterized by the use
of lightweight representations such as user stories, and a
focus on evolutionary refinement. This is known as just-in-
time RE [8].

This just-in-time RE is also found in open source projects
[8, 18, 24]. Requirements in open source projects are man-
aged through a variety of Web-based descriptions, that can
be treated collectively as ‘software informalisms’ [24] . Tra-
ditional requirements engineering activities do not have first-
class status as an assigned or recognized task within open
software development communities. Despite the very sub-
stantial weakening of traditional ways of coordinating work,
the results from open source software (OSS) development are
often claimed to be equivalent, or even superior to software
developed more traditionally [18].

Open source development has proven to be very success-
ful in many instances and this has instigated us to explore
how requirements are managed in open source projects. We
expect to find a number of useful concepts that can be di-
rectly translated to more traditional software engineering
trajectories as well, as these are slowly moving from the
more traditional up-front requirements engineering to more
agile RE [3].

In successful open source projects, many users get involved
and start to request new features. The developers of the sys-
tem receive all those feature requests and need to evaluate,
analyze and reject or implement them. To minimize their
workload it is important to make sure only valid feature re-
quests are being entered. But the developers in open source
projects have no control over what the remote users enter,
so we need to analyze what happens at the side of the user
that is entering the feature requests:

1. Is it easy for those users to see if the feature is already
present in the system?

2. Is it easy to see if the same feature has already been
requested by some other user?

Our idea is that by aiding the users in entering only new
and unique requests, we can minimize the workload for de-
velopers that are maintaining the open source system. Our
main research question is how can we assist the users as the
main actors in the requirements evolution process, with the
purpose of simplifying the maintenance of the system.

This leads us to our three subsidiary research questions:
RQ1 In what form do feature requests evolve in the open

software community Web sites?
RQ2 Which difficulties can we observe for a user that wants

to request some new functionality and needs to ana-
lyze if that functionality already exists or has been
requested by somebody else before? Can we explain
those difficulties?

RQ3 Do we see improvements to overcome those difficul-
ties?

This paper describes an exploratory investigation into how
requirements are managed in open source software projects.
We witnessed difficulties that users have with entering only
valid feature requests and we present recommendations for
tool-support to overcome these difficulties. Our idea is that
these recommendations can also be applied successfully in
more traditional projects.

The structure of our paper is as follows: Section 2 de-
scribes the common structure of open source requirements.
In Section 3 we introduce and analyze the problem of du-
plicate feature requests. In Section 4 we provide recom-
mendations for avoiding duplicate requests. In Section 5 we
present related work. In Section 6 we discuss our results
before concluding in Section 7.

2. OPEN SOURCE REQUIREMENTS
Our first step is to investigate the different layouts of the

open software community web sites in more detail. These
websites are termed ‘informalisms’ by Scacchi [24] as they
are socially lightweight mechanisms for managing, communi-
cating, and coordinating globally dispersed knowledge about
who did what, why, and how. We have analyzed several open
source community web sites by browsing through their on-
line repositories. We have zoomed in on those websites and
analyzed the current state of requirements evolution. The
open software community web sites that we have analyzed
are listed in Table 1.

From that analysis we found a common structure in the
requirements part. See Figure 1 for a generic overview of
requirements related elements in open source project web
sites. For each of those elements in Figure 1 we have ana-
lyzed what the relationship is with traditional requirements
engineering, see our technical report [12].

In the web sites we have seen there is always some sort of
‘ticket management system’ for users to request new features
for the system. Github has a very simple system (comments

Table 1: Projects analyzed

Apache Subversion subversion.apache.org
Apache HTTPD httpd.apache.org
Mozilla Firefox mozilla.org/firefox
Mozilla Bugzilla bugzilla.org
Android source.android.com
Drupal drupal.org
Tigris ArgoUML argouml.tigris.org
Tigris TortoiseSVN tortoisesvn.tigris.org
Netbeans netbeans.org
Eclipse BIRT projects.eclipse.org/projects/birt
Eclipse JDT .../projects/eclipse.jdt.core
Eclipse MyLyn Tasks .../projects/mylyn.tasks
Eclipse GMF .../projects/modeling.gmp.gmf-tooling
KDE kde.org
Gnome gnome.org
Mono mono-project.com
SourceForge sourceforge.net
Google Code code.google.com
GitHub github.com
CodePlex codeplex.com

Figure 1: Open Source Requirements Items

that can be tagged) while Google Code’s system is a bit
more elaborate with type and status. Both sites include a
voting system where users can vote for feature requests to
emphasize their priority. The other sites use stand-alone is-
sue tracker systems where the description in text is just one
of the fields that need to be filled when requesting a new
feature. Out of the sites we investigated, most of them use
Bugzilla (a Mozilla open source project) as a ticket man-
agement system, see Figure 2. Note that Bugzilla is de-
signed for managing defects (‘bugs’) so the way to indicate
that this is a feature request is by setting the Importance to
‘enhancement’, although some projects (e.g. Apache Sub-
version) have a field called Issue type where ‘enhancement’
and/or ‘feature’ are values.

Well-organized open source projects require new require-
ments to be entered as a specific feature request, see for ex-
ample http://argouml.tigris.org/project_bugs.html .
The issue tracker is used to discuss the feature request, to
assign the work to a developer and to keep track of the status
of the request. Only in some smaller projects new features
are implemented directly in (a branch of) the source code.
Github uses pull requests to let users offer newly imple-
mented features to the project (see https://help.github.

com/articles/using-pull-requests) and automatically gen-
erates an issue in the tracker for each pull request to keep
track of them.

To summarize we found that in most projects the require-
ments evolve in an issue tracker system.

3. DUPLICATE FEATURE REQUESTS
While analyzing the Eclipse JDT Core project we noticed

the huge amount of duplicate feature requests (see Table 2).
Our first step was to see if the same is true for the other 13
projects that use Bugzilla as an issue tracker 1. We could
easily track the duplicate requests by filtering on ‘severity
= enhancement’ and ‘resolution = DUPLICATE’. It turned
out that many projects, including very mature and well-
organized ones, have a high percentage of duplicate feature
requests, see Table 2. The ones where the number of dupli-
cates is lower, either have a strict policy (Apache HTTPD
and Subversion warn the user explicitly to search/discuss
before entering new issues), are smaller (Eclipse MyLyn and
GMF) or have a company behind the project (Mono and
Android). One can easily argue that with the large number
of issues in the database not even all duplicates have been
marked.

So apparently users cannot or do not find out if the feature
they request is really new or has already been implemented

1Mono has a split Bugzilla repository since the project went
from Novell to Xamarin

Table 2: Duplicate Feature Requests in Open Source
Projects Jan 2012

Project # Duplicate # Request %

Apache HTTPD 28 809 3
Apache Subversion 66 881 7
Mozilla Firefox 2920 8023 36
Mozilla Bugzilla 1166 5664 21
Android 283 5963 5
Drupal 1351 7855 17
Tigris ArgoUML 133 562 24
Netbeans 2896 10711 27
Eclipse MyLyn Tasks 16 403 4
Eclipse GMF 17 370 5
Eclipse JDT 1551 8314 19
GNOME Evolution 1843 6895 27
Mono Xamarin 11 477 2
Mono Novell 81 5277 2

or requested before. Our next question was: what is the
reason for those duplicates?

3.1 Research Strategy
The strategy we chose is to look at one of the projects

with a strict policy (Apache HTTPD) and to see why still
those 28 duplicates were reported. Out of the 28 duplicates
one turned out to be a defect, not an enhancement. For
each of the 27 remaining duplicates we analyzed the history
of comments and tried to identify what the root cause for
this duplicate was. We did this by answering the following
questions:

• Is it a real duplicate? In other words: is the request of
the author indeed the same as the original request?

• Could the author of the request have found the du-

Figure 2: Feature Request in Bugzilla

plicate by searching in the issue tracker? With what
search terms?

• Did the author submit some source code directly with
the request?

• Was the duplicate submitted long after the original
request?

• Who marked the duplicate? Was there an overlap in
people involved in original request and duplicate?

• Do we see any way in which the author could have
avoided the duplicate entry?

The analysis was done manually by the first author by read-
ing the title and comments for each duplicate and analyzing
what caused the reporter of the feature request to send in
the duplicate; could the reporter have avoided that? After
concluding this analysis for the Apache HTTPD project we
had an initial categorization of duplicates by root cause.

Subsequently, we repeated the analysis for 5 other projects
to validate the findings. These projects are Subversion, Fire-
fox, Netbeans, Eclipse JDT and Novell Mono. Again this
manual analysis was done by the first author. While we an-
alyzed all duplicates for Apache HTTPD, the other projects
had many more duplicates (see Table 2), so we had to select
samples. For each of the projects we selected the 30 most re-
cently reported duplicates between 01 Jan 2011 and 31 Dec
2012. For Mono Novell we just selected the 30 most recently
reported duplicates without a time window (because of the
smaller number of total duplicates).

This second round of manual analysis led us to do a slight
adjustment to the initial categorization. The author cate-
gory is now not only used for authors that enter the same
request twice within a few minutes (we only saw this in the
HTTPD project) but also for other situations where the au-
thor seems to be aware of the duplicate he/she created. We
initially had a specific category for feature requests being du-
plicates of defects, but in other projects we saw situations
where the product attribute did not match. We decided to
group those two situations into 1 category for ‘mismatch of
attributes’.

Next to the detection of distinct categories of duplicates
we did a number of other interesting observations which we
discuss below.

3.2 Categorization
Grouping the duplicates with similar root causes resulted

in the following categories:

Duplicate Solution [DS] This is not a real duplicate re-
quest. The request of the author is new but happens
to have the same solution as a request that was posted
before.

Partial Match [PM] Only part of the request has been
posted before; the main questions for original and du-
plicate are completely different.

Patch [PA] The author has submitted a patch directly with
the request. Our assumption is that the fact that the
author is proud of his own code makes him/her lazy in
checking if the same has already been done before.

Author [AU] The same author enters his/her request twice
or indicates in title or comments that he/she is aware
of the duplicate entry.

Mismatch Attributes [MA] The original request has dif-
ferent values for important attributes (in our observa-
tions: defect type/importance or product) so the author

Table 3: Analysis of Duplicate Feature Requests

H
T
T
P
D

S
u
b
v
e
r
si
o
n

F
ir
e
fo
x

N
e
tB

e
a
n
s

E
c
li
p
se

J
D
T

M
o
n
o

N
o
v
e
ll

%

Explicit warning Y Y N N N N

Solution [DS] 3 5 3 2 0 4 17 10
Partial [PM] 1 2 2 0 2 2 9 5
Patch [PA] 10 1 0 0 0 0 11 6
Author [AU] 4 5 0 2 2 7 20 11
Mismatch [MA] 1 0 20 3 7 4 35 20
Wording [WO] 7 6 2 5 5 3 28 16
No Check [NC] 1 11 3 16 14 10 55 31
(No duplicate) 0 0 0 2 0 0 2 1

27 30 30 30 30 30 175 100

might not have searched with the correct search values.
An author that is entering an ‘enhancement’ might not
think to include ‘defects’ in the search for existing du-
plicates. An author that is entering a feature request
for the product ‘Firefox’ might not have included the
‘Core’ product in the search for existing duplicates.

Wording [WO] Different wording for the same problem is
used in both original request and duplicate. Possibly
the author did not detect the duplicate because he/she
was not searching with the right terms.

No Check Done [NC] It is not clear why the author did
not detect the duplicate while the duplication is easy
to spot with a simple search.

For a complete analysis of the Apache HTTPD project see
our technical report [12]. Table 3 indicates for each of the
analyzed projects the number of duplicates in each category.

Note that for the NetBeans projects two duplicates out
of 30 ([216335] and [217150]) turned out to be no real du-
plicates and thus do not fall into any of the categories. In
[216335] the ‘DUPLICATE’ link is misused to indicate some
other type of relation (see O8 below). In [217150] one person
marks it as a duplicate (“looks like another manifestation of
a problem introduced in JavaFX SDK 2.2 by, as described in
issue #216452”) but two other persons later agree that this
is not true.

As can be seen in Table 3 each category was present in at
least two projects. Not each project shows the same divi-
sion over the categories. A project like HTTPD has many
duplicates because of patches added to the feature request,
where as in other projects we did not find any patches. The
FireFox project shows many problems with mismatching at-
tributes because Mozilla uses one big Bugzilla database for
all its Mozilla projects. FireFox is just one of the products
in the database and thus it is easy to select the wrong prod-
uct when entering a new request or to search for the wrong
product when checking for duplicates. A bigger project with
a wide user base like NetBeans shows more duplicates in the
category NC. We can assume that reporters of new feature
requests get easily discouraged searching for duplicates by
the huge volume of existing requests. Furthermore NetBeans
does not explicitly warn users to check first before entering
new requests, as opposed to HTTPD.

The two Apache projects include an explicit warning at
the beginning of the process, see Figure 3. The projects
that are marked in Table 3 as ‘N’ under ‘Explicit warning’
do not have such an explicit warning at the beginning of the

Figure 3: Warning on the bug report page of Sub-
version

process. All of them however include a small notice or an
optional step to search for previously entered issues or to
ask on the discussion list first, but this is less compelling for
the user than an explicit warning.

To summarize we can state that users do have difficulties
in submitting unique feature requests, for different reasons.
For each of these root causes we would like to offer support
to the user to avoid duplicate requests.

3.3 Further Observations
While analyzing the six projects for duplicate feature re-

quest we did not only categorize the duplicates but also
made some interesting observations:
[O1] Many of the 14 projects in Table 2 have a high per-

centage of duplicate feature requests. It seems to be
the case that a project such as Apache HTTPD that
explicitly warns the user to search and discuss before
entering new requests can greatly reduce the number of
duplicates. The Subversion project goes even further
and explicitly asks users to file a bug report at a sep-
arate email address to get it validated before posting
in Bugzilla, see Figure 3.

[O2] Given the high number of feature requests a manual
search for certain terms can easily yield a high num-
ber of results. In our experiments it sometimes took a
sophisticated search query with enough discriminating
attributes set to obtain a set of search results that is
small enough to manually traverse them looking for a
duplicate. Even for us (who knew the duplicate we
were looking for beforehand) it often took more than
one step to come to the correct search query. This
involved stemming of the search terms (e.g. “brows”
instead of “browsing”) and searching in comments of
the issue instead of the summary. From our own expe-
rience we can say that the simple search screen (shown
by default by Bugzilla) is not enough; for most issues
we needed to open the advanced search screen to find
the duplicates.

[O3] Some feature requests were marked as a duplicate of a
defect. Often there was discussion in the comments of
an issue about whether the issues should be classified
as a defect or an enhancement. Apparently this dif-
ference is not always easy to make for a user entering
a new request [13]. Projects like Subversion make it
even more complex by adding ‘enhancement’ and ‘fea-

ture’ both as separate types. Is it a completely new
feature or an enhancement to an existing one? With
a broad existing product like Subversion this question
is extremely difficult to answer. One could argue that
everything is an extension to the version control sys-
tem and thus an enhancement. The risk is that users
entering new requests will not search for duplicates of
the type ‘defect’ and thus not find potential duplicates.

[O4] Marking of the duplicates within one project is done
by a wide variety of project members: e.g. in Apache
HTTPD the 27 duplicates were marked by 18 different
user names. The users that marked the duplicates in
this case were also not all of them part of the HTTPD
core team. When we check the activity of those users
in Bugzilla, we see that they are involved in 5 to 1338
issues (as Commenter or Reporter), with about half of
the ‘markers’ involved in more than 400 issues and the
other half involved in less than 75. This observation
tells us that we can not assume that duplicates are
easily filtered out by a select group of developers that
scans all new requests.

[O5] The time gap between the duplicate and the original
request is arbitrary. In the Apache HTTPD project
this ranged from 0 to 88 months. We expected to see
short time gaps because we expected the user needs to
be influenced by time-bounded external factors (e.g.
the emergence of a new standard that needs to be ap-
plied), but this turned out to not be the case.
Note that the time gap between creation of the request
and marking it as a duplicate is also arbitrary. In
the Apache HTTPD project about half of the requests
were marked within 2 months but the longest time gap
for marking the duplicate reached up to 56 months.
This indicates that some duplicates stay undetected
for a long time.

[O6] During the manual analysis of the duplicates we were
often hindered by the fact that many issues include a
lot of off-topic comments: comments that do not per-
tain to the issue itself but, e.g. to project management
topics or for social interaction. The same problem was
detected by Bettenburg et al. [1] for bug reports in
general. Examples for feature requests in Apache Sub-
version:

[Issue 3415] This would be a very useful ad-
dition to the product IMO.

[Issue 3030] I see. Good to know that the is-
sue has will be resolved in the next release. I
understand you suggestion about the mailing
list - however joining a mailing list for one
issue in 3 years seem an overkill. (Be proud:
I use Subversion ever day and had only one
problem which nagged me enough to raise a
report) Personally I think Google-groups got
it right here: they have a read/write web in-
terface for casual users and mail distribution
for heavy users.

[Issue 2718] Except that that bug report has
undergone the usual open source ’me too’/’let’s
add some irrelevant technical detail’ treat-
ment, which made me create a clear and con-
cise bug report that someone could actually
fix in the next 12 months.

Having such useless comments in the issues makes it
more difficult for a user or developer to quickly grasp
the content of the issue and thus more difficult for the
user to see if the issue is a duplicate of the one he/she
is about to enter.

[O7] We saw cases of larger structures of master-duplicate
relationships such as the example from Subversion in
Figure 4. In this example many issues around ‘im-
proved error messages’ are linked together. Currently
the user exploring such structures only has the possi-
bility to click on each of the links one by one and build
such a graph in his/her head. The risk is that the user
will get lost while doing this for larger structures.

Figure 4: Network of ‘duplicate’ relations in Sub-
version

Note also that in this entire list, only issue 434 is typed
as an ‘enhancement’, the others are typed as ‘defect’,
‘task’ or ‘patch’. This is related to observation O3.

[O8] For the moment Bugzilla has only two explicit linking
mechanisms: ‘request A blocks request B’ and ‘request
A is a duplicate of request B’. Only the first type can be
visualized in a dependency tree. Another option is to
implicitly link requests by entering comments with the
ID of the other request included [23]. This limitation
of Bugzilla leads to misuse of the ‘DUPLICATE’ link
as we saw already for the categories DS and PM. This
misuse makes it difficult for users and developers to
see the real link between two requests, which hinders
comprehension of the work done or to be done.
An example of this misuse is in NetBeans issue [216335]:

Although it is not exactly the same idea I am
marking this as duplicate of issue #208358
as it addresses the same problem. Having the
two enhancements logged in one place makes
sense due to their close relation.

[O9] Most users that request new features are developers
themselves, as Noll states that the majority of require-
ments are asserted by developers [19, 20]. Developers
implement what they need themselves: this will lead
to on average the mostly needed features. In practice
this means that part of the ‘feature requests’ in the
issue tracker are already accompanied by a piece of
source code in which the user that requests the fea-

ture implements the feature (see also PA before). The
feature requests with patches included are often not
well-described (the documentation is the source code).
This makes it difficult to analyze the feature request
when looking for duplicates.

All of these observations lead us to believe that things
could be improved for the projects we have investigated and
that those improvements could also benefit other projects.
That is the topic of the next section.

4. ASSISTING USERS TO AVOID DUPLI-
CATE REQUESTS

Issue trackers like Bugzilla are designed as bug trackers
and thus not a perfect tool for managing requirements. Some
fields (e.g. rationale, source) are missing [14,21] leading to
information loss already at the entry of a new request. To see
how many users need a new feature a voting mechanism is
one of the few online instruments [7], but this is not always
present. The main problem however is that it is difficult
to indicate hierarchy or relations between requirements and
to get an overview of relations that have been defined [23].
This leads again to information loss (links that were known
at request creation time are lost) and makes it difficult to
get an overview of existing feature requests later on. An-
other problem is that the commenting mechanism is difficult
for maintaining requirements while a comment is a free-text
field. The user can enter anything he/she wants and Bugzilla
enters some auto-comments for certain actions (e.g. mark-
ing as a duplicate). For the reader it will be difficult to get
a quick overview of feature requests with many comments
(What is the type of each of the comments? What is the
final decision on the request?). Despite these disadvantages
the usage of such issue trackers remains high because of the
advantage of managing all development tasks (fixing bugs,
writing documentation, implementing new features, ...) in
one single tool.

With those drawbacks in mind we investigate the observa-
tions done before and come up with some recommendations
to improve the system for the user. We start with recom-
mendations for manual search and issue creation and end
with implications for extended tool support. For each of
the items we refer to the category of duplicates (DS, PM,
... , NC, see Section 3.2) or the observation (O1 till O8, see
Section 3.3) that has lead us to the recommendation.

4.1 Recommendations for Manual Search and
Creation

[R1] Users that search for duplicates should include both
defects and enhancement types in their queries (O3,
MA).

[R2] Users that search for duplicates can not exclude issues
before a certain date (O5). They could only do that if
they know their request (e.g. implement a new stan-
dard) has an explicit date limit (nobody could have
asked for the standard 1 year ago because it only ex-
ists for half a year).

[R3] Projects should include warnings to search first and
to ask on mailing or discussion lists before entering
a new request (O1, NC). Research has shown that
most duplicates are reported by infrequent users [5] so
giving them a reminder of the procedure or explicit in-

structions could help filter out some of the duplicates.
Furthermore, when the user submits a request that in-
cludes a patch an explicit warning should be repeated
to remind the user that he/she should search for simi-
lar solutions first (PA).

[R4] Projects should include a link to clear guidelines on
how to enter issues (e.g. when is it a defect or an en-
hancement) to ensure that all fields are filled correctly
and to avoid users entering new requests for new ver-
sions of the software (AU, MA)

[R5] Users entering new feature requests should only in-
clude issue-related comments; the same holds for the
users commenting on existing feature requests (O6).
For other types of comments the mailing/discussion
list should be used (from where the user can easily
hyper-link to the request). Projects could even go as
far as removing unrelated comments from the request,
to keep a ‘clean’ database.

[R6] Users should be told to split feature requests into atomic
parts: one request per issue ID (PM). This makes it
easier later on to follow up on the request and link
other requests to it. When developers looking at the
issue see that it is not atomic, they should close it
and open two or more new ones that are atomic. The
partial match example of Apache HTTPD shows that
certain wordings can hint at non-atomic requests:

[29260 - Author] The base functionality of
mod vhost alias for dynamic mass virtual host-
ing seems to work great, but there are a cou-
ple things that need to be changed to work
with it.
...
[29260 - Marker] Most of this is WONTFIX,
but the stripping www thing is reported else-
where.
*** This bug has been marked as a duplicate
of 40441 ***

[R7] Projects should not accept patches or other source
code as feature requests (PA). A patch is not a fea-
ture request, it is a request from the author that asks
the project to look at something already implemented
by the author. A mechanism like the pull request that
GitHub (https://github.com/) uses is much more ap-
propriate for submitting patches. In that way the
patch is immediately available to all users (it sits wait-
ing as a branch of the trunk repository until the owner
of the trunk accepts and merges it) and this avoids
users to enter the same patch twice. At the least a
project could create a separate issue type for patches,
making it easier to search for similar patches submit-
ted earlier.

[R8] Projects should make clear what the hierarchy of prod-
ucts or components is within their issue database (MA).
A user searching for duplicates should also include par-
ent, children or siblings of the product he/she intended
to search for, because a duplicate feature request might
have been added for one of those. Especially for novice
users the structure of the (group of) products might
not be clear. This means they will not find some du-
plicate requests and unnecessarily enter a new request.

4.2 Implications for Tool Support
The fact that in the investigated Apache HTTPD project

many different developers are involved in marking the dupli-
cates (O4) and many different users are involved in entering
requests indicates that we need some kind of tool support.
Within such open source projects we can simply not rely on
one small group of users or developers to keep an overview
of the project and filter out inconsistencies.

We would like to prevent problems as early as possible:
at the moment the user is entering new feature requests.
Based on our observations we see different opportunities for
extended tool support:

Synonyms
The search tool could automatically suggest alternative

search terms based on a list of synonyms or closely related
words for the project, e.g. ‘.jpg’ and ‘image’ (WO). This
list could be compiled by language processing the existing
feature requests and clustering them or could be manually
composed. Each time a new duplicate request is found the
developer marking the duplicate could verify if it was caused
by a wording problem. If so, the different wordings could be
added to the synonym list.

Duplicate Submission
The fact that a single author submits his/her request

twice within a few minutes (we saw examples of this in the
HTTPD project) could easily be filtered out automatically
(AU). After submission, it should first be checked if the
same author has already submitted a request with the same
summary line, before the request is saved in the database.

My Requests
In the Subversion project we saw an example of an author

‘forgetting’ an earlier submitted request:

Wow. I *completely* forgot that I’d implemented
this already (per issue #3748). Suddenly, I feel
old.

But there are more cases of the author being aware of some
form of duplication (AU). It would be good that when a user
logs in to submit a new request, he/she is first presented with
a list of his/her previously submitted requests. This can
serve as a reminder and as a status check. Instead of entering
a new request the user can more easily go to one of the
existing requests and extend it with additional information.

Comments
The issue reporting tool should offer some advanced sup-

port for discerning the different types of comments in a fea-
ture request (O6). In the examples we looked at, we found
comments on test cases, procedures, questions, answers to
questions in other comments, automatic actions, special tags
to search for a set of related issues, complaints, discussions,
etc. It is not clear what type of comment it is and thus
what the relevance is without reading the whole comment.
And sometimes it is difficult to see which comment is an-
swering which other comment. If there would be separate
fields for some of the types (e.g. auto-generated comments
could be displayed separately in some sort of history sec-
tion) or tags/colors related to the type of comment this
would greatly simplify the ability of a user to get a quick
overview of a feature request. This overview is needed to
judge if the request is a duplicate or not of the one the user
is about to enter. Of course this would also demand from

Figure 5: Search options in Apache HTTPD
Bugzilla

the users entering the comments that they would use the
correct tag/color for their comment, but this seems like a
small effort which yields a high benefit.

Linking
We need some more sophisticated linking mechanism be-

tween feature requests than the current ones in Bugzilla
(O8, DS, R6). We could imagine newly added fields in
a feature request where the user or developer can indicate
links with a type and link comment, e.g. a “solution” link
with comment “both can use the same library with math-
ematical functions mathlib”. This would avoid misuse of
the ‘DUPLICATE’ link and would keep users from entering
comments that merely serve to indicate an informal link be-
tween requests. The extended linkage information can be
useful for newcomers to get a grasp of the project.

Visualization
Currently Bugzilla only offers to visualize the so-called

‘dependency tree’. This is a graph showing which issues
‘block’ each other. This ‘blocking’ must have been indi-
cated before by the user. For feature requests it would be
more useful to be able to visualize the duplicate relations,
as we did in Figure 4 (O7). And also other links if imple-
mented (Linking) are a good candidate to visualize in such
graph structures. We can even think of implementing tools
that automatically process the feature requests to infer links
between them from their texts and then visualize them.

Advanced Search
Last but not least we can think of more intelligent search

engines for feature requests (O2, R1). The Bugzilla im-
plementation of the HTTPD project searches on strings and
regular expressions, see Figure 5. This is a good start but we
suspect that natural language based search can greatly im-
prove the search results. The search tool could be extended
to automatically include the related products or components
in the search (R8). Also the presentation of the search re-
sults to the user could be improved, e.g. with clustering or
visualization techniques. A first attempt for better presen-
tation of search results was made by Cavalcanti et al. [4] by
highlighting search terms in the result set.

To summarize we see many opportunities for advanced tool
support. All of these functionalities will help in the pro-
cess of understanding the current set of feature requests in
a project. This serves to avoid duplicates but also in other
situations where the user needs to get an overview of the
existing feature set of a system, e.g. when documentation
of the system’s functionality is missing. What remains is to
actually build those tools and validate them in open source
and company-based projects.

5. RELATED WORK

5.1 Requirements Evolution
There are many papers on the analysis of open source

projects, but not so many cover requirements engineering
topics. One of the first overview papers has been written by
Scacchi [24]. The paper describes the open source require-
ments engineering process and the form of requirements in
open source projects. Our analysis is based on the one of
Scacchi, but proceeds to the next level of detail. For Scacchi
‘open software web sites’ is just one of the forms of require-
ments. In our analysis we dive into this by subdividing it
into many different parts of requirements, see Figure 1.

5.2 Duplicate Detection
The fact that much duplication exists in the requirements

of open source projects has also been detected by Cleland-
Huang et al. [6]. In their research they focus on open forums,
not on issue trackers. For the requirements-related messages
on these open forums they propose an automatic clustering
technique, which we could also apply in future work on fea-
ture requests in the issue tracker.

Gu et al. [10] use a similar clustering technique to auto-
matically suggest duplicate issue reports to the author of a
new issue report. Their recall rate is between 66 and 100%.
Runeson et al. [22] achieve a recall rate around 40% when
analyzing defect reports using Natural Language Processing
(NLP) with a vector-space-model and the cosine measure.
Sun et al. [25] claim they obtain significantly better results
by using a discriminative model. Wang et al. [28] do not
only use natural language processing but also use execution
information to detect duplicates.

In our analysis we found an explanation why Gu and
Runeson do not detect all duplicates: not all issues marked
as ‘Duplicate’ are real duplicates in the sense that they could
have been detected with natural language processing. This
leads us to believe that next to experimenting with clus-
tering as in [6] and [10], we need some more sophisticated
techniques like e.g. visualization, to support the author in
getting an overview of the feature requests posted before.

Tian et al. [26] extend the pioneer work of Jalbert and
Weimer [15] to improve the method of bug classification:
is the bug a unique one or a duplicate? This classification
could of course help in warning users that they might be
submitting a duplicate, but considers only one aspect of the
problem.

A different approach is used by Vlas and Robinson [27]
who have developed an automated Natural Language re-
quirements classifier for open source projects. The tool clas-
sifies the individual sentences of a feature request into types
of requirements according to an extended McCall model [17],
e.g. ‘operability’ or ‘modularity’, with a pattern-based ap-
proach. A similar classification could also help in clustering
complete feature requests, as we are looking for.

Cavalcanti et al. [4] present a tool called BAST (Bug-
reports Analysis and Search Tool) that provides an extended
keyword-based search screen for issues. It shows issues with
the same keywords, but additionally in the lower part of the
screen a quick overview of important issue attributes. Their
study shows that it worked better than the normal search
tool for one company. The main drawback of their tool is
that it is still based on keyword search and thus depends
on the user entering the correct search terms. This con-

trasts our idea that synonym-based search should also be
implemented. In a further paper Cavalcanti et al. [5] ex-
plore the duplication of bug reports in several projects and
come up with recommendations. Most of those recommen-
dations also match ours as they are also valid for feature
requests. However, our paper adds some feature request
specific recommendations like the handling of patches, the
improved linking mechanism and a better separation of com-
ment types.

Where Bettenburg et al. [2] claim that duplicate bug re-
ports are not always harmful, the same can be true for fea-
ture requests: two feature requests that are similar can help
the developer in understanding the requirements. However
this requires that the developer is aware of the duplicate
before starting on the implementation. An unnoticed dupli-
cate feature request can easily lead to two different develop-
ers implementing the same feature in different places in the
system. This strengthens our claim that duplicate feature
requests should be detected/prevented early on.

Our approach differs from the ones mentioned in this sub-
section because we focus on feature requests only. Feature
requests, or requirements, are different from defects. They
require different initial content (what the user needs and
why vs. what is not working) and have different life-cycles.
A defect stops living once resolved, but the description of a
requirement is still valid documentation once implemented.
We expect to extend or detail the approaches mentioned
above with some requirements-specific analysis. With that
we are not so much interested in the automatic detection
of duplicates, but in supporting the user to get a better
overview of the existing feature requests such that the user
can more easily see which related (not necessarily duplicate)
feature requests have already been submitted.

5.3 Visualization
Sandusky et al. [23] studied what they call ‘Bug Report

Networks (BRN)’ in one open source project. This BRN is
similar to what we have drawn in Figure 4. In the bug re-
port repository they studied 65% of the bug reports sampled
are part of a BRN. They conclude that BRNs are a common
and powerful means for structuring information and activity
that have not yet been the subject of concerted research by
the software engineering community. The continuation of
this stream of research will result in a more complete under-
standing of the contribution BRNs make to effective software
problem management. We support this from our own find-
ings and plan to investigate what would be the best way to
visualize the BRN’s for our specific application domain of
feature requests.

6. DISCUSSION AND FUTURE WORK
This section discusses the results and describes opportu-

nities for future work.

The Research Questions Revisited
RQ1 In what form do feature requests evolve in the open

software community Web sites? We analyzed the com-
munity web sites of a number of open source software
projects and we found that while requirements are
sometimes discussed on discussion fora or mailing lists,
they are typically channeled towards the issue tracker.
In particular, we observed that many open source web
sites use Bugzilla as a requirement management tool

to support requirements evolution.
RQ2 Which difficulties can we observe for a user that wants

to request some new functionality and needs to analyze
if that functionality already exists or has been requested
by somebody else before? Can we explain those difficul-
ties? We found that many duplicate feature requests
exist within the projects. This indicates difficulties
that user have to submit unique feature requests. We
have categorized the duplicates by root cause; we cre-
ated seven categories of duplicates which we have ob-
served in six projects.

RQ3 Do we see improvements to overcome those difficulties?
By analyzing the root causes of the duplicates we have
suggested improvements and tool support to avoid du-
plicates, e.g. improved linking mechanisms, visualiza-
tion of those links, clustering or advanced search. All
of these functionalities will help in understanding the
current set of feature requests in a project. This serves
to avoid duplicates but also in other situations where
the user needs to get an overview of the existing fea-
ture set of a system, e.g. when documentation of the
system’s functionality is missing.

In future work we plan to investigate the tool support im-
plications to see if indeed we can improve the requirements
evolution of projects by providing extended tools.

Validity
We did not verify our assumptions by contacting the orig-

inal authors or interviewing developers in other open source
projects to see if they recognize the problems with duplicate
requests. Based on the anecdotal evidence that we gathered
from analyzing the issue tracker, we believe that projects
would benefit from extra tools to get an overview of all fea-
ture requests but this must be validated in our future work.

We are also aware of the fact that the issue tracker must
stay a tool that users still want to use to report new feature
requests. This means that we can not include to many obsta-
cles for new users to enter requests. Practical experiments
must be done to validate what is ‘too many’.

Applicability
We have conducted our case study on an open source

project. Also in companies there will be situations where
end users have direct access to the issue tracker tool to en-
ter new feature requests, so that the problem of duplicate
entries is relevant. Furthermore our tool support will also
help newcomer developers to get an overview of the project.
In the above we have claimed that the results are also valid
for company-based projects. In our future work we plan to
validate this claim by applying the methods we develop also
on company-based projects.

Issue Trackers
We have done a small comparison with two other widely-

used issue trackers, namely Jira (www.atlassian.com/JIRA)
and Trac (trac.edgewall.org), see Table 4. This shows
us that the recommendations we have for Bugzilla are also
valid for other issue trackers. The only striking difference
is the fact that Jira offers a free linking mechanism (like we
recommended in ‘Linking’ in Section 4.2). However a newer
tool like Trac does not offer this, so the recommendation
in general is still valid. And Jira also does not offer any
visualization of those advanced links.

Table 4: Comparison with Other Issue Trackers

Bugzilla Jira Trac

Launch 1998 2003 2006
Custom
Fields

In UI In UI In DB and
config file

Labeling With key-
words

With labels With key-
words

Link ‘Blocks’ and
‘Duplicate’

‘Blocks’, ‘Du-
plicate’ and
‘Relates to’
with link
comment

‘Duplicate’

Voting Yes Yes No
Search Built-in en-

gine searches
for keywords,
substrings;
simple and ad-
vanced search
UI

Lucene engine;
whole words
only but can
be told to
stem words
or do ‘fuzzy’
search; simple
and advanced
search UI;

Built-in engine
searches for
keywords and
substrings; ad-
vanced search
done with
queries

Extens-
ibility

Plugins &
Open Source

Plugins Plugins &
Open Source

Interfaces XML-RPC,
REST

REST, Java
API

XML-RPC

Other Questions
High quality feature requests could simplify the evolution

of the system. But how do we define the quality of those
feature requests? For regular requirements there are many
characteristics that qualify a good requirement (e.g. atomic,
no ambiguity, prioritized) [11] but do they all hold for fea-
ture requests in an issue tracker such as Bugzilla? Can we
observe interesting facts on the quality of feature requests?
Do we see ways to improve the quality of feature requests?
Bettenburg et al. [1] did similar work (including a tool) for
bug reports in general, but not all their results are valid for
feature requests.

7. CONCLUSION
In this paper we have investigated requirements evolu-

tion in open source project web sites and saw that in most
projects an issue tracker is used to evolve requirements.
Within those web sites that use Bugzilla as a requirements
management tool we have observed a high number of dupli-
cate feature requests. We have made a classification of the
causes for these duplicate feature requests. Using this clas-
sification we have given recommendations and implications
for tool support to avoid duplicate feature requests.

Our main goal for future work is to improve tool support
for dealing with feature requests in issue trackers. An impor-
tant step in this direction is to give the users of these issue
trackers an overview of the project, including relationships
between already existing feature requests. Better search fa-
cilities and a hierarchical exploration of requirements are
subsequent steps towards mechanisms to prevent duplicate
feature requests from being entered. Our proposed tools will
also benefit company-based projects, since a lot of them use
Bugzilla-like tools for managing requirements evolution.

8. ACKNOWLEDGMENTS
This work has been sponsored by the RAAK-PRO pro-

gram under grants of the EQuA-project.

9. REFERENCES
[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss,

R. Premraj, and T. Zimmermann. What makes a good
bug report? In Proc. Int’l Symposium on Foundations
of Software Engineering (FSE), pages 308–318. ACM,
2008.

[2] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Duplicate bug reports considered harmful ...
really? In Proc. Int’l Conf. on Software Maintenance
(ICSM), pages 337–345. IEEE, 2008.

[3] L. Cao and B. Ramesh. Agile requirements
engineering practices: An empirical study. IEEE
Software, 25(1):60–67, 2008.

[4] Y. C. Cavalcanti, C. E. A. da Cunha, E. S.
de Almeida, and S. R. de Lemos Meira. Bast - a tool
for bug report analysis and search. In XXIII Simpósio
Brasileiro de Engenharia de Software (SBES),
Fortaleza, Brazil, 2009.

[5] Y. C. Cavalcanti, P. A. da Mota Silveira Neto,
D. Lucrédio, T. Vale, E. S. de Almeida, and S. R.
de Lemos Meira. The bug report duplication problem:
an exploratory study. Software Quality Journal,
21(1):39–66, 2013.

[6] J. Cleland-Huang, H. Dumitru, C. Duan, and
C. Castro-Herrera. Automated support for managing
feature requests in open forums. Commun. ACM,
52(10):68–74, 2009.

[7] J.-M. Dalle and M. den Besten. Voting for bugs in
firefox: A voice for mom and dad? In OSS, volume 319
of IFIP Advances in Information and Communication
Technology, pages 73–84. Springer, 2010.

[8] N. Ernst and G. Murphy. Case studies in just-in-time
requirements analysis. In Int’l Workshop on Empirical
Requirements Engineering (EmpiRE), pages 25–32.
IEEE, 2012.

[9] N. A. Ernst, J. Mylopoulos, and Y. Wang.
Requirements evolution and what (research) to do
about it. In Design Requirements Engineering: A
Ten-Year Perspective, volume 14 of LNBIP, pages
186–214. Springer, 2009.

[10] H. Gu, L. Zhao, and C. Shu. Analysis of duplicate
issue reports for issue tracking system. In Int’l Conf
on Data Mining and Intelligent Information
Technology Applications (ICMiA), pages 86–91, 2011.

[11] P. Heck and P. Parviainen. Experiences on analysis of
requirements quality. In Int’l Conf. on Software
Engineering Advances (ICSEA), pages 367–372. IEEE,
2008.

[12] P. Heck and A. Zaidman. An analysis of requirements
evolution in open source projects: Recommendations
for issue trackers. Technical Report
TUD-SERG-2013-007, Software Engineering Research
Group, Delft University of Technology. http://swerl.
tudelft.nl/bin/view/Main/TechnicalReports.

[13] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a
feature: How misclassification impacts bug prediction.
Technical report, Universitaet des Saarlandes,
Saarbruecken, Germany, August 2012.

[14] IIBA. A guide to the business analysis body of
knowledge (babok guide). International Institute of
Business Analysis (IIBA), 2009.

[15] N. Jalbert and W. Weimer. Automated duplicate
detection for bug tracking systems. In Proc. Int’l
Conf. on Dependable Systems and Networks (DSN),
pages 52–61, 2008.

[16] J. Li, H. Zhang, L. Zhu, R. Jeffery, Q. Wang, and
M. Li. Preliminary results of a systematic review on
requirements evolution. In Proc. Int’l Conf. on
Evaluation Assessment in Software Engineering
(EASE), pages 12–21. IEEE, 2012.

[17] J. A. McCall, P. K. Richards, and G. F. Walters.
Factors in software quality. In Nat’l Tech.Information
Service, no. Vol. 1, 2 and 3. 1977.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng.
Methodol., 11(3):309–346, July 2002.

[19] J. Noll. Requirements acquisition in open source
development: Firefox 2.0. In OSS, volume 275 of IFIP,
pages 69–79. Springer, 2008.

[20] J. Noll and W.-M. Liu. Requirements elicitation in
open source software development: a case study. In
Proc. Int’l Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and
Development (FLOSS), pages 35–40. ACM, 2010.

[21] J. Robertson and S. Robertson. Volere: Requirements
specification template. Technical report, Technical
Report Edition 6.1, Atlantic Systems Guild, 2000.

[22] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In Proc. Int’l Conf. on Software
Engineering (ICSE), pages 499–510. IEEE, 2007.

[23] R. J. Sandusky, L. Gasser, and G. Ripoche. Bug
report networks: Varieties, strategies, and impacts in
a f/oss development community. In Proc. Int’l
Workshop on Mining Software Repositories (MSR),
pages 80–84, 2004.

[24] W. Scacchi. Understanding the requirements for
developing open source software systems. In IEE
Proceedings - Software, pages 24–39, 2001.

[25] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In Proc. Int’l Conf. on Software
Engineering (ICSE), pages 45–54, 2010.

[26] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug
report identification. In Proc. European Conf. on
Software Maintenance and Reengineering (CSMR),
pages 385–390. IEEE, 2012.

[27] R. Vlas and W. Robinson. A rule-based natural
language technique for requirements discovery and
classification in open-source software development
projects. In 44th Hawaii International Conference on
System Sciences (HICSS), pages 1–10, 2011.

[28] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages
461–470. ACM, 2008.

[29] A. Zaidman, M. Pinzger, and A. van Deursen.
Software evolution. In P. A. Laplante, editor,
Encyclopedia of Software Engineering, pages
1127–1137. Taylor & Francis, 2010.

