
Quality Criteria for Just-in-Time Requirements:
Just Enough, Just-in-Time?
Petra Heck

Fontys Applied University
Eindhoven, The Netherlands

Email: p.heck@fontys.nl

Andy Zaidman
Delft University of Technology

Delft, The Netherlands
Email: a.e.zaidman@tudelft.nl

Abstract—Just-in-time (JIT) requirements drive agile teams in
planning and implementing software systems. In this paper, we
start with the hypothesis that performing informal verification
of JIT requirements is useful. For this purpose we propose
a framework for quality criteria for JIT requirements. This
framework can be used by JIT teams to define ‘just-enough’
quality criteria. The framework also includes a time dimension
such that quality criteria can be defined as ‘just-in-time’. We
demonstrate the application of this framework to feature requests
in open source projects and explain how it could be customized
for other JIT environments. We present our results for feature
requests in open source projects, to show that there is a difference
between creation-time quality and just-in-time quality. As this is
ongoing research, we also list several points for discussion and
future work.

I. INTRODUCTION

Requirements verification “ensures that requirements spec-
ifications and models meet the necessary standard of qual-
ity to allow them to be used effectively to guide further
work” [1]. For traditional up-front requirements there are
many guidelines, frameworks and standards (e.g. BABOK [1],
Volere [2], IEEE-830 [3]) that define this ‘standard of quality’:
requirements should be complete, unambiguous, specific, time-
bounded, consistent, etc.

Just-in-time (JIT) requirements are “initially sketched out
with simple natural language statements” [4], only to be
fully elaborated when being developed. Moreover, JIT re-
quirements engineering (JIT RE) heavily relies on face-to-
face communication [5] and thus JIT requirements are not
necessarily fully elaborated in written form. As such quality
criteria like complete or specific might not always hold for JIT
requirements. This observation has led us to investigate the
quality criteria that apply to JIT requirements. Do the ones
defined for traditional up-front requirements still hold? Which
new ones are identified? Our goal is to guide practitioners on
how to perform informal verification of JIT requirements.

Section II explains why in many situations it is useful to
perform informal verification of JIT requirements. Section III
presents our framework for quality criteria for informal ver-
ification of JIT requirements. It describes the application of
our framework to feature requests in open source projects.
Section IV highlights points for discussion around informal
verification of JIT requirements.

II. INFORMAL VERIFICATION OF JIT REQUIREMENTS

On the one hand there is the idea that JIT RE practices
solve the initial ‘vagueness’ of JIT requirements not by
documenting according to standards, but by e.g., face-to-face
communication or prototyping [5]. On the other hand there
is the observation that this JIT RE practice poses a challenge
because many situations (e.g., distributed teams, large teams,
complex projects) require documented JIT requirements that
are fully elaborated in writing [5]. As soon as JIT teams cannot
rely on face-to-face communication the ‘correctness’ of written
documentation becomes more and more important.

An example of such a situation are the feature requests
in open source projects that we studied in earlier work [6],
[7]. Because of their distributed and on-line nature, open
source projects document these requests for new or enhanced
functionality and even the discussions that take place during
the entire life-cycle of the feature request, mostly in issue
trackers. Several quality problems for issue reports in open
source projects have been investigated by e.g. Herzig et al. [8]
and Bettenburg et al. [9].

As part of our own ongoing research [10] we have inter-
viewed eight agile practitioners in person. The practitioners
all answer ‘yes’ when asked if ‘written JIT requirements
should fulfill quality criteria’ (as opposed to the claim made
by Leffingwell [11] that user stories are throw-away artefacts).
According to the practitioners, good quality agile requirements
help the understanding within the team and are important for
traceability or accountability towards the rest of the organi-
zation. When asked for quality criteria they apply in their
daily practice they mentioned: unambiguous, uniform, atomic,
SMART (see [12]), INVEST (see [13]), easy to modify.

Our findings until now support our claim that in many situ-
ations it is useful to verify quality criteria of JIT requirements.
The next section presents our framework for quality criteria
for JIT requirements.

III. JIT QUALITY CRITERIA FOR OPEN SOURCE FEATURE
REQUESTS

The way of working in JIT environments encompasses two
things for requirements documentation:

1) Just-enough Only document what is needed for devel-
oping a good quality software product, the rest is solved
by e.g. face-to-face communication or prototyping.

JIT Requirements
Quality Framework

1.1 Basic Elements

1.2 Required Elements

1.3 Optional Elements

3.1 No contradiction *J

3.2 No contrad. comments *J

3.3 Correct Language *C

3.4 Specify problem *C

3.5 SMART *J

3.6 Correct summary *C

3.7 Atomic *C

3.8 Glossary *C

3.9 No duplicates *C

3.10 Navigable links *C

2.1 Use of tool *C

2.2 Necessity of comments *C

(2.3 Follow template *C)

(2.4 Uniform models *C)

[QC2] Uniformity[QC1] Completeness [QC3] Consistency &
Correctness

Note1: for [QC2] and [QC3] criteria marked with *C
should hold from the moment the requirement is
created, criteria marked with *J should hold later, just-
in-time for a certain step in the development process
Note2: criteria 2.3 and 2.4 are not applicable to feature
requests in open source projects

Summary & description *C
Product Version *C

Keywords/tags *J
Rationale *J

Use case or scenario *J
Screens *J

Relative importance *J

Link to code *J

Possible solution *J

Fig. 1. JIT Requirements Quality Framework

2) Just-in-time Do not document things far before they are
implemented, because there is a risk that they change in
the mean time (or are even no longer needed).

What constitutes just-enough and just-in-time is different for
each environment. Do we have a customer on-site or off-site?
Is the team globally distributed? What is the size of the team?
Is there a separate test team or are testers part of the team?
Does the software contain complex algorithms or is it life-
critical? Because of this variation in JIT environments we
deem it necessary to firstly develop a framework in which
we can structure quality criteria for different types of JIT
requirements. We have instantiated this framework for feature
requests in open source projects and applied it to three existing
open source projects.

A. A Framework for JIT Quality Criteria

We developed a first version of a framework for JIT quality
criteria [10] that was an evolution of a framework developed
for traditional requirements [14]. According to us the division
in three quality areas (Quality Criteria QC) also holds for JIT
requirements. JIT requirements also benefit from all elements
being present and specified in a uniform way. Together with
consistency and correctness this lowers the amount of time
needed for discussion and the chance of rework (e.g. caused
by misinterpretation) later in the process.
[QC1] Completeness w.r.t. Elements. All elements of a single

requirement should be present. We consider three levels:
basic, required, and optional. In that way we can differ-
entiate between requirement elements that are mandatory
and elements that are nice to have.

[QC2] Uniformity. The style and format should be stan-
dardized. This leads to less time for understanding and

managing the requirements, because all team members
know where to look for what information or how to read
certain models attached to the requirement.

[QC3] Consistency & Correctness. The JIT requirements
should be consistent and correct.

The overall QCs should hold for each type of JIT requirements.
The QCs are detailed into specific criteria [QCx.x] for each
type of JIT requirements. In that way each team can add ‘just
enough’ quality criteria for their specific environment.

As said JIT requirements are “initially sketched out with
simple natural language statements” [4], only to be fully
elaborated when being developed. This leads us to introduce
a second dimension in our quality framework: the notion of
time. For each of the quality criteria we indicate when it should
hold:
*C Creation-time. This criterion should hold at soon as the

requirement or the requirement part is created.
*J Just-in-time. This criterion does not necessarily have to

hold when the requirement (part) is created. However, it
should hold at a later moment, just-in-time for a certain
step in the development process. This could be further
detailed by specifying which step is the latest moment
for the criterion to hold, such that more than the current
2 time-points are specified.

In that way each team can specify which quality criteria should
be there from the beginning and which quality criteria should
be there just-in-time. Figure 1 shows the instantiation of the
framework for feature requests. For a detailed explanation of
the quality criteria, see [10].

Customizing the framework for other types of JIT envi-
ronments would mean that the team decides which of the
specific quality criteria (QCx.x) hold for their situation and

which new ones should be added. The resulting list of quality
criteria can be used as a checklist for the team to decide
when a JIT requirement is ‘Ready’ [15]. An example are
the quality criteria [QC2.3] (Follow template ‘As a <role>, I
can <activity> so that <business value>’) and [QC2.4] (if
attachments are added they should use the same modeling
language) in Fig. 1 that we recommend for user stories in agile
environments. Both quality criteria are usually not applicable
to open source feature requests.

B. Quality of Open Source Feature Requests

We have asked 83 last-year software engineering students
to apply our framework to 570 feature requests from three
open source projects: 200 feature requests from ArgoUML1,
80 from Mylyn Tasks2 and 290 from Netbeans3. For this
purpose we have developed a scoring algorithm to calculate
percentages for each of the quality criteria. For details of the
experiment and the scoring algorithm see [10].

The experiment gave us valuable insights into feature re-
quest quality in open source projects. The aforementioned
interview with agile practitioners also confirmed that the
framework could be valuable as a ‘checklist’ or ‘definition
of done’ for requirements in JIT environments.

The feature requests in the experiment are all in status
“Closed”. The participants have rated all quality criteria for
the feature requests (both *C and *J). We define this as the
‘final quality state’ of the feature request. An interesting point
is to look at the ‘initial quality state’ (only *C criteria) of the
feature requests.

1) QC1 *C: The *C criteria for QC1 are to have a
summary, description and product version. These three fields
are mandatory in the issue tracker that was used in all three
projects. Therefore all feature requests that were considered in
the experiment score 100% on ‘initial QC1 quality’. However,
for ‘final QC1 quality’ they score on average 100% for basic
elements (relative importance is also a mandatory field), but
only 54% for required elements (QC1.2). This means that on
average almost half of the required elements are missing.

2) QC2 *C: All QC2 criteria are *C. As such ‘initial QC2
quality’ can not be distinguished from ‘final QC2 quality’.

3) QC3 *C: When we only average the seven creation-time
criteria for [QC3] we see a clear difference in scoring:

Mylyn Tasks ArgoUML Netbeans TOTAL
Creation-time [QC3] *C 83% 80% 84% 82%
Just-in-time [QC3] 80% 75% 78% 77%

This is mainly due to the fact that at creation-time we would
allow feature requests to not be SMART (QC3.5, see [12]),
but just-in-time before development starts the feature request
should be clear. A lot of feature requests (on average 46%)
were judged as ‘Not SMART at all’.

Our experiment demonstrates an example of how the quality
of the feature requests at creation-time is different from the

1http://argouml.tigris.org
2http://projects.eclipse.org/projects/mylyn.tasks
3http://netbeans.org

‘just-in-time quality’ of the feature request. Our claim is that it
makes sense to make this distinction when discussing quality
of JIT requirements, as we do in our framework. As said,
further investigation is needed to distinguish more different
time-points in our framework than just *C and *J.

IV. DISCUSSION

Future work is to further validate the framework, e.g. in
industry settings or in agile environments with user stories.
We conclude this paper by highlighting some open questions
and points for discussion.

A. Oral versus Written JIT Requirements

As said, JIT environments rely heavily on face-to-face
communication. In open source projects, because of their
distributed nature, this is usually not possible. Instead these
projects use other means of informal/undocumented commu-
nication like mailing lists, chat sessions, personal emails. We
have studied feature requests in open source projects from the
documented discussion in the issue tracker. An open question
is how much of the discussion about the feature request
actually took place outside of the issue tracker. Did we have
a complete picture of the feature requests we considered by
looking at the issue tracker only? And more in general for JIT
requirements: how much of the requirement is elaborated in
oral form and how much is elaborated in written form? What
should be reasons to document oral communication? What
would be good means for doing this? These questions could
be answered e.g. by a more in-depth study of mailing lists in
open source projects, by interviewing more JIT practitioners
or by closely following a JIT team in their way of working.

B. OSS versus CSS

According to [16] “closed source software bug reports and
feature requests and the process for managing them look much
like those for open source software”. This would mean that
our findings and list of quality criteria for feature requests
in open source projects (OSS) would also be applicable to
feature requests in closed source projects (CSS). A detailed
comparison of OSS feature requests to CSS feature requests
could confirm this.

C. Why Early Verification?

We claim that informal verification of JIT requirements
is useful. We did however not investigate how much time
or effort the use of our framework would constitute for the
team. As said, there is some evidence that early verification of
requirements quality contributes to a higher software product
quality but what exactly is this contribution in JIT projects?
After all, incorrect requirements should be spotted early on
because of short iterations and should be easier to correct
because of high customer involvement. The practitioners we
interviewed however stated that, at the least, early verification
helps to save time and effort in implementing the requirements.
This stems from the fact that even if the work can be redone in
a next iteration to correct wrong implementations, it still pays

off to do it right the first time. This corresponds to the findings
of Fitzgerald et al. [17]: there are many failures in open source
feature requests that correspond to effort being wasted. If our
framework is incorporated as a ‘checklist’ into the natural
process of the team, e.g. in their ‘Definition of Done’, we
think that it should not constitute a big effort. Experienced
team members should not even need the checklist to produce
good quality requirements. However the checklist then still
holds value as ‘contract’ of what the team sees as good
quality requirements. This contract should be a ‘living’ item:
if requirements problems are surfacing in the team process, the
checklist should be updated with additional checks to prevent
this type of problems from occurring.

D. ‘Just-in-Time Quality’

Our observation is that a quality framework for just-in-
time requirements should include a time dimension. In the
current version of our framework we only distinguish between
‘creation time’ and ‘just-in-time’. Creation time is a clearly
defined moment: the creation of the requirement or the re-
quirement part. However, what just-in-time means for quality
of JIT requirements is not strictly defined. ‘Just-in-time’ can be
just before development starts or just before the requirement is
communicated to the customer for the first time. We would like
to better understand what constitutes ‘just-in-time’ for different
JIT environments by collecting experiences from different JIT
teams. Does it indeed make sense to distinguish initial quality
from just-in-time quality by including a time dimension? If
so, which time-points should we consider?

E. Feature Requests versus User Stories

Ernst and Murphy [4] mention two types of JIT require-
ments: features and user stories. In our research we studied
open source feature requests because of their on-line public
availability. We did however interview practitioners that work
with user stories, studied literature on user stories and have
personal experiences in working with user stories. According
to Leffingwell [11] user stories are “throw-away artifacts”
and only serve to guide conversations, so it would not make
sense to spend much time on their verification. However, we
saw many cases were user stories are not only documented
with one brief sentence but also include more detailed specifi-
cations. In addition, many practitioners confirmed that user
stories in their practice are not thrown away. This led us
to belief that our framework is also applicable to situations
were teams work with user stories. As said before the use of
the framework should be an integrated part of the agile team
process. When and how would it be useful to perform informal
verification of user stories in agile projects?

F. Specification by Example (SBE)

Specification by example [18], also known as example-
driven development, executable requirements or acceptance
test-driven development is a way of working in which require-
ments are not documented as abstract statements but as a set
of examples (e.g. ‘Given ... when ... then ...’). SBE or similar

methods are often used in iterative or agile development. If the
requirements are specified in such a way, the need for informal
verification seems to be less: the structure of the example is
given and the stakeholders can easily validate the requirements
by validating the examples. Until now we did not consider
this type of JIT projects in our research. Questions are: Is it
indeed possible to document all JIT requirements in this way?
Which quality criteria apply to SBE? In which situations does
informal verification add value in SBE?

REFERENCES

[1] IIBA, “A guide to the business analysis body of knowledge (BABOK
Guide),” International Institute of Business Analysis (IIBA), 2009.

[2] J. Robertson and S. Robertson, “Volere: Requirements specification
template,” Technical Report Edition 6.1, Atlantic Systems Guild, Tech.
Rep., 2000.

[3] IEEE, “IEEE recommended practice for software requirements specifi-
cations,” IEEE Std 830-1998, 1998.

[4] N. A. Ernst and G. Murphy, “Case studies in just-in-time requirements
analysis,” in Int’l Workshop on Empirical Requirements Engineering.
IEEE, 2012, pp. 25–32.

[5] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband,
“A systematic literature review on agile requirements engineering
practices and challenges,” Computers in Human Behavior, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S074756321400569X

[6] P. Heck and A. Zaidman, “An analysis of requirements evolution in open
source projects: Recommendations for issue trackers,” in Int’l Workshop
Principles of Software Evolution (IWPSE). ACM, 2013, pp. 43–52.

[7] ——, “Horizontal traceability for just-in-time requirements: the case
for open source feature requests,” Journal of Software: Evolution and
Process, vol. 26, no. 12, pp. 1280–1296, 2014. [Online]. Available:
http://dx.doi.org/10.1002/smr.1678

[8] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” Universitaet des Saarlandes,
Saarbruecken, Germany, Tech. Rep., August 2012.

[9] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmer-
mann, “What makes a good bug report?” in Int’l Symp. on Foundations
of Software Engineering (FSE). ACM, 2008, pp. 308–318.

[10] P. Heck and A. Zaidman, “A quality framework for agile requirements: A
practitioner’s perspective,” Software Engineering Research Group, Delft
University of Technology, Tech. Rep. TUD-SERG-2014-006.

[11] D. Leffingwell, Agile Software Requirements: Lean Requirements Prac-
tices for Teams, Programs, and the Enterprise, 1st ed. Addison-Wesley
Professional, 2011.

[12] G. T. Doran, “Theres a smart way to write managements goals and
objectives,” Management Review, vol. 70, no. 11, pp. 35–36, 1981.

[13] B. Wake, “INVEST in good stories, and SMART tasks,” http://xp123.
com/articles/invest-in-good-stories-and-smart-tasks/, 2003, [Accessed
Nov-2013].

[14] P. Heck, M. Klabbers, and M. C. J. D. van Eekelen, “A software product
certification model,” Software Quality Journal, vol. 18, no. 1, pp. 37–55,
2010.

[15] K. Power, “Definition of ready: An experience report from teams
at cisco,” in Agile Processes in Software Engineering and Extreme
Programming, ser. Lecture Notes in Business Information Processing,
G. Cantone and M. Marchesi, Eds. Springer International Publishing,
2014, vol. 179, pp. 312–319. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-06862-6 25

[16] T. Alspaugh and W. Scacchi, “Ongoing software development without
classical requirements,” in Int’l Req. Engineering Conference (RE),
2013, pp. 165–174.

[17] C. Fitzgerald, E. Letier, and A. Finkelstein, “Early failure prediction in
feature request management systems: an extended study,” Requirements
Engineering, vol. 17, no. 2, pp. 117–132, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00766-012-0150-7

[18] G. Adzic, Specification by Example: How Successful Teams Deliver the
Right Software. Manning Publications, 2011.

