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SUMMARY

Agile projects typically employ just-in-time requirements engineering and record their requirements (so-
called feature requests) in an issue tracker. In open source projects we observed large networks of feature
requests that are linked to each other. Both when trying to understand the current state of the system and
to understand how a new feature request should be implemented, it is important to know and understand all
these (tightly) related feature requests. However, we still lack tool support to visualize and navigate these
networks of feature requests. A first step in this direction is to see whether we can identify additional links
that are not made explicit in the feature requests, by measuring the text-based similarity with a Vector Space
Model (VSM) using Term Frequency - Inverse Document Frequency (TF-IDF) as a weighting factor. We
show that a high text-based similarity score is a good indication for related feature requests. This means that
with a TF-IDF VSM we can establish horizontal traceability links, thereby providing new insights for users
or developers exploring the feature request space. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software evolution is an inevitable activity, as useful and successful software stimulates users to
request new and improved features [1, 2]. A first step towards implementing these new features is
to specify them. In projects developed using an Agile methodology this specification is typically
informal, for example in the form of brief user stories which serve as conversation starters with
stakeholders [3], or in the form of other ‘software informalisms’ [4].

This use of more lightweight representations for requirements contrasts the more traditional
notion of requirements engineering (RE) and is also known as just-in-time requirements
engineering [5]. Ernst and Murphy [5], Scacchi [4] and Mockus et al. [6] have previously observed
just-in-time RE both in industrial projects and in open source projects. Mockus et al. even claimed
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2 PETRA HECK AND ANDY ZAIDMAN

Figure 1. Feature request network in Subversion (feature request ID and creation date).

that despite the very substantial weakening of traditional ways of coordinating work, the results
from open source software (OSS) development are often claimed to be equivalent, or even superior
to software developed more traditionally [6].

Our previous research [7] has shown that just-in-time requirements engineering typically employs
an issue tracker to record feature requests. On the one hand we have observed that this potentially
leads to a large number of requests, which are sometimes difficult to search and navigate. On the
other hand, we observed that large structures of relations exist between individual feature requests,
see Figure 1 for an example of a so-called feature request network from the Subversion project †.

Both when developers are trying to understand the current state of the system and trying
to understand how a new feature request should be implemented, it is important to know and
understand all these (tightly) related feature requests, to avoid duplicate or inconsistent development
efforts [8]. For users reporting feature requests having knowledge of existing feature requests can
also be important to know what is already being requested. In our previous research we observed
that some of these relations are explicitly mentioned (textually) in feature requests [7]. In this paper
we focus on automatically constructing horizontal traceability links [9] between feature requests,
including the identification of additional links that are not made explicit in the feature requests, e.g.,
because people are not aware of the related feature request. The more structure is provided, the
easier it becomes for users or developers to follow these links and explore the related requests for
the task at hand.

We focus on feature requests because as Cavalcanti et al. put it feature requests hold facts on
the evolution of software, and thus can serve as documentation of the history of the project [10].
Discussions in some feature requests even show why the system has not evolved in a certain
direction. Once a defect is closed (“fixed”), the information inside is not relevant for the current
system anymore, because the defect does not exist anymore. However, once a feature request is
closed (“fixed”), the information inside is relevant for the current system, because the feature still

†http://subversion.apache.org
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HORIZONTAL TRACEABILITY FOR OPEN SOURCE FEATURE REQUESTS 3

exists in its original or evolved form. This means traceability between feature requests remains
interesting, even for closed feature requests.

In order to establish traceability links we use a Vector Space Model (VSM) with a Term Frequency
- Inverse Document Frequency (TF-IDF) weighting factor to calculate the text-based similarity of
feature requests. In the remainder of this paper we will refer to the combination VSM - [TF-IDF]
as “TF-IDF”. TF-IDF has previously been applied to detect duplicate issue reports [11–14]. Issue
reports include both defects and enhancements (feature requests). In our research we focus only on
feature requests and are not interested in duplicates, but in requests that are functionally related.

We think that feature requests merit a separate text-based investigation with TF-IDF because
we assume that the content of feature requests and defects is different, thus requiring a separate
investigation. This assumption is supported by earlier work from Antoniol et al. [15] who devised
a classifier for separating feature request and defects, and by Ko et al. [16] who used a decision
tree algorithm to split feature requests from defects. An additional observation comes from Moreno
et al. who claim that the terms used in bug reports are closely related to source code entities [17],
which might not always be true for feature requests as they can be described more abstractly.

This leads us to the main research question for this paper: Can TF-IDF help to detect horizontal
traceability links for feature requests?

Subsidiary research questions that steer our research are:
RQ1 Is TF-IDF able to detect functionally related feature requests that are not already explicitly

linked?
RQ2 What is the optimal pre-processing to apply TF-IDF focusing on feature requests?
Whereas TF-IDF only matches words that are literally the same, Latent Semantic Analysis
(LSA) [18] takes into account words that are close in meaning by assuming that they will occur
in similar pieces of text. However, LSA requires more calculation time because it adds additional
calculation steps compared to TF-IDF. This situation intrigued us to see if the results for [RQ1]
improve significantly enough when applying LSA to our application domain to merit this extra
calculation time, which leads us to our final subsidiary research question:
RQ3 Does a more advanced technique like LSA (Latent Semantic Analysis) improve the detection

of non-explicit links?
The remainder of this paper is structured as follows: Section 2 contains background with some

major concepts and the related work. Section 3 explains our experimental setup. In Section 4 we
describe the results of our experiment. In Section 5 we explore an example of a feature request
network to illustrate our results. We discuss our results in Section 6. Section 7 concludes this paper.

2. BACKGROUND

In this section we discuss the background of our study. We start with a general background on
traceability and then focus on horizontal requirements traceability. We further explain why we think
the focus on feature requests (as opposed to issue reports also including defects) is necessary. We
then discuss the use of TF-IDF/VSM for duplicate detection. We end by explaining both TF-IDF
and LSA in a nutshell.
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2.1. Traceability

“Traceability is the potential to relate data that is stored within artifacts of some kind, along
with the ability to examine this relationship” [9]. Over the last 20 years or so, the software
engineering research community has investigated numerous approaches to establish, detect and
visualize traceability links [19].

An important branch of research has busied itself with so-called requirements traceability or “the
ability to describe and follow the life of a requirement in both a forwards and backwards direction
(i.e., from its origins, through its development and specification, to its subsequent deployment and
use, and through periods of ongoing refinement and iteration in any of these phases) [9, 20]”.
Requirements traceability can typically be described as a case of vertical traceability, where artifacts
at different levels of abstraction are traced [9].

The investigation described in this paper however, can be catalogued as horizontal traceability as
we are seeking to relate artifacts at the same level of abstraction.

De Lucia et al. have proposed to classify the traceability recovery methods according to the
method adopted to derive links [21]: heuristic based, IR based, and data mining based. Recently,
machine-learning methods have also been proposed to recover links between code and product-level
requirements [22].

Many authors have successfully applied IR techniques including TF-IDF, e.g. [23–25]. Typical
applications of IR include: concept location [26, 27], impact analysis [28], clone detection [29],
software re-modularization [30] and establishing traceability links [23, 31–34]. See Binkley and
Lawrie for an overview [35].

The investigation in this paper concerns recovering horizontal traceability links between artifacts
of the same type, i.e. requirements.

2.2. Tracing requirements to requirements

We specifically discuss three works on tracing requirements to other requirements.
Huffman Hayes et al. [36] use IR techniques for tracing high-level requirements to low-level

requirements. Candidate links generated by IR algorithms were to be confirmed by requirements
analysts to measure performance of the algorithms. They extend TF-IDF with a simple thesaurus
(manually made) to improve recall and precision of generated traceability links.

Natt och Dag et al. [37] use IR techniques for linking customer wishes to product requirements.
They use a VSM with a different weighting factor [1 + 2 log (term frequency)].

Cleland-Huang [38] identifies three types of traceability that might be useful in agile projects. The
third type is “requirements to requirements”: to track dependencies between user stories. This can be
useful during the planning process. She claims that there is no need to retain such traces once stories
have been implemented. We would argue that this is different for feature requests in open source
projects: the traces should be retained as they form an important part of project documentation.

We are not only interested in “traceability links” between feature requests, but also in related
feature requests in general (e.g. about the same functionality). From our experience in open source
projects there is not a habit of splitting high-level feature requests into low-level feature requests
and we do not see any distinction in types of requirements, so with our TF-IDF analysis we can not
make use of such an existing structure to find related requests.
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HORIZONTAL TRACEABILITY FOR OPEN SOURCE FEATURE REQUESTS 5

2.2.1. Clustering Cleland-Huang et al. [11] propose an automatic clustering technique based on
TF-IDF for the requirements-related messages on open forums. Their goal was to create threads of
related messages. We focus on feature requests in issue trackers.

2.2.2. Networks Kulshreshtha et al. [39] studied literature about dependencies between system
requirements and abstracted this into four dependency types: Contractual, Continuance,
Compliance, Cooperation and Consequential. They modeled one such network from a set of 50
requirements pertaining to a Hotel Front Office Reservation system. Their study is on relationships
between traditional requirements, where we focus on agile requirements (feature requests).

Sandusky et al. [40] studied what they call “Bug Report Networks (BRN)” in one open source
project. This BRN is similar to what we have drawn in Figure 1. In the bug report repository they
studied, 65% of the bug reports sampled are part of a BRN. They conclude that BRNs are a common
and powerful means for structuring information and activity that have not yet been the subject
of concerted research. The continuation of this stream of research will result in a more complete
understanding of the contribution BRNs make to effective software problem management.

2.3. Feature Requests vs. Defects

As claimed in the introduction feature requests and defects have different characteristics. In this
section we provide further support for that assumption from our own dataset and from existing
literature.

The datasets we use are the feature requests as listed in the issue trackers of Mylyn Tasks,
ArgoUML and Netbeans; more details on these projects can be found in Section 3. However, we
start of with an investigation into who submits defects on the one hand and feature requests on the
other hand. Our data is depicted in Table I. This table shows the total number of feature requests
and defects, the number of submitters for feature requests and defects, and the total number of
submitters. What we see is that the intersection of submitters of feature requests and submitters of
defects is relatively small (between 13.5 and 21% of the total number of submitters)‡. This shows
that the group of submitters for feature requests and the group of submitters for defects contain
different persons. Those different persons might also be using different vocabulary.

Project Feature requests Defects Submitters Submitters
# # Submitters # # Submitters total feature req.

⋂
defects

Mylyn Tasks 452 112 583 158 223 47
ArgoUML 1323 399 4847 1226 1426 199
Netbeans 29023 5017 204827 23071 24737 3351

Table I. Number of submitters for feature requests and defects

Herzig et al. investigated the relationship between issue reports and source code change sets. They
found that this relationship is different for defects and features. Defect fixing change sets seem to
change older code while feature implementations are based on newer code fragments. They also
find that feature implementing change sets have more structural dependency parents in the change

‡It is known that sometimes the same person might submit under different user names, but we assume this holds only for
a small number (possibly zero) of usernames in our large dataset.
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6 PETRA HECK AND ANDY ZAIDMAN

genealogy graph than defect fixing ones. Above all defect fixing change sets show smaller impact
on code complexity than feature implementations [41].

Herzig et al. [42] investigated the classification of existing bug reports (as indicated by the project
members). They find that 34% of reports classified as “bug” is actually not a bug and only 3% of
reports classified as feature requests is actually a “bug”.

2.4. TF-IDF and Duplicate Detection

Several authors use Vector Space Models and/or TF-IDF similar weighting functions in the area of
duplicate detection of bug reports [12–14, 43–45]. Runeson et al. [13] achieve a recall rate around
40% when analyzing defect reports using Natural Language Processing (NLP) with a vector-space-
model and the cosine measure. Wang et al. [46] do not only use natural language processing but
also use execution information to detect duplicates. Sun et al. [14] claim they obtain significantly
better results (a relative improvement of the recall rates of 17-43% compared to the techniques used
in [43], [13] and [46]) by using a discriminative model.

We only use duplicate detection to tune our pre-processing step. Our main research question is
not focused on the best duplicate detection, but on the identification of horizontal traceability links
for feature requests.

2.5. TF-IDF in a Nutshell

We use TF-IDF to convert a collection of documents into a collection of vectors (our Vector Space
Model, VSM) by calculating the relative importance of each word in each document. The TF-IDF
value increases with the number of times a word appears in a document, but decreases with the
number of documents in which the word appears. This helps in filtering out words that are common
in the entire collection of documents.

The formula that we have used for TF-IDF is as follows:

TFIDF (w, d,D) = TF (w, d)× IDF (w,D) (1)

with w a word in a document d that belongs to the collection of documents D. The Term Frequency
TF (w, d) can be computed in several ways. We choose to correct for longer documents, to prevent
a bias towards longer documents:

TF (w, d) =
f(w, d)

max{f(w, d) : w ∈ d}
(2)

with f(w, d) the number of times that word w appears in document d.

IDF (w,D) = loge
|D|

|{d ∈ D : w ∈ d}|
(3)

with |D| the total number of documents in the collection and |{d ∈ D : w ∈ d} the number of
documents where word w appears.

For a collection of documents D we first determine the complete set of unique words W . This set
can be taken as is or can be normalized in many different ways (see section 3.1). Then we transform
each document d that belongs to the collection D into a vector vd. The dimension of this vector is
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equal to the size of the set of unique words W . The ith element of the vector vd corresponds to ith
word in the set W (wi). For each d and i we calculate:

vd,i = TFIDF (wi, d,D) (4)

Once we have each document vector we can calculate the so-called cosine similarity between two
documents n and m.

cos(vn, vm) =
vn · vm

‖ vn ‖‖ vm ‖
(5)

This yields a value between 0 and 1 indicating how similar the text of the two documents is: closer
to 1 meaning more similar, 0 meaning no words in common at all.

2.6. Latent Semantic Analysis (LSA) in a Nutshell

Latent Semantic Analysis (LSA) [18] takes into account words that are close in meaning by
assuming that they will occur in similar pieces of text. The input for LSA is a matrix. As described
in [47] this is a weighted term-document matrix: the output matrix of the TF-IDF weighting
algorithm as defined above (by combining all vectors vd). This results in a matrix M of documents
D against unique words W :

M [i, j] = TFIDF (wi, dj , D) (6)

LSA uses a mathematical technique called singular value decomposition (SVD) to transform the so-
called ‘hyperspace’ M into a more compact latent semantic space. This is done by maintaining the
k largest singular values (also called rank-lowering of M ). The optimal value of k is unique for each
application domain. If the value of k is too low, the decomposition may end up under-representing
the hyperspace M . Alternately, if the choice of k is too high, the decomposed sub-space may over-
represent the hyperspace by adding in noise components [48].

After rank-lowering we have a new matrix M ′. In this matrix M ′ each column represents a
document vector. We calculate the so-called cosine similarity between two documents n and m

in the same way as we do for TF-IDF above.
To summarize, the LSA technique adds reduced-rank SVD as an extra step compared to TF-

IDF. It is believed that in the vector space of reduced dimensionality, the words referring to related
concepts, i.e., words that co-occur, are collapsed into the same dimension. Latent semantic space is
thus able to capture similarities that go beyond term similarity (e.g. synonymy) [48].

3. EXPERIMENTAL SETUP

In order to answer [RQ2] What is the optimal pre-processing to apply TF-IDF focusing on feature
requests, we decide to make all pre-processing steps (see section 3.1) optional to find out which
of these configurations yields the best results. We define ‘the best results’ as the configuration that
succeeds best at finding the known set of duplicates. Known duplicates are feature requests marked
as ‘DUPLICATE’ for the field Resolution. We use known duplicate feature requests from three

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
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8 PETRA HECK AND ANDY ZAIDMAN

mature open source projects. All three projects use Bugzilla§ as an issue tracker to manage feature
requests. We download these feature request as XML-files from the following three open source
projects¶:
• Eclipse MyLyn Tasks projects.eclipse.org/projects/mylyn.tasks, 425

feature requests, 10 ‘Duplicate’;
• Tigris ArgoUML argouml.tigris.org, 1273 feature requests, 101 ‘Duplicate’;
• Netbeans netbeans.org, 4200 feature requests, 342 ‘Duplicate’.

We select these specific projects based on four criteria: 1) they are mature and still actively
developed; 2) they differ in order of magnitude in terms of number of feature requests; 3) they
have a (substantial) number of known duplicate feature requests; 4) they use Java as a programming
language (important because some feature requests contain source code fragments).

We implement the TF-IDF calculation with possible preprocessing configurations in a C# tool,
called FRequAT (Feature Request Analysis Tool)‖. FRequAT automatically verifies the similarity
score against known duplicates (see Section 3.1). We use Mylyn Tasks and ArgoUML for the tuning
of our algorithms and then confirm our findings with the Netbeans project.

Our FRequAT tool produces an Excel file that contains the pair-wise cosine similarity score for
the complete set of feature requests. We do not have a golden set of all horizontal traceability links in
the set of feature requests, thus we cannot use standard performance measures as recall and precision
to evaluate TF-IDF for finding links. We therefor devise two different ways to answer [RQ1] Is TF-
IDF able to detect functionally related feature requests that are not already explicitly linked:
1) we manually analyze the top 50 most similar pairs of feature requests (i.e., the pairs with the
highest cosine similarity score). This manual analysis is done by the first author. For the pairs that
do not have a physical link in the Bugzilla repository and that we think are functionally related, we
ask for confirmation of our findings from one main developer from the Mylyn Tasks project and two
main developers from the ArgoUML project.
2) we investigate an existing feature request network (one large example found during manual
exploration of the repository of the Mylyn Tasks project) to validate that the existing links are
supported by a high cosine similarity score and to see whether we can extend the existing network
with additional links based on high cosine similarity scores.

To answer [RQ3] Does a more advanced technique like LSA improve the detection of non-explicit
links we repeat the step of manually analyzing the top 50 most similar pairs of feature requests (see
[RQ1] above) to see if we find more related requests with LSA than with TF-IDF only. We only do
this for the Netbeans project because we deem the other two projects to small in terms of number of
documents.

We explain some more details of the experimental setup in the following sections.

3.1. Preprocessing Feature Requests

The main step of the tokenization (i.e., parsing the feature request text into separate words) is done
through regular expressions. After that a number of configuration options are available to arrive at

§www.bugzilla.org
¶Datasets can be downloaded from http://dx.doi.org/10.6084/m9.figshare.1030568
‖Available from first author through email.
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the final set of words to be considered for each document:

• Include All Comments [AC]. The main parts of a feature request are: title, description and
comments. This option configures if only the title and description or the complete feature
request are used to build the VSM.

• Set to Lowercase [LO]. This option sets all words to lower case.
• Remove Source Code [SC]. This option uses extra regular expressions to remove different

types of source code. The source code is completely removed, including comments, names of
variables and identifiers.

• Remove Spelling Errors [SP]. For this step we use a list of project-specific abbreviations and
spelling mistakes that the first author manually compiled from the Mylyn Tasks project (we
do not repeat this for the other projects because of their much larger vocabulary). If the option
[SP] is on, each word is checked based on the Mylyn Tasks list and replaced by the alternative
word before further processing.

• Remove Stop Words [SR]. This option excludes known stop words from the VSM. We
construct a list of stop words starting from the SMART list∗∗. We manually add 66 stop
words from the Mylyn Tasks project to this list (like ‘afaik’, ‘p1’, ‘clr’)††

• Stem Words [SM]. This option reduces words to a common base: e.g., ‘browsing’ and ‘browse’
become ‘brows’ and ‘files’ becomes ‘file’. We use Porter’s Stemming Algorithm [49].

• Create Bi-Grams [BG]. This option builds the VSM based on sequences of two consecutive
words, instead of based on single words.

• Set Title to Double Weight [DW]. This option sets a double weight for the title as opposed to
the description and comments [12, 13] .

Our FRequAT tool allows to switch the above options on or off. We define the best configuration
as the one that yields the highest ranking for the known duplicates in a project. When we calculate
the pair-wise similarity between a known duplicate and all other feature requests, then rank by
similarity in descending order, the master of the known duplicate should be in the top of this
ranking. A similar duplicate detection recall rate is proposed by Runeson et al. [13], who state that
the standard information retrieval definitions of recall and precision do not really work for duplicate
detection. The Recall rate is defined as the percentage of duplicates for which the master is found
for a given top list size. We are interested in the TF-IDF configuration with the highest recall rate.
In our evaluation we use top list sizes of 10 and 20.

We try several combinations of options on the Mylyn Tasks project and the ArgoUML project.
We calculate the top-10 (T10) and top-20 (T20) recall rates for those combinations. Then we repeat
the best combinations on the larger Netbeans project to get a confirmation of the highest recall rate
found.

3.2. Most Similar Requests

We use the TF-IDF configuration with the highest recall rate for duplicate detection to see, for a
given set of feature requests, whether we can get new information about related feature requests

∗∗SMART list: ftp://ftp.cs.cornell.edu/pub/smart/english.stop
††Extra stop words http://dx.doi.org/10.6084/m9.figshare.1030568
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10 PETRA HECK AND ANDY ZAIDMAN

by ranking them by pair-wise similarity. Our idea is that two feature requests with a high pair-wise
similarity should be about the same topic and thus related.

The relatedness of two feature requests is determined in several ways:
1. The feature requests are related because they have one of the three existing link types in

Bugzilla:
• The ‘blocks/depends’ link. This is a manual link that is indicated by one of the project

members, indicating that one should be resolved before the other.
• The‘duplicate’ link. This is a manual link that is indicated by one of the project members.
• The feature requests are related because one refers to the other in comments. This is

manually done by one of the project members.
2. The feature requests are related because we as authors find them to be about the same topic.
3. The feature requests are related because one of the main project members considers them as

related.
We calculate the pair-wise similarity for all feature requests from each project. Then we rank them
and extract the top-50 most similar pairs of feature requests for each project. We choose 50 as a
cut-off because 50 (times three for three projects) seems a reasonable amount to base conclusions
on, and because we want to limit the effort for manual investigation. The top-50 is manually verified
for the first three options above (existing links in Bugzilla) by the first author by looking at feature
requests in Bugzilla. For the last two options we need a more extensive manual verification. The
authors validate the remaining feature request pairs as being about the same topic or not. Lastly
we send the remaining feature request pairs (meaning the ones in the top-50 not already linked in
Bugzilla) to a prominent project member asking for his/her opinion about the relatedness. For this
purpose we do not define ‘relatedness’, thus leaving it to the interpretation of the project member
what he/she considers as ‘related’.

3.3. LSA

We use the TF-IDF configuration with the highest recall rate for duplicate detection to further apply
SVD (see Section 2.6). For application of the LSA algorithm we determine the k-value to use
empirically by scanning the range (0 to 4200, i.e. the number of feature requests for Netbeans) in
steps of 50. We use the k-value with the highest top-10 and top-20 recall rates for retrieving known
duplicates. This is the same logic as described before to determine the optimal pre-processing steps
for TF-IDF.

With this optimal k-value we calculate LSA-based cosine similarities and repeat the step of
manually analyzing the top-50 most similar pairs of feature requests (see Section 3.2 above) to
see if we find more related requests with LSA than with TF-IDF only.
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4. RESULTS

This section describes the results of our experiments‡‡. We start off by describing the results of
our investigation into the best pre-processing configuration for applying TF-IDF by using the
known duplicate feature requests (Section 4.1). Subsequently, in Section 4.2 we analyze whether
we can identify related feature requests, looking both for relationships that are already known and
relationships that have previously not been documented explicitly. In Section 4.3 then, we compare
the results that we have obtained with TF-IDF to the results obtained with LSA.

4.1. Best Pre-Processing Configuration

In order to establish the best pre-processing configuration(s), we present an overview of the different
configurations and their recall rates in Table II. We observe that for the smaller Mylyn Tasks
project several configurations score 90/100 recall rates, but when also taking the ArgoUML and
Netbeans project into consideration, we observe that a single configuration scores best among all
three projects.

In what follows, we discuss the influence of the pre-processing configurations.

Mylyn Tasks ArgoUML Netbeans
Options T10 T20 T10 T20 T10 T20

BG 30 40 - - - -
SR 50 50 58 71 40 49
None 50 70 55 73 42 51
LO 50 60 63 78 51 59
SP 50 70 55 73 42 51
SC 50 70 55 73 42 51
SM 40 70 57 74 42 53
DW 50 70 67 73 45 51
AC 80 90 60 72 57 65
AC SC SP 90 100 61 71 61 69
AC DW SC SP 90 100 72 78 61 70
AC DW SC SP SM 90 100 73 79 60 71
AC DW SC SP LO 90 100 75 80 67 75
AC DW SC SP SM LO 90 100 79 85 67 77
DW SC SP SM LO 50 80 75 83 55 63

Table II. Recall rates for the three projects

As Stop Word Removal (SR) is often performed as a standard step in research using TF-IDF
[12] [43] [45], it is surprising to see that it yields worse results when applied. Apparently the built-
in correction for common words (Inverse Document Frequency) in TF-IDF performs better than
automatically removing all stop words from our manually compiled list. An option for future work
would be to investigate the alternative technique presented by De Lucia et al. [50] to use a smoothing
filter to remove “noise” from the textual corpus.

The Bi-gram option (BG) produced very low recall rates. The options DW, SC, SM, SP improve
the recall rates.

‡‡Raw cosine similarity files as produced by our FReQuAT tool can be found on http://dx.doi.org/10.6084/
m9.figshare.1030568
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Regarding the All Comments (AC) option, from our first experiments with Mylyn Tasks,
improved recall rates are achieved by including all comments. With the ArgoUML project the
improvement is not clear. However, when adding Source Code Removal (SC) and Stemming (SM),
the results for AC improve to the highest recall rates. This makes sense because when adding all
comments we get a lot of diversity in the text of feature requests. Replies often include source code
to provide a solution or hint for a solution. By removing the source code and stemming the words,
the long feature requests get more similar. To be sure about this setting we repeat the experiment
with AC off (last line in Table II). From this it is clear that overall we get better recall rates with All
Comments.

To summarize, the best configuration (last bold line in Table II) is to activate all options except
SR (stop word removal) and BG (bi-grams).

4.1.1. A Note on Categories of Duplicates In earlier work [7] we defined different duplicate types
or categories: duplicate solution [DS], partial match [PM], different wording [WO], author knows
[AU], no check done [NC], patch [PA], mismatch of attributes [MA]. In Table II it can be seen that
with the best configuration 15% (ArgoUML) to 23% (Netbeans) of the duplicates is not detected
within the top-20. We now analyze the duplicates that remain undetected within the top-20 of
Table II to determine in which duplicate category they can be situated. It turns out that most non-
detected duplicates are from three categories, see Table III:
• Duplicate Solution [DS]. The two requests are not duplicate, but their solutions are.

Developers tend to link feature requests as ‘DUPLICATE’ because they could be solved in a
similar way. However the requests and their wordings are sometimes (completely) different.
As such, text-based similarity sometimes does not detect this type of duplicates.

• Partial Match [PM]. The master and the duplicate are not exactly the same because one
contains more requests than the other. Only one of these requests is a duplicate of the other
feature request. We then do not easily find this type of duplicates with text-based similarity
analysis, because one of them contains extra text about an entirely different topic. An option
for future work would be to investigate a different similarity measure such as the asymmetric
Jaccard index to see if it better takes into account documents of different lengths.

• Wording [WO]. The master and duplicate describe the same feature using entirely different
terminology for the most important concepts. Examples we saw are ‘nested class’ vs.
‘innerclass’ or ‘move’ vs. ‘drag/reposition’. Using TF-IDF we cannot detect such similarities
without manual intervention. This motivated us to also investigate LSA as an alternative
technique.

ArgoUML Netbeans Netbeans LSA

Not detected in top-20 15 78 74
Partial Match [PM] 7 28 25
Wording [WO] 5 23 24
Duplicate Solution [DS] - 17 15
No Check Done [NC] 3 8 8
Author [AU] - 2 2

Table III. Categories of undetected duplicates. Categories taken from [7].
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Two duplicates are of the category ‘Author’ [AU], meaning the author was aware of the duplicate.
Normally we would hope to find duplicates from this category with TF-IDF because of use of similar
words by the same author. In these 2 cases this does not work because of a long comment that is
present in only one of the two requests, in one case, and because of the spelling of ‘outline view’
versus ‘outlineview’, in the other case.

The rest of the feature requests were of the category ‘No check done’ [NC], meaning it is not clear
why the author did not detect the duplicate: searching for the main word in the title of the duplicate
already results in finding the master. It is not immediately clear why using TF-IDF does not work
well for these feature requests. It could be due to the fact that by using All Comments [AC] some
of the feature requests become very long, increasing the chance that many other feature requests
achieve a high similarity score. In that case, the real duplicate would not stand out any more.

Our analysis shows that out of the non-detected duplicates a number of them could not have been
detected by (TF-IDF) text-based similarity and we can clarify that by the category they belong
to. This means that a recall rate of 100% is not achievable for most projects (like ArgoUML
and Netbeans in our study). Previous work on duplicate detection, e.g. [12–14, 43–45], did not
investigate the duplicates that have been manually marked by the project. Our analysis shows that
the data itself can be polluted (e.g., the PM category are not real duplicates, although they have been
marked as such), yielding lower recall rates than expected. This pollution of data could be solved
by providing the project members with better linking mechanisms for feature requests, because now
often the ‘DUPLICATE’ link is misused for other purposes (see also our previous work [7]).

4.2. Related Feature Requests

As explained in Section 3.2 we extract and rank the top-50 most similar pairs of feature requests per
project.

Table IV summarizes the results of the top-50 analysis. The table shows, for each of the
three projects, how many feature request pairs are physically linked (block/depend, duplicate, in
comment) in the Bugzilla repository. This category of pairs is clearly related (we have evidence in
Bugzilla) and does not need to be verified by the developers. As can be seen from the table, around
50 percent of the pairs is ‘linked’. The rest of the pairs needs to be considered manually. For the
Mylyn Tasks project we contact the project leader and for the ArgoUML project we get feedback
from two lead developers. We do not contact any developers for the Netbeans project because the
manual verification by the authors does not lead to any doubt about the relatedness of the feature
requests. The 50th most similar pair for the Netbeans project still has a similarity score just under
0.70, which is higher than for the first 2 projects (0.46 and 0.48). The higher the similarity score, the
‘closer’ the text is, the easier it is to determine relatedness. In Table IV we mark a pair as ‘Related,
confirmed’ when both we and the project developers have indicated them as being related. As can
be seen from the table a low percentage of pairs is not linked at all, around 10%.

We analyze why some of the feature requests are considered as related by the authors, but not
by the developers. This mainly happens because of the difference in interpretation of ‘related’.
For the authors ‘related’ means ‘on the same topic’ and for the Mylyn developer it means ‘in the
same module of the software’. The developer definition should be investigated differently, e.g., by
analyzing commit logs. We stick to our definition of related because we think it is useful to have a
link between feature requests that are about the same topic or feature. This can help, e.g., new users
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Mylyn Tasks ArgoUML Netbeans Netbeans LSA

Linked 20 (40%) 28 (56%) 29 (58%) 25 (50%)
Related, confirmed 15 (30%) 19 (38%) - -
Related, not confirmed 8 (16%) 1 (2%) 15 (30%) 17 (34%)
Not related 7 (14%) 2 (4%) 6 (12%) 8 (16%)
Unmarked duplicates - - 5 4

Table IV. Related pairs from top-50 most similar.

that would like to ask for an extension to an existing feature but first want to see what is already
there, or it could help developers that are new to the project and would like to get an overview of
which functionality is there from a user point of view. With our topic-based definition of relatedness
we have around 90% related feature request pairs in the top-50.

For the Netbeans project we detect in the top-50 five pairs of feature requests that are indeed
duplicates of each other. It is clear to us from the title and description that the two are real duplicate
requests asking for the same feature. But those pairs have not been marked as such in the Bugzilla
repository. These feature request pairs are called ‘Unmarked duplicates’ in Table IV. It shows that
our method can also find new duplicate requests, i.e. not having a ‘duplicate’ link in Bugzilla yet.

An interesting side-effect of analyzing the top-50 most similar feature request pairs is that we see
that the same feature request appears in several pairs in the top-50. This means that we can start to
see small groups of related feature requests. Intuitively, these small groups should contain feature
requests about the same topic. This is an example of such a group from the Mylyn project:

[102854] add bug editor support for voting
[156742] Add search criteria for tasks/bugs having votes
[256530] [upstream] voting for a bug capability missing from editor when no votes present
[316881] provide voting API in BugzillaClient

The Mylyn group about “Voting” can only be found completely when searching for “vot”. This
search for the stem of a verb is not natural to an end-user and he/she risks not to find the complete
set. That is why our TF-IDF approach can add value, even if it is just text-based on literal strings.

We also see examples of feature requests that are related according to TF-IDF scores (0.64) and
according to the developer, but that do not have related titles, e.g.
[Mylyn 283200] [Bugzilla] Support querying over custom fields

[Mylyn 339791] Bugzilla search page did not store chart settings

A simple search for ‘Bugzilla’ in the Mylyn Tasks feature database yields 40 results among which
the two related ones are hard to find based on the rest of the title. This example shows that the VSM
with TF-IDF can find related feature requests that are hard or impossible to find with simple search
in the issue tracker.

What we can conclude from this experiment is that high values of cosine similarity can be a good
indication of relatedness between two feature requests. We will explore this further in Section 5
when looking at a feature request network.

4.3. LSA

With the same pre-processing as for the TF-IDF application (AC DW SC SP SM LO) we
determine the optimal k-value to be 1700. The top-10/top-20 recall rates for k=1700 are only slightly
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higher than for TF-IDF: 69/78 instead of 67/77. This could be due to the fact that our dataset is
relatively small (only 4200 ‘documents’); when considering applications of LSA, most applications
use 10,000 documents or more (e.g., see [18]). Nevertheless, we consider Netbeans with its 4200
documents as a large project. Another possible explanation of why LSA does not outperform TF-
IDF is that the community of users of issue trackers use the same kind of terms to refer to concepts,
whereas LSA would be better at linking different terms that have a similar meaning. This assumption
needs to be checked in future work.

If we look at the categories of non-detected duplicates, we even find one more non-detected
duplicate of the category ‘Wording’ [WO], see Table III. Furthermore we still do not detect any
extra duplicates of the ‘No check done’ [NC] or ‘Author’ [AU] categories. This means LSA in our
case does not perform better than TF-IDF for detecting those categories of duplicates, contrary to
the expectation that we expressed in Section 4.1.1.

In the analysis of the top-50 most similar feature request pairs, we find many of the feature request
pairs that were also there with TF-IDF (36 out of 50 are the same, although their position within the
top-50 differs for some of them). Noteworthy is that the 50th most similar pair has a significantly
higher cosine similarity than with TF-IDF: 0.79 instead of 0.69. When we analyze the top-50 most
similar feature request pairs (see Table IV) the surprising result is that when we compare the results
of TF-IDF with those obtained with LSA we see that for TF-IDF 88% of the top-50 feature request
pairs are related (coming from the categories Linked and Related), compared to 84% in the case of
LSA. Additionally, the TF-IDF result-set contains 6 unrelated feature requests, while for LSA this
is slightly higher at 8. This indicates that TF-IDF results are slightly better for our dataset.

We do not invest time in optimizing the performance for both TF-IDF and LSA. Currently
the processing time for calculating the output term/document matrix for the Netbeans project is
approximately 3 minutes with TF-IDF and 900 minutes with LSA. This shows us that even with
optimization the processing time for LSA would likely still be considerably higher.

5. EXTENDING A FEATURE REQUEST NETWORK

Knowing that VSM with TF-IDF can find new related feature requests, we want to look into what
this means for the feature request networks as presented in the introduction. One would assume that
the feature requests within such a network have a high pair-wise similarity.

Figure 2 shows a feature request network from the Mylyn Tasks project. Each node is a feature
request identified by a six-digit unique ID. There are three types of links between the feature
requests: 1) ‘blocks/depends’, 2) ‘duplicate’ and 3) comments. These three types are also explained
in Section 3.2. For each link in the figure the pair-wise cosine similarity is indicated. If the feature
request is linked to a defect, the cosine similarity is not calculated, indicated with a ‘D’. Indeed we
can see that this similarity ranges from 0.33 to 0.69 with a few low outliers. Our explanation for
those low numbers:
• 0.04/0.06/0.09: this is due to a partial match (see also our previous work [7]). Feature request

[354023] is about the implementation of a web service between Mylyn Tasks and Bugzilla.
The other 3 feature requests linked to [354023] need this web service to be implemented
(hence the links), but are not really about the same topic.
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Figure 2. Feature request network for the Mylyn Tasks project

• 0.15: feature request [224119] describes a new functionality in Bugzilla that needs to be
available in Mylyn Tasks from the Bugzilla viewpoint. Feature request [349771] describes
the same, but from a Mylyn viewpoint with much more detailed discussion. That is why the
two feature requests are not so similar. However, they are known duplicates. In our duplicate
analysis the duplicate is still found within the top-20 because other feature requests are even
less similar to [224119].

• 0.18: again a partial match. Feature request [280564] is about creating scalable icons in
general. Feature request [349771] is about the lock icon, that needs to be scalable as well,
but the scalability is just one of the many comments in this feature request. However, if we
rank the most similar feature requests for [280564] then [349771] is on the 7th place, thus
within the top-10 most similar.

This analysis teaches us that we should not only look at absolute similarity numbers to find related
requests, but more specifically include the relative similarity. This could be done by, e.g., taking into
account the mean m and standard-deviation s of the pair-wise similarity of feature request A with
all other feature requests, when calculating the relative similarity between feature requests A and B.

In Figure 2 we also add feature request [352255] with dotted lines. This feature request is in the
top-50 of highest pair-wise similarity for the Mylyn Tasks project. In this top-50 it is linked to two
other feature requests, [371158] and [347718], with a high cosine similarity. Interesting to see is
that [347718] and [371158] also have a high pair-wise similarity while they have no direct link in
the issue tracker. We are thus able to extend the physical feature request network in the issue tracker
with a new feature request and new links through our TF-IDF calculations.
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6. DISCUSSION

6.1. Revisiting the Research Questions

In the introduction we set out to investigate whether TF-IDF can help to detect horizontal traceability
links for feature requests. Answering this step is part of our bigger research ambition to visualize
related feature requests that are stored in issue trackers. Before answering this high-level research
question, let us first consider the subsidiary research questions.

RQ1 Is TF-IDF able to detect functionally related feature requests that are not already explicitly
linked? We show that a VSM with TF-IDF can be beneficial to detect new related feature requests.
We cross-check our results with feature requests that are already marked as related in the issue
tracker, with our own opinion while reading the feature requests, and for two out of the three projects
(Mylyn Tasks and ArgoUML) also with the help of experienced project members. We confirm this
by means of an existing feature request network from the Mylyn Tasks project. This analysis teaches
us that we should not only look at absolute similarity numbers to find related requests, but more
specifically include the relative similarity.

RQ2 What is the optimal pre-processing to apply TF-IDF focusing on feature requests? Through
case studies with the Mylyn Tasks, ArgoUML and Netbeans projects we determined the optimal
pre-processing does not include stop word removal, while removal of source code is beneficial.
Additionally, we determined that all comments of the feature request should be included. We
attribute this to the fact that important words concerning the feature are repeated in the comments.

RQ3 Does a more advanced technique like LSA (Latent Semantic Analysis) improve the detection
of non-explicit links? The results of our experiment with LSA show us that our initial assumption
(that LSA would improve results as it takes into account e.g. synonyms) does not hold for the
Netbeans case. We are not interested in achieving higher recall rates, but in finding related requests.
LSA scores lower on finding related request based on the top-50 analysis. This makes us even more
satisfied with the results achieved with TF-IDF (also because the LSA calculations take much more
time).

Main research question Can TF-IDF help to detect horizontal traceability links for feature
requests? We can confirm TF-IDF finds related entries in an issue tracker. In our experiment, on
the one hand we retrieved already known relations between feature requests, while on the other
hand we retrieved feature requests pairs that were previously not marked as related, but that are
confirmed to be related by project members after we confront them with our results. We explain our
results for one example of a feature request network.

6.2. Threats to Validity

We now identify factors that may jeopardize the validity of our results and the actions we took to
reduce or alleviate the risk. Consistent with the guidelines for case studies research (see [51, 52])
we organize them into categories:

Construct validity We evaluate the best configuration of our text-based similarity approach via
the recall rate of previously known duplicate feature requests. These duplicates were marked by the
project team. Similarly, for evaluating the related feature requests, we rely on information in the
issue tracker entered by the project team, on our own opinion and on extra insights obtained from
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project members. What must be noted in this case is that for the ArgoUML project the two different
developers do not always agree on related or not related (discussing between ‘yes’ and ‘somewhat’),
although they only completely disagree on 1 item (out of 14). As one of the developers says this
difference is because “it is subjective whether two feature request are related” (e.g., related in terms
of implementation or in terms of topic). This could mean that if we would ask different developers
we would get different answers.

External validity In this study we investigate feature requests of three software projects: Mylyn
Tasks, ArgoUML and Netbeans. We choose them to be sufficiently different, in terms of domain and
size. Yet, with only three data points, we cannot claim that our results generalize to other systems.

Reliability In this paper we rely on our FRequAT tool, which we have thoroughly tested and
which we consider reliable.

7. CONCLUSION

This paper describes three case studies with feature requests from open source projects. Our main
contributions are:

1. TF-IDF can be used to detect horizontal traceability links for feature requests, something
which we validated for 2 out of the 3 projects with the help of developers.

2. Configuration of the pre-processing step is analyzed separately, because we focus on feature
requests. For our three projects stop word removal is not beneficial, whereas including ‘All
Comments’ and removing source code is yielding better recall rates.

3. LSA does not provide better results than TF-IDF in detecting horizontal traceability links for
feature requests in our case studies.

4. When using ‘Duplicate’ links in issue trackers to base recall rates on, one should be aware of
data pollution caused by misuse of the ‘Duplicate’ link, yielding lower recall rates.

Our results will help others to properly set up pre-processing for information retrieval techniques
with feature requests, and to get insight in feature request networks. Especially those feature request
networks play an important role in understanding the evolution of the specification of the system
(recorded in the form of feature requests).

The results in this paper show that TF-IDF can help to detect horizontal traceability links for
feature requests. A next step is to get measures on thresholds, recall and precision for the retrieval
of those links, by using (industrial) case studies where we are able to identify all those links on
before hand.

A subsequent step is to create tool support for automatically creating feature request networks so
that users can maximally benefit from the horizontal traceability links.

Another avenue for future research is to compare additional information retrieval approaches for
our particular problem domain, in similar vein to Oliveto et al. [53]. Part of that investigation should
also determine why LSA is currently unable to outperform TF-IDF.
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