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Abstract—Continuous Integration (CI) has become a funda-
mental practice of modern software engineering, widely adopted
in both commercial and open-source projects to enhance develop-
ment efficiency and software quality. Existing empirical research
has examined the relationship between the effectiveness of CI
adoption and project characteristics, but it often assumes CI
as a uniform intervention and neglects the heterogeneity of its
effects. In reality, the CI effectiveness is shaped by contextual
factors such as project maturity, domain, programming language,
or development practices. Moreover, many prior studies rely
on convenience samples of open-source projects, leaving the
influence of dataset composition largely unexamined. This study
employs quota sampling to construct a diversified dataset, en-
suring representation across product characteristics and project
activities. Building on this foundation, we examine the adoption
of CI both at the aggregate level and within stratified, quota-
based subsets of the dataset. The results show that the impact
of CI is sensitive to different dataset compositions. When the
contextual distribution of projects changes, both the direction and
magnitude of CI’s effects can shift, emphasizing that empirical
evidence on CI effectiveness is inherently context-dependent.
These findings indicate that the effectiveness of CI cannot be
generalized without considering project heterogeneity. Future
research should explicitly control dataset composition to better
isolate or explain contextual effects. Besides, applying suitable
sampling strategies can also minimize contextual bias, and help
generate more robust and generalizable evidence for CI studies.

Index Terms—Continuous Integration, Contextual Factors,
Project Heterogeneity, Quota Sampling, Dataset Composition

I. INTRODUCTION

Continuous Integration (CI) has become a cornerstone of mod-
ern software engineering. Developers frequently merge their
changes into a shared main branch and use CI automations to
accelerate delivery, improve stability, and maintain software
quality [1]. It has been widely adopted in both commer-
cial [2] and open-source projects [3]. A substantial body of
empirical work has examined the effects of CI [4,5]. Several
studies report improvements in productivity and delivery per-
formance [6—8], while others emphasize challenges such as
configuration complexity, maintenance overhead, and pipeline
instability [9—11]. Crucially, earlier studies also suggest that
CI’s impact is not uniform, but strongly shaped by contextual
factors, including project size, maturity, domain, programming
language, and team composition [10, 12—17]. Not all projects
benefit equally, some experience slower PR merging [7] or
increased review workload that offsets productivity [18, 19].
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From CI service selection to pipeline organization, the same
practice can lead to contrasting outcomes across €ecosys-
tems [20—22]. Most prior studies focus on specific platforms
(e.g., Travis CI) or narrow contexts, limiting the generaliz-
ability. In specialized domains such as machine learning [23]
and high-performance computing [24], CI adoption remains
underexplored and requires further investigation. All these
prior studies seem to suggest that project context plays an
important role, however, much of the available evidence is
derived from a narrow set of open-source repositories, most
prominently GitHub [25-27]. Given the platform’s scale and
practical resource constraints, researchers typically rely on
purposive or convenience sampling [28]. While this strategy
simplifies the dataset creation, it can limit representativeness
and may lead to results that depend too heavily on specific
project subsets and that do not generalize to the broader
software ecosystem.

These limitations underscore a critical gap: it remains
unclear to what extent the effects of CI generalize and
to what extent they are conditioned by contextual factors.
Although prior studies have acknowledged the moderating
role of context [29], existing analyses are fragmented and
largely restricted to single dimensions, offering little system-
atic comparison across multiple factors. To fill this gap, we
systematically investigate how contextual diversity in a dataset
influences empirical conclusions about CI. We address this
through three research questions.

RQ1 How to build a contextually diverse dataset for empirical
CI studies?

RQ2 How does the data distribution vary between the quota-
based and stratified datasets?

RQ3 How does the impact of CI adoption across contexts
differ from prior studies’ findings?

We build a multi-context dataset using a quota sampling
strategy. This dataset varies by project size, programming
language, and other activity attributes. We compare its dis-
tributions at both aggregate and stratified levels to evaluate
representativeness. We use this dataset to analyze the effects of
CI on development activity and related measures and compare
our results with prior studies to test their robustness and
generalizability across contexts. This research design reveals
the heterogeneous nature of CI’s impact. It also offers practical



guidance on how future empirical studies can account for
contextual diversity in both design and analysis.

Our results broadly confirm earlier findings but also demon-
strate that context exerts a substantial moderating influence on
multiple key indicators. In particular, programming language,
quality level, and activity are shown to condition CI’s effec-
tiveness, yielding systematic differences in commit frequency,
pull request and issue activity. These results indicate that
context not only affects the magnitude of CI's impact but also
determines its robustness and generalizability.

Overall, this paper presents the following main contributions:

e« A combined approach for stratified and quota sampling,
which provides a methodological reference for constructing
datasets in other contexts for empirical studies.

« We show empirical evidence how contextual diversity sys-
tematically shapes the effects of CI, offering methodologi-
cal guidance for the design of future studies or datasets.

o Building on the observed contextual diversity impact, we
offer recommendations for the design and direction of
future empirical experiments.

All data and scripts used in this study are available online [30].

II. BACKGROUND AND RELATED WORK

Prior research in software engineering has already studied the
practical aspects of dataset construction. In the following, we
introduce the most relevant studies.

Empirical Studies. Empirical studies are essential for devel-
oping and validating knowledge in software engineering [31—
33]. Most empirical research relies on large-scale datasets
mined from open-source software (OSS) platforms such as
GitHub, GitLab, and Bitbucket [34, 35]. These platforms pro-
vide versioned source code and valuable process data, like
developer communication, CI activity, and review records [36].
Practical constraints (e.g., scope, resources, data accessibility)
usually prevent researchers from analyzing the entire popula-
tion, so they study subsets. This makes dataset construction a
critical part, as it influences representativeness and generaliz-
ability of the findings [37]. Kitchenham et al. [33] proposed
methodological guidelines for empirical software engineering,
as aligning datasets with the research question is essential for
reliable conclusions [37]. A dataset that inaccurately reflects
the target population or real-world practices may introduce
structural bias, which can raise concerns about the reliability
of the findings [38]. Therefore, empirical studies not only
ensure methodological rigor, but should also consider the
representativeness and contextual relevance of their datasets.

Dataset Construction. Dataset construction is a crucial step
in empirical software engineering, as the selected data directly
impacts the reliability and external validity of the study [37].
It is often required to sample the available data, therefore, the
chosen sampling strategy is an essential factor of empirical
research design to reach external validity [28]. One major
issue is the lack of comprehensive sampling frames, such
as complete lists of software projects or developers, which

prevent the application of probability-based sampling methods
and lead to a generality crisis [28,39]. As a result, many
studies rely on convenience or purposive sampling [28]. A
sampling strategy that is methodologically justified, clearly
articulated, and appropriate for the study’s objectives does not
automatically invalidate research findings [39]. Nevertheless,
beyond considering contextual effects in the analysis, dataset
construction should also incorporate the diversity and address
the potential impact of sampling bias on the results.

The Potential Impact of Contextual Factors. Existing research
has increasingly highlighted the central role of contextual
factors in shaping the effects of CI. Prior work has shown
that elements such as programming language, project size,
and team composition can substantially influence how CI
manifests in practice, thereby defining its boundary condi-
tions across projects [10,12,15]. These insights provide an
important starting point for understanding CI’s applicability.
More recent efforts started to acknowledge the complexity
of these influences. For example, Huang et al. identified a
taxonomy for CI contexts with dimensions such as language,
tooling, team structures, and quality levels, to systematically
describe impact factors [17]. Rahman et al. found that CI’s
benefits differ between open-source and proprietary projects,
suggesting that project type itself constitutes a salient con-
textual dimension [40]. Expanding on this, Silva et al. [41]
recently investigated the relationship between CI and code
review within ten closed-source projects, further highlighting
how industrial constraints and internal team dynamics shape
CT’s impact on software quality differently than in open-source
environments. Other studies further incorporate variables such
as project age or total commit size into causal models as po-
tential confounders [18], reflecting an awareness that lifecycle
and activity baselines may condition the perceived impact of
CI. Prior studies often examine single contextual dimensions,
but their interplay shapes how CI works. We need systematic
cross-context comparisons to uncover these mechanisms and
to evaluate CI’s robustness and generalizability across diverse
settings. This approach aligns with cross-level analyses in
information systems research and underscores the importance
of contextual diversity in empirical CI [28,42].

Representativeness and Generalizability. Research findings
can be generalized beyond the original context only if the sam-
ple represents the target population and the study clearly de-
fines the influencing factors and boundary conditions [42, 43].
Nagappan et al. [42] pose two critical questions for assessing
generalizability: (1) Can findings from a small number of
projects be extended to a broader range of projects? (2) Does
a method or technique remain effective in different contexts?
These reflect two dimensions of generalizability: horizontal
transferability and contextual robustness. Both are essential
for building knowledge that applies across settings. Tsang [43]
defines three generalization types: statistical, theoretical, and
analytical generalization through case/context comparison. In
software engineering, theoretical and analytical generalization
are more common, especially when probability sampling is not



feasible. The effectiveness of techniques varies due to the high
context-specificity of SE practices and depends on organiza-
tional structure, team experience, programming languages, or
project size [44]. Thus, even real-world project datasets cannot
be assumed to be inherently representative [28]. Researchers
must explicitly describe the sampling and clearly report on
applicable contexts, boundary conditions, and assumptions to
improve reproducibility and enable future replications.

Reproducibility in Empirical CI Research. Replication studies
can build cumulative and verifiable knowledge in empirical re-
search [32,45-48]. Gémez et al. [49] classify replication into
several types, including Literal, Operational, and Conceptual
replication. Each type supports different validation goals and
allows varying degrees of change in experimental design, data
sources, or analysis methods. This classification shows that
replication is not just repeating an experiment, it is a purpose-
ful process that aims to identify which conditions influence
the results. Furthermore, the integrity and quality of datasets
largely determine whether a study is reproducible [50,51]. In
this study, we draw on prior designs and analytical frameworks
but do not pursue a strict literal replication. The main reason
lies in data availability and the evolution of CI platforms.
While earlier work often focused on Travis CI [52,53], the
rise of GitHub Actions has introduced new data sources and
practices [54]. This evolution made a more rigorous data se-
lection necessary; as Santos et al. [55] argue, there is a critical
need to monitor CI practices over time to ensure that datasets
capture active and evolving CI usage rather than stale configu-
rations. Their work underscores that the reliability of empirical
findings depends on whether the sampled CI activities are
representative of actual, ongoing development processes. Our
study therefore constitutes a conceptual replication: we retain
the overarching goal of examining CI’s impact, but adapt data
sources, sampling strategies, and analytical dimensions to fit
current contexts. Differences across designs and datasets do
not invalidate prior findings; instead, they reveal the conditions
under which CI’s effects vary. This perspective is essential for
building cumulative knowledge.

III. METHODOLOGY

To systematically examine how dataset composition and con-
textual diversity influence empirical assessments of CI ef-
fectiveness, we divide our methodology into three distinct
stages, an overview is presented in Figure 1. We started with
constructing both a stratified and quota-based dataset (RQ;) to
represent contextual heterogeneity [56,57]. We then extracted
multiple development activity indicators informed by prior
studies to analyse the overall CI effect. In an in-depth analysis,
we then first compare the resulting datasets to assess their
consistency and variation under different sampling strategies
(RQ2). Finally, we analyze the defined contextual strata and
compare the results with prior empirical findings (RQ3). The
subsequent subsections will introduce the details for these
distinct research phases.
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Fig. 1: Methodology

A. Dataset Construction

The dataset construction process involved the selection of
sampling dimensions, data filtering, constructing candidate
projects, and the implementation of sampling strategies.

Selection of Metrics. To represent context, we first needed to
determine the metrics for stratification, which also function
as the strata definition during sampling. The selection of
context metrics was guided by the following principles: Firstly,
the selected metrics should provide diversity while minimiz-
ing redundancy. For instance, commit frequency is highly
correlated with project size, including both would reduce
independence and hinder the feasibility of finding balanced
samples. Secondly, we prioritized metrics that are widely
recognized in prior literature, thereby enhancing comparability
and interpretability. Moreover, we also considered different
categories of contextual metrics identified in prior work [17].
Considering all of this, we selected four contextual metrics:
main programming language, CI tool type, project age, open
issue ratio. The first three have been individually examined
in prior studies but rarely analyzed jointly in a systematic
perspective. We selected JAva and PYTHON, as they represent
contrasting development paradigms (compiled vs. interpreted),
and Travis CI and GITHUB AcTIONS as two different CI tool
types. The addition of open issue ratio is an exploratory
metric that enables us to capture projects’ responsiveness to
issues and the quality focus. Together, these four metrics
provide a balanced coverage of product, process, and quality
perspectives, while reducing redundancy across dimensions. It
is worth noting that while these metrics were selected to align
with our study objectives and are not intended as fixed stan-
dards, researchers with different goals should appropriately
adopt alternative dimensions of context.

Bucketing and Stratification. After defining the contextual
dimensions, we established the sampling criteria. The same
strategy applies to both stratified and quota sampling, with
differences only in the sampling proportions across strata.
For each of the four dimensions, we constructed mutually
exclusive strata. Categorical variables (programming language
and CI tool type) were naturally divided into two categories.
Numerical variables (project age and open issues ratio) were
discretized into high and low categories using fixed-width



binning, which ensures consistent intervals independently of
the sample distribution [58]. Together, these four axes define
a stratification space of 2* =16 unique context combinations.
Each project is unambiguously assigned to one stratum.

For ease of reference, we adopted a compact four-letter
naming scheme to denote strata: the first letter indicates
programming language (J = Java, P = Python), the second
letter CI tool (T = Travis CI, G = GitHub Actions), the third
letter project age (a = young, A = old), and the fourth letter for
open issue ratio (i = low, I = high). For example, “JTAi” refers
to a Java project using Travis CI that is young and exhibits
short issue close times.

Candidate Pool and Filtering. We initially sampled 50,000
public repositories from GitHub (as of April 2, 2025 [59]). To
construct the candidate pool, we applied the following filters:

« Excluded archived, forked, and mirror repositories;

« Required the use of GitHub Actions or Travis CI, with the

main programming language restricted to Java or Python;

o Required an average frequency of at least one commit,

release, or issue per month on the default branch;

« Required at least one active commit after 2024;

« Required at least one year activity before/after CI adoption.
Following prior work [18], we defined a project’s CI adoption
point as the timestamp of the first commit introducing a CI
configuration file. For each project, we cloned the repository
locally and traversed the commit history of the default branch
to locate the first commit. We identified .travis.yml file for
Travis CI and .github/workflows/ directory for GitHub
Actions. After filtering, we obtained a candidate pool of 1,580
projects, including 911 using GitHub Actions and 669 using
Travis CI; 741 written in Python and 839 in Java.

Sampling. For stratified sampling, we preserved the natural
distribution of the 1,580 candidate projects across all 16 con-
textual strata. For quota sampling, we applied equal allocation
across strata, assigning approximately random 30 projects per
stratum. The final quota sample that ensures context diversity
comprises 407 projects, which represents about 30% of the
original sample of 1,580 projects). Due to the difficulty of
filling sufficient eligible projects in every stratum, we applied
oversampling to strata containing less than 30 projects to
ensure a balanced distribution across the dataset.

B. Data Extraction

After constructing the sample, we extracted data via the
GitHub API [60]. For consistency, the analysis focused on
the default branch, covering the full lifecycle of each project,
from creation until April 2, 2025.

In the following, we will describe all metrics that were used
to compare distributional shifts and relative changes before
and after CI adoption, and to evaluate the robustness and
moderating effects of context. Informed by prior work [18, 61],
we extracted these indicators in one-month windows for both
datasets. All timestamps were normalized and mapped to the
beginning of each month to form the time bucket. Following

prior work [18], we excluded a one-month transition window
centered around the CI adoption date to reduce noise. The
remaining timeline was labeled as pre-CI (months before the
adoption bucket) and post-CI (the adoption month and subse-
quent months). To ensure comparability across contexts and
sampling designs, we detail our statistical analysis procedures
in the next section.

Commit Frequency. We first measured the commit activity
by using the commit history of the default branch at a
monthly granularity. We cloned each repository locally and
retrieved its full default-branch history. For every commit, we
use author_date to map the beginning of the corresponding
calendar month to define its time buckets. For each project and
month, we then count the total number of commits within the
respective bucket. All commits recorded on the default branch
are included. This measure provides a comprehensive estimate
of the development rhythm and overall activity intensity. In the
following, we denote this metric as commit_frequency.

Code Churn Size. We then measured the granularity of de-
velopment activity by collecting the size of code changes per
commit. Specifically, for each commit, we parse the corre-
sponding diff file to extract the number of inserted (insertions)
and deleted (deletions) lines, and define code_churn_size
as: churn = insertions + deletions. Within each monthly
time bucket, we compute the mean of churn values for all
commits during that month. This metric reflects the average
magnitude of changes per commit, providing an estimate of
how intense the development activity is over time.

Modified Files. We use the number of modified files per
commit to measure the scope and modularity of code changes.
For each commit, we count the number of unique files that
were added, deleted, or modified in its diff. At the monthly
level, we compute the mean number of file changes, denoted
as modified_files. This metric reflects the structural breadth of
code modifications and complements the code_churn_size in-
dicator: While code churn captures the line-level changes, the
number of files changed represents the spread of modifications
across the codebase. A smaller average number suggests more
modular changes, whereas a larger value may indicate broader
refactoring or cross-module adjustments.

Issue activity. We measure issue activity by aggregating issue
opening and closing events on a monthly basis, denoted
as issue_open_count and issue_close_count. For each issue,
we record its creation time created_at and closing time
closed_at. Since opening and closing an issue can occur in
different months, the two counts are measured independently.

Pull request activity. Similar to issues, we aggregate the
monthly counts for open/close pull requests (PRs) to measure
the intensity of collaboration and integration activities, denoted
as prs_open_count and prs_close_count. Specifically, for each
pull request, we record its creation time created_at and
closing time closed_at, and map them to the corresponding
calendar month buckets. As opening and closing a PR can
occur in different months, we collected them independently.



PR latency. We measure the efficiency of code review and
integration by collecting the lifetime of PRs. For each PR
closed within a given month, we compute its latency as the
time interval between creation and closure, measured in hours.
At the monthly level, we take the mean of latencies for all
PRs closed in that month (pr_latency). This metric reflects the
average response time of the review and integration process,
showing how efficiently teams process incoming changes.

PR Merge Ratio. We quantify the integration success through
the proportion of merged PRs among all closed PRs within a
given month ( prs_merge_ratio). A PR is considered merged if
the platform metadata contains a valid merged_at timestamp.
This metric reflects the success rate and stability of the review
and integration process. A higher prs_merge_ratio indicates
that code review and quality assurance procedures are effec-
tively leading to integration, whereas a decline may suggest
increased review stringency or coordination challenges.

Commit Merge Ratio. In contrast to PR Merge Ratio, which
solely focuses on reviewed pull requests, Commit Merge Ratio
provides a broader perspective on integration frequency. It
measures the proportion of merge commits among all commits
within a given month, capturing how often developers synchro-
nize work from different branches into the mainline, denoted
as commit_merge_ratio. A higher value typically reflects a
more distributed workflow with frequent integration events,
whereas a lower ratio suggests a more linear or centralized
development pattern with fewer merges.

Releases Activity. We evaluate the delivery rhythm through
its version publication activity, denoted as releases_count.
Release dates are determined by the published_at time-
stamp, or created_at when unavailable, each timestamp is
mapped to its corresponding calendar months. This indicator
characterizes the regularity and responsiveness of software
delivery. An increase after CI adoption suggests that the
automation may contribute to shorter release cycles.

C. Data Analysis

For the collected datasets, we first compared their statistical
distributions and then applied time-series modeling to analyze
the effect of CI adoption.

Distribution Analysis. We first compared the raw data distri-
bution of the two sampled datasets (stratified and quota) to
examine potential differences introduced by distinct sampling
strategies. We focused on the activity metrics collected in
RQ2 and characterized the overall distributional patterns. If no
significant differences observed, it would suggest that the data
distribution of the two sampling strategies remains compara-
ble. Conversely, discrepancies would indicate that the sampling
design may introduce differences for particular project types,
thereby influencing the data representativeness and the validity
of subsequent analyses. To quantify these differences, we
reported the key descriptive statistics (mean, median, and stan-
dard deviation). We further applied non-parametric Wilcoxon
rank-sum tests [3,7,62] and report Cliff’s A [7,62] to capture
both statistical detectability and practical significance.

Time Series Analysis Method. To examine the potential causal
effects of CI adoption, we applied time-series modeling to
each project’s monthly activity metrics. As CI adoption usually
occurs in the middle or later stages of a project’s lifecycle,
we can discern an intervention point that separates the pre-
adoption and post-adoption phases. This design allows each
project to be viewed as a natural experiment, where the CI in-
troduction represents a clear intervention event. So we adopted
the Regression Discontinuity Design (RDD) framework as
a mixed-effects linear regression, which is widely used in
empirical studies to estimate causal effects from observational
time series data [18, 62], and we basically followed the existing
practices [18], filtered out the 1% outliers and checked the
variance inflation factors (VIF < 3) for multicollinearity, and
report explanatory power via marginal (R2) and conditional
(R?) coefficients of determination for mixed models.

This method assumes that, without intervention, the time
series remains smooth around the cutoff. Therefore, any dis-
continuity observed at the time of CI adoption can be attributed
to the effect. Specifically, we fit separate linear trends before
and after the adoption point to capture the immediate level
change () and the change in slope (§) induced by CI, thereby
identifying its short-term and long-term impacts. Based on the
monthly time series of each project, we estimate the following
linear regression model following established practices [18]:

Y: = Bo+pB1-timey+ B -interventions+ B3 -time_a fter,+e;

where Y; denotes the observed metric at time ¢; time, rep-
resents the number of months since the project’s inception;
intervention; is an indicator equal to 1 after CI adoption
and 0 otherwise; time_a fter; indicates the number of months
since CI adoption; and ¢; is the error term. In this speci-
fication, 3y captures the pre-adoption baseline level, 51 the
pre-adoption trend, (2 the immediate level shift at adoption,
and (3 the post-adoption change in trend. Estimating these
parameters enables us to quantify both the instantaneous and
sustained effects of CI adoption on project development. We
modeled both the pre- and post- adoption period in a unified
regression framework, and then derived the slope difference
(B3) as the indicator of the directional effect of CI adoption.

IV. CREATING A REPRESENTATIVE DATASET (RQ1)

Sampling in empirical software engineering research often
lacks true randomness [28, 39, 63]. Different sampling strate-
gies can influence both the composition and quality of the
resulting datasets. This research question aims to explore
whether alternative sampling methods can be used to construct
CI datasets with more diverse project contexts. To this end,
we compare two sampling strategies: stratified sampling and
quota sampling. Both methods utilize the same stratification
variables but differ in the sampling approach.

Quota & Stratified distribution. Figure 2 compares the dis-
tributions of two continuous variables: open issue ratio and
project age under stratified and quota sampling. The left panels
display empirical cumulative distribution functions (ECDFs)
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Fig. 2: Quota, Stratified sampling Comparison

with vertical dashed lines marking medians; the right panels
show violin plots to visualize the density. For open issue
ratio, the ECDF of the stratified sample is concentrated around
shorter durations, with a steep rise and a lower median,
suggesting that highly responsive projects are relatively over-
represented. In contrast, the quota sample maintains a more
balanced coverage across the full range and explicitly retains
long-tail projects with a higher open issues ratio, thus captur-
ing greater process heterogeneity. This difference is reinforced
in the violin plots, where quota sampling exhibits broader
vertical dispersion, while stratified sampling compresses tail
distributions. For project age, the two samples show very
similar medians, stratified sampling is slightly skewed toward
younger projects, whereas quota sampling incorporates more
mature repositories. The violin plots make this trend more evi-
dent: quota sampling produces wider distributions and heavier
tails, mitigating the underrepresentation of older projects.
Regarding categorical variables, stratified sampling natu-
rally preserves the proportions, while quota sampling balances
the categories. In our case, the stratified sampling across
languages and CI platforms results in 741/839 Python/Java
projects and 911/669 projects using GitHub Actions/Travis
CIl. The quota sampling balances these dimensions. It is
noteworthy that in practice, the distribution of languages and
tools is not strongly skewed, this may come from the current
sampling only including two languages and CI tools, which
limits the representation of broader ecosystem trends.
Overall, the two sampling strategies serve complementary
purposes. Stratified sampling preserves external validity by
mirroring the population distribution, but may underrepresent
rare or long-tail phenomena. In contrast, quota sampling en-
hances internal validity and contextual diversity by deliberately
retaining extreme and boundary cases. Given that long-tail
patterns often encode critical mechanisms of CI heterogene-
ity, quota sampling provides a stronger basis for identifying
boundary conditions and context-dependent variations.

Context distribution. Table 1 presents the distribution of
projects across the 16 contextual strata, revealing several
systematic patterns that reflect the heterogeneity of the CI
ecosystem. First, some combinations in strata (e.g., PGAI
and JTal) are heavily underrepresented, especially in high
open issue ratio bucket. These rare combinations likely corre-
spond to legacy systems with prolonged maintenance cycles
and limited development agility, which are relatively uncom-
mon in modern open-source environments. In contrast, strata

TABLE I: Strata distribution overview

Stratum  Description Count Cum.%
PGai Python, GitHub Actions, young, low 304 19.2
JGai Java, GitHub Actions, young, low 290 37.6
JTAIL Java, Travis CI, old, low 263 54.2
PTAi Python, Travis CI, old, low 204 67.2
JGAI Java, GitHub Actions, old, low 106 73.9
PGal Python, GitHub Actions, young, high 78 78.9
PTai Python, Travis CI, young, low 60 82.5
PGAI Python, GitHub Actions, old, low 51 85.8
JGal Java, GitHub Actions, young, high 51 89.1
JTai Java, Travis CI, young, low 48 92.3
JTAI Java, Travis CI, old, high 47 95.2
JGAI Java, GitHub Actions, old, high 24 96.6
PTAIL Python, Travis CI, old, high 24 98.2
PTal Python, Travis CI, young, high 12 99.0
JTal Java, Travis CI, young, high 10 99.6
PGAI Python, GitHub Actions, old, high 7 100.0

representing younger and highly efficient projects, such as
PGai (304 projects) and JGai (290 projects), dominate the
dataset. This skew toward “young and responsive” combi-
nations indicates that modern CI adoption is concentrated
among active communities that rapidly integrate automation
and feedback-driven development. Second, two CI tools show
pronounced asymmetries. GitHub Actions exhibits substantial
representation in younger and low-latency strata (e.g., PGai
and JGai), reflecting its rapid adoption by newer projects that
prioritize automation flexibility and tighter integration with
the GitHub ecosystem. Conversely, Travis CI appears more
frequently in older yet still efficient contexts (e.g., PTAi with
204 projects and JTAi with 263 projects), suggesting that
long-lived repositories are more likely to adopt Travis CI at
an early age. This also aligns with the evolution patterns
of CI platforms: On the GitHub platform, GitHub Actions
naturally become the mainstream CI tool for emerging projects
due to its smooth platform integration and compatibility.
Finally, the scarcity of high-issue-duration strata under GitHub
Actions (e.g., PGAI JTal) implies open source projects tend
to sustain higher development agility. Taken together, these
distributional patterns demonstrate that the quota-based dataset
achieves a comprehensive representation of both mainstream
and boundary context projects.

V. DATASET COMPARISON (RQ2)

To illustrate the data distribution, we analyzed multiple
activity-related metrics in both stratified and quota sample
datasets. Table II presents the complete results.

The comparative statistics reveal a consistent and nuanced
divergence between the stratified sampling Sy and the quota
sampling ()4 across multiple dimensions of development activ-
ity. While the absolute magnitude of Cliff’s A remains modest
(A < 0.06 for all significant metrics), the extremely low p-
values obtained from the Wilcoxon rank-sum tests confirm
that these are systematic rather than random fluctuations. This
indicates that the sampling strategy influences the represen-
tation of project types in the dataset, and thereby shapes
how the CI ecosystem is interpreted. From the development



activity perspective, the S; dataset shows slightly higher
values than the @)y sample across most metrics, including
commit_frequency (A = +0.04, p ~ 5.63 x 1079, modi-
fied_files (A = 40.02, p ~ 2.43 x 107'3), and both issue
and PR activities (A ~ +0.03-0.06, p < 1072°). These
consistently positive trends suggest that S; sampling tends
to preserve projects with more frequent collaboration and
maintenance activity, while the ()4 dilutes the representation of
highly active projects, leading to a slightly more conservative
picture of ecosystem vitality. Besides, there are no significant
differences observed in pr_latency (A =~ 0.00, p ~ 0.98)
commit_merge_ratio (A =~ 0.00, p =~ 0.27), while a small but
significant negative difference is observed in pr_merge_ratio
(A = —0.01, p =~ 3.6 x 10~3), suggesting that quota sampling
slightly reduces the merged PRs proportion.

In contrast, the release_count shows that projects in Sy
sample exhibit a significantly higher mean number of releases
(A = +0.02, p ~ 5.8 x 10723), indicating that this sampling
approach tends to capture more mature release cycles and
complete development lifecycles. The stratification pattern in
Table I explains this trend: in Sy, the PGai and JGai strata
take the top two positions. These strata are relatively young
projects and employ modern CI workflows, exhibit a high level
of automation, and maintain a low open-issues ratio. Such
projects benefit from shorter feedback loops and continuous
integration processes, resulting in higher development activity
and a more regular release rhythm. Their dominance within Sy
largely explains the slightly elevated activity-related metrics,
such as commit frequency, PR volume, and release count.
In contrast, the ()4 provides a more balanced representation
across contextual types. It includes a wider range of reposi-
tories, including those with uncommon characteristics. As a
result, (), captures a broader but less active segment of the
ecosystem, reflecting the diversity of development practices.

TABLE II: Statistics of development activity in
Stratified/Quota dataset

Metric(m) Cohort Mean Median Std Cliff’s A Mann-Whitney p
Stratified ~ 29.86 9.00 93.70
commit_frequenc, +0.04* 5.63x10~40
Y Quota 2882 700 8254 *
code_churn_size Stratified 1324.67 55.20 46822.75 +0.00 0.192
Quota 1707.45 54.41 72795.16
modified_files Stratified 647 193 9454y 5 43x10-13
Quota 7.12 1.83 166.74
Stratified 537 1.00 26.33 E
issues_open_count +0.04* . 1038
—-open- Quota 4.81 1.00 16.54 5.96x10
ati 5 K .
issues_close_count Stratified 4.53 1.00 26.54 +0.06* 9.16x10—89
Quota 3.77 0.00 14.00
Stratified 7.68 2.00 21.46
rs_open_count +0.03* 12x10~24
prs_open_cou Quota 783 100  29.58 2.12x10
Stratified 7.56 1.00 21.49
rs_close_count +0.03* 1. 1026
prs_close Quota 770 100 2948 99x10
ifi 42 11672 2385.04
prs. latency Stratified 697 672 2385.0 0,00 0983
Quota 75142 118.59  2608.50
s meree ratio Stratified 0.78 0.94 0.31 0.01% 3.59x10—3
prs_merge Quota 078 095 032 i -o9x
commit_merge_ratio Stratified 0.12 0.00 0.17 +0.00 0.271
Quota 0.12 0.00 0.18
Stratified 0.70 0.00 3.07
releases_count tratie +0.02* 5.80x10 23
Quota 0.64 0.00 2.77

Discussion. A closer comparison shows that the two sampling
strategies differ mainly in contextual composition, as each
strategy determines which parts of the CI ecosystem are em-
pirically visible. Sy adheres more closely to the natural distri-
bution, thereby amplifying the visibility of dominant contexts,
typically highly active or automation-intensive projects. While
this preserves the authenticity of the ecosystem, it decreases
the visibility of minority contexts, which may include legacy
systems or some domains that diverge from the mainstream. In
contrast, ()4 forces the balance across different context strata,
rebalancing the dataset to increase the visibility of minority
project types. This adjustment might not entirely align with
the real distribution pattern, but it increases the visibility of
uncommon or hidden contexts. As such, in Table II, these
differences in contextual composition can translate into the
measurable variations in activity metrics.

Overall, these findings lead to an important insight: that
sampling is not only a simple filtering process but a contextual
lens that shapes what can be empirically generalized. As in
stratified sampling, retaining the natural distribution reveals
realism but may overlook the rare practices that could chal-
lenge general assumptions. In contrast, enforcing balancing
in quota sampling increases the context coverage but may
break the natural prevalence, possibly obscuring mainstream
patterns. Recognizing this trade-off is essential for interpreting
the empirical study findings, whether these findings reflect
the core patterns of the ecosystem, or the boundaries of their
generalizability across diverse project contexts.

VI. CONTEXT EFFECT (RQ3)

To further analyze how CI impacts vary across contexts, we
applied the RDD model to both the stratified (Sy) and quota-
based dataset (QQ4) across the 16 different context buckets. We
compare the changes in the regression slopes before and after
CI adoption, Figure 3 shows the results. Each plot represents
one development dimension, and the vertical axis shows 16
contextual combinations (e.g., JGA1i), jointly defined by four
intersecting attributes: programming language (Java/Python),
CI tool (Travis CI/GitHub Actions), project age (old/new),
and open issue ratio (fast/slow). The two solid black circles
denote the results for stratified and quota samples and serve
as a reference for comparison. Hollow markers show context-
specific results: open circles indicate contexts following the
same directional trend as the stratified baseline, whereas
light gray triangles denote opposing trends that contradict
the findings from a stratified sample. The horizontal lines
for each datapoint indicate the 95% confidence intervals to
describe model uncertainty. The gray bars on the right reflect
the number of repositories within each context, depicting the
relative prevalence of this context in the ecosystem.

Overall trend. Overall, S; and @); show broadly consistent
post-adoption trends, indicating mildly positive or stable CI
effects. Nevertheless, variations in magnitude and direction
can be observed. For instance, in collaboration-related metrics
such as pr_latency and pr_closse_count, Q4 partially diverges
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Fig. 3: Forest plots of the 11 Cl-related metrics.

from Sy, suggesting the ecosystem structure and project
composition moderate effects. S, is biased by the prevalence
of the different dimensions: Buckets with a higher number
of projects have a stronger impact on the overall stratified
trend and therefore dominant ecosystem characteristics. As
such, Sy reflects mainstream patterns. Nonetheless, numerical
dominance alone does not fully explain the observed varia-
tions. Statistically significant differences also persist across
buckets, revealing that even large, mainstream projects do not
always share consistent behavioral patterns. In some metrics,
such as pr_latency, major buckets exhibit opposite slopes
relative to the stratified baseline, suggesting that the contextual
influences within these sub-ecosystems are heterogeneous and
potentially counteracting. In addition to the trend analysis, it
is important to consider the absolute counts of each bucket.
Buckets such as JGai and PGai contain 250-300 projects
each. The generally higher count and activity levels found
in the Java buckets might amplify the effect of the higher
variance. In summary, high-volume context projects show a
noticeable weighting effect on the aggregate outcome, but
the extent of the shift ultimately depends on the directional
coherence of their contextual behaviors.

Contextual Differences. By examining the varying context
buckets in Figure 3 that either confirm (o), but particularly
those that contradict (A) the overall trend, several patterns
emerge. Travis-related subgroups exhibit a pronounced right-

ward shift, with most combinations showing above zero,
indicating strong and more concentrated positive changes. In
contrast, GitHub Actions (GHA) displays smaller, but more
evenly distributed positive effects, suggesting steadier and
more sustained improvements. While Travis tends to amplify
collaboration and delivery dynamics, it also introduces greater
variability, especially in issue activity, file modification, and
release counts. This is likely due to its external integration,
making its effectiveness more sensitive to configuration quality
and project setup. GHA, as a native GitHub service, integrates
continuous feedback directly into pull request workflows,
leading to smaller but more stable improvements.

From the programming language perspective, most Java
projects exhibit positive long-term trends, like in delivery and
collaboration (PR merge ratio/issue activity). Java projects also
deviate more often from the overall trend, which illustrates
a higher heterogeneity in CI adaptation. In contrast, Python
projects show smaller but more consistent effect improve-
ments, typically concentrating near neutral-to-positive ranges.
These patterns imply that lightweight ecosystems benefit from
CI adoption more smoothly and homogeneously. Regarding
project age, younger projects tend to show more positive
trends in collaboration-related metrics, like PR latency and
open issue count, indicating that early CI adoption facilitates
faster feedback and issue resolution. In contrast, older projects
display positive effects in code and release-related dimensions,



including modified files, PR open/close counts, and release
frequency, which implies that more mature projects see stim-
ulation of key development activities through CI. Interestingly,
younger projects diverge more frequently from the overall
trend, suggesting that early-phase CI adoption amplifies con-
textual variability: Younger projects adopt new CI tools and
workflows faster, but the effects vary more. In contrast, older
projects integrate CI as an incremental improvement to mature
workflows, rather than driving radical changes.

Finally, projects with a higher ratio of open issues exhibit
more sustained positive effects overall, which suggests that
maintaining a larger backlog of unresolved issues fosters
sustained team engagement and continuous interaction. At
the same time, a high amount of parallel issues may lead
to delayed responsiveness and slower issue resolution. For
instance, high open-issue contexts show more negative effects
in PR latency, implying that review and merging processes
tend to slow down under coordination loads. These results
imply that issue management dynamics intensify contextual
variability, yielding divergent CI effects across ecosystems.

Comparison with Prior Studies. Prior research [18,61,62]
generally agrees that CI can improve collaboration and de-
livery efficiency, but empirical results remain mixed, ranging
from strong positive effects to negligible impact. At the
ecosystem level, early studies primarily focus on Travis CI.
Earlier work reported that CI adoption increased productiv-
ity [61] and integration frequency with smaller code churn
size but may also increase the PR latency and workload [18],
and the file modification size will increase [64], while other
research [62] found no significant influence on development
activity like merge ratio or code change size.

Our results may help to explain, when datasets are domi-
nated by ecosystems such as Travis, that the distributions may
show high variance, with some projects experiencing substan-
tial gains, while others remain neutral or slightly negative.
This internal heterogeneity dilutes aggregate patterns, leading
to a “no effect” or "stronger effect" performance at the macro
level. In collaboration and delivery metrics, prior studies offer
similarly mixed results. While some report that CI adoption
doubles release frequency and reduces PR merge time [3],
others found that more than 71% of projects experienced
slower PR merging after CI adoption [7]. Recent evidence
also indicates that although rapid releases can accelerate issue
fixing, they may prolong overall integration delays [19].

Our study further reveals that CI effects exhibit both co-
herence and divergent patterns across contexts. These discrep-
ancies also stem from underlying differences in the dataset
composition. When ecosystem and tool distributions are bal-
anced, CI effects become more coherent, supporting that
ecosystem dominance bias shapes aggregate outcomes. For
productivity-related metrics such as commit frequency and
code churn per commit, our findings align with previous
work [62]: CI adoption does not necessarily increase individual
productivity and may even slightly reduce it. This pattern
is more pronounced in Travis-based projects. In contrast,

GitHub Actions supports more stable individual productivity
while improving coordination efficiency (e.g., reduced PR
latency), reflecting a trade-off between coordination gains and
individual output stabilization. Overall, although some of our
results align with prior findings, they suggest that divergent
conclusions across CI studies largely arise from contextual
composition and ecosystem bias. When samples concentrate
on specific languages, tools, or project types, observed effects
may reflect ecological characteristics rather than general causal
mechanisms. By systematically stratifying, our analysis reveals
the heterogeneous structure of CI impact, that the contextual
composition determines whether CI's impact is visible or
obscured in aggregate analyses.

VII. DISCUSSION

The previous sections presented concrete results to the research
questions. We will now reflect on their impacts on future work.

Broadening Contextual Exploration in CI studies. Our selec-
tion of four contextual dimensions was informed by prior
studies and aimed to maximize the coverage of contextual
heterogeneity while avoiding highly colinear metrics. Future
research could further extend the analysis across a broader
range of contextual dimensions. For instance, dimensions like
team composition, team size, developer experience distribu-
tion, or organizational hierarchy can be included. Moreover,
the inclusion of longitudinal or cross-project comparative
analysis could help to systematically reveal how these charac-
teristics interact and evolve over time. Such extensions would
enable a deeper understanding of CI effectiveness, and provide
more context-sensitive guidance for process improvements.

Lack of Benchmark Datasets. One observation from prior
Cl-related empirical studies is the widespread reliance on
certain well-known datasets, like TravisTorrent [53]. While
these resources facilitated early research, some of them are
no longer actively maintained or accessible, limiting the re-
producibility of prior findings. This issue stems from datasets
being maintained by individual researchers without long-term
sustainability guarantees. For future improvements, the re-
search community should prioritize the development and long-
term maintenance of benchmarks, e.g., through automated data
collection. Establishing a clear framework for dataset contribu-
tion or curation would help to sustain collective ownership and
encourage long-term community engagement. Together, these
efforts can help CI research infrastructure transform into a
stable, transparent, and collaborative basis for empirical work.

Data Stratification Challenges. During dataset construction,
we observed that certain strata, such as projects with long issue
resolution times, test coverage, or contribution volumes, are
intrinsically rare. While some distributions align with intuitive
assumptions, such as larger projects that tend to have more
contributors and high activity, it remains difficult to identify
large projects with both fewer contributors and lower activity.
Increasing the strata size naturally leads to a decrease in the
number of projects that fit these criteria, which is also our
concern in deciding the strata size. In future improvements,



researchers should explicitly consider the representation of
lower-frequency strata. We argue that rarity should not be
conflated with irrelevance, as uncommon cases may reflect im-
portant patterns specific to highly complex projects or specific
developments. Meanwhile, preserving the original distribution
remains essential for uncovering the natural ecosystem-level
trends. Therefore, future sample project selection should keep
the balance between rare cases representation and maintaining
the natural distribution to align with the research goal.

Insufficient Transparency in Replication. During our replica-
tion, we encountered challenges due to incomplete or un-
derspecified dataset construction details in some studies. In
many cases, papers do not present their filtering procedures,
project selection criteria, or do not explain their rationale.
For instance, we found studies that claim to select the size
of projects without explaining what they are referring to and
how they measure the metric, e.g., source code size versus
team size. This lack of transparency introduces ambiguity and
hinders reproducibility. We believe that future studies should
including explicit definitions of key metrics, selection criteria,
and any filtering steps of the dataset construction process.

Implicit Selection Bias. While dataset quality has been dis-
cussed in the related work section, we do not imply that data
quality is solely an issue of completeness or accuracy. In CI
research, we argue that data quality should also be defined
relative to the study purpose. A dataset curated for evaluating
test coverage may not be suitable for studies targeting socio-
technical factors. Furthermore, when project selection criteria
are tightly coupled with theoretical assumptions, such as fo-
cusing on mature, active, or popular repositories, the resulting
dataset ceases to be a neutral empirical sample. Instead, it
becomes a theory-laden construct, shaped not only by the
characteristics of the development ecosystem but also by the
researcher’s prior expectations. This raises a fundamental epis-
temological question: are we uncovering causal mechanisms
that objectively exist in practice, or are we merely validating a
conceptual framework we embedded in the sampling process?
When datasets are implicitly preconditioned on factors like
high activity or popularity, the observed outcomes, such as
success rates or CI performance, may reflect the selection filter
more than the general behavior of software projects. In such
cases, empirical findings risk becoming self-fulfilling confir-
mations, reinforcing preconceptions rather than challenging or
expanding them. We caution future studies to critically reflect
on whether or how the sampling design can affect the em-
pirical findings. In addition to a clear dataset documentation,
researchers can conduct comparative or replication studies to
evaluate the consistency and generalizability of conclusions.

VIII. THREATS TO VALIDITY

Despite efforts to improve internal validity, several threats
remain. We stratified projects by factors such as programming
language and CI platform to mitigate confounding effects;
however, selecting optimal control variables for specific re-
search designs is beyond this study’s scope. Our findings

suggest that future work should more explicitly align control
variables with project context, research objectives, and data
sources in relative research. In addition, we use GitHub
Actions build success or failure as a proxy for build qual-
ity. Although widely adopted, this binary measure provides
only a coarse approximation as successful builds may still
contain quality issues, while failures may result from transient
infrastructure problems. These limitations may introduce bias
and weaken the observed effects. Future studies could improve
validity by incorporating richer quality indicators, such as test
coverage, static analysis results, or historical failure patterns.

Our findings are also subject to potential threats to exter-
nal validity. While we mitigate the risk of inherited design
assumptions by replicating studies from peer-reviewed, top-
tier venues, data source differences remain a key concern.
Prior studies primarily use Travis CI, whereas we analyze
GitHub Actions. Platform-level differences in build orchestra-
tion, scheduling, and error handling may influence observed
outcomes independently of the targeted development practices.
To address this concern, we compared our results from GitHub
Actions with the corresponding Travis CI findings reported in
the original studies. This comparison provides initial evidence
of cross-platform reproducibility, but it does not guarantee full
generalizability across CI platforms.

IX. CONCLUSION

Continuous Integration has become a fundamental practice of
modern software engineering. Existing research often assumes
CI to be a uniform intervention and neglects the heterogeneity
of its effects. In reality, the effectiveness of CI is shaped by
contextual factors such as project maturity, domain, program-
ming language, or development practices. In this paper, we
have examined the influence of the dataset composition both
on the distribution of the resulting data and on the empirical
conclusions that can be drawn from such a dataset.

Revisiting the Research Questions. We employed quota-based
sampling to create a more diverse dataset (RQ;p). The ob-
servation of data distribution reveals that this approach puts
more emphasis on less common project characteristics (RQz).
Furthermore, we found that prior studies often relied on
stratified sample datasets, which can potentially jeopardize the
generalizability of previous results (RQs).

Implications. These findings indicate that sampling strategies
can noticeably influence statistical results, as the observations
can be shaped not only by the studied variables but also
by the underlying dataset composition. Therefore, researchers
should interpret experimental results with careful considera-
tion of dataset composition to minimize potential bias. Also,
future empirical studies are encouraged to conduct experiments
across more diverse environments to enhance the generalizabil-
ity and interpretability of conclusions regarding CI effects.
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