
Aiding Software Developers to Maintain Developer Tests

Victor Hurdugaci
Delft University of Technology

The Netherlands
Email: contact@victorhurdugaci.com

Andy Zaidman
Delft University of Technology

The Netherlands
Email: a.e.zaidman@tudelft.nl

Abstract—Unit and integration tests can be invaluable during
software maintenance as they help to understand pieces of code,
they help with quality assurance and they build up confidence
amongst developers. Unfortunately then, previous research has
shown that unit tests do not always co-evolve nicely with the
production code, thus leaving the software vulnerable. This
paper presents TestNForce, a tool that helps developers to
identify the unit tests that need to be altered and executed
after a code change, thereby reducing the effort needed to
keep the unit tests in sync with the changes to the production
code. In order to evaluate TestNForce, we perform a user study
that evaluates the adequacy, usefulness and completeness of
TestNForce?.

I. INTRODUCTION

Lehman has taught us that a software system must evolve,
or it becomes progressively less useful [2]. When evolving
software, the source code is the main artifact typically con-
sidered, as this concept stands central when thinking of soft-
ware. Software, however, is multi-dimensional, and so is the
development process behind it. This multi-dimensionality
lies in the fact that to develop high-quality source code, other
artifacts are needed, e.g., requirements, documentation, tests,
etc. [3]. A software development process aiming for quality
should thus allow these artifacts to co-evolve gracefully
alongside their respective dimensions.

One artifact which is of primary importance when devel-
oping high-quality software, is the so-called developer test,
i.e., a codified unit or integration test written by develop-
ers [4]. Indeed, a 2002 report from the NIST indicates that
catching defects early during (unit) testing lowers the total
development cost significantly [5].

Intuitively, we know that ideally, the production code
and test code should co-evolve, not in the least to have a
permanent safety net during reengineering [6]. A previous
study [7], however, has shown that not all software projects
uphold a process whereby graceful co-evolution of produc-
tion code and test code takes place. This effectively means
that the software is vulnerable for extended periods of time
as the production code evolves, but the test code does not
follow (immediately). In this context, Moonen et al. have
shown that even while refactorings are behaviour preserving,

?This work is described in more detail in the MSc thesis of Victor
Hurdugaci [1].

they potentially invalidate tests [8]. In the same vein, Elbaum
et al. concluded that even minor changes in production code
can significantly affect test coverage [9].

The reasons for this lack of co-evolution are manifold:

• lack of time or resources because the maintenance of a
test suite is very costly [10]–[12]

• lack of awareness of the existence of tests for a particu-
lar functionality (e.g., due to lack of traceability and/or
bad naming conventions) [13]

• lack of enough knowledge of the software system or
lack of tool-support to identify all covering tests [14],
typically resulting in either too few or too many tests
being executed [11]

• lack of time to run the tests (running the unit test suite
may take from seconds to hours [11])

While we cannot solve all of these issues, tool-support
that creates awareness and supports software developers in
identifying and remembering which tests cover a particular
piece of source code can alleviate these issues. It is in
this context that we have developed TestNForce1, a plug-
in for Microsoft Visual Studio 2010 that allows developers
to see which tests cover a piece of (changed) source code.
Additionally, it helps the developer in remembering that the
test code should be adjusted before committing source code
to version control.

This paper introduces TestNForce and addresses the fol-
lowing research questions:

RQ1 Can such a tool be built with acceptable performance?
RQ2 Is the tool considered useful by developers?
RQ3 Do the developers experience the tool as a hindrance

during development?

This paper is structured as follows: in Section II we
first present a number of usage scenarios for TestNForce,
after which we give a description of the inner-workings
of the tool. Section III describes our experimental setup,
while Section IV presents the results of the experiment. In
Section V we discuss our findings and we present threats to
validity. Section VI introduces related work and Section VII
concludes this paper.

1A video of the use of TestNForce and the source code of the tool are
available at http://swerl.tudelft.nl/bin/view/Main/TestNForce

II. OVERVIEW OF TESTNFORCE

TestNForce is a plug-in for Microsoft Visual Studio 2010.
Its main aim is to assist software developers in determining
which subset of unit tests should be changed and/or exe-
cuted after adapting the production code. Section II-A first
introduces common usage scenarios for TestNForce, after
which Sections II-B and II-C detail the internals of our
implementation.

A. Usage scenarios of TestNForce

While creating TestNForce, we had three primary scenar-
ios in mind to help software engineers in maintaining their
developer tests. We now discuss the three scenarios:

Scenario 1: Show covering tests

Motivation: A software developer might be interested in knowing
which tests cover a particular piece of code, (1) because the test
code might explain how the piece of code works, in particular, how
parameters should be initialized, (2) to understand the impact of his
changes on the tests and (3) to ensure that a safety net exists for that
particular piece of code before starting to change it.
Instantiation: When right clicking on a piece of code, a context menu
appears from which you can choose the “Show covering tests” option
(see Figure 1). If the developer activates this option for a line of code, all
test methods that cover the surrounding method will be listed. If more
than one method is selected while right clicking, all test methods that
cover the selected methods are shown. Figure 2 shows how TestNForce
presents the results to the user.

Scenario 2: What tests do I need to run?

Motivation: After adjusting the production code the developer wants to
know which tests should be investigated and possibly changed. While
this might seem like a trivial task, this is often not the case. In particular,
when the typical naming convention between production and test code
(a class string is tested by a class stringTest) is missing and/or
when a more integration test oriented style of testing is used, it becomes
hard to manually trace the covering test methods.
Instantiation: In the test menu (right upper corner in Figure 1)
TestNForce introduces an extra menu item “What tests do I need to
run?”. This option analyses all the files in the Visual Studio solution
and returns a list of test methods that cover units of production code
that have been changed.

Scenario 3: Enforcing self-contained commits

Motivation: A developer might sometimes forget that changes to
production code do often need to be followed up by changes to test
code as well. While these follow-up changes are not always necessary
previous research by, e.g., Moonen et al., has shown that a number
of refactorings in production code necessitate changes to test code as
well [8]. We want to create awareness with the developer that while
he changed production code, (some of) the covering tests were not
changed.
Instantiation: In order to make sure that this co-evolution happens
immediately, TestNForce has a commit policy. This commit policy
ensures self-contained commits [15], i.e., commits whereby changes
to production and test code are committed simultaneously. Just before
committing the changes (to production code), TestNForce will deter-
mine whether the tests that cover the production code have been changed
as well. Figure 3 shows the warning that TestNforce provides when the
mapping index between production and test code is not up to date.

B. Building the TestNForce production/test code index

In order to provide the functionality for helping software
developers in the scenarios discussed above, TestNForce

Figure 3: The TestNForce commit policy shows a warning
that the mapping index is not up to date

follows a seven step plan to build an index that maps a
production code method to its covering test(s). This seven
step plan is shown in Figure 4. We will now go over each
of these seven steps in more detail.

Step 1: Solution meta identifier: In Visual Studio, a
solution is a structure that contains a group of one or
more projects. These projects work together to create an
application. The first step analyses the Visual Studio solution
and stores information about it. In particular, we want to
know which projects reside in the Visual Studio solution
and their respective paths.

Step 2: Project meta identifier: The second step is
meant to determine whether each of the projects that were
identified in the previous step can be used by TestNForce.
The projects that can be used by TestNForce are C# (test)
projects.

Step 3: Build: In this stage the project is built. If the
build fails, the TestNForce analysis stops.

Step 4: Instrumentation: The binaries that we obtained
from the previous step are now instrumented so that their
execution can be traced. This process is very similar to what
a typical code coverage tool does. In terms of implementa-
tion, we were able to reuse vsinstr, a tool provided by
the .NET Framework, which facilitates the instrumentation
of .NET binaries.

Step 5: Identify tests: We now use .NET Reflec-
tion to identify tests in each test assembly. In particular,
from mstest’s2 point of view, a test method is a public
instance method with no arguments decorated with the
TestMethodAttribute attribute.

Step 6: Run tests: In this step we need to determine
which parts of the production code are covered by individual
test cases. In order to obtain this information, we followed
an approach similar to Galli et al. [16]. In particular, we
execute each test case individually and use standard tools

2MSTest is a command line utility from Microsoft that executes unit tests
created in Visual Studio.

Figure 1: Additional TestNForce menus in Visual Studio

Figure 2: Result of asking TestNForce to determine which tests cover a particular piece of code

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

- Projects
- Solution
details

- Project types
- Build paths

- Tests/
project

- Test
results
- Coverage

- Test
mapping
index

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

- Projects
- Solution
details

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

- Project types
- Build paths

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

- Tests/
project

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

- Test
results
- Coverage

1. Solution
meta

identifier

2. Project
meta

identifier
3. Build

4.
Instrument

binaries

5. Identify
tests

6. Run tests
7. Build
index

- Test
mapping
index

Figure 4: Seven steps of the TestNForce process

like vsinstr and perfmon to track down the execution
path of individual test cases.

Step 7: Build index: Using the execution paths of
individual test cases (see Step 6), we now build the test
mapping index. This index keeps a many-to-many mapping
between test methods and the tested methods. The many-to-
many relation is needed because a test can cover, and usually
does, multiple methods while a method can be covered by
multiple tests. The index is stored next to the Visual Studio
solution file in XML format. For space saving reasons, each
indexed method gets an Id and the mapping section of the
file refers to their Ids. Below is a part of a mapping file:
<Methods>
<Method Name="P.Add(System.Int32,System.Int32)"

ID="0" />
<Method Name="P.AddTest()" ID="1" />
<Method Name="P.Cmp(System.Int32)" ID="2" />

</Methods>
<TestMapping>
<TestMap MethodID="0" TestID="1" />
<TestMap MethodID="2" TestID="1" />

</TestMapping>

C. Code comparison

After the index has been built, TestNForce needs to
establish whether any code has changed. A first rudimentary
check is to see whether the file containing a unit of code has
changed based on the date and time of change. This check,
however, is still very coarse grained. In order to provide
the developer with a more fine-grained view of what has
changed, we decided to compare the old and the current
versions of units of code. In particular, we are checking
whether the two pieces of code are equivalent except for
changes to layout and/or addition or removal of comments.

III. EXPERIMENTAL SETUP

In our experiment we want to verify whether TestNForce
is able to change the software development and testing
habits of its users. Specifically, we are interested in the
opinion of developers regarding the adequacy, usability and
completeness of TestNForce. For this, we let eight experi-
mental subjects work with TestNForce during a number of

programming assignments. We employ a one-group pretest-
posttest pre-experimental design [17].

A. One-group pretest-posttest

In a one-group pretest-posttest pre-experimental design,
only one group is tested. Instead of having a control group
like in a typical controlled experiment, the experimental
group is subjected to an extra test before the experiment
is conducted. This test serves as a baseline to which the
measurements gathered after the experiment can be com-
pared. During pretesting and posttesting, the subjects are
measured in terms of the dependent variables. Usually, the
same questionnaire is used both before and after varying the
independent variable (i.e., introducing the tool). By using the
same questions, the pretest and posttest results can be com-
pared more easily. The fact that no control group is present
is why this type of experiment is called pre-experimental,
in particular because the lack of the control group hinders
us to identify an event related to the dependent variable
that intervenes between the pretest and the posttest where
the effects could be confused with those of the independent
variable. Nevertheless the one-group pretest-posttest design
allows us to report on facts of real user-behaviour, even those
observed in limited-sample experiences [18].

For our questionnaires we employ close-end matrix ques-
tions in which respondents can rate a number of statements
on a 1 to 5 scale, ranging from strongly disagree to strongly
agree (the so-called Likert scale).

Pretest design: For the pretest3 a total number of
four themes were chosen. Each theme relates to a different
aspect of the experiment. Most themes are intended to
determine possible external variables that might influence
the dependent variables, other than the independent variable
that is being examined (i.e., the use of TestNForce). An
excerpt of the pretest questionnaire can be seen in Table I.

1) Participants background (questions 1a-1d). Questions
about age, profession and education.

2) Development experience (questions 2a-2i). Subjects
were asked to rate their development skills, experience
with C# and Visual Studio.

3) Testing experience (questions 3a-3h). Information about
the testing skills was collected using the questions in
this category.

4) Expectations from TestNForce (questions 4a-4f). The
participants read an abstract description of TestNForce
(printed below) and expressed their expectations with
regard to the usefulness of such a tool.
Posttest design: After the subjects have completed their

assignments, they have to fill out a second questionnaire
serving as a posttest, of which the primary intent is to
measure whether the subjects expectations with regard to
a unit testing aid like TestNForce are met.

3The pre- and posttest design are shown in detail in [1].

2a I consider myself an experienced developer
2b What is (are) the development environment(s) that you are experienced

with? [open question]
2c I consider myself an experienced Visual Studio user
2d What is (are) the programming language(s) that you are experienced with?

[open question]
2e I consider myself experienced with a .NET language
2f I consider myself an experienced C# programmer
2g I worked before on large scale software projects
2h I understand the challenges that arise in software projects
2i I consider myself familiar with Jurassic

3a I consider myself an experienced tester
3b I write tests for most of the code I am writing
3c What kind of tests you did in the past? [open question]
3d I believe that is better to deliver fast, with possible defects than to spend

extra time on testing
3e I believe that one-man projects dont require automated tests
3f Is it common that the size of the test code to be greater than the size of

the tested code
3g I believe that the amount of resources spent on developing and maintaining

test code can be greater than those spent for the tested code
3h How much code coverage is considered “good”? [open question]

Statement
With a test impact tool, one should be able to decide what tests to run after
changing the code. In other words, the tool will provide a list of tests that are
relevant for the change. Such a tool will inform the developer about the tests
that cover the code she/he changed. Furthermore, upon check-in (commit) to the
version control system, the tool will prevent this action if tests corresponding to
the changed code were not executed and, optionally, updated.

4a I think that I would use such a tool
4b I think that such a tool reduces testing time
4c I think that such a tool reduces the overall development time
4d I think that such a tool might be annoying
4e I think that such a tool is solving a real problem

Table I: Excerpt from the pretest. Unless indicated otherwise,
all questions are to be answered on a Likert scale from
“strongly disagree” to “strongly agree”.

In the posttest, a number of different issues are addressed.
We have subdivided the questions into seven categories:

1) Questions about TestNForce (questions 1a-1c). Did the
subjects find TestNForce useful and easy to use.

2) TestNForce in relation to the assignment (questions 2a-
2c). Did the tool help to solve the assignment.

3) TestNForce and Team Foundation Server (questions 3a-
3d). Is the integration between both useful and usable.

4) Usability (questions 4a-4f). General usability questions
on TestNForce.

5) What is missing (questions 5a-5f). A number of ideas
that we have for future versions of TestNForce are listed
here.

6) Assignment (questions 6a-6e). Was the assignment too
difficult, was there enough time?

7) Experiment (questions 7a-7f). Did the experiment have
the right focus, was the case study appropriate?

B. Assignment

In order to confront our experimental subjects with Test-
NForce, we created a number of programming assignments
that would require them to use TestNForce.

Project. The assignment had to be created around a project.
For the selection of a candidate project, we set forward a

number of requirements:
• It should not be a trivial application, yet easy to grasp

in a short period of time.
• It should have a considerable number of test cases that

pass.
• The available unit tests should have a good level of test

coverage.
• Considering the tooling infrastructure, the project

should be written entirely in C#.
• Ideally, the test cases would need more than a few

minutes to run.
• Ideally, the project should not be known by any of the

subjects to create a level playing field.
We started by investigating CodePlex4, the biggest com-

munity site hosting open source .NET projects. Taking our
requirements into consideration, we finally settled on a
project called Jurassic5. Jurassic is an implementation of
the ECMAScript language and runtime6. Worth mentioning
for Jurassic are the facts that the project has 344 test cases
available, is reasonably complex, but is still easy to learn
due to its well-designed architecture.

Tasks. The assignment is constructed around a scenario that
involves a number of programming tasks. We now describe
the tasks, for all details we refer to [1][p. 84]:

1) The first task is asking the subject to figure out which
test cases are covering the method HasVariable of
the MethodOptimizationHints.cs class. First,
the subject is asked to perform this task without Test-
NForce and once he is reasonably sure of his results,
the subject can use TestNForce to see which tests are
covering the method.

2) The second task is about change risk. The subject has
to decide if adding a new base type to the compiler
core breaks any tests. TestNForce can be used after
identifying what methods need to be changed either by
invoking the “What tests cover this method?” option or
by actually making the changed and invoking “What
tests should I run”.

3) The third task is to fix a method that is causing some
tests to fail. The participants were not told which tests
are covering that method so they have two options (1)
either execute all tests, which it not feasible because
it takes 40 minutes to run them or (2) use TestNForce
to identify the tests. Then, armed with the tests cases,
they have to proceed and change the method. Finally,
they have to prove that the change is good by invoking
the (two) covering tests.

4&5) The fourth and fifth assignment can be done together.
The fourth assignment asks to check in the changes that
the subject did. This is not possible until the index is

4http://codeplex.com, last visited September 1st, 2011.
5http://jurassic.codeplex.com/
6http://jurassic.codeplex.com/

updated and added to the project (the fifth assignment).
However, updating the index takes 28 minutes so,
participants were asked to start the process, but not wait
until it finished.

C. Pilot run

After the design of the experiment was completed, but
before the actual experiment run, we conducted a pilot run
of the experiment. Such a run was scheduled in order to be
proactive and catch any unexpected issues.

The pilot run revealed two software related issues. One
was a bug in TestNForce, which caused the index not
to be updated correctly. The other issue was related to a
configuration issue of the Team Foundation Server that we
used for pilot run.

Additionally, we also made a number of modifications to
the experiment itself, in particular:

• We clarified the first assignment, in particular, we added
a hint to the assignment to use the Find References
feature of Visual Studio.

• We added a short introduction to the Visual Studio
environment to accommodate people with experience
with other IDEs.

IV. EXPERIMENT

Based on the experimental setup that we described in
Section III we conducted an experiment involving eight
subjects. This section describes the details of the experiment
and the results.

A. Subject profile

The eight volunteers that participated in our experiment
were recruited within the computer science faculty of the
Delft University of Technology. They all had a computer
science background and they all had either an MSc degree,
PhD degree or were very close to one. Furthermore, all
participants were male and had ages between 23 and 27.
A number of the participants had obtained either their
BSc or MSc degree at a university other than the Delft
University of Technology, indicating a diverse background
of the participants. Figure 5 provides more details on the
participants.

0

2

4

6

8

23 25 26 27

M
Sc

Ph
D N
L PT U
K

GR BD M
K

Ph
D

M
as

te
r

O
w

ne
r

Age Education Studied in Occupation

Figure 5: Subject profiles

B. Pretest

1) General inquiry: All participants consider themselves
at least averagely experienced developers. Question 2a of
Figure 6 shows that all participants attributed themselves a
score of 3 or 4, with the median at 47. With no outliers, the
group of participants have similar skills.

0

1

2

3

4

5
2a

2c

2e

2f

2g

2h

0

1

2

3

4

5
3a

3b

3d

3e

3f

3g

Figure 6: Pretest questions 2 and 3 (also see Table I
Figure 7 shows the answer to question 2b of Table I,

namely the familiarity with various Integrated Development
Environments. More than half of the participants reported
to have experience with Visual Studio. Furthermore, all
subjects have an Eclipse background, indicating that they
are familiar with typical features that modern IDEs such
as Visual Studio offer. Connected to the previous question,
the radar chart of Figure 6 question 2c shows that only
one participant indicated to have no experience with Visual
Studio, while the median score is at 3 on a 5-point Likert
scale.

Pretest question 2d (see Figure 8) shows the participants’
programming language experience. All participants reported
to have experience with Java, while half of the group also
has experience with C#. Due to the similarities between the
languages this is not seen as a problem for the experiment.

Questions 2e and 2f (Figure 6) show the experience
with .NET languages and C# respectively. Two participants
reported to have no experience, neither with .NET nor with
C#, while all others reported to have experience, resulting
in a median score of 3.

The next questions gauge the participants’ experience with
working with large scale projects (question 2g) and their
understanding of the challenges that arise in (large-scale)

7The radar charts should be interpreted as follows: the minimum and
maximum values of the respondents’ answers are marked by the gray area,
the median score is indicated by the black line

0 2 4 6 8

Borland

Eclipse

Netbeans

Vim

Visual Studio

of users experienced with technology

Figure 7: Pretest question 2b, IDE experience

0 2 4 6 8

C
C++

C#
Haskell

Java
R

Python

users
Figure 8: Pretest question 2d, programming language expe-
rience

0 2 4 6 8

Acceptance
Integration

Manual
Unit

of users
Figure 9: What kind of tests do the participants write?

software projects (question 2h). While the participants’
experience with large scale projects is limited (median score
of 2.5), they do indicate that they understand the challenges
quite well (median score of 4).

None of the participants had knowledge of Jurassic, the
subject system of our experiment (question 2i).

2) Testing experience: Only one of the participants con-
sidered himself an experienced tester (score of 4 on a 5-point
scale), while most others considered themselves averagely
experienced (median of 2.5, see question 3a in Figure 6).
When asked whether they write tests for most of the code
that they are writing, the participants indicated that they
do not really write tests for the code they write, with the
exception of one participant.

Subsequently, we asked what kind of tests the participants
typically write, which results in the overview provided in
Figure 9: unit tests are by far the most popular kind of test.

Question 3d of Figure 6 rates the statement “I believe
that it is better to deliver fast than to spend more time on
testing”. With a median score of 2, the general trend is that
the participants do see the added benefit of testing. Question
3e then asks to rate “I believe that one-man projects do
not require automated tests”. With again a median score of
2, most developers indicate that automated testing is also
beneficial here.

The answers to the next two questions indicate that most
participants agree that the volume of test code can surpass
that of the production code (median score of 3.5 for question
3e). They also indicate that the effort spent on writing
and maintaining testing code can be greater than that for
production code (median score of 3, question 3f).

Finally, we asked them to indicate how much code cov-
erage they considered “good”. With answers ranging from
40% to 100% the average settled on 80%. A response of
100% means that the participant was not fully realistic
because the return of investment of such a coverage is not

2,125

4,5

2,75

4

0 1 2 3 4 5

Does TestNForce hinder?

Is TestNForce useful?

Answer
Pretest Posttest

Figure 10: Comparison of opinions before and after the
treatment

0

1

2

3

4

5
2a

2b2c

0

1

2

3

4

5
3a

3b

3c

3d

Figure 11: Posttest questions 2 and 3

justified [19, p.499]. We believe however, that the average
of 80% as expressed by the participants is a realistic target.

C. Posttest

In the pretest, participants were given an abstract descrip-
tion of a tool like TestNForce (see Table I). Based on that
description, we asked the participants whether they thought
that TestNforce was (1) useful and (2) annoying or too intru-
sive. In the posttest we asked the same question again, but
this time the participants had experience with TestNForce.
Figure 10 presents the comparison of the average opinions
before and after using TestNForce. What we see is that the
participants expected TestNForce to be useful (score of 4),
but after having used TestNForce, they were actually even
more positive (score of 4.5). Along the same line, we asked
whether they thought TestNForce would be annoying during
development or too intrusive in the regular working habits.
The response here decreases, meaning that before using
TestNForce the participants expected worse. This is reflected
in the score of 2.75 before their programming assignments
with TestNForce, compared to a score of 2.125 after.

Figure 11, question 2a gives the participants’ opinion on
whether TestNForce helped them to complete the assign-
ment. With a median score of 4.5, the participants give a
clear indication that TestNForce was indeed helpful during
the assignments. Question 2b asks whether the participants
thought that TestNForce improves the identification of the
tests that cover a particular method. With 6 participants
providing the maximum score of 5 for this question, it
seems that the participants are convinced that TestNForce
does indeed help them with this task. Finally, we also asked
the participants whether TestNForce helps them to become
more confident when changing unknown code (question 2c).
With a median score of 4 and all answers in the range 3 to
5, there is again an indication that TestNForce helps during
maintenance.

The subquestions of question 3 mainly deal with how the
participants experienced the check-in policy of TestNForce.
In particular, question 2a of Figure 11 asks whether the
participants saw the benefits of having such a check-in
policy. Their responses give a somewhat mixed image, with
scores ranging from 2 to 5 and a median score of 3.
The rather average rating for the check-in policy might be
explained by the response to question 3c, which gauges
whether the check-in policy is too restrictive. In fact, many
of the respondents do think it is too restrictive with a median
score of 3 and the scores ranging from 1 to 4. Question 3d
states that it should not be possible to bypass the check-
in policy. The answers to this question range from 2 to 5
with a median of 3, indicating that opinions are differing
greatly in this respect. This diversity in answers can be
partly explained by the answer to the previous question,
where participants indicated that they found the check-in
policy to be too restrictive. On the other hand, people with
a high score might realize the importance of having self-
contained commits [15], or commits that contain not only
the production code, but also well-covering tests to ensure
the quality of that production code.

The next set of questions query the participants for
missing features. Table II shows the average responses of the
participants to the list of features that we consider as future
work. The most desirable feature is the incremental update of
the index. This feature would allow TestNForce to update the
index fast by replacing only the records that are affected by
code/test changes, instead of redoing the complete analysis
that we presented in Section II-B. An important missing
feature that was not on our standard list, but was mentioned
by all participants is the lack of navigation from the covering
tests window (see Figure 2) and the actual test code. In fact,
during the short debriefing discussion that we organized after
the posttest, many of the respondents also mentioned that the
lack of this feature impacted the usability of TestNForce.
However, the participants also mentioned that it was not
a blocking issue, because it could be circumvented by
searching the code and using the search results windows
for navigation.

Feature Average score

Support for other programming languages 4
Possibility to exclude certain parts of the project from checking 3
Incremental update of index 5
Static code analysis 3.5
Integration with the test platform in Visual Studio 4

Table II: Missing features in TestNForce

D. Evaluation of the experiment

The final questions of the posttest dealt with how the
participants perceived the experiment. In particular, we asked
whether the participants found the assignment too difficult
or whether they needed more time. For both questions, the
median score was 2, indicating that the assignment was not

perceived as too difficult and that the time allocated for the
assignment was satisfactory.

V. DISCUSSION

This section will first relate the results of the experiment
to the research questions that we have presented in the
introduction. Afterwards, we will touch upon a number of
threats to validity.

A. Discussion of the experiment

RQ1: Can such a tool be built with acceptable per-
formance?: We have designed TestNForce as a Visual
Studio 2010 plug-in. We have tried to reuse many standard
tools and/or libraries like vsinst to instrument, mstest
to execute individual tests and the C# parser from the
NRefactory library to check for changes. Given that we were
able to reuse many existing technologies, we are confident
that a tool similar to TestNForce can also be created for
other platforms, e.g., Eclipse. During development work,
TestNForce is lightweight and does not cause a noticeable
performance impact for the developer, however, building the
test mapping index takes quite some time. More specifically,
for the Jurassic case study with its 344 test cases this took 28
minutes. Usability-wise, this is a serious deterrent. It comes
as no surprise then that all 8 participants of the experiment
indicate incremental updates to the index as the most wanted
feature for future versions. While non-trivial, incrementally
building and updating the index can likely be combined with
continuous testing, as proposed by Saff and Ernst [20].

RQ2: Is the tool considered useful by developers?:
The pretest-posttest experiment setup lets us compare the
expectations based on an abstract description of the tool and
the experience of the developers with the actual tool. While
the participants were already quite positive after reading
about the tool (average score of 4 on a 5-point Likert scale),
they were even more positive after using the tool during the
assignment (average score of 4.5). This evolution is depicted
in Figure 10.

RQ3: Do the developers experience the tool as a hin-
drance during development?: Related to the previous ques-
tion, the participants have lowered their score for hindrance
in the posttest compared to the pretest. Figure 10 shows
that the average score for hindrance was lowered from 2.75
towards 2.125. However, it should be noted that the check-in
policy did cause more controversy. Question 3 of Figure 11,
which deals with the user experience of TestNForce’s check-
in policy shows greatly differing opinions. A number of
participants found the check-in policy to be too restrictive
and shared that they would like to configure the check-in
policy so that it could be circumvented in some cases. So,
while the normal usage of TestNforce is not considered as a
hindrance, the check-in policy needs further attention. The
mixed experience of the check-in policy might be related to
the fact that (1) the check-in policy is conservative, in the

sense that it will likely cause a number of false positives,
i.e., cases were the check-in policy raises an alarm, while the
tests should actually not be altered, and (2) the developer is
convinced that the alterations to the production code should
not be backed up by changes to the test code.

B. Threats to validity

1) Internal validity: The first problem with a one-group
pretest-posttest experiment is the effect of history (“the
specific events occurring between the first and second mea-
surement in addition to the experimental variable”). In order
to minimize the risk of this threat, the experiment was
conducted without breaks between observation.

It might be that the participants were confronted with the
effects of testing, meaning that the participants knew what
they were tested for during the posttest. We tried to mitigate
this effect by telling the participants in advance that only
honest answers were of use for our experiment.

1

2

3

4

5

1 2 3 4 5 6 7 8

An
sw

er
s

Participants

I consider myself an experienced Visual Studio user

I could have used more guidance

The time allocated for the assignment was too short

Figure 12: Comparing programming experience with assign-
ment experience

We were concerned that participants with Visual Studio
and C# experience had an advantage. However, from the
results, we saw no correlation between participants who
reported to be inexperienced with Visual Studio or C# found
and assignment difficulty or time-pressure (see Figure 12).
Furthermore, we do not base any of our conclusions on the
speed by which the assignment was performed.

2) External validity: The participants to our experiment
are students recruited at the Delft University of Technology.
They might not be representative of experienced developers.
While we agree that they do not have the same level of
experience that professional developers might have, they
have a very diverse background, as evidenced by Figure 5
which shows their diverse educational background.

The tasks that the participants had to perform during
the assignment might not be representative of real-world
programming tasks. We tried to mitigate this concern by
trying do devise realistic programming tasks. On the other
hand, the opinions of the usefulness of TestNForce are
likely not only based on the participants’ actual experience

during the programming tasks of the experiment, but also
on previous development experience.

None of the participants had experience with the subject
system, which is likely to be different in an industrial setting,
were code ownership is more likely. In this sense, when
developers are thoroughly familiar with the code, the added
value for a tool like TestNForce might be less obvious. In the
future, we will carry out an longitudinal study with industrial
developers.

3) Reliability validity: The TestNForce toolchain might
contain faults which explain the results of the user study. As
a countermeasure, we thoroughly tested the tool and relied
on a pilot study to iron out the last problems.

VI. RELATED WORK

Saff and Ernst investigate whether continuous testing,
i.e., testing that happens in the background of development
activities, helps developers [20]. In particular, they set up
a controlled experiment to determine whether continuous
testing results in a higher change of successful completion
of programming tasks and decreases the time spent on
programming tasks. From their experiment, they conclude
that continuous testing does indeed increase the chance of
successfully completing tasks, but there was no significant
correlation with the time worked on tasks.

Regression testing is the process of validating modified
software to detect whether new errors have been introduced
into previously tested code and to provide confidence that
modifications are correct. This step typically happens after
unit testing, but sometimes both levels of testing are blurred.
As regression testing is an expensive process, researchers
have been working towards regression test selection tech-
niques as a way to reduce some of this expense. Rothermel
and Harrold discusses safe regression testing techniques
in [21]. In essence, regression test selection techniques try
to find those tests that are directly responsible for testing the
changed parts of a program and subsequently only run these
tests, which roughly corresponds with the second scenario
that we envisioned for TestNForce as well. However, Test-
NForce is clearly geared towards developer testing, while
regression test selection techniques are not.

Zaidman et al. try to determine whether production code
and test code co-evolves [22]. In order to establish trace-
ability between the unit test and the method under test, they
use naming conventions. For the two case studies that they
investigated, these naming conventions were upheld, but they
also acknowledge that this is not always the case. In their
study they notice that co-evolution between production code
and test code is sometimes not optimal. This is reflected by
the fact that the test source code sometimes does not compile
for several versions or by dropping levels of code coverage.

Van Rompaey and Demeyer use static call graphs to de-
termine the methods under test for a particular test case [23].
The results indicate that they only obtained 25% precision

and they recommend to look at naming conventions or
dynamic analysis to establish traceability links between
production and test code.

Galli et al. have developed a tool to order broken unit
tests [16]. It is their aim to create a hierarchical relation
between broken unit tests in order to steer and optimize
debugging. Technically, their approach is similar in the sense
that they also instrument the tests before running in order to
establish links between production and test code. Conceptu-
ally, however, the goals of their approach and our approach
are quite different: ordering broken unit tests versus assisting
developers during maintenance of production and test code.

Recently Microsoft introduced the “Test Impact Analysis”
feature in Visual Studio 20108. This tool is very similar in
nature to TestNForce, but, to the best of our knowledge, has
not been described in literature nor has not been subjected
to a user study.

VII. CONCLUSION

In this paper, we have introduced TestNForce, a Visual
Studio plug-in that helps software developers to better main-
tain the unit and integration tests that accompany production
code. TestNForce allows developers to query which tests
cover a particular unit of code (e.g., a method), it allows
developers to remember which tests should be run after
performing a modification and it warns developers before
committing in case the tests that cover modified production
code have not been updated.

In order to assess the usefulness of TestNForce, we
have conducted a pretest-posttest experiment involving eight
developers, in which we presented the developers with a
questionnaire before and after a programming assignment in
an environment in which they were faced with TestNForce.

Our results show that developers actually see the added
value of developer test management tools, but have strict
requirements with respect to their usability. We will now go
over the research questions that we have stated in Section I:

RQ1 Can such a tool be built with acceptable per-
formance? We have designed TestNForce as a
Visual Studio 2010 plug-in, reusing as much of
the standard infrastructure as we could. During
development work TestNForce does not cause a
noticeable performance impact, however, building
the test mapping index takes a long time: 28
minutes for the 344 test cases of our case study.

RQ2 Is the tool considered useful by developers? With
an average score of 4.5 on a 5-point Likert scale,
the participants indicated to find TestNForce very
useful for steering their test and test maintenance
activities.

RQ3 Do the developers experience the tool as a hin-
drance during development? The average score for

8http://msdn.microsoft.com/en-us/library/ff576128.aspx, last visited Oct.
14, 2011.

hindrance that the participants gave was 2.125,
which was down from the expectation that the
participants formulated in the pretest. However, it
should be noted that the check-in policy did cause
controversy and not all participants were happy
with how this feature worked. In particular, they
found the policy too restrictive and participants
indicated that they would prefer to be able to
configure the check-in policy.

Contributions. Over the course of this research, we have
made the following contributions:

• The TestNForce Visual Studio plug-in, which enables
to manage tests during software maintenance.

• A user study with eight developers to assess the use-
fulness and hindrance during use TestNForce.

Future work. We now list some of the important avenues
for future work which both address usability and further
research: (1) the possibility to navigate from the tests in
the results window (see Figure 2) directly to the actual
test code, (2) the incremental build-up of the test mapping,
thus avoiding long waiting times, and (3) a more extensive
evaluation using a controlled experiment that would give us
insight into the time gain of using TestNForce (similar to,
e.g., [20], [24], [25]).

ACKNOWLEDGEMENTS

We want to thank all the participants to our experiment.
Also thanks to Cuiting Chen and Tiago Espinha for pro-
viding feedback on earlier versions of this paper. Part of
this research was funded by the Center for Dependable ICT
(CeDICT), an initiative of NIRICT, the Netherlands Institute
for Research on ICT. Other funding came from the RAAK-
PRO project EQuA (Early Quality Assurance in Software
Production) of the Stichting Innovatie Alliantie.

REFERENCES

[1] V. Hurdugaci, “Aiding software developers to test with TestN-
Force,” Master’s thesis, Delft University of Technology, 2011.

[2] M. Lehman, “On understanding laws, evolution and conser-
vation in the large program life cycle,” Journal of Systems
and Software, vol. 1, no. 3, pp. 213–221, 1980.

[3] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri, “Challenges in software evo-
lution,” in Proc. of the International Workshop on Principles
of Software Evolution (IWPSE). IEEE CS, 2005, pp. 13–22.

[4] G. Meszaros, xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley, 2007.

[5] G. Tassey, “Economic impacts of inadequate infrastructure
for software testing,” National Institute of Standards and
Technology (NIST), Planning Report 02-3, May 2002.

[6] A. Zaidman, M. Pinzger, and A. van Deursen, “Software
evolution,” in Encyclopedia of Software Engineering, P. A.
Laplante, Ed. Taylor & Francis, 2010, pp. 1127–1137.

[7] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. De-
meyer, “Studying the co-evolution of production and test code
in open source and industrial developer test processes through
repository mining,” Empir. Softw. Eng., vol. 16, no. 3, pp.
325–364, 2011.

[8] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink,
“The interplay between software testing and software evolu-
tion,” in Software Evolution, T. Mens and S. Demeyer, Eds.
Springer, 2008, pp. 173–202.

[9] S. Elbaum, D. Gable, and G. Rothermel, “The impact of soft-
ware evolution on code coverage information,” in Proceedings
of the International Conference on Software Maintenance
(ICSM). IEEE CS, 2001, pp. 170–179.

[10] M. Skoglund and P. Runeson, “A case study on regression test
suite maintenance in system evolution,” in Proc. Int’l Conf. on
Softw. Maintenance (ICSM). IEEE CS, 2004, pp. 438–442.

[11] P. Runeson, “A survey of unit testing practices,” IEEE Soft-
ware, vol. 23, pp. 22–29, 2006.

[12] M. Grindal, J. Offutt, and J. Mellin, “On the testing maturity
of software producing organizations,” in Testing: Academia
and Industry Conference - Practice And Research Techniques
(TAIC PART). IEEE CS, 2006, pp. 171–180.

[13] E. Engström and P. Runeson, “A qualitative survey of regres-
sion testing practices,” in Product-Focused Software Process
Improvement, ser. LNCS, M. Ali Babar, M. Vierimaa, and
M. Oivo, Eds. Springer, 2010, vol. 6156, pp. 3–16.

[14] Y. Chen, D. Rosenblum, and K. Vo, “Testtube: A system for
selective regression testing,” in Proc. Int’l Conf. on Software
Engineering (ICSE). IEEE CS, 1994, pp. 211–220.

[15] F. Mulder and A. Zaidman, “Identifying cross-cutting con-
cerns using software repository mining,” in Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software Evolution
(IWPSE). ACM, 2010, pp. 23–32.

[16] M. Galli, M. Lanza, O. Nierstrasz, and R. Wuyts, “Ordering
broken unit tests for focused debugging,” in Int’l Conf. Softw.
Maintenance (ICSM). IEEE, 2004, pp. 114–123.

[17] D. Campbell, J. Stanley, and N. Gage, Experimental and
quasi-experimental designs for research. Rand McNally,
1963.

[18] E. Babbie, The practice of social research. Wadsworth
Belmont, 2007, 11th edition.

[19] C. Jones and O. Bonsignour, The Economics of Software
Quality. Addison-Wesley, 2012.

[20] D. Saff and M. D. Ernst, “An experimental evaluation of
continuous testing during development,” in Proceedings of
the SIGSOFT international symposium on Software testing
and analysis (ISSTA). ACM, 2004, pp. 76–85.

[21] G. Rothermel and M. Harrold, “Empirical studies of a safe
regression test selection technique,” IEEE Transactions on
Software Engineering, vol. 24, no. 6, pp. 401–419, 1998.

[22] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van
Deursen, “Mining software repositories to study co-evolution
of production & test code,” in Proceedings of the Inter-
national Conference on Software Testing, Verification, and
Validation (ICST). IEEE CS, 2008, pp. 220–229.

[23] B. Van Rompaey and S. Demeyer, “Establishing traceability
links between unit test cases and units under test,” in Proceed-
ings of the European Conference on Software Maintenance
and Reengineering (CSMR). IEEE CS, 2009, pp. 209–218.

[24] B. Cornelissen, A. Zaidman, A. van Deursen, and B. V.
Rompaey, “Trace visualization for program comprehension:
A controlled experiment,” in Proceedings of the International
Conference on Program Comprehension (ICPC), 2009, pp.
100–109.

[25] B. Cornelissen, A. Zaidman, and A. van Deursen, “A con-
trolled experiment for program comprehension through trace
visualization,” IEEE Trans. Software Eng., vol. 37, no. 3, pp.
341–355, 2011.

