
Pinpointing the Learning Obstacles of
an Interactive Theorem Prover

Sára Juhošová
S.Juhosova@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Andy Zaidman
A.E.Zaidman@tudelft.nl
Delft University of Technology

Delft, The Netherlands

Jesper Cockx
J.G.H.Cockx@tudelft.nl
Delft University of Technology

Delft, The Netherlands

Abstract—Interactive theorem provers (ITPs) are program-
ming languages which allow users to reason about and verify
their programs. Although they promise strong correctness guar-
antees and expressive type annotations which can act as code
summaries, they tend to have a steep learning curve and poor
usability. Unfortunately, there is only a vague understanding of
the underlying causes for these problems within the research
community. To pinpoint the exact usability bottlenecks of ITPs,
we conducted an online survey among 41 computer science
bachelor students, asking them to reflect on the experience of
learning to use the Agda ITP and to list the obstacles they
faced during the process. Qualitative analysis of the responses
revealed confusion among the participants about the role of ITPs
within software development processes as well as design choices
and tool deficiencies which do not provide an adequate level of
support to ITP users. To make ITPs more accessible to new users,
we recommend that ITP designers look beyond the language
itself and also consider its wider contexts of tooling, developer
environments, and larger software development processes.

Index Terms—interactive theorem provers, learning obstacles,
Agda

I. INTRODUCTION

In a world where technology is present in all aspects of
our lives and where each program bug can have catastrophic
consequences [1], verifying the correctness of the software
we produce is an essential part of its development. Current
methods for such verification can be split into two categories:

1) ones which help us detect errors in our code, and
2) ones which prevent certain types of errors in our code.
Commonly used error-detection methods, such as code

review [2], [3] and testing [4], [5], are well-integrated into
software development processes, with plenty of frameworks
and supporting material to help developer teams apply them.
However, they have one big disadvantage: they are only able
“to show the presence of bugs, but never to show their ab-
sence”1. This means that error-detection tools are not sufficient
to make sure that our software works correctly in all cases.

Error-prevention tools, on the other hand, offer stronger
guarantees about our programs and can potentially provide
mathematical proof of their correctness with respect to some
specification. Static type systems fall into this category.
Defined by Benjamin Pierce as a “method for proving the
absence of certain program behaviours by classifying phrases

1Famously stated by Edsger W. Dijkstra.

according to the kinds of values they compute” [6, p. 1],
they ensure that it is impossible to write programs such as
one which tries to retrieve the ith element of a boolean
value. Type systems are a notable field of study within the
programming language community and are built into many
mainstream programming languages, including Java and C++.
They come in various advanced forms, like with Hindley-
Milner type inference as used in Haskell [7] or as sub-
structural types as used in Rust [8].

Dependent types are an example of a powerful type system,
going beyond the expressivity of those in Java or Haskell. They
might, for example, prevent you from trying to retrieve the 6th

element from a list which only contains five elements. This
is done by allowing types to depend on terms, two worlds
which are usually kept separate [9]. The resulting type signa-
tures are so expressive that they can act as “free” and up-to-
date program comprehension aids — similar to how assertions
can “help express the purpose of a [function] without reference
to its implementation” [10, p. 46] in programs written using
design by contract principles. This is a big benefit, since we
know that “missing or outdated comments can substantially
impair the development process” [11]. Additionally, most
programming languages with a dependent type system can be
used as interactive theorem provers2 (ITPs), allowing human
users and computers to “work together interactively to produce
a formal proof” [12, p. 135]. Examples of ITPs include
Agda [9], Coq [13], and Lean [14].

Unfortunately, existing languages with dependent types
provide their correctness guarantees and expressive type sig-
natures at a cost: they are difficult to use. The consensus
within the broader ITP community is that the learning curve is
very steep and that the development and maintenance process
for produced code is expensive. Despite this awareness, user
studies and user-oriented design are exceedingly rare in the
field of programming languages [15], and we lack a clear
idea about what the exact usability bottlenecks of ITPs are.
Consequently, we do not know where to start and what to
prioritise when improving the accessibility of these languages.

In this study, we take a step towards closing this knowledge
gap and investigate the following research question: how can

2As a consequence, we mean “dependently-typed language used as an ITP”
whenever we mention ITP in the remainder of this paper.

mailto:S.Juhosova@tudelft.nl
mailto:A.E.Zaidman@tudelft.nl
mailto:J.G.H.Cockx@tudelft.nl


we make interactive theorem provers more accessible to new
users? Based on a survey about the experience of 41 bachelor
students who recently learned to use Agda3 and about the
obstacles they faced during the process, we were able to make
the following contributions:

• A hypothesis about how new users perceive the role of
interactive theorem provers within software development.

• A list of obstacle types that new users encounter when
learning to use Agda, grouped based on whether they are
related to Agda’s theory, its implementation, or its per-
ceived role within software engineering. This knowledge
can be used to fix the identified obstacles in Agda and
avoid them in other ITPs.

• An overview of how frequently these obstacle types occur
and how severe new users consider them to be. This
knowledge can help ITP designers prioritise the most
pressing issues.

We conclude that there are two actions designers of any ITP
can take in order to mitigate the learning obstacles found
in Agda: integrating the ITP into software processes and
ecosystems4 and providing its users with a more robust and
accessible infrastructure.

II. AN INTRODUCTION TO ITPS

Currently, the core of most interactive theorem provers is
purely functional programming. This means that functions are
treated as first-class citizens and that they do not have any side
effects [16, p. 13]. Additionally, all functions written in an ITP
must be total, guaranteeing that a result will be produced for
every valid input in finite time and that no runtime exceptions
will be thrown [16, p. 16]. Listing 1 showcases the definition of
lookup, an example of a pure, total function in Agda, which
takes an index and a list, and maybe returns the element at
that position (depending on whether the position exists in the
provided list). The definition works in the following way:
Nat: First, we define natural numbers as either zero or the

successor (suc) of another natural number. The number
2 would be represented as suc (suc zero).

Maybe A: Next, we define the Maybe data type, paramet-
rised by the type variable A. This data type can be
constructed using either nothing or just x. In the
latter case, x is a value of type A, wrapped in the just
constructor.

List A: Finally, we define List as either an empty
list ([]) or an element of type A prepended to an-
other List A (denoted as x :: xs). For example,
zero :: (suc zero) :: [] is a list of natural
numbers with two elements ([0, 1]).

The lookup function matches on the two types of list
constructors and defines the behaviour for each of those cases:

1) In case the list is empty, we ignore the index and return
nothing (any index will be out of bounds).

3Agda is one of the main dependently-typed ITPs and is taught at our
university, giving us access to a controlled set of new users: students.

4Under an “ecosystem” we understand all tools and libraries that facilitate
program-writing and software development in a programming language.

data Nat : Set where
zero : Nat
suc : Nat → Nat

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A

data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A

lookup : Nat → List A → Maybe A
lookup _ [] = nothing
lookup zero (x :: _) = just x
lookup (suc i) (_ :: xs) = lookup i xs

Listing 1: Retrieving an element from a list in Agda

data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_::_ : {n : Nat} → A → Vec A n → Vec A (suc n)

lookup : {n : Nat} → Nat< n → Vec A n → A
lookup () []
lookup zero (x :: _) = x
lookup (suc i) (_ :: xs) = lookup i xs

Listing 2: Retrieving an element from a vector in Agda

2) In case the list contains at least one element, we can
further match on the natural number that represents the
index we want to retrieve from:

a) In case the index is zero, we return the current first
element wrapped in a just constructor and ignore the
remainder of the list.

b) In case the index is larger than zero, we ignore
the current first element and recursively search the
remainder of the list, decreasing the index by one.

Although this implementation guarantees that an “index out
of bounds” exception will never occur, it has a drawback: we
will have to unwrap our element from the Maybe type every
time we call the lookup function. Using dependent types, we
can avoid this issue by limiting the index to natural numbers
that are smaller than the length of the list. Listing 2 contains a
definition of a vector which is “indexed” by its length and the
same lookup function defined for this new data type. This
function depends on the natural number n which defines both
the upper bound for the index5 and the size of the vector. Since
Agda’s type-checker understands that it is impossible to call
this function with an out-of-bounds index, we do not have to
wrap our return value in a Maybe in order to preserve totality.

Proofs, just like functions, are first-class citizens in ITPs.
For example, consider the function double (defined in List-
ing 3) which takes a natural number and returns (1) a number
that is the double of the input number, and (2) a proof that the

5The type “Nat< n” is defined as “a natural number smaller than n”.



double : (n : Nat) → m is Nat and m IsEven
double zero = (zero , ZeroIsEven)
double (suc n) = case (double n) of λ where

(m , mIsEven) →
(suc (suc m) , Since mIsEven SucSucIsEven)

Listing 3: An Agda function returning a doubled natural
number and a proof that the result is even

resulting number is even. We can only define this function if it
is possible to construct such a proof (which is indeed the case,
since all numbers multiplied by 2 are even). Both the number
and the proof can be extracted from the result and used by
other functions. We have thus both verified the evenness of
our result and made the proof available as a building block
for more complex proofs to the rest of the program.

“m is Nat and m IsEven” is syntactic sugar for a
dependent pair in which the type of the first element is natural
number and the type of the second element is the function
λ x → x IsEven applied to the first element (it depends on
the first element). This dependency explicitly tells the type-
checker to verify that our program returns a proof of the first
element’s evenness — not the evenness of any random number.

An Illustration of Interactivity

What makes a theorem prover interactive is the way it allows
programmers to communicate with the type-checker. In Agda,
for example, you can create a “hole” (denoted by {! !}) as a
placeholder for an expression you do not yet know how to fill.
This will make a number of interactive commands available
[17]. For example, a user might want to define a map function
over vectors which applies some function to each element in
the vector. They could define it using six interactive steps.

1) Write the type signature and use a hole for the definition:
1 map : (A → B) → Vec A n → Vec B n
2 map f xs = {! !}

2) Have Agda enumerate all possible cases for the input
vector, resulting in two holes:

2 map f [] = {! !}
3 map f (x :: xs) = {! !}

3) Have Agda automatically fill the first hole [18] (only one
option has the correct type):

2 map f [] = []

4) Have Agda search for and apply a unique way to construct
the required type:

3 map f (x :: xs) = {! !} :: {! !}

5) Ask Agda for contextual information about the first hole.
It requires a value of type B, and we have x of type A
and f of type A → B available. There is only one way
to combine those in the hole:

3 map f (x :: xs) = (f x) :: {! !}

6) Have Agda automatically fill the final hole (only one
option has the correct type):

1 map : (A → B) → Vec A n → Vec B n
2 map f [] = []
3 map f (x :: xs) = (f x) :: (map f xs)

A Demonstration of Difficulties

To demonstrate the difficulties a new user might face
when learning to use an interactive theorem prover, we use
the example of a simple type error. Such errors can prove
challenging to resolve even in simpler type systems since they
may “point to locations that are not the root causes of the type
error, expose errors in cryptic language, or provide misleading
fixing suggestions” [19]. Consider the following piece of Agda
code, which takes a pair of values and swaps their positions:

1 swap : a × b → b × a
2 swap (a, b) = b , a

Upon attempting to type-check this in VS Code, the
agda-mode extension reports the following error:

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
None

when scope checking the left-hand side
swap (a, b) in the definition of swap

This poses several difficulties for a new user:
1) the message contains seemingly irrelevant information

(such as “operators used in grammar”),
2) an online search using the error message yields no

relevant results, and
3) all syntax highlighting will be removed from the file,

making the error even more difficult to spot.
That is a lot of cognitive overhead for an error as straight-

forward as “there is a space missing on line 2, column 8”.
While this looks like a simple example, it is a direct result of

Agda’s variable-naming design. The pattern matching assumes
that “a,” should be treated as a constructor (since it would be
a valid name for one) and warns that no such constructors are
available for the type that is being matched. More examples
of confusing error messages include

• a “Parse error”, which might indicate a missing bracket
(or anything else),

• a suggestion that “〈” is not known, but did the user
perhaps mean “〈” (visually identical but with a different
Unicode encoding), and

• a list of garbled characters representing implicit variables
that Agda cannot unify without pointers to their origin.

A Peek at Previous Work

The few user-oriented studies that have been conducted on
ITPs in the past focus primarily on proof-writing and proof-
comprehension services. Our work investigates the new user’s
experience specifically and examines the obstacles associated
not only with the ITP but also with its surrounding ecosystem.
Additionally, as far as we are aware, no usability study has
been conducted on dependently-typed ITPs. Section VII goes
into detail about related work and summarises their findings
in context of ours.



III. STUDY SETUP

In this cross-sectional study, we asked students to evaluate
the applicability of ITPs on a Likert scale and to list up to
five obstacles they encountered when learning Agda. We were
examining this population of students at one determined point
in time [20, pp. 105–106]: just after they had a short introduc-
tion to programming in Agda and could be considered “new
users”. This section presents the details about the participants
we recruited, the survey design we used, and the analysis we
performed on the collected data. Our research was conducted
with the approval of the Human Research Ethics Committee
at the Delft University of Technology.

A. Context & Participants

The participants in this study were final-year computer sci-
ence bachelor students taking an elective Functional Program-
ming course at the Delft University of Technology. During the
course, they learned the basics of functional programming in
Haskell followed by a two-week introduction to Agda where
they were taught to

• interactively develop Agda programs,
• use the Curry-Howard correspondence [6, p. 108] to

express logical properties as types,
• use indexed data types and dependent pattern matching

to enforce invariants of their programs, and
• formally prove properties of purely functional programs

by using the identity type and equational reasoning.
The students were introduced to these topics during live
lectures and were given programming exercises to practice
on. They were encouraged to use the agda-mode extension
in the Visual Studio (VS) Code editor. We estimate that each
student spent about 20 hours studying all Agda material taught
in the course.

Of the 41 participating students, only two indicated that their
knowledge of ITPs was more advanced than what was taught
in the course. Additionally, four participants indicated that
their knowledge of pure functional programming languages
like Haskell was more advanced than what was taught in the
course. Only one participant indicated both of the above.

Though we did not ask for any more personal or contextual
information, we had a general idea of the background of this
student group, since we are familiar with the structure of their
bachelor programme. The following background information
is relevant to this study:

• The participant population is somewhat skewed towards
students who were already interested in functional pro-
gramming. The Functional Programming course is one of
six electives that are offered at the end of the bachelor
programme. Students have to pick three of these electives.

• Most courses and projects about software engineering
practices in the bachelor use object-oriented paradigms
and focus on software that in some way collects, pro-
cesses, or serves user-input data. The main programming
language of instruction in the bachelor programme is
Java.

• The students had experience with functional program-
ming from the Concepts of Programming Languages
course, where they were required to use the functional
aspects of Scala to implement definitional interpreters.
However, this was limited to recursive functions, pattern
matching, and an introduction to algebraic data types.

• The main forms of ensuring program correctness that
are taught within the bachelor programme are software
testing and code review, both of which are error-detection
methods. These are taught in the following three courses:
OOP Project, Software Quality & Testing, and Software
Engineering Methods.

• Learning to use Agda was not the first time our parti-
cipants were confronted with having to reason about pro-
grams and construct proofs. They were expected (but not
required) to already have passed the following courses:
– Reasoning & Logic, in which they learned to construct

direct and indirect proofs (including proof by math-
ematical induction), logical equivalences, and counter-
examples for (in)valid arguments,

– Algorithm Design, in which they learned to prove the
correctness of algorithms, and

– Automata, Computability and Complexity, in which
they learned to prove and verify proofs of various
problem and language properties.

In all of these courses, the proofs were done on paper.

B. Survey

The data was collected after the two-week introduction
to Agda, through an online survey open for a period of
three weeks. Participation was voluntary, and the survey was
distributed to the students using a QR code in the lecture
slides and an announcement on the course page. A total of
224 students were enrolled in the Functional Programming
course, meaning that about 18.5% of the course participants
responded to the survey.

The first part of the survey consisted of a Likert scale matrix,
asking students to evaluate the applicability of ITPs. The six
statements used in this matrix are displayed in Figure 1. We
opted to use a 6-point Likert scale with no neutral option,
since we wanted to at least determine whether they tended
towards a positive or negative opinion [21, p. 7]. Participants
were informed that they were free to skip any question, so they
could opt out of answering if they did not have an opinion.

The second part of the survey was inspired by the explor-
atory survey in Robillard and DeLine’s field study of API
learning obstacles [22]. It had an open-ended question with
short, free-text fields in which students could use their own
words to describe up to five obstacles they had encountered.
We then asked them to rate each obstacle on a severity scale
from 1 (minor inconvenience) to 10 (blocking). We chose to
not restrict the answers to a list of predetermined obstacles,
in order to retain the opportunity of discovering something
unexpected.

https://www.tudelft.nl/en/about-tu-delft/strategy/integrity-policy/human-research-ethics
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=64462
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=64462
https://marketplace.visualstudio.com/items?itemName=banacorn.agda-mode
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61485
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=57326
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=57320
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61484
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61484
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=57322
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61490
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=61491


Please rate the following statements on your evaluation of interactive
theorem provers [on the following Likert scale: Strongly agree,
Agree, Somewhat agree, Somewhat disagree, Disagree,
Strongly disagree].

E1 I would trust software more, knowing that it was verified using an
interactive theorem prover.

E2 I think interactive theorem provers are a great alternative to testing
(code is formally verified instead of tested).

E3 I think interactive theorem provers are a great complement to testing
(some code is formally verified while the rest is tested).

E4 I expect there to be fewer bugs in software that has been formally
verified using an interactive theorem prover as opposed to software
that has been tested.

E5 I think interactive theorem provers will be useful in future projects
(personal project or ones at a software engineering job).

E6 I think interactive theorem provers will be useful on critical com-
ponents of future projects (personal project or ones at a software
engineering job).

Figure 1: Survey question for evaluating ITP applicability

C. Pilot Study

To verify the design of our survey, we conducted a pilot
study with two think-aloud sessions. One session was con-
ducted with a master student who took the same course three
years prior, and the other was conducted with a researcher
who uses Agda on a daily basis. During both sessions, we
asked the pilot participant to fill in the survey in our presence,
voicing all thoughts and interpretations out loud. Based on
their reactions and interpretations, we adjusted the wording
and format of the survey questions.

The data obtained from the pilot was discarded and is not
part of the results presented in this paper.

D. Analysis

In order to analyse the Likert scale data evaluating the appli-
cability of ITPs, we assigned linear-scale numerical values6 to
all the responses [23]. This allowed us to easily interpret and
visualise the data. The obstacle data, on the other hand, was
free-text and so qualitative research techniques were required
for its analysis. We analysed this data in two separate iterations
of coding, “the process of closely inspecting, deeply making
sense of, and inferring meaning from data and giving those
meanings some labels or names” [24].

In the first iteration, we used descriptive coding [25, pp.
55–69] to help us identify types of obstacles occurring in
our data. This process was done inductively, without prede-
termined codes. In the second iteration, we used the identified
obstacle types from the first iteration to reclassify each sub-
mitted obstacle entry. We found that the data contained more
subtleties than a simple descriptive code could capture, and
decided to add sub-codes for each entry. These characterised
the entries on a more granular level and added context to the
description in the main codes.

For example, consider the following two entries:
• “The Agda plugin in my VS Code was often crashing

and I had to restart it.” [P18]

6From 1 for Strongly disagree to 6 for Strongly agree.

• “Syntax highlighting completely disappears if there is
some mistake in the code which makes it harder to find
the mistake.” [P15]

Both relate to the quality of developer tools provided for Agda,
thus receiving the code tooling. However, while one quote
talks about unintended behaviour (crashing), the other relates
to the design of the tool (syntax highlighting only appears on
successfully type-checked files). By capturing these nuances in
the sub-codes, we were able to better characterise each entry.

Throughout the rest of this paper, we differentiate between:
• obstacle categories / types: the identified categories of

obstacles,
• obstacle instances: examples of specific obstacles within

those categories, and
• obstacle entries: the separate entries provided by the

participants which comprise the instances.
When the coding was done, we drew diagrams as suggested

by Charmaz [26, pp. 218–221], using sub-codes to help us
understand the relationships between the identified obstacle
instances. These diagrams helped us identify related categories
of obstacles, presented in Section IV-B. They also prompted
the writing of memos, notes of “ideas about codes and their
relationships as they strike the analyst” [27], which form the
basis of our observations in Section V. Once we finished
identifying the obstacle categories, we determined their mag-
nitude using the severity ratings of their entries.

IV. RESULTS

In this subsection, we present our results and offer potential
explanations for them in the context of the participants’ back-
ground (see Section III-A for more details). First, we discuss
the participants’ responses to the Likert scale applicability
statements. These show us the general impressions that the
participants had of interactive theorem provers after their
experience of learning to use them. Then, we present the
obstacle categories that we identified. These highlight the
specific aspects of Agda that need improving with respect to
accessibility for new users. Together, these results illustrate the
current picture of what learning to use an existing ITP entails
and show us what to focus on in order to make interactive
theorem provers more accessible to new users.

A. Applicability Evaluation

Figure 2 displays a comprehensive overview of the re-
sponses to the ITP applicability evaluation statements. During
data cleaning, we removed the responses from one participant
who had reacted with Strongly agree to all statements,
leaving a total of 40 responses per statement. The omission
did not alter our results.

In general, participants’ opinions tended towards agreement:
all statements received more positive than negative responses.
We can make three interesting observations by comparing
responses to the different statements:

1) In general, participants agreed that interactive theorem
provers can help deliver more trustworthy software. Both



6 / strongly agree 5 / agree 4 / somewhat agree 3 / somewhat disagree 2 / disagree 1 / strongly disagree

create more trust

a great alternative to testing

a great complement to testing

expected to lower the chance for bugs

useful in future projects

useful for critical components in future projects

DisagreeAgree

9 414 1116
15

18
19

212329 253137
2436

1 3 75 9 13 15 17
2 4 8 10 14 18

#participants:

E1

E2

E3

E4

E5

E6

4.90

4.38

5.25

4.50

3.73

3.95

mean

22

Figure 2: Overview of participants’ responses to the applicability evaluation statements

the statement about “having higher trust in software if
an ITP was used” (E1) and “expecting software to have
fewer bugs if an ITP was used” (E4) scored high on
average, and neither had any Strongly disagree
responses. While this shows that participants believed
ITPs are capable of delivering more trustworthy software,
it does not address how that fits into their views of
software engineering.

2) Participants viewed interactive theorem provers as a
supplementary rather than standalone tool. This was
clear when compared to their opinions about testing, a
technique they are familiar with from previous courses.
While responses to ITPs being “a great alternative to
testing” (E2) are fairly neutral, we see an increase of
almost one Likert scale point in the responses to ITPs
being “a great complement to testing” (E3). Even more
interestingly, the most popular response to the latter was
Strongly agree, and only three people responded
with a negative opinion. We hypothesise that ITPs are
viewed as being a great additional tool that can increase
trustworthiness, but that it is not necessarily ideal as the
only guarantor.

3) Participants were unsure about the usefulness of inter-
active theorem provers in their future projects. “ITPs
will be useful in future projects” (E5) and “ITPs will
be useful for critical components in future projects” (E6)
scored the lowest of all statements. In both cases, a
weak Somewhat agree was the most popular response
and there is a surprisingly small difference between the
responses to the two statements. This could be because
participants see potential applications for ITPs, but do not
expect to use them in their own future work — regardless
of whether that work is on critical components or not.

B. Identified Obstacles

35 of the 41 participating students (P1–35) answered the
open question about obstacles they faced when learning to use
Agda. Only one of those was a participant who indicated they
had more knowledge of ITPs than was taught in the course. Of
the 105 obstacles entries we received from these participants,
six entries were deemed invalid:

obstacle #entries mean mode

(1) unfamiliar concepts 9 5.00 5
(2) complex theory 12 4.58 4
(3) “weird” design 27 4.85 1 / 2
(4) inadequate ecosystem 45 5.73 8
(5) perceived irrelevance 6 4.83 7

Table I: Severity ratings per obstacle category

• three referred to the course organisation and design
instead of to Agda in general,

• two were complaints about what students incorrectly
assumed were missing features (they were not introduced
in the course), and

• one simply stated that there were no more obstacles to
mention.

Based on the 99 valid entries, we identified five categories of
obstacles related to the theory, implementation, and practical
applications of Agda:

theory → (1) unfamiliar concepts,
↪→ (2) complex theory,

implementation → (3) ‘weird” design,
↪→ (4) inadequate ecosystem, and

applicability → (5) perceived irrelevance.

This section explains each obstacle category, grouped by
the aspect of Agda they are related to. Table I displays the
number of entries submitted for each obstacle category as well
as the mean and mode7 of their severity ratings. Figures 3
to 7 illustrate the severity rating distribution of the respective
obstacle category, where one dot represents one entry.

Theory-Level Obstacles
Theory-level obstacles refer to the underlying type theory

and the programming paradigms on which ITPs are based.
They are the obstacles most inherent to dependently-typed
programming languages.

When new users first come into contact with a dependently
typed language, they have to grasp many unfamiliar concepts

7Mode is the most commonly occurring entry in the data.



91 2 3 4 5 6 7 8 10

2
1#e

nt
rie

s

severity rating

Figure 3: Severity ratings for unfamiliar concepts (1)

91 2 3 4 5 6 7 8 10

3
2
1

#e
nt

rie
s

severity rating

Figure 4: Severity ratings for complex theory (2)

(1) before they can use it. Learning to program with an inter-
active theorem prover such as Agda presents a big paradigm
shift. Not only did participants find dependent types “not
intuitive” [P13], but the idea that the “magic happens during
type checking instead of execution [takes time] to wrap [their]
head around” [P31]. The nature of dependent types forces the
programmer to put emphasis on types rather than the actual
code. This requires familiarising oneself with new concepts
and paradigms, and calls for a different way of thinking than
when using more mainstream programming languages.

Additionally, not only are the new concepts unfamiliar, but
they are also difficult to grasp due to their underlying complex
theory (2). This theory is not hidden behind the design of
ITPs, requiring users to understand it in order to be able to
reason about the programs they write (e.g., Agda’s standard
library defines simple pairs in terms of the more complex
dependent pairs). “The way you need to think about your
program [is] much more abstract” [P28] and effective use
of Agda’s powerful features requires familiarity with their
underlying principles (e.g., recognising when Agda is or is not
able to unify two terms without input from the user). There is
simply a lot to learn before one can start writing code in an
interactive theorem prover.

Looking at the severity rating distributions in both Figure 3
and Figure 4, it is unclear how serious the theoretical obstacles
actually are. Almost every new tool requires learning new
concepts and understanding new theory, and we hypothesise
that some new users are willing to invest more time in that
process. Regardless, more than 20% of all entries pointed
to theory-level obstacles, and whether severe or not, they
contribute to the steep learning curve of ITPs.

Implementation-Level Obstacles
The second set of obstacles relates to how interactive

theorem provers are implemented. This includes everything
from the design of their syntax, to their installation process,
to the support offered by their main integrated development
environment (IDE). A big advantage of ITPs is the rich type

λx→x : ∀ {A : Set} → A → A
λx→x = λ x → x

Listing 4: The identity function

information that is available through interactions with the
compiler — something that requires integrated support from
the implementation of the language.

The less severe type of obstacle we identified in this domain
was Agda’s “weird” [P6] design (3). Agda is tailored to
theorem proving, which manifests itself in the design of its
syntax. Variable names can include almost any Unicode char-
acter excluding whitespace8 [28], allowing mathematicians to
write code that resembles handwritten proofs in mathematical
notation. As a result, it also allows scenarios like in Listing 4,
where the only visual difference between the name and the
definition of the identity function are the whitespaces9.

Unicode characters “[raise the] barrier of entry” [P17] for
new users and create confusion during program comprehen-
sion. This design choice also imposes a strong requirement
of placing whitespaces between all names and operators.
Since this is a much stricter requirement than found in
most mainstream programming languages10, new Agda users
struggle to adjust to it. Many of our study participants simply
wrote “WHITESPACE!” as an obstacle, highlighting their
frustrations at this design choice. However, despite being
mentioned frequently, the distribution in Figure 5 shows that
most participants considered obstacles in this category a minor
inconvenience rather than a blocking issue.

The second implementation-level obstacle type that our
participants encountered when learning to use Agda was the
ITP’s inadequate ecosystem (4). With a total of 45 separate
entries and a mean severity rating of 5.73, this category
was mentioned most often and rated as most severe. Table II

8Whitespace separates names in Agda. Applying the argument bar to the
function foo is expressed as foo bar. Agda’s parser uses whitespace as an
indicator that the name has ended.

9Though this is considered poor code style within the Agda community.
10(x,y), (x, y), and (x , y) would all be parsed as a pair in Haskell.

91 2 3 4 5 6 7 8 10

6

2
1

4

#e
nt

rie
s

severity rating

Figure 5: Severity ratings for “weird” design (3)
(• = problems with syntax; ◦ = other)



contains an overview of the severity ratings for interesting
instances of this category and Figure 6 shows their distribution.

Our study revealed four issues with the ecosystem that
supports Agda:

1) Tools in Agda’s ecosystem are buggy. While Agda has a
wide assortment of tools and features that are intended
to make working with it easier, many of them are not of
high quality. A common theme (mentioned in 10 separate
entries) within the study was that “the installation of Agda
is a horrible experience” [P4]. The distribution in Figure 6
show that more than half of the entries about installation
were given a high severity rating. Furthermore, the devel-
opment environment did not always work properly, with
complaints that “the Agda plugin in VS Code was often
crashing and [the participant] had to restart it” [P18].

2) The design of Agda’s IDE is inconvenient. The most
prominent complaint was about how “syntax highlighting
[does not update] automatically and [does not highlight]
anything on invalid syntax” [P29], making it “harder to
find the mistake” [P15]. While problems with tooling
were not rated as a severe instance of this category (with
a mean of 4.73), they were mentioned often, appearing
in a total of 15 entries.

3) The supporting material is incomplete. There is a “lack of
online courses/resources on Agda” [P34] and participants
found it difficult to find support when they came across
unclear errors or problems. Additionally, some interactive
features are under-specified and participants did not fully
understand how to use them effectively (e.g., automatic
proof search [18]). Although not often mentioned, miss-
ing and incomplete documentation was rated as the most
severe instance of all obstacles categories, with a mean
rating of 7.5011. This is not surprising, since Kumar and
Chimalakonda identified online tutorials, documentation,
and official language resources as the main learning
resources for fast-growing programming languages [29,
p. 186] — indicating that they are essential features for
languages which aim to grow.

4) The available support is not accessible to new users.
Error messages are often unclear, require theoretical
knowledge and experience to be helpful, and are “almost
impossible to understand [in some cases]” [P22]. Of all
obstacle instances we found in our responses, error mes-
sage inadequacy is the most prominent — it contributes
13 entries to its category and a mean severity rating of
7.08. Additionally, the documentation that is available
online is on “super crazy stuff, but very little on the
detailed semantics of the basic language” [P5].

Applicability-Level Obstacles
The final category of obstacles we discovered was the

participants’ perceived irrelevance (5) of interactive theorem
provers, rated in severity with a mean of 4.83 but with a

11All information needed to complete the exercises of the course was
provided in the custom slides and other course material, meaning it was not
usually necessary to search along the public channels.

instance #entries mean mode

frustrating installation 10 5.40 8
buggy & impractical tooling 15 4.73 1

missing documentation 4 7.50 7 / 8
unclear error messages 13 7.08 8

Table II: Severity ratings for interesting obstacle instances of
inadequate ecosystem (4)

#e
nt

rie
s

severity rating
91 2 3 4 5 6 7 8 10

2

4

1

er
ro

r m
es

sa
ge

s

2

do
cu

m
en

ta
tio

n

3
2
1

to
oli

ng

2

4

1

ins
tal

lat
ion

2
1 ot

he
r

Figure 6: Severity ratings for inadequate ecosystem (4)

mode of 7 (see Figure 7). Being taught to use Agda as a proof
assistant, students find it “hard to imagine writing software
with Agda” [P28]. They are used to creating and testing
software that interacts with humans in the real world, which
requires input/output as well as integration with other software
development tools. Having experienced neither in Agda, they
are left feeling that it “might be a bit too theoretical” [P23]
and struggle to find its relevance.

91 2 3 4 5 6 7 8 10

3

1

#e
nt

rie
s

severity rating

Figure 7: Severity ratings for perceived irrelevance (5)



V. IMPLICATIONS

There are three interesting observations we can make about
Agda based on the identified obstacles. These observations
correspond to the difficulties listed in Section II.

1) First, many obstacles are a result of the high coupling
between Agda’s underlying theory and its design. “The
relative complexity of the theories underlying [ITPs]
makes them inaccessible to a wide range of software
engineers who are not experienced mathematicians” [30,
p. 1]. Developers need a sturdy grasp of what is going on
under the hood to write programs, understand errors, and
make use of Agda’s interactive features and automation.

2) Second, despite the amount of new, complex theory,
Agda’s ecosystem has very little supporting infrastructure
for new users. The syntax is unusual, the use cases differ
from more common programming languages, and the
documentation is not complete nor accessible enough
to bridge those differences. Similarly, Agda’s standard
libraries are difficult to work with, their design aimed at
experienced ITP programmers. This, coupled with a new
user’s difficulty to imagine where Agda could be applied,
causes a frustrating onboarding experience.

3) Thirdly, Agda’s design makes it dependent on a custom
(and not user-friendly) development environment. An
Agda IDE needs to be able to support features such
as interactive commands or writing Unicode characters.
Unfortunately, the existing IDEs consist of well-intended
features (such as installation through an editor plugin)
that do not reach the quality necessary to be practical –
they have too many bugs and offer confusing information.

These observations indicate that Agda’s design is not being
sufficiently considered within the wider context of its own eco-
system. By shifting this focus and taking steps towards making
the supporting infrastructure more robust and accessible, Agda
designers could mitigate many of the obstacles that new users
face during their learning process.

Robustness would include polishing the existing tools until
they are reliable as well as making sure that document-
ation on important concepts and tutorials for new users
are up-to-date and complete. It would resolve frustrat-
ing obstacles such as difficult installation and present a
smoother learning experience.

Accessibility would entail user-oriented design of the language
and its libraries, but also of the learning resources and
developer environment. Designing ITPs with usability as
a main goal is currently an understudied field, but a cru-
cial one for tools whose underlying theory is inherently
abstract and complex.

While these recommendations are based on the obstacles
encountered in Agda, designers of all ITPs can use this
knowledge as a guide. Examining other ITPs for the same
issues and keeping them in mind for the next design iteration
can help the community move past these hurdles and on to
more advanced features and functionalities.

Additionally, we recommend addressing the design of ITPs
in the wider context of software engineering. How can we use
these languages to verify real-world applications? While there
has been previous work on using ITPs to verify production
code (see Section VII), the integration of these tools into
existing software development processes is not obvious. If
users truly view ITPs as complementary rather than standalone
tools, then it should be clear how they can be combined with
others. Clarifying this process entails defining the ITP role and
recommended uses within larger projects as well as creating
infrastructure which facilitates that integration.

VI. THREATS TO VALIDITY

We identified three threats to validity in our survey.
First, since the participants were recruited through a course,

their responses might have been biased due to expectations of
how the survey would affect their grade. To mitigate this effect,
we made the survey anonymous and explicitly informed them
that participation in this study is entirely voluntary, and that
they can withdraw at any time.

Second, before the survey, we had some ideas about which
obstacles might be mentioned by the participants. To avoid bias
in the responses towards these expected results, we designed
the survey to be open-ended and allowed participants to create
an entry about any obstacle they wanted.

Lastly, this study was conducted on a rather homogenous
set of students, learning the basics of Agda in a short span
of time. Their answers might have been influenced by the
lecturing style of the course, the timespan they had available
for learning, as well as the idiosyncrasies of Agda compared to
other ITPs. Though this means that the specific obstacles that
were reported might be very particular to this setting, they still
provide valuable insight for designers of any ITP as to what
could influence the accessibility for new users.

VII. RELATED WORK

Though we have not found any user-studies targeted spe-
cifically at dependently-typed interactive theorem provers,
there are a number of works that evaluate the usability of
ITPs based on other principles:

• Kadoda et al. [30] used a questionnaire based on the
“Cognitive Dimensions” framework [31] to evaluate a
proof editor meant for educational purposes. The eval-
uation revealed that proof assistance, meaningful error
messages, perceptual cues, and consistency in how classes
of rules are handled all have a high effect on the learn-
ability of a proof system.

• Beckert and Grebing [32] also used the Cognitive Dimen-
sions framework to evaluate the KeY System, “a platform
of software analysis tools for sequential Java” [33]. They
found that important features for usability of the KeY
System are proof presentation and guidance, the feedback
mechanism, documentation, change management, and the
quality of the user interface.

• In later work, Beckert et al. [34] conducted focus groups
to detect the usability issues in interactive aspects of



both KeY and Isabelle/HOL [35]. They find that the
available automatic proof strategies do not provide users
with adequate feedback on how to continue and that
technical issues with the interface were annoying to the
users.

• Hentschel et al. [36] conducted the first empirical study
on ITP user interfaces, comparing the standard UI of
the KeY System to a more debugger-like one. They
conclude that the debugger-like interface is more effective
in presenting the proof steps and that it lowers the barrier
to formal verification.

• Grebing and Ulbrich made “design recommendations for
user interaction in deductive verification systems” [37].
The recommendations were all on proof writing and
comprehension, and gave suggestions about different
presentation and interaction methods.

Since the works above examined the usability of proof
writing and comprehension services, they are relevant to ITPs
based on any principle. However, unlike our work, they were
not executed within the context of a dependently-typed system,
and did not take the underlying mathematical theory into
account. Additionally, while most of the work above focused
on the proof writing mechanisms, we investigated the new
user’s experience with ITPs and their supporting ecosystems
combined. As a result, our findings show the role of the
ecosystem and infrastructure as having a stronger influence
on the accessibility of ITPs than what is implied in the works
above.

Additionally, we use this section to showcase the various
attempts at facilitating the use of ITPs within larger projects.
These works all take a step towards addressing the design of
ITPs in the wider context of software engineering — one of
our recommendations from Section V. We can categorise the
efforts into three types of integrations:

1) Translating programs from an ITP. Some ITPs (e.g.,
Coq [38] or Agda [39]) offer “program extraction” as a
way to automatically translate programs from an ITP into
more mainstream programming languages. This process
allows developer teams to have an expert ITP developer
create verified components of a system and then translate
them into code that can be integrated into a larger
codebase. Coq, for example, offers program extraction
into OCaml, Haskell, and Scheme [40]. Similarly, the
Agda community has recently brought out a tool called
AGDA2HS, which “translates an expressive subset of
Agda to readable Haskell, erasing dependent types and
proofs in the process” [41]. It requires more annotations
within the ITP code than program extraction, but prom-
ises human-readable output in the target language.

2) Translating programs into an ITP. In the opposite direc-
tion, the field has seen work on translating code from
more mainstream programming languages into a theorem
prover, formally verifying the code after it was written.
Dybjer et al. [42] and Christiansen et al. [43] have gone
through this process manually, translating Haskell code

into Agda and Coq respectively. An automatic translation
method from Haskell to Agda has been proposed by
Abel et al. [44], and tools such as hs-to-coq [45] or
coq-of-ocaml [46] already exist for Coq.

3) Adding refinement types to existing programming lan-
guages. Though less powerful than a dependently-typed
system, refinement types can “extend [a programming
language] with predicates that restrict the allowed values
in variables and methods” [47]. The most mature imple-
mentation of refinement types is in Liquid Haskell [48],
which uses an SMT solver and Liquid Proof Macros
(“an extensible metaprogramming technique” [49]) to
write proofs about Haskell code. We have seen similar
attempts in Java [47], JavaScript [50] / TypeScript [51],
and Scala [52] — though they are still in early stages of
implementation.

All of these approaches have drawbacks:
1) translating from an ITP requires implementations of target

language libraries in the source theorem prover,
2) translating to an ITP allows only post-hoc verification12,

becoming an essentially error-detection process (albeit a
more rigorous one than usual), and

3) refinement types are less powerful than dependent types.
Despite that, all three approaches provide a good starting point
for future work on integrating ITPs into existing software
development workflows.

VIII. CONCLUSION & FUTURE WORK

Interactive theorem provers promise strong guarantees about
program correctness and could be a powerful tool for improv-
ing software quality. In our survey, conducted with 41 bachelor
students who were learning to use Agda, we learned that new
users can see the potential benefits of using ITPs, but they
struggle to understand their role and relevance within software
development. Our results indicate that they view ITPs as sup-
plementary rather than standalone tools. Unfortunately, we saw
that the ecosystem that supports Agda and could potentially
help integrate it into software development processes is buggy,
inconvenient, incomplete, and not accessible to new users.
Additionally, new users struggle with Agda’s mathematics-
oriented design, the unfamiliar concepts and complex theory
that ITPs are based on, and the uncertainty of their role and
relevance within software development.

Based on these results, we recommend viewing the design of
Agda within the wider context of its own ecosystem and that of
existing processes in software engineering instead of focusing
primarily on the specifications and design of the language
itself. Putting emphasis on the robustness and accessibility of
Agda’s infrastructure can mitigate many of the obstacles that
new users face when learning to use the language, and would
open up avenues for research in the uncharted field of user-
oriented ITP design. Additionally, considering the role and
recommended uses of ITPs within larger, multilingual projects

12Post-hoc verification is when properties are only verified after the program
has been written, as opposed to integrating the specifications into the types.



and facilitating that integration with suitable infrastructure
would likely make it easier to adopt them as verification tools
in real-world settings.

Although these recommendations are based on obstacles
found in Agda, we believe they can serve as guides for
designers of any interactive theorem prover, helping them
avoid those obstacles and steer towards a better learning
experience. Conducting similar studies on a wider selection
of ITPs and participants might provide richer and more varied
insights. Furthermore, resolving this initial set of obstacles
might reveal the next set of ITP design challenges which
can be studied in future work (e.g., we anticipate that there
are interesting usability-related questions in the design of ITP
interactivity). By continuing this line of work, we can pave the
way for more easily achievable formally verified software.

ACKNOWLEDGMENTS

This research is partially sponsored by the Dutch Sci-
ence Foundation NWO through the Vici “TestShift” project
(No. VI.C.182.032). Jesper Cockx holds an NWO Veni grant
on ‘A trustworthy and extensible core language for Agda’
(VI.Veni.202.216).

REFERENCES

[1] A. J. Ko, B. Dosono, and N. Duriseti, “Thirty years of software
problems in the news,” in International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE). ACM, 2014, pp.
32–39. [Online]. Available: https://doi.org/10.1145/2593702.2593719

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 712–721. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606617

[3] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: which problems do they fix?”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. ACM, 2014, pp. 202–211. [Online].
Available: https://doi.org/10.1145/2597073.2597082

[4] M. Aniche, Effective Software Testing: A developer’s guide. Manning,
2022.

[5] M. Aniche, C. Treude, and A. Zaidman, “How Developers Engineer
Test Cases: An Observational Study,” IEEE Trans. Software Eng.,
pp. 4925–4946, 2022. [Online]. Available: https://doi.org/10.1109/TSE.
2021.3129889

[6] B. C. Pierce, Types and Programming Languages. Cambridge, Mas-
sachusetts: The MIT Press, 2002.

[7] R. Hindley, “The Principal Type-Scheme of an Object in Combinatory
Logic,” Transactions of the American Mathematical Society, 1969,
publisher: American Mathematical Society. [Online]. Available: https:
//doi.org/10.2307/1995158

[8] S. Klabnik and C. Nichols, “Understanding Ownership,” in The Rust
Programming Language, 2nd ed. San Francisco, CA, USA: No Starch
Press, 2021.

[9] U. Norell, “Towards a practical programming language based on de-
pendent type theory,” PhD Thesis, Chalmers University of Technology,
Göteborg, Sweden, 2007.

[10] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992, conference Name: Computer. [Online]. Available:
https://doi.org/10.1109/2.161279

[11] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer,
K. Leach, and Y. Huang, “A Human Study of Comprehension
and Code Summarization,” in International Conference on Program
Comprehension (ICPC). ACM, 2020, pp. 2–13. [Online]. Available:
https://doi.org/10.1145/3387904.3389258

[12] J. Harrison, J. Urban, and F. Wiedijk, “History of Interactive Theorem
Proving,” in Handbook of the History of Logic, ser. Computational Logic.
North-Holland, 2014, vol. 9.

[13] The Coq Development Team, “The Coq Proof Assistant,” Sep. 2024.
[Online]. Available: https://zenodo.org/records/14542673

[14] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer,
“The Lean Theorem Prover (System Description),” in Automated
Deduction (CADE-25), A. P. Felty and A. Middeldorp, Eds. Springer
International Publishing, 2015, pp. 378–388. [Online]. Available:
https://doi.org/10.1007/978-3-319-21401-6 26

[15] A. Stefik and S. Hanenberg, “Methodological Irregularities in
Programming-Language Research,” Computer, vol. 50, no. 8, pp. 60–
63, 2017. [Online]. Available: https://doi.org/10.1109/MC.2017.3001257

[16] E. Brady, Type-Driven Development with Idris. Manning Publications
Co., 2017.

[17] The Agda Development Team, “Emacs Mode: Commands in context
of a goal.” [Online]. Available: https://agda.readthedocs.io/en/v2.7.0.1/
tools/emacs-mode.html#commands-in-context-of-a-goal

[18] ——, “Automatic Proof Search (Auto).” [Online]. Available: https:
//agda.readthedocs.io/en/v2.7.0.1/tools/auto.html

[19] S. Fu, T. Dwyer, P. J. Stuckey, J. Wain, and J. Linossier,
“ChameleonIDE: Untangling Type Errors Through Interactive
Visualization and Exploration,” in International Conference on
Program Comprehension (ICPC). IEEE, 2023, pp. 146–156. [Online].
Available: https://doi.org/10.1109/ICPC58990.2023.00029

[20] E. Babbie, The Practice of Social Research, thirteenth edition ed.
Wadsworth, Cengage Learning, 2013.

[21] H. Taherdoost, “What Is the Best Response Scale for Survey and
Questionnaire Design; Review of Different Lengths of Rating Scale
/ Attitude Scale / Likert Scale,” International Journal of Academic
Research in Management, vol. 8, no. 1, pp. 1–10, 2019.

[22] M. P. Robillard and R. DeLine, “A field study of API learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp. 703–732,
2011. [Online]. Available: https://doi.org/10.1007/s10664-010-9150-8

[23] E. Babbie, The Basics of Social Research, fourth edition ed. Thomson
Higher Education, 2008.

[24] R. Hoda, Qualitative Research with Socio-Technical Grounded Theory:
A Practical Guide to Qualitative Data Analysis and Theory Development
in the Digital World. Springer Cham, 2024. [Online]. Available:
https://doi.org/10.1007/978-3-031-60533-8

[25] M. B. Miles and M. Huberman, Qualitative data analysis: an expanded
sourcebook, 2nd ed. Thousand Oaks, CA: Sage, 1994.

[26] K. Charmaz, Constructing Grounded Theory, 2nd ed., ser. Introducing
Qualitative Methods. Sage Publications, 2014.

[27] B. G. Glaser, Theoretical sensitivity: Advances in the methodology of
grounded theory. Sociology Press, 1978.

[28] The Agda Development Team, “Lexical Structure: Keywords and
special symbols.” [Online]. Available: https://agda.readthedocs.io/en/v2.
7.0.1/language/lexical-structure.html#keywords-and-special-symbols

[29] J. Kumar and S. Chimalakonda, “What Do Developers Feel About
Fast-Growing Programming Languages? An Exploratory Study,”
in International Conference on Program Comprehension (ICPC).
ACM, 2024, pp. 178–189. [Online]. Available: https://doi.org/10.1145/
3643916.3644422

[30] G. F. Kadoda, R. G. Stone, and D. Diaper, “Desirable features of
educational theorem provers - a cognitive dimensions viewpoint,” in
Annual Workshop of the Psychology of Programming Interest Group,
1999.

[31] T. R. G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’ Framework,”
Journal of Visual Languages & Computing, vol. 7, no. 2, pp. 131–174,
1996. [Online]. Available: https://doi.org/10.1006/jvlc.1996.0009

[32] B. Beckert and S. Grebing, “Evaluating the usability of interactive
verification systems,” CEUR Workshop, vol. 873, pp. 3–17, 2012.

[33] W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch, S. Grebing,
R. Hähnle, M. Hentschel, M. Herda, V. Klebanov, W. Mostowski,
C. Scheben, P. H. Schmitt, and M. Ulbrich, “The KeY platform
for verification and analysis of Java programs,” in Verified Software:
Theories, Tools and Experiments. Springer, 2014, pp. 55–71. [Online].
Available: https://doi.org/10.1007/978-3-319-12154-3 4

[34] B. Beckert, S. Grebing, and F. Böhl, “A Usability Evaluation
of Interactive Theorem Provers Using Focus Groups,” in Software
Engineering and Formal Methods. Cham: Springer International
Publishing, 2015, pp. 3–19. [Online]. Available: https://doi.org/10.1007/
978-3-319-15201-1 1

https://doi.org/10.1145/2593702.2593719
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.2307/1995158
https://doi.org/10.2307/1995158
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/3387904.3389258
https://zenodo.org/records/14542673
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1109/MC.2017.3001257
https://agda.readthedocs.io/en/v2.7.0.1/tools/emacs-mode.html#commands-in-context-of-a-goal
https://agda.readthedocs.io/en/v2.7.0.1/tools/emacs-mode.html#commands-in-context-of-a-goal
https://agda.readthedocs.io/en/v2.7.0.1/tools/auto.html
https://agda.readthedocs.io/en/v2.7.0.1/tools/auto.html
https://doi.org/10.1109/ICPC58990.2023.00029
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/978-3-031-60533-8
https://agda.readthedocs.io/en/v2.7.0.1/language/lexical-structure.html#keywords-and-special-symbols
https://agda.readthedocs.io/en/v2.7.0.1/language/lexical-structure.html#keywords-and-special-symbols
https://doi.org/10.1145/3643916.3644422
https://doi.org/10.1145/3643916.3644422
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1007/978-3-319-12154-3_4
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1007/978-3-319-15201-1_1


[35] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: a proof
assistant for higher-order logic. Berlin, Heidelberg: Springer-Verlag,
2002.

[36] M. Hentschel, R. Hähnle, and R. Bubel, “An empirical evaluation of
two user interfaces of an interactive program verifier,” in International
Conference on Automated Software Engineering (ASE). ACM, 2016, pp.
403–413. [Online]. Available: https://doi.org/10.1145/2970276.2970303

[37] S. Grebing and M. Ulbrich, “Usability Recommendations for User
Guidance in Deductive Program Verification,” in Deductive Software
Verification: Future Perspectives: Reflections on the Occasion of 20
Years of KeY, W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, and
M. Ulbrich, Eds. Springer International Publishing, 2020, pp. 261–284.
[Online]. Available: https://doi.org/10.1007/978-3-030-64354-6 11

[38] P. Letouzey, “A New Extraction for Coq,” in Types for Proofs and
Programs. Berlin, Heidelberg: Springer, 2003, pp. 200–219. [Online].
Available: https://doi.org/10.1007/3-540-39185-1 12

[39] The Agda Development Team, “Compilers.” [Online]. Available:
https://agda.readthedocs.io/en/v2.7.0.1/tools/compilers.html

[40] The Coq Team, “Extraction of programs in OCaml and Haskell.”
[Online]. Available: https://coq.inria.fr/doc/V8.11.1/refman/addendum/
extraction.html

[41] J. Cockx, O. Melkonian, L. Escot, J. Chapman, and U. Norell,
“Reasonable Agda is correct Haskell: writing verified Haskell using
agda2hs,” in International Haskell Symposium. ACM, 2022, pp.
108–122. [Online]. Available: https://doi.org/10.1145/3546189.3549920

[42] P. Dybjer, Q. Haiyan, and M. Takeyama, “Verifying Haskell programs
by combining testing, model checking and interactive theorem proving,”
Information and Software Technology, vol. 46, no. 15, pp. 1011–1025,
2004. [Online]. Available: https://doi.org/10.1016/j.infsof.2004.07.002

[43] J. Christiansen, S. Dylus, and N. Bunkenburg, “Verifying effectful
Haskell programs in Coq,” in International Symposium on Haskell.
ACM, 2019, pp. 125–138. [Online]. Available: https://doi.org/10.1145/
3331545.3342592

[44] A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell, “Verifying
haskell programs using constructive type theory,” in Workshop
on Haskell. ACM, 2005, pp. 62–73. [Online]. Available: https:
//doi.org/10.1145/1088348.1088355

[45] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and S. Weirich,
“Total Haskell is reasonable Coq,” in Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP). ACM, 2018, pp. 14–27. [Online]. Available:
https://doi.org/10.1145/3167092

[46] Guillaume Claret, “coq-of-ocaml.” [Online]. Available: https://ocaml.
org/p/coq-of-ocaml/2.5.3%2B4.14

[47] C. Gamboa, P. Canelas, C. Timperley, and A. Fonseca, “Usability-
Oriented Design of Liquid Types for Java,” in International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 1520–1532.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00132

[48] N. Vazou, J. Breitner, R. Kunkel, D. Van Horn, and G. Hutton, “Theorem
proving for all: equational reasoning in liquid Haskell (functional
pearl),” in International Symposium on Haskell. ACM, 2018, pp.
132–144. [Online]. Available: https://doi.org/10.1145/3242744.3242756

[49] H. Blanchette, N. Vazou, and L. Lampropoulos, “Liquid proof macros,”
in International Haskell Symposium, ser. Haskell 2022. ACM, 2022, pp.
27–38. [Online]. Available: https://doi.org/10.1145/3546189.3549921

[50] R. Chugh, D. Herman, and R. Jhala, “Dependent types for
JavaScript,” in Proceedings of the ACM international conference on
Object oriented programming systems languages and applications
(OOPSLA). ACM, 2012, pp. 587–606. [Online]. Available: https:
//doi.org/10.1145/2384616.2384659

[51] P. Vekris, B. Cosman, and R. Jhala, “Refinement types for TypeScript,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 2016, pp.
310–325. [Online]. Available: https://doi.org/10.1145/2908080.2908110

[52] G. S. Schmid and V. Kuncak, “SMT-based checking of predicate-
qualified types for Scala,” in Proceedings of the ACM SIGPLAN
Symposium on Scala (SCALA). ACM, 2016, pp. 31–40. [Online].
Available: https://doi.org/10.1145/2998392.2998398

https://doi.org/10.1145/2970276.2970303
https://doi.org/10.1007/978-3-030-64354-6_11
https://doi.org/10.1007/3-540-39185-1_12
https://agda.readthedocs.io/en/v2.7.0.1/tools/compilers.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1016/j.infsof.2004.07.002
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/3331545.3342592
https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1145/3167092
https://ocaml.org/p/coq-of-ocaml/2.5.3%2B4.14
https://ocaml.org/p/coq-of-ocaml/2.5.3%2B4.14
https://doi.org/10.1109/ICSE48619.2023.00132
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3546189.3549921
https://doi.org/10.1145/2384616.2384659
https://doi.org/10.1145/2384616.2384659
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/2998392.2998398

	Introduction
	An Introduction to ITPs
	Study Setup
	Context & Participants
	Survey
	Pilot Study
	Analysis

	Results
	Applicability Evaluation
	Identified Obstacles

	Implications
	Threats to Validity
	Related Work
	Conclusion & Future Work
	References

